# Existence and Non-existence of Traveling Fronts in Disordered Media 

Andrej Zlatoš

Department of Mathematics
University of Chicago

Banff, March 26, 2010

## Transition fronts for reaction-diffusion equations

We study transition fronts for the reaction-diffusion PDE

$$
u_{t}=\Delta u+f(x, u)
$$

on $\mathbb{R} \times \mathbb{R}$ with $f(x, 0)=f(x, 1)=0$.
Transition front (generalized traveling front) is a solution $u(t, x) \in[0,1]$ global in time and satisfying for each $t \in \mathbb{R}$,

$$
\lim _{x \rightarrow-\infty} u(t, x)=1 \quad \text { and } \quad \lim _{x \rightarrow \infty} u(t, x)=0
$$



- Defined by Berestycki-Hamel. Also Matano, Shen
- This front moves to the right. Also a front moving left.
- Fronts model invasions (combustion, ecology, genetics)


## Reaction functions in $u_{t}=\Delta u+f(x, u)$

Reaction function $f: \mathbb{R} \times[0,1] \rightarrow[0, \infty)$ is non-negative Lipschitz with $f(x, 0)=f(x, 1)=0$ and ignition temperature

$$
\theta(x)=\inf \{u \mid f(x, u)>0\}
$$

- Monostable: $\inf _{x} \theta(x)=0 \quad\left(\mathrm{KPP}: f(x, u) \leq \frac{\partial f}{\partial u}(x, 0) u\right)$

- Ignition: $\inf _{x} \theta(x)>0$




## Homogeneous media: Traveling fronts

$$
u_{t}=\Delta u+f(u)
$$

A traveling front is a solution $u(t, x)=U(x-c t)$ such that $U(-\infty)=1$ and $U(\infty)=0$ (constant profile $U$ and speed $c$ ).


- $(U, c)$ solve $U^{\prime \prime}+c U^{\prime}+f(U)=0$ (gives $\left.c>0\right)$
- Ignition reactions: unique front speed $c_{f}^{*}>0$
- Monostable reactions: minimal front speed $c_{f}^{*}>0$ and all $c \in\left[c_{f}^{*}, \infty\right)$ are achieved (but $c_{f}^{*}$ most physical)
- KPP: $c_{f}^{*}=2 \sqrt{f^{\prime}(0)}$ (Kolmogorov-Petrovskii-Piskunov)

General solutions of the PDE propagate with speed $c_{f}^{*}$.

## Periodic media: Pulsating fronts

$$
u_{t}=\Delta u+f(x, u)
$$

Assume that $f$ is 1-periodic in $x$. A pulsating front with speed $c>0$ is a solution of the form $u(t, x)=U(x-c t, x \bmod 1)$ such that uniformly in the second argument, $U(-\infty, x \bmod 1)=1$ and $U(\infty, x \bmod 1)=0$.


- Time-periodic in a moving frame: $u\left(t+\frac{1}{c}, x+1\right)=u(t, x)$
- $(U, c)$ solve a degenerate elliptic equation
- Under mild conditions on $f$ there is again unique/minimal front speed $c_{f}^{*}>0$ for ignition/monostable reactions (Xin, Berestycki-Hamel)


## Fronts in general inhomogeneous media

In general inhomogeneous media no special forms exist.
Assume:

- $f(x, u)$ is Lipschitz and $f_{0}(u) \leq f(x, u) \leq f_{1}(u)$ for some reactions $f_{0}(u) \leq f_{1}(u)$ such that $f_{0}$ is ignition and $f_{1}$ is ignition or monostable.
- $f_{1}^{\prime}(0)<\left(c_{t_{0}}^{*}\right)^{2} / 4$ (true if $f_{1}$ is ignition)
- This is equivalent to $2 \sqrt{\dagger_{1}^{\prime}(0)}<c_{t_{0}^{*}}^{*}$ (front is "pushed")
- For some $\zeta<\left(c_{f_{0}}^{*}\right)^{2} / 4$ the function $f(x, \cdot)$ is bounded away from zero (uniformly in $x$ ) on the interval [ $\alpha_{f}(x), 1-\varepsilon$ ], with

$$
\alpha_{f}(x)=\inf \{u \in(0,1) \mid f(x, u)>\zeta u\}
$$

- I.e., $f$ cannot vanish after becoming large (except at $u=1$ )
- These conditions are "qualitatively necessary" for existence of fronts


