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Burgers' equation
Oy + ud,uy = vO2uy, ug(x) is given, r € R, t € R™.
e When v = 0, classical solutions exist only for finite time.

e Classical solutions can be continued as weak solutions.

e The continued weak solutions are classical on regions separated by
shocks.

e They satisfy a compatibility (Rankine-Hugoniot) condition along the
shocks.

e One can choose a unique such solution satisfying Laxs entropy condition.

e For v > (0 global existence of classical solutions is known.



Method of characteristics for
inviscid Burgers' equation

Oy + u0puy = 0, ug(x) is given, © € R, t € RT

On the line
xr =X+ ’U/()(.Q?())t

the function wu(x,t) is constant.
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A stochastic Lagrangian approach to
viscous Burgers' equation

Oy + w0ty = vy, w—o(x) = up(x), v € R, t € R,

Method of “random” characteristics:
dX; = w(Xy)dt + V2vdW,, uy =E [uo o (Xt_l)} .

Note that W, is independent of z.



|dea of proof
dX, = w,(X,)dt + V2 dW,, Xy(a) = a.

Ito: If 6, is constant along trajectories of X;, then 0, satisfies
det + ('U/taxgt — V@i@t) dt + v 21/ 6:U9t th = O

In particular A; = X, ! and 6, = 6,0 A, both are constant along trajectories.

Thus 6, = IE[0,] solves convection-diffusion equation:
dét + Utaxe_t = V@iét.

We force 0, = u; by fixed point argument.



Monte-Carlo simulations

Exact
dX, = u(X,)dt +V2v dW,, u, = Eugo 4], A, = X, .

Approximate by a particle system
take IV independent copies of Brownian motions

dX] = u (X))dt + V2vdW/, i =1,...,N,






Motivation: Navier-Stokes equations

e Numerical random vorter method in 2 dimensions:
time-splitting: vortex method + neat flow
(A.Chorin, 1973, 1978 J.Goodman, 1987, D.Long, 1988).
If w=V X u, then u = —A~'V X w and we obtain
vorticity formulation of the Navier-Stokes equations:

Ow +u-Vw =rvAw.

e Stochastic cascade by backward in time branching in Fourier space

(Y. LeJan& A. S. Sznitman 1997).

e Noisy flow paths + Girsanov's change of variables
(2D B.Busnello, 1999, 3D B.Busnello, F.Flandoli & M.Romito, 2005).



Self-contained stochastic formulation of NSE

e Noisy flow paths + Fixed point (P.Constantin&G.lyer,2006)

e Self-contained proof of local C'* existence of the 2D solutions (G.lyer,2005)
and of the 3D small solutions (G.lyer,2007).

e Further generalizations to MHD (G.Eyink, 2009).

e Self-contained proof of local C[(0, T'), W"?] existence of 3D solutions
(Y.Zhang,2009).



Small probability “proof” for
the Navier-Stokes equations

e We have probabilistic interpretation of the Navier-Stokes equations.

e Can we discard some “bad” set in the probability space and show that
the Navier-Stokes equations are regular on its complement?

e Vlasov-McKean nonlinearity. For the stochastic-Lagrangian formulation
dXt = ut(Xt)dt + vV 2V dI/I/ty

u; = B ug o (X;')] depends on the whole probability space.



Particle Systems are free of
Vlasov-McKean nonlinearity

dX! = uN (XM dt + V2w dW!, i=1,...,N

where W/ are N independent copies of Brownian motion, and

° ) 7

N
1 S .
Uiv = N E Up O A;, A; = (XZ)_l
i=1

Note that u;" is a random variable, defined for each elementary event w € ).
Also uY — wu,, the solution of the viscous Burgers' equation, as N — oo.

Same is true for the analogous Navier-Stokes system (G.lyer&Mattingly,2009).



