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Traveling wave problem for the bistable equation

We will consider the following equation:

∆u + c∂xN+1
u + f (u) = 0, in RN+1, (0.1)

which is the traveling wave problem for:

ut = ∆u + f (u), in RN+1, t > 0,

where u(x ′, xN+1, t) = u(x ′, xN+1 − ct).
Traveling wave solution is an eternal solution since it exists for all
time t.



In this talk we mostly assume that

f (u) = u(1− u2) =⇒
∫ 1

−1
f (u) du = 0,

i.e. f is a bistable, balanced nonlinearity.
We will mention results of (0.1) with (bistable, unbalanced
nonlinearity)

f (u) = u(1− u2) + a(1− u2) =⇒
∫ 1

−1
f (u) du =

4

3
a 6= 0.

The potential corresponding to the two cases is of the form:

W (u) =
1

2
(1− u2)2 − au(1− 1

3
u2).

If a = 0 then W (−1) = 0 = W (1). If a > 0 then W (−1) > W (1),
hence the phase u = 1 is more stable then u = −1.



We will first discuss the case a > 0. In one dimension we have:

Φ′′ + cΦ′ + f (Φ) = 0.

This problem has a unique solution such that Φ(±∞) = ±1,
Φ′ > 0. This corresponds to a traveling wave that moves to the
left; the more stable phase invades the less stable one.
When a = 0 there exists a unique (heteroclinic) solution:

H ′′ + H(1− H2) = 0,

such that H(±∞) = ±1, H is odd and H ′ > 0. Notice also that
−H is a solution connecting the two stable phases.



Finally we observe that in both situation one can define a planar
front solution in RN+1 to (0.1):

u(x ′, xN+1) =

{
Φ(xN+1), unbalanced, (c 6= 0)

H(xN+1), balanced, (c = 0).

I For planar fronts see the book of Fife.

I In the unbalanced case there are other solutions with
asymptotically planar, V-shaped, fronts (Ninomiya-Taniguchi
(in N + 1 = 2), Hamel-Monneau-Roquejoffre (N + 1 > 2)),
pyramidal fronts (Taniguchi, N = 3).

I Stability of planar fronts (Levermore-Xin, Kapitula, Xin,
Matano-Nara-Taniguchi).

I Related results in the monostable (KPP) case (Bonnet-Hamel,
Hamel-Monneau-Roquejoffre, Hamel-Nadirashvili).



Rotationally symmetric traveling waves

From now on we will consider only the balanced case in RN+1:

∆u + c∂xN+1
u + u(1− u2) = 0. (0.2)

A solution of this problem represents a wave traveling with speed c
in the direction the xN+1 axis.
In this problem the velocity c is not determined by the difference in
the heights of the potential wells.



Parabolic De Giorgi Conjecture

Consider eternal solutions of parabolic Allen-Cahn equation

ut = ∆u + f (u), (x , t) ∈ RN × R.

Assuming their monotonicity in the xN+1 direction:

∂xN+1
u > 0, lim

xN+1→±∞
u(x ′, xN+1, t) = ±1, t ∈ R

then u is one-dimensional.



This conjecture is false even in dimension N + 1 = 2.

I In 2007 Chen, Guo, Hamel, Ninomiya, Roquejoffre showed the
existence of solutions to (0.2) of the form
u(x ′, xN+1) = U(r , xN+1), r = |x ′|, N ≥ 1. Functions U have
paraboloid-like profiles of their nodal sets Γ .

I We concentrate on the case N > 1. In the same paper the
asymptotic profiles of the fronts are given:

lim
xN+1→+∞

(x ′,xN+1)∈Γ

r2

2xN+1
=

N − 1

c
, if N > 1.

I When N = 1 the ends of the fronts become asymptotically
parallel.



Traveling Wave De Giorgi Conjecture

Let u be a bounded solution of equation

(AC )TW ∆u + u − u3 + cuxN+1
= 0 in RN+1.

which satisfies
∂xN+1

u > 0

Then, u must be radially symmetric in x
′
.

