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Burgers’ equation
∂tut + u∂xut = ν∂2

xut, u0(x) is given, x ∈ R, t ∈ R+.

• When ν = 0, classical solutions exist only for finite time.

• Classical solutions can be continued as weak solutions.

• The continued weak solutions are classical on regions separated by
shocks.

• They satisfy a compatibility (Rankine-Hugoniot) condