Existence and Non-existence of Traveling Fronts in Disordered Media

Andrej Zlatoš

Department of Mathematics University of Chicago

Banff, March 26, 2010

Transition fronts for reaction-diffusion equations

We study transition fronts for the reaction-diffusion PDE

 $u_t = \Delta u + f(\mathbf{x}, u)$

on $\mathbb{R} \times \mathbb{R}$ with f(x, 0) = f(x, 1) = 0.

Transition front (generalized traveling front) is a solution $u(t, x) \in [0, 1]$ global in time and satisfying for each $t \in \mathbb{R}$,

- Defined by Berestycki-Hamel. Also Matano, Shen
- This front moves to the right. Also a front moving left.
- Fronts model invasions (combustion, ecology, genetics)

Reaction functions in $u_t = \Delta u + f(x, u)$

Reaction function $f : \mathbb{R} \times [0, 1] \to [0, \infty)$ is non-negative Lipschitz with f(x, 0) = f(x, 1) = 0 and ignition temperature

 $\theta(\mathbf{x}) = \inf \left\{ u \, \big| \, f(\mathbf{x}, u) > 0 \right\}$

• Monostable: $\inf_{x} \theta(x) = 0$ (KPP: $f(x, u) \le \frac{\partial f}{\partial u}(x, 0)u$)

КРР ((x,) 0 1 0

• Ignition: $\inf_x \theta(x) > 0$

Homogeneous media: Traveling fronts

 $u_t = \Delta u + f(u)$

A traveling front is a solution u(t, x) = U(x - ct) such that $U(-\infty) = 1$ and $U(\infty) = 0$ (constant profile *U* and speed *c*).

- (U, c) solve U" + cU' + f(U) = 0 (gives c > 0)
- Ignition reactions: unique front speed $c_f^* > 0$
- Monostable reactions: minimal front speed c^{*}_f > 0 and all c ∈ [c^{*}_f, ∞) are achieved (but c^{*}_f most physical)

• KPP: $c_f^* = 2\sqrt{f'(0)}$ (Kolmogorov-Petrovskii-Piskunov)

General solutions of the PDE propagate with speed c_{f}^{*} .

 $u_t = \Delta u + f(\mathbf{x}, u)$

Assume that *f* is 1-periodic in *x*. A pulsating front with speed c > 0 is a solution of the form $u(t, x) = U(x - ct, x \mod 1)$ such that uniformly in the second argument, $U(-\infty, x \mod 1) = 1$ and $U(\infty, x \mod 1) = 0$.

- Time-periodic in a moving frame: $u(t + \frac{1}{c}, x + 1) = u(t, x)$
- (U, c) solve a degenerate elliptic equation
- Under mild conditions on f there is again unique/minimal front speed $c_f^* > 0$ for ignition/monostable reactions (Xin, Berestycki-Hamel)

Fronts in general inhomogeneous media

In general inhomogeneous media no special forms exist. Assume:

- f(x, u) is Lipschitz and $f_0(u) \le f(x, u) \le f_1(u)$ for some reactions $f_0(u) \le f_1(u)$ such that f_0 is ignition and f_1 is ignition or monostable.
- $f'_1(0) < (c^*_{f_0})^2/4$ (true if f_1 is ignition)
 - This is equivalent to $2\sqrt{f'_1(0)} < c^*_{f_0}$ (front is "pushed")
- For some ζ < (c^{*}_{f0})²/4 the function f(x, ·) is bounded away from zero (uniformly in x) on the interval [α_f(x), 1 − ε], with

$$\alpha_f(\mathbf{x}) = \inf\{u \in (0, 1) \mid f(\mathbf{x}, u) > \zeta u\}$$

- I.e., *f* cannot vanish after becoming large (except at u = 1)
- These conditions are "qualitatively necessary" for existence of fronts

Fronts in general inhomogeneous media

Fronts in general inhomogeneous media

Theorem (Z.)

Assume the above hypotheses. (i) There exists a transition front u_+ for

 $u_t = \Delta u + f(\mathbf{x}, u)$

moving to the right, with $(u_+)_t > 0$ (and u_- moving to the left). (ii) If f_1 is ignition, then u_{\pm} are unique up to time shifts and general solutions with exponentially decaying initial data converge in L_x^{∞} to time shifts of u_{\pm} (global attractors).

- Proved by Nolen-Ryzhik-Mellet-Roquejoffre-Sire in the case f(x, u) = a(x)g(u) with a(x) ∈ [a₀, a₁] ⊂ (0, ∞) and g ignition reaction (constant positive ignition temperature).
- Extends to cylindrical domains D ⊂ ℝⁿ (and includes periodic case of Berestycki-Hamel, Xin)
- Bistable reaction case studied by Shen, Vakulenko-Volpert

Non-existence of fronts for $u_t = \Delta u + f(x, u)$

If f_1 is KPP, then $c_{f_0}^* < c_{f_1}^* = 2\sqrt{f_1'(0)}$, so $f_1'(0) < (c_{f_0}^*)^2/4$ fails.

Let f be a KPP reaction and assume

•
$$a(x) = \frac{\partial f}{\partial u}(x,0) > 0$$
 (e.g., $f(x,u) = a(x)u(1-u)$)

•
$$\lambda = \sup \sigma(\Delta + a(\mathbf{x}))$$

• $\psi = \text{principal eigenfunction of } \Delta + a(x)$ (if λ is eigenvalue)

Theorem (Nolen-Roquejoffre-Ryzhik-Z.)