Shocks and other deficiencies of Particle Systems

Theorem (with G.lyer 2009). Suppose uy € C*(R) is decreasing, and u;
is the solution of the particle system. Let the stopping time 7 be the largest
time of existence of the continuous solution of the particle system. Then

N

T .
|00l |~

Further, entropy-type arguments do not help in defining a weak solu-
tion past shocks, because weak formulation involves second-order spatial

derivatives.
Theorem (G.lyer&Mattingly, 2009). For the 2D Navier-Stokes analogue

. C
limsup E||Vul|[5. > NHUOH%Q, C=C(Q).

t—00



Resetting

Solve
| X
X = WX+ I, = 3 o (49, A= (X0
i=1
only on ¢t € [0,9]. Then reset:
1 < .
ud = ~ ;uo o (ALY).
Use u$ as initial conditions, and solve
| X
dX! = ud(X])dt + V2w dW!, ud = ~ D o Ay A= (X))
i=1

only on t € [9,20], and so on.



Main difference between resetting and no-resetting
duy + w)O,up dt — voiu, dt + £0,u; dW, =0, fori € {l,...,N}

N
1% . .
dul + ul Oyl dt — vO*ul dt + N Z O ul dAW? =0

j=1

If we reset, then uff a5 ujf Thus, as 0 — 0, uf — v, and v, satisfies

0, v al :
dv; + v, 0,0, dt — I/ai’Ut dt + v 2Nt Z dW/] = 0.

j=1



Markov property

e Original system with is Markov
dX, = u(X,)dt + V2 dW,, u, = Efugo (4,)], 4, = X!,
because u, solves
Oy + ud,uy = vO2uy, ug(x) is given, r € R, t € R™.

e Markov property is lost for the non-reset particle system
|
AX) = (X))t + Vo dW], = D ugo A, A= (X))
i=1

e Approximate Markov property for u?, because v, is Markov.



Regularizing effect of resetting

Fix a small probability ¢ > 0, arbitrary time T', and sufficiently regular
initial conditions uy € H*(T), s > 6+3. We know a 4, so that the solution
is smooth with probability 1 — ¢.

Theorem (with G.lyer 2009). There exists dy, that depends only on the
above, so that for 0 < J, there exists a spatially independent stopping time

T with
P(r>T)>1—¢, and u,_ € C([0,7];T),

where u! is the reset process:
|
dX! = u)(X))dt + V2w dW/, u = N Z uss 0 Al Al = (X))!
i=1

ont € ko, (k+ 1)d].



|dea of proof

e Show that as § — 0, u) — v; and v, satisfies

0,V al :
dv, + v,0,v; dt — V@ivt dt + v 2Nt z; dW/ = 0.
=

e SPDE above is dissipative for NV > 1! Prove a strong norm of v is
uniformly bounded in time. (Fourier series estimate).

2. < CV6 almost surely.

e Show sup, ., E||u! — v
e Gives a uniform in time bound on ||u}||c: with large probability.

e Local existence depends only on ||u||c1. Thus global existence.



Deficiencies of proof

e No R, only T. Due to Fourier series argument.

e We do not know how to handle boundaries: Stopping loses invertibility.
e Numerically even large stopping 0 prevents formation of shocks.

e No geometry! Fourier series = Sobolev spaces. Sobolev embedding

gives C'.
THANK YOU!



Shocks in Particle Systems

Theorem (with G.lyer 2009). Suppose uy € C*(R) is decreasing, and u;
is the solution of the particle system. Let the stopping time 7 be the largest
time of existence of the continuous solution of the particle system. Then
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Further, entropy-type arguments do not help in defining a weak solu-
tion past shocks, because weak formulation involves second-order spatial

derivatives.



Shocks for the Particle System. Idea of proof

e The method characteristics defines a family of smooth maps
XN R-R XN a— X (a)

e This map is bijection, thus 9,X;" > 0, 9,A"™ >0 (1D argument).

e This map stops to be bijection exactly when characteristics meet, or,
alternatively, when the inverse function theorem to X, could not be
applied. Thus we must estimate the first time 1" when &CX%N = 0.

e Monotonicity of ug imply that 0,uy < 0. Say 0,uglo = —1.

(noise does not depend on x)
0

dy(0, X |0 — 9

1 N
= N [(%uo 0 + Zz:; Q,;ug
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Further work

e Quasigeostrophic equation
e Small probability existence of Navier-Stokes

e Resetting for Navier-Stokes removes phenomenon

: C
limsup E|[Vu |7 > NHUOH%Q, C=C(9Q).

t—o0



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