Gui: N = 2



Parabolic Allen-Cahn Equation and Mean Curvature Flow

Consider the mean curvature flow for a hypersurface Σ = Σ(t):

∂Σ

∂t
= HΣν, (0.3)

where ν is the normal to the surface and HΣ is its mean curvature.
It is known that the evolution of zero-level set of ε−version of the
Allen-Cahn equation

εut = ε∆u +
1

ε
u(−u2) (0.4)

can be reduced to (0.3)
Evans-Spruck 1995, T.Illmanen 1993, Y. Tonegawa 2003, ...



Eternal Solutions of Mean Curvature Flow

Surfaces which are translated by the mean curvature (MC) flow
with constant velocity (say 1) in a fixed direction satisfy:

HΣ = νN+1, (xN+1 direction). (0.5)

Let Σ = Σ(t) be such a surface and consider its scaling Σε:

y ∈ Σε(t) ⇐⇒ εy ∈ Σ(t).

Then, denoting the mean curvatures of these surfaces by HΣ , HΣε :

HΣ = νN+1, HΣε = ενN+1. (0.6)



I Translating solutions to the MC flow are called eternal
solutions since they exists for all t ∈ (−∞,∞).

I Convex eternal solutions are important in the study of
singularities for the MC flow (Huisken-Sinestrari, also Wang,
Wang-Sheng, B.White).

I Examples by Altschuler-Wu, Clutterbuck-Schnurer-Schulze,
Nguyen.



Rotationally symmetric eternal solution to the MC flow

We describe the result of Clutterbuck-Schnurer-Schulze.
When Σ(t) = {F (x ′) + t}, where F : RN → R, is a smooth
function then

∇(
∇F√

1 + |∇F |2 ) =
1√

1 + |∇F |2 . (0.7)

There exists a unique radially symmetric solution F of (0.7):

F (r) =
r2

2(N − 1)
− log r + 1 + O(r−1), r À 1. (0.8)



The first term in this asymptotic behavior coincides with the
asymptotic behavior of the nodal set of solutions to (0.2) found by
Chen, Guo, Hamel, Ninomiya, Roquejoffre.

I The rotationally symmetric graphs are stable.

I They find other solutions, which are still rotationally
symmetric, have the same asymptotic behavior, but are not
graphs.

I Nguyen (2008) found other embedded traveling surfaces by
desingularizing the Scherk surface, following ideas of
Kapoulous (1997)



Bernstein Type Conjecture for MC Solitons

Let F be a solution of

∇(
∇F√

1 + |∇F |2 ) =
1√

1 + |∇F |2 in RN . (0.9)

Then F is rotationally or cylindrically symmetric.

A natural critical dimension seems to be N = 8. However

X-J Wang , 2004, claimed to have the existence of non-radial
eternal convex graphs when N ≥ 3.



Traveling wave foliations

I We want to find solutions to

∆u + ε∂xN+1
u + u(1− u2) = 0, in RN+1, (0.10)

connecting −1 to −1,i.e., limxN→±∞ u(x
′
, xN+1) = −1.

I For each ε by Σε we denote the eternal graph:

Σε = {xN+1 = ε−1F (εr)}.
I We look for solutions depending on just two variables r = |x ′|,

x ′ ∈ RN and xN+1.

I We want the nodal set of such solution to have multiple
components which resemble in some sense the eternal graph.
For simplification we will consider k = 2 component case.

I By the normal graph of a function ψ over a surface we mean
the surface

Γ 3 p 7→ p + ν(p)ψ(p).



Theorem (del Pino, Kowalczyk, Wei, 2009)

For each small ε > 0 and N ≥ 2 there is a solution uε to (0.10)
whose 0-level set consists of 2 hypersurfaces given as normal
graphs over Σε of smooth functions fε,j(r), j = 1, 2. Denoting

Uε = fε,2 − fε,1 > 0, Vε = fε,2 + fε,1,

we have

Uε(r) = log
α0

ε2b(εr)
+O(

log log
α0

ε2b(εr)

)
,

where

b(s) ∼ N − 1

s2
, s À 1,

while Vε = O(ετ ), where α0, τ > 0 are constants.



I The nodal sets, up to small terms, have form:

Γε,1 = Σε − {1

2
Uε(r)νε(r)},

Γε,2 = Σε + {1

2
Uε(r)νε(r)}.

I Asymptotically we have

Uε(r) ∼ log
2 + ε2r2

ε2
.

I The ends of the nodal sets diverge logarithmically in r along
the ends of Σε but this growth is small relative to the
asymptotic behavior of Σε at ∞ which is ε−1F (εr) ∼ εr2.



I Our proof also gives a new proof of single traveling interface
in the case of ε << 1. Accurate information can be obtained.
This can be useful for the uniqueness and stability question.

I There is no such analogue result for the mean curvature flow.
This result shows that the parabolic Allen-Cahn equation is
really different from the mean curvature flow. It has richer
structures.



I With some extra (technical) effort a similar result can be
proven in case of k > 2 foliating traveling waves.

I The travelling wave solution we construct connects the stable
phase −1 (minimum of the potential W (u) = 1

4(1− u2)2)
with itself, as it is common two distinct stable phases −1 and
1. This is counterintuitive for this nonlinearity (bistable not
monostable).

I We refer to this phenomenon as foliation by traveling waves.
This is motivated by the apparent analogy with the foliation
by constant mean curvature submanifolds (Ye,
Mazzeo-Pacard, Mahmoudi-Mazzeo-Pacard), and foliations by
interfaces (del Pino, Kowalczyk, Wei, Yang).

I These phenomena seem to be quite different at the end.



The mechanism of foliations

I To explain we observe that the ”single” traveling wave is
stable (though no proofs yet) and so is the eternal solution.

I The speed of the eternal solutions is very sensitive to the
asymptotic profiles of their ends. In fact there is a continuous
family of eternal solutions parametrized by their speeds. They
foliate the space.

I The middle parts of the two components of the multiple front
traveling wave are ”attracted” by an eternal solution with the
given speed c = ε, while their ends ”approach” the ends of
eternal solutions with different speeds: the bottom one is
slightly slower while the upper one is slightly faster.

I Foliating traveling waves ”lie” on the boundary of the basin of
attraction of the wave whose speed is ε.



Derivation of the Jacobi-Toda system

I We introduce the Fermi coordinates around Σε,

x = p + zνε(p), p ∈ Σε,

I Since we seek solutions that depend on (r , xN+1) only, we can
assume that the Fermi coordinates depend on (r , z) only.

I We build an approximate solution of the form:

u(r , z) = H(z − fε,1(εr))− H(z − fε,2(εr))− 1

≡ Hε,1 − Hε,2 − 1,

where functions fε,j are to be determined and H is the
heteroclinic:

H ′′ + H(1− H2) = 0, H(±∞) = ±1.



I In these coordinates,

∆ = ∂zz + ∆Σε − HΣε∂z

∂N+1f = ∇f · ∇xN+1

I The error of the approximate solution

S(u) ∼
2∑

j=1

{∂zzHε,j + f (Hε,j)}

+
2∑

j=1

{(ενN+1 − HΣε)∂zHε,j}

+
2∑

j=1

{(∆Σε − z |AΣε |2∂z

)
Hε,j

+ε∇ΣεHε,j · ∇Σε(xN+1)}

+f (
2∑

j=1

Hj ,ε − 1)−
2∑

j=1

f (Hj ,ε).



I the interaction term

f (
2∑

j=1

Hj ,ε − 1)−
2∑

j=1

f (Hj ,ε) ∼ e−
√

2|fε,1−fε,2|

I Projection of the error onto ∂zHε,j gives formally the
Jacobi-Toda system

ε2α0

[(
∆Σ + |AΣ |2)fε,j +∇Σ fε,j · ∇Σ (xN+1)

]

− e
√

2(fε,j−1−fε,j ) + e
√

2(fε,j−fε,j+1) = 0, (0.11)

where we always agree that fε,0 = −∞, fε,m+1 = ∞. Here
α0 > 0 is a universal constant.

I Here Jacobi operator

JΣ(ψ) = ∆Σψ + |AΣ |2ψ +∇Σ ψε,j · ∇Σ (xN+1).

I Infinite dimensional reduction is used to justify this rigorously.



Other Jacobi-Toda Systems

Allen-Cahn equation on a compact N-dimensional Riemannian
manifold (M, g̃)

(AC )M ε2∆g̃u + (1− u2)u = 0 in M, (0.12)

where ∆g̃ is the Laplace-Beltrami operator on M.



I Pacard and Ritoré : single interface on non-degenerate
minimal (N − 1)-dimensional submanifold of M.

I del Pino-Kowalczyk-Wei-Yang 2009: Assume that

|A|2 + Ric > 0 (0.13)

For any fixed integer K ≥ 2, there exists a positive sequence
(εi )i approaching 0 such that problem (AC )M has a solution
uε with K phase transition layers with mutual distance
O(ε| ln ε|).



I Near Γ, uε can be approximated by

uε ≈
K∑

k=1

w

(
t − εfj(y)

ε

)
+

1

2

(
(−1)K+1 − 1

)
,.

The functions fj satisfy

‖fj‖∞ ≤ C | ln ε|, fj+1 − fj = O(| ln ε|), 1 ≤ j ≤ K − 1,

I and solve the Toda system,

ε2
(
4Γ fj +

(|AΓ|2 + Ricg (νΓ, νΓ)
)
fj

)
(0.14)

= a0

[
e−

√
2(fj−fj−1) − e−

√
2(fj+1−fj )

]

in Γ, for j = 1, . . . ,K , for a universal constant a0 > 0.



Remarks

I Resonance Condition: unlike Pacard-Ritore’s result, which is
true for all ε << 1, here the result is true for a selected
sequence. This is related to a resonance phenomena due the
combined interaction of the interfaces and the curvature. In
fact, we believe that the Morse index of our solution
approaches +∞ as ε → 0.
Similar phenomena has appeared in other problems:
Malchiodi-Montenegro (2004), del Pino-Kowalczyk-Wei
(2006), ...
However, here the resonance phenomena is different from all
the above. In all the above, resonance phenomena exists even
for a single interface. Here the resonance phenomena only
exists for interfaces, due to an intricate play between the
curvature and the interaction of interfaces.



Why Resonance?
Before we go to the general case, let us consider the simplest of
situation: K = 2. The system becomes

ε2
(
4Γf1 + (|A|2 + Ric)f1

)
+ e −

√
2(f2−f1) = ε2+σh1 on Γ,

ε2
(
4Γf2 + (|A|2 + Ric)f2

)
− e −

√
2(f2−f1) = ε2+σh2 on Γ

Adding the above equations, we have

4Γ(f1 + f2) + (|A|2 + Ric)(f1 + f2) = εσ(h1 + h2) on Γ

By our nondegeneracy condition,

f1 + f2 = O(εσ)

Now let u =
√

2(f1 − f2) + log 2, we arrive at the following simple
PDE

(JT1) ε2(∆gu + (|A|2 + Ric)u) + eu = ε2+σh on Γ



(JT1) ε2(∆gu + (|A|2 + Ric)u) + eu = ε2+σh on Γ

What are the difficulties in solving (JT1)?

I 1.variational methods, if works, can only find a solution and
there is no information on asymptotic behavior of the
solutions, since we have to ask

u << −1

I 2. when N ≥ 3, eu is supercritical, there is no way of using
variational method.

I 3. A more difficult problem is the resonance phenomena.



Resonance Phenomena
Let us for simplicity we assume that

|A|2 + Ric ≡ Constant = 1

Then equation (JT1) becomes

(JT2) ε2(∆gu + u) + eu = ε2+σh on Γ

When h = 0, it has a constant solution

ε2u0 + eu0 = 0

u0 = log ε2 + log log
1

ε
+ O(log log log

1

ε
)

Thus we take u = u0 + u1, then we are reduced to solving

(∆g + (2 log
1

ε
+ 1))u1 = εσh

The left hand operator has eigenvalues

λj − 2 log
1

ε



As we know, by Weyl’s formula,

λj ∼ j
2

N−1

As j → +∞, λj − 2 log 1
ε may cross zero at large N.

This kind of resonance phenomena also appeared in

I Malchiodi-Montenegro: 2004 boundary layer for singularly
perturbed elliptic problem

I del Pino-Kowalczyk-Wei: 2007 geodesics for nonlinear
Schrodinger equation

I Malchiodi-Wei: 2007 boundary layer for Allen-Cahn equation
near the boundary



Gap Condition

The problem can still be solved under some gap condition:it is
possible to obtain

|λj − 2 log
1

ε
| ≥ δp

for p large and hence

‖v‖ ≤ Cδ−p‖(∆g + (2 log
1

ε
− 1))v‖

But the right hand error is O(εσ) which controls any power of δ−p.

