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Transition fronts for reaction-diffusion equations

We study transition fronts for the reaction-diffusion PDE
U = Au +f(x,u)

on R x R with f(x,0) =f(x,1) = 0.

Transition front (generalized traveling front) is a solution

u(t,x) € [0,1] global in time and satisfying for each t € R,

lim u(t,x)=1 and lim u(t,x) =0.
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@ Defined by Berestycki-Hamel. Also Matano, Shen
@ This front moves to the right. Also a front moving left.
@ Fronts model invasions (combustion, ecology, genetics)



Reaction functions in u; = Au + f(x, u)

Reaction function f : R x [0, 1] — [0, oc0) is non-negative

Lipschitz with f(x, 0) = f(x, 1) = 0 and ignition temperature
0(x) = inf{u |f(x,u) > 0}

@ Monostable: infy §(x) =0
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Homogeneous media: Traveling fronts

Uy = Au + f(u)

A traveling front is a solution u(t,x) = U(x — ct) such that
U(—o0) = 1 and U(oo) = 0 (constant profile U and speed c).

® (U,c)solve U”" +cU’+f(U) =0 (givesc > 0)

@ Ignition reactions: unique front speed ¢ > 0

@ Monostable reactions: minimal front speed ¢{ > 0 and all
¢ € [¢f, 00) are achieved (but ¢ most physical)

@ KPP: ¢/ = 2,/f/(0) (Kolmogorov-Petrovskii-Piskunov)

General solutions of the PDE propagate with speed c;'.



Periodic media: Pulsating fronts

U = Au +f(x,u)

Assume that f is 1-periodic in x. A pulsating front with speed

¢ > 0 is a solution of the form u(t,x) = U(x — ct,x mod 1) such
that uniformly in the second argument, U(—oco,xmod1) =1
and U(co,xmod 1) = 0.

@ Time-periodic in a moving frame: u(t + 1, x + 1) = u(t,x)
@ (U, c) solve a degenerate elliptic equation
@ Under mild conditions on f there is again unique/minimal

front speed ¢; > 0 for ignition/monostable reactions (Xin,
Berestycki-Hamel)



Fronts in general inhomogeneous media

In general inhomogeneous media no special forms exist.
Assume:

@ f(x,u) is Lipschitz and fo(u) < f(x,u) < f;(u) for some
reactions fo(u) < f1(u) such that fy is ignition and f; is
ignition or monostable.

@ f1(0) < (c;)?/4 (true if fy is ignition)
e This is equivalent to 2,/f{(0) < ¢ (frontis “pushed”)

@ For some (¢ < (c;(‘))z/4 the function f(x, -) is bounded away
from zero (uniformly in x) on the interval [as(x), 1 — ], with

af(x) =inf{fu € (0,1)|f(x,u) > Cu}

@ |.e., f cannot vanish after becoming large (except atu = 1)

@ These conditions are “qualitatively necessary” for
existence of fronts



Fronts in general inhomogeneous media




Fronts in general inhomogeneous media

Theorem (Z.)

Assume the above hypotheses.
(i) There exists a transition front u__ for

ur = Au +f(x,u)

moving to the right, with (u); > 0 (and u_ moving to the left).
(ii) If 1 is ignition, then u.. are unique up to time shifts and
general solutions with exponentially decaying initial data
converge in Ly° to time shifts of uy. (global attractors).

@ Proved by Nolen-Ryzhik-Mellet-Roquejoffre-Sire in the
case f(x,u) = a(x)g(u) with a(x) € [ap,a1] C (0,00) and g
ignition reaction (constant positive ignition temperature).

@ Extends to cylindrical domains D ¢ R" (and includes
periodic case of Berestycki-Hamel, Xin)

@ Bistable reaction case studied by Shen, Vakulenko-Volpert




Non-existence of fronts for u; = Au + f(x, u)

If f; is KPP, then ¢ < ¢ = 2,/f{(0), so f{(0) < (c; )*/4 fails.

Let f be a KPP reaction and assume
@ a(x) =2 (x,0)>0 (eg., f(x,u)=a(x)u(l—u))

@ A\ =supo(A +a(x))

@ ¢ = principal eigenfunction of A + a(x) (if \ is eigenvalue)

Theorem (Nolen-Roquejoffre-Ryzhik-Z.)

Assume that a(x) > 1 (so A > 1) and limy_ 1. a(x) = 1.

() If A > 2, then there is a unique entire solution (up to a time
shift) strictly between 0 and 1. It satisfies u(t,x) = e (x) for
t < —1 (the bump). In particular, no transition front exists.

(i) If A < 2, then there exists a (right-moving) transition front for

each speed c € (2, \/%). If A € (1,2), the bump also exists.

@ First general result of non-existence of fronts (based on an
unpublished ignition-KPP example by Roquejoffre-Z.)



Proof of (i): non-existence of front for u; = Au + f(x, u

For each x € (2, \/%) there is C,; such that for (t,x) € R~ x R,

u(t,x) < C,.el=*#lty(0,0)

Suffices to show u(t,x) < eVA-1xI=#lthy(0, 0) for |x| < |t|.
Assume the contrary (by Harnack also for any y near x) and

consider x < 0. Let g = 2\/ﬁ\t\ < 2\/_ < 1. Then

u(t + glt|,0) > e’ltle” 4ﬁ\t\e\/ LI=#lthy(0,0) = eP8=vA=18)Itly (0, 0)

if uy = Au + u. Still holds, with e1=)81tl because 24|t| < |x]|.
Same estimate for any y near 0, so if zp(o) = |¢¥||oc <1, then

u(O’ O) Zek(l_ﬁ)“'e(}\ﬂ_ \ A_ln_aﬁ””u(o’ 0) — e()‘_ \4 A_lﬁ_aﬂ)“'u(o’ O)

This is a contradiction if € > 0 is small.



Proof of (i): non-existence of front for u; = Au + f(x, u)

So for (t,x) € R~ x R~ we have
u(t,x) < C.e **'u(0,0)
Assume a(x) — 1 is supported on R, pick any 7 < 0, and let
vD(t,x) = C,e*H(+=27+2y (0, 0) + C,.e*+?'u(0,0).
Then v(7) solves
vt(T) = AV v > AV £ (x, v

on R x R~, with v(")(7,x) > u(r,x) for x < 0 and
v(T)(t,0) > u(t,0) for t € [r,0]. Sofor (t,x) € R~ x R,

u(t,x) < lim v(t,x) = C.e X*?u(0,0)

T——00

Same for x > 0, so u is a bump.



Proof of (ii): existence of fronts for uy = Au + f(x,u

Assume a compactly supported and f(x,u) = a(x)u foru < 6.
For v € (A, 2) let ¢, be the generalized eigenfunction of

A + a(x) with eigenvalue v and ¢, (x) = e~ V7~ for x > 1.
Then ¢, > 0 and ¢, (x) ~ ozye‘\/wTlx for x < —1 (with o, > 0).

v(t,x) = e"e,(x)

solves vi = Av + a(x)v so v is a supersolution of the original
PDE, “moving” with speed ¢ = ~// — 1 for |x| > 1.

Lete >0besmallande’ = (,/1 -

2(7 iy > 1. Then

)7, so that e’ > ¢ by

w(t,x) = e"g,(x) - ATV g, . (x)

“moves” with speed c, has a “constant” in t maximum, and is a
subsolution where w > 0 if A > 1 (so that supw < 6).