## Fronts in general inhomogeneous media



## Fronts in general inhomogeneous media

## Theorem (Z.)

Assume the above hypotheses.
(i) There exists a transition front $u_{+}$for

$$
u_{t}=\Delta u+f(x, u)
$$

moving to the right, with $\left(u_{+}\right)_{t}>0$ (and $u_{-}$moving to the left). (ii) If $f_{1}$ is ignition, then $u_{ \pm}$are unique up to time shifts and general solutions with exponentially decaying initial data converge in $L_{x}^{\infty}$ to time shifts of $u_{ \pm}$(global attractors).

- Proved by Nolen-Ryzhik-Mellet-Roquejoffre-Sire in the case $f(x, u)=a(x) g(u)$ with $a(x) \in\left[a_{0}, a_{1}\right] \subset(0, \infty)$ and $g$ ignition reaction (constant positive ignition temperature).
- Extends to cylindrical domains $D \subset \mathbb{R}^{n}$ (and includes periodic case of Berestycki-Hamel, Xin)
- Bistable reaction case studied by Shen, Vakulenko-Volpert


## Non-existence of fronts for $u_{t}=\Delta u+f(x, u)$

If $f_{1}$ is KPP, then $c_{f_{0}}^{*}<c_{f_{1}}^{*}=2 \sqrt{f_{1}^{\prime}(0)}$, so $f_{1}^{\prime}(0)<\left(c_{f_{0}}^{*}\right)^{2} / 4$ fails.
Let $f$ be a KPP reaction and assume

- $a(x)=\frac{\partial f}{\partial u}(x, 0)>0 \quad$ (e.g., $\left.f(x, u)=a(x) u(1-u)\right)$
- $\lambda=\sup \sigma(\Delta+a(x))$
- $\psi=$ principal eigenfunction of $\Delta+a(x)$ (if $\lambda$ is eigenvalue)


## Theorem (Nolen-Roquejoffre-Ryzhik-Z.)

Assume that $a(x) \geq 1$ (so $\lambda \geq 1$ ) and $\lim _{x \rightarrow \pm \infty} a(x)=1$.
(i) If $\lambda>2$, then there is a unique entire solution (up to a time shift) strictly between 0 and 1. It satisfies $u(t, x)=e^{\lambda t} \psi(x)$ for $t \ll-1$ (the bump). In particular, no transition front exists.
(ii) If $\lambda<2$, then there exists a (right-moving) transition front for each speed $c \in\left(2, \frac{\lambda}{\sqrt{\lambda-1}}\right)$. If $\lambda \in(1,2)$, the bump also exists.

- First general result of non-existence of fronts (based on an unpublished ignition-KPP example by Roquejoffre-Z.)


## Proof of (i): non-existence of front for $u_{t}=\Delta u+f(x, u)$

## Lemma

For each $\kappa \in\left(2, \frac{\lambda}{\sqrt{\lambda-1}}\right)$ there is $C_{\kappa}$ such that for $(t, x) \in \mathbb{R}^{-} \times \mathbb{R}$,