More complicated proofs when |A|2 + Ric 6≡ Constant



A New Jacobi-Toda System for Traveling Waves

We need to solve the following new Jacobi-Toda system:

ε2JΣfε,j − e
√

2(fε,j−1−fε,j ) + e
√

2(fε,j−fε,j+1) = 0. (0.15)

JΣ(ψ) = ∆Σψ + |AΣ |2ψ +∇Σ ψε,j · ∇Σ (xN+1).

Main Result: For all ε small, problem (0.15) can be solved.

NO Resonance Needed !!! Why?
The convection term ∇Σ ψε,j · ∇Σ (xN+1)



Jacobi Operator
Our theory of solvability of the Jacobi-Toda system will be valid for
functions of the radial variable r only and so we need to express the
operator J in terms of the radial variable r . The Laplace-Betrami
operator for a surface xN+1 = F (r) acting on v = v(r) is

∆Γ v =
1

rN−1
√

1 + F 2
r

∂

∂r
(

rN−1

√
1 + F 2

r

∂

∂r
)v

=
vrr

1 + F 2
r

+ (
N − 1

r
− Fr

1 + F 2
r

)vr .

(0.16)

The principal curvatures are given by

k1 = ... = kN−1 =
Fr

r
√

1 + F 2
r

, kN =
Frr

(1 + F 2
r )3/2

, (0.17)

hence

|AΓ |2 =
N∑

j=1

k2
j =

(N − 1)F 2
r

r2(1 + F 2
r )

+
F 2

rr

(1 + F 2
r )3

. (0.18)



Finally we have:

∇Γ v · ∇Γ F =
vrFr

1 + F 2
r

,

hence we find the following expression for the radial operator L0:

J [v ] =
vrr

1 + F 2
r

+
(N − 1)vr

r
+

( (N − 1)F 2
r

r2(1 + F 2
r )

+
F 2

rr

(1 + F 2
r )3

)
v .

(0.19)



Let us change the independent variable

s =

∫ r

0

√
1 + F 2

r dr . (0.20)

The new variable s is nothing else but the arc length of the curve
γ = {(r , F (r)), r > 0} in R2. Using the asymptotic formula (0.8)
for F we get that

s ∼ r , r ¿ 1, s =
r2

2(N − 1)
+O(log r), r À 1. (0.21)



By a straightforward computation we obtain the following
expression for the Jacobi operator J :

J [v ] = vss + a(s)vs + b(s)v (0.22)

where

a(s) =
Fr + N−1

r√
1 + F 2

r

, b(s) = |AΓ (r)|2, r = r(s). (0.23)

Note that

a(s) =
N − 1

s

(
1 +O(s2)

)
, s ¿ 1, a(s) = 1 +O(s−1), s À 1,

b(s) =
(N − 1)

r2
+O(r−4) =

1

2s
+O(s−2 log s), s À 1,

(0.24)

and that in general a(s), b(s) > 0 since Γ is convex and
Fr (0) = 0. We also have

b(0) = 1, b
′
(0) = 0, b′′(0) = −N2 + 4N + 2

N4(N + 2)
< 0, N = 2, . . . .

(0.25)



A non-homogeneous Jacobi-Toda system

In reality we have to deal in general with the non-homogeneous
Jacobi-Toda system. Thus we will consider the following problem:

ε2α0J [fε,j ]− e
√

2(fε,j−1−fε,j ) + e
√

2(fε,j−fε,j+1) = ε2hε,j , (0.26)

where fε,j = fε,j(r), hε,j = hε,j(r). The above problem can also be
seen in terms of the arc length variable s.