Assume that $a(x) \ge 1$ (so $\lambda \ge 1$) and $\lim_{x\to\pm\infty} a(x) = 1$. (i) If $\lambda > 2$, then there is a unique entire solution (up to a time shift) strictly between 0 and 1. It satisfies $u(t, x) = e^{\lambda t}\psi(x)$ for $t \ll -1$ (the bump). In particular, no transition front exists. (ii) If $\lambda < 2$, then there exists a (right-moving) transition front for each speed $c \in (2, \frac{\lambda}{\sqrt{\lambda-1}})$. If $\lambda \in (1, 2)$, the bump also exists.

 First general result of non-existence of fronts (based on an unpublished ignition-KPP example by Roquejoffre-Z.)

Proof of (i): non-existence of front for $u_t = \Delta u + f(x, u)$

Lemma

For each $\kappa \in (2, \frac{\lambda}{\sqrt{\lambda-1}})$ there is C_{κ} such that for $(t, x) \in \mathbb{R}^{-} \times \mathbb{R}$,

 $u(t,x) \leq C_{\kappa} e^{|x|-\kappa|t|} u(0,0)$

Suffices to show $u(t, x) \leq e^{\sqrt{\lambda-1}(|x|-\kappa|t|)}u(0,0)$ for $|x| \leq \kappa|t|$. Assume the contrary (by Harnack also for any *y* near *x*) and consider x < 0. Let $\beta = \frac{|x|}{2\sqrt{\lambda-1}|t|} \leq \frac{\kappa}{2\sqrt{\lambda-1}} < 1$. Then

 $u(t+\beta|t|,0) \gtrsim e^{\beta|t|} e^{-\frac{|x|^2}{4\beta|t|}} e^{\sqrt{\lambda-1}(|x|-\kappa|t|)} u(0,0) = e^{(\lambda\beta-\sqrt{\lambda-1}\kappa)|t|} u(0,0)$

if $u_t = \Delta u + u$. Still holds, with $e^{(1-\varepsilon)\beta|t|}$, because $2\beta|t| < |x|$. Same estimate for any *y* near 0, so if $\psi(0) = \|\psi\|_{\infty} \le 1$, then

$$u(0,0) \ge e^{\lambda(1-\beta)|t|} e^{(\lambda\beta-\sqrt{\lambda-1}\kappa-\varepsilon\beta)|t|} u(0,0) = e^{(\lambda-\sqrt{\lambda-1}\kappa-\varepsilon\beta)|t|} u(0,0)$$

This is a contradiction if $\varepsilon > 0$ is small.

Proof of (i): non-existence of front for $u_t = \Delta u + f(x, u)$

So for $(t, x) \in \mathbb{R}^- imes \mathbb{R}^-$ we have

 $u(t,x) \leq C_{\kappa} e^{-x+\kappa t} u(0,0)$

Assume a(x) - 1 is supported on \mathbb{R}^+ , pick any $\tau < 0$, and let

$$v^{(\tau)}(t,x) = C_{\kappa} e^{-x + (\kappa - 2)\tau + 2t} u(0,0) + C_{\kappa} e^{x + 2t} u(0,0).$$

Then $v^{(\tau)}$ solves

$$\boldsymbol{v}_t^{(\tau)} = \Delta \boldsymbol{v}^{(\tau)} + \boldsymbol{v}^{(\tau)} \geq \Delta \boldsymbol{v}^{(\tau)} + f(\boldsymbol{x}, \boldsymbol{v}^{(\tau)})$$

on $\mathbb{R} \times \mathbb{R}^-$, with $v^{(\tau)}(\tau, x) \ge u(\tau, x)$ for x < 0 and $v^{(\tau)}(t, 0) \ge u(t, 0)$ for $t \in [\tau, 0]$. So for $(t, x) \in \mathbb{R}^- \times \mathbb{R}^-$,

$$u(t,x) \leq \lim_{\tau \to -\infty} v^{(\tau)}(t,x) = C_{\kappa} e^{-|x|+2t} u(0,0)$$

Same for $x \ge 0$, so *u* is a bump.

Proof of (ii): existence of fronts for $u_t = \Delta u + f(x, u)$

Assume a compactly supported and f(x, u) = a(x)u for $u \le \theta$. For $\gamma \in (\lambda, 2)$ let ϕ_{γ} be the generalized eigenfunction of $\Delta + a(x)$ with eigenvalue γ and $\phi_{\gamma}(x) = e^{-\sqrt{\gamma-1}x}$ for $x \gg 1$. Then $\phi_{\gamma} > 0$ and $\phi_{\gamma}(x) \approx \alpha_{\gamma} e^{-\sqrt{\gamma-1}x}$ for $x \ll -1$ (with $\alpha_{\gamma} > 0$).

 $\mathbf{v}(t,\mathbf{x}) = \mathbf{e}^{\gamma t} \phi_{\gamma}(\mathbf{x})$

solves $v_t = \Delta v + a(x)v$ so v is a supersolution of the original PDE, "moving" with speed $c = \gamma/\sqrt{\gamma - 1}$ for $|x| \gg 1$.

Let $\varepsilon > 0$ be small and $\varepsilon' = \left(\sqrt{1 + \frac{\varepsilon}{\gamma - 1}} - 1\right)\gamma$, so that $\varepsilon' > \varepsilon$ by $\frac{\gamma}{2(\gamma - 1)} > 1$. Then

$$w(t, \mathbf{x}) = \mathbf{e}^{\gamma t} \phi_{\gamma}(\mathbf{x}) - A \mathbf{e}^{(\gamma + \varepsilon')t} \phi_{\gamma + \varepsilon}(\mathbf{x})$$

"moves" with speed *c*, has a "constant" in *t* maximum, and is a subsolution where $w \ge 0$ if $A \gg 1$ (so that sup $w \le \theta$).