Traveling pulses and
branching patterns
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Bacterial colonies. Top S. Serror (CNRS-Paris-Sud). Bottom K. Ben Jacob (TAU)
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Lecture 1. Parabolic models and pulse propagation

Lecture 2. The hyperbolic Keller-Segel model and branching
pattern

Lecture 2bis. V. Calvez (Keller-Segel and asymmetric pulses)

Lecture 3. Another example of concentration Darwin evolution



Dentritic patterns
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The dynamics is driven by the source terms, i.e., by bacterial
growth/nutrient consumption.



Dentritic patterns




Dentritic patterns

Intuitive explanation

e Nutrient is consumed by the active cells and reaches a low level in
the colony

e Cells at the front have an advantage for multiplication

e [ his enhences any perturbbation



Dentritic patterns

This model, as well as other variants are based on the Gray-Scott
chemical reaction

)
%u — dyAu = u(un_lv — ,u),
. %fu — dpAv = —u" v,

\ 9 f(t,x) = pu™
Here n = 1, 2... plays the role of ignititon temperature.

Levin and Kessler model is

%u — dyDAu = u(h(u)v - ,u),

h(u) =0 Jor U < Uthreshold-



Dentritic patterns

This model, as well as other variants are based on the Gray-Scott
chemical reaction

( %u — dyAu = u(u”_lv — ,u>,

\ %fv — dpAv = —u" v,

9 f(t,x) = pu™

\

Here n = 1 makes a big difference with n = 2... or Levin and Kessler
model or Mimura model.



Dentritic patterns

Traveling pulse for Gray-Scott

—ou — dyu = u(v - ,u), u(+oo) = 0,

—ov = —uw, v(—00) =v_, wv(+o0) =v4.
Theorem (PES, BP ongoing) Let (u,v—,vy4) be such that

v < p < v, pin(v-) —v_ = pin(vy) — vy,

Then, for all speeds

og>o =2y /vyp —

there is a unique traveling pulse and v is increasing.
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Some references

Golding-Koslovsky-Ben Jacob

Muratov-Osipov, Doelman-Eckhaus-Kaper-Gardner
M. Ward-Kolokolnikov-Wei

Mimura (Masuda)

Elliptic case : Del Pino, Kowalckzyk



Dentritic patterns

15000
15000
12500
12500 j
> 10000 ;
10000 y \
7500 Ji ,f\
7500 ﬁ* j—\\%
2 A\
5000 j \
2500
2500
\
L 20 40 60 80 100
100

Pulse splitting in GS system (from DoelmanEckhaus-Kaper, SIAP
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Pulse splitting in 2D GS system (from M. Ward)
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A conservative model with branching

New experiments are done on rich media.

Are there models based on other ingredients that achieve this type
of patterns?



A conservative model with branching

Experiments by B. Holland and S. Serror, CNRS Paris-Sud



A conservative model with branching

The shortcoming of Keller-Segel system

p

gn(t,z) +div[xnVe| = An,  zeR% t>0,
§ —Ac+c=n,

n(t,z) = n9(z).




A conservative model with branching

The shortcoming of Keller-Segel system

7

%n(t,x)—l—diV[anc} = An+n(l —n), z € RY, ¢t >0,
T —Ac+c=n,

n(t,z) = n9(z).

\

Theorem (G. Nadin, BP, L. Ryzhik)
For x small enough, there is a traveling wave.

For x large enough the K.-S. equation is unstable in the sense of
Turing.



A conservative model with branching

The hyperbolic Keller-Segel system

p

Zn(t, x) + divin(l —n)Ve| =0, zeRY, t>0,
§ —Ac+c=n,

n(t,z) = n9(x), 0<n9%=z) <1, nfeLl(RD.

Interpretation

e n(t,z) = bacterial density ,

e c(t,r) = chemical signalling (chemoattraction),

e n(1 —n) represents something like quorum sensing,
e random motion of bacterials is neglected



A conservative model with branching

Related to the Keller-Segel model but no point concentrations

By V. Calvez, B. Desjardins, H. Khonsari on multiple sclerosis



A conservative model with branching

fn(t,z) + divin(l —n)Ve - nVS| =0, zeRI >0,
—dcAc+ ¢ = aen,

9 f(t,x) —dAf =am~+ f(1— f)

%S(t, r) —dgAS+ S = ag (nmother colony T f + n)

\

e n = swarmer cells,

e { = follower (supporter) cells,

e ¢ = short range 'attractant’

e S = long range signal (surfactant?)



A conservative model with branching

show movies now



Traveling pulses

Numerical instabilities can be observed on reduced systems

p

n(t,z) +divin(l —n)Ve—nVS| =0,  zeRY >0,
. —dcAc+ ¢c= aen,

\

%S(t,a}) —dgAS + 795 = ag n.
And check for traveling pulses

(

—on' + {n(l—n)c’—nS’},ZO, x € R,

N\

7, _
—decd’ + ¢ = aen,

\ —0S" —dgS" + 79S = ag n.




Traveling pulses

( /

—on' + [n(l —n)c — nS’} = 0, x € R, n(+oo) = 0,
\ —dCC” —|_ C =— OGcn,

—0S" —dgS" 4+ 17¢S = ag n.

\



Traveling pulses

( /

—on' + [n(l —n)c — nS’} = 0,
\ —dCC” —|_ C =— OGcn,
. —0S' —dgS" + 179S = ag n.

(

—on +n(1l —n)d —nS"' =0,
{ —ded" 4+ ¢ = aen,

\ —0S" —dgS" + 17¢S = ag n.

r € R,

r € R,

n(+oco) = 0,



Traveling pulses

( /

—on' + [n(l —n)c — nS’} = 0, x € R, n(+oo) = 0,
\ —dCC” —|_ C =— OGcn,

—0S" —dgS" 4+ 17¢S = ag n.

\

(

—on +n(1l —n)d —nS"' =0, x € R,
—dcd’ + ¢ = aen,
\ —0S" —dgS" + 17¢S = ag n.

7\

(o —oc+ (1 —-n)d -8 =0, x € [0, L],
o n =0, for x ¢ [0, L],
—ded" + ¢ = aen,

| —05" —dgS" 4+ 17¢S = ag n.




Traveling pulses

Special case 1. Steady states,

p

o (1-n)d -8 =0, x € [0, L],
° n =0, for = ¢ [0, L],
) —ded! + ¢ = aen,
| —dgS" 4+ S = agn.

T heorem For

e [, small

e Or |de — dg| + |ae — ag| small

there is a unique solution n € C(0, L).



Traveling pulses

Special case 1. Steady states,
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Traveling pulses

Special case 2. d¢ =0, 79 = 0,

(o —oc+(1—-n)d -85 =0, x € [0, L],
° n=0, foraxé]|O,L],

I _
—dcc’" + ¢ = aen,

| —05" = ag n.

1, 0<z<L,
n =
0, otherwise
—0S' = agn, Vv, o= -5 for z€|[0,L],

— oo=.,ag, oc=-S z€][0,lL], S" =0 for x ¢ [0, L],



Traveling pulses

Special case 2. dg = 0, 7¢ = 0 (stability)
Theorem These waves are stable if and only if

d(0) > Va, d(L) < 0.

See the problem as an hyperbolic system (as
%n -+ [n(l —n)c — nSx]x =0,
%S = ag n.

p

%n -+ [n(l —n)c — nv]aj =0,

0 —
| 57V —ag ng = 0.

And check the Lax entropy condition.

r € R,




Traveling pulses

Special case 2. dg = 0, 7¢ = 0 (structural stability)

Theorem Still when ¢/'(0) > /a, (L) < 0, these waves are
stable for dg small.
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Traveling pulses

Special case 3. L~ 0
(o —oc+(1—-n)d -85 =0, x € [0, L],
° n=0, foraxé]|O,L],

7 _
—dcc’ + ¢ = aen,

| —05" —dgS" = ag n.

o+ S’

/

n=1-+4+

C

Difficulty

e d/(xzg) = 0 at a single point
e Choose o = S'(zq)



Traveling pulses

Special case 3. L~ 0

( /
n=1—|—UC,S

¢ —ded” + ¢ = aen,

| —0S5' —dgS" = ag n.

Difficulty e ¢'(zg) = 0 at a single point e Choose o = S'(xg).
Theorem For L ~ 0 there is a unique solution n € C(0, L)

e c is convex in [0, L]

e S is decreasing in [0, L]

e Find a fixed point n— 1 + “C,S/



Traveling pulses

Special case 3. L~ 0
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Conclusion

fn(t,z) + divin(l —n)Ve - nVS| =0, z € R >0,
—deAc + ¢ = aen,

9 f(t,x) —dAf =am~+ f(1—f)

55t 2) — dgAS + S = as(Munother cotony + f +1).

This system creates branching patterns.

A reduced hyperbolic Keller-Segel system explains how instabilities
can occur on tr solutaveling pulse solutions for n.



Thanks to my collaborators

A.-L. Dalibard, V. Calvez

C. Schmeiser, M. Tang, N. Vauchelet

A. Daerr

B. Holland and S. Serror