To describe the strategy we use we will assume for simplification
that m = 2, and denote uε =

√
2(fε,2 − fε,1) and

vε =
√

2(fε,1 + fε,2), and respectively hε =
√

2
α0

(hε,2 − hε,1) and

gε =
√

2
α0

(hε,2 + hε,1). Then we get the following decoupled system:

J [uε]− 2
√

2

ε2α0
e −uε = hε

J [vε] = gε



Solvability of Jacobi Operator

J [vε] = gε

We will see that the right hand side of this equation satisfies:

gε ∼ ετ (1 + s)−
3
2
−β, τ > 0, β ≥ 0. (0.27)

The equation can be solved by using the nondegeneracy of the
traveling graph. The key observation is that the operator L0 has a
decaying, positive element in its kernel

φ0 =
1√

1 + F 2
r

∼ 1

r
(∼ 1√

s
). (0.28)

|vε(s)| ≤ Cετ (2 + s)−
1
2 log(s + 2). (0.29)



Simple Jacobi-Toda Equation

J [uε]− 2
√

2

ε2α0
e −uε = hε (0.30)

The solvability theory for the nonlinear equation (0.30) is another
story. Even when the right hand side hε = 0, we still have the
nonlinear term to deal with. In general the decay rate of this term
will be actually slower and in addition it is a term of order ε−2. In
other words the real difficulty is in solving the non-homogeneous
nonlinear problem (0.30).
Result: There exists a solution uε such that

uε(s) = log
2
√

2

ε2α0b(s)
+O(log log

1

ε2b(s)
), s →∞ (0.31)



Defining v(s) = uε(s) and 2
√

2
ε2α0

= 1
δ2 , we solve first

vss + a(s)vs + b(s)v − 1

δ2
e −v = 0, δ ∼ ε ¿ 1. (0.32)

As ε → 0 the solution of this equation approaches the solution of
the nonlinear ODE equation:

a(s)v0,s + b(s)v0 =
1

δ2
e −v0 ,

from which the asymptotic formula

v0(s) ∼ log
1

δ2b(s)
,

follows. This is very different from the way the classical Toda
system is solved. Analysis of (0.32) is rather delicate (need to solve
an inhomogeneous version of it).



Definition of the linearized operator Lδ

From the above considerations we see that linearization around the
approximate solution v0 is the following operator

Lδ[h] = hss + a(s)hs + pδ(s)h = g(s). (0.33)

0 < pδ(s) ≤ C log
1

δ2
, (0.34)

while when s ≥ s̄ then pδ(s) satisfies

1

C (2 + s)
log

(2 + s

δ2

)
< pδ(s) ≤ C

2 + s
log

(2 + s

δ2

)
, s ≥ 0.

(0.35)



A Model ODE Problem
The key is to solve the following problem

hss + a(s)hs +
λ

1 + s
h = g(s). (0.36)

where λ >> 1,
a(s) ∼ −1 + O(s−1)

To begin we make the following transformation:

ĥ = exp

(
1

2

∫ s

1
a(τ) dτ

)
h. (0.37)

Then near s ∼ 0, ĥ = s(N−1)/2h and near s → +∞, ĥ ∼ es/2h, by
(0.24). Equation (0.36) is transformed to

ĥ′′ + (pδ(s)− â(s))ĥ(s) = ĝ , (0.38)

where

â =
1

2
a′ +

1

4
a2, ĝ = exp

(
1

2

∫ s

1
a(τ) dτ

)
g .



We mainly work with the transformed equation (0.38). A
simplified version is

Lλ[h] = ĥ′′ + (
λ

1 + s
− 1

4
)ĥ(s) = O(e

s
2 (1 + s)−3)), (0.39)

The problem: any kernel of

h
′′

+ (
λ

1 + s
− 1

4
)h = 0

has large number of zeroes. We have to estimate the growth of the
amplitudes.
The idea of is the following: we will consider the inner and the
outer problem separately, construct suitable inverses of Lλ for
these problems and then ”glue” the solutions. The situation now is
more complicated since we have to consider the full second order
problem. It is at this level that we take full advantage of some
special properties of the eternal solution to the mean curvature
flow.



We introduce the following weighted Hölder norms for functions
u : R+ → R:

‖u‖C`
β,µ(R+) :=

∑̀

j=0

sup
s>1

{
(2 + s)β+j

[
log

(2 + s

δ2

)]µ‖u‖Cj ((s−1,s+1))

}
,

where β, and µ ≥ 0.



The point is to construct a right inverse of (0.33) which is bounded
in the weighted norm defined above. More precisely we will show:

Lemma
Suppose that β > 1. Then there exists a constant C > 0 and a
solution to (0.33) such that

‖h‖C2,µ
β (R+)

≤ Cλ‖g‖C0,µ
β+1(R+)

. (0.40)