$$
u(t, x) \leq C_{\kappa} e^{|x|-\kappa|t|} u(0,0)
$$

Suffices to show $u(t, x) \lesssim e^{\sqrt{\lambda-1}(|x|-\kappa|t|)} u(0,0)$ for $|x| \leq \kappa|t|$. Assume the contrary (by Harnack also for any $y$ near $x$ ) and consider $x<0$. Let $\beta=\frac{|x|}{2 \sqrt{\lambda-1}|t|} \leq \frac{\kappa}{2 \sqrt{\lambda-1}}<1$. Then
$u(t+\beta|t|, 0) \gtrsim e^{\beta|t|} e^{-\frac{|x|^{2}}{4 \beta \beta \mid t}} e^{\sqrt{\lambda-1}(|x|-\kappa|t|)} u(0,0)=e^{(\lambda \beta-\sqrt{\lambda-1} \kappa)|t|} u(0,0)$
if $u_{t}=\Delta u+u$. Still holds, with $e^{(1-\varepsilon) \beta|t|}$, because $2 \beta|t|<|x|$. Same estimate for any $y$ near 0 , so if $\psi(0)=\|\psi\|_{\infty} \leq 1$, then $u(0,0) \geq e^{\lambda(1-\beta)|t|} e^{(\lambda \beta-\sqrt{\lambda-1} \kappa-\varepsilon \beta)|t|} u(0,0)=e^{(\lambda-\sqrt{\lambda-1} \kappa-\varepsilon \beta)|t|} u(0,0)$

This is a contradiction if $\varepsilon>0$ is small.

So for $(t, x) \in \mathbb{R}^{-} \times \mathbb{R}^{-}$we have

$$
u(t, x) \leq C_{\kappa} e^{-x+\kappa t} u(0,0)
$$

Assume $a(x)-1$ is supported on $\mathbb{R}^{+}$, pick any $\tau<0$, and let

$$
v^{(\tau)}(t, x)=C_{\kappa} e^{-x+(\kappa-2) \tau+2 t} u(0,0)+C_{\kappa} e^{x+2 t} u(0,0)
$$

Then $v^{(\tau)}$ solves

$$
v_{t}^{(\tau)}=\Delta v^{(\tau)}+v^{(\tau)} \geq \Delta v^{(\tau)}+f\left(x, v^{(\tau)}\right)
$$

on $\mathbb{R} \times \mathbb{R}^{-}$, with $v^{(\tau)}(\tau, x) \geq u(\tau, x)$ for $x<0$ and $v^{(\tau)}(t, 0) \geq u(t, 0)$ for $t \in[\tau, 0]$. So for $(t, x) \in \mathbb{R}^{-} \times \mathbb{R}^{-}$,

$$
u(t, x) \leq \lim _{\tau \rightarrow-\infty} v^{(\tau)}(t, x)=C_{\kappa} e^{-|x|+2 t} u(0,0)
$$

Same for $x \geq 0$, so $u$ is a bump.

## Proof of (ii): existence of fronts for $u_{t}=\Delta u+f(x, u)$

Assume a compactly supported and $f(x, u)=a(x) u$ for $u \leq \theta$.
For $\gamma \in(\lambda, 2)$ let $\phi_{\gamma}$ be the generalized eigenfunction of
$\Delta+\boldsymbol{a}(x)$ with eigenvalue $\gamma$ and $\phi_{\gamma}(x)=e^{-\sqrt{\gamma-1} x}$ for $x \gg 1$.
Then $\phi_{\gamma}>0$ and $\phi_{\gamma}(x) \approx \alpha_{\gamma} e^{-\sqrt{\gamma-1} x}$ for $x \ll-1$ (with $\alpha_{\gamma}>0$ ).

$$
v(t, x)=e^{\gamma t} \phi_{\gamma}(x)
$$

solves $v_{t}=\Delta v+a(x) v$ so $v$ is a supersolution of the original PDE, "moving" with speed $c=\gamma / \sqrt{\gamma-1}$ for $|x| \gg 1$.
Let $\varepsilon>0$ be small and $\varepsilon^{\prime}=\left(\sqrt{1+\frac{\varepsilon}{\gamma-1}}-1\right) \gamma$, so that $\varepsilon^{\prime}>\varepsilon$ by $\frac{\gamma}{2(\gamma-1)}>1$. Then

$$
w(t, x)=e^{\gamma t} \phi_{\gamma}(x)-A e^{\left(\gamma+\varepsilon^{\prime}\right) t} \phi_{\gamma+\varepsilon}(x)
$$

"moves" with speed $c$, has a "constant" in $t$ maximum, and is a subsolution where $w \geq 0$ if $A \gg 1$ (so that sup $w \leq \theta$ ).

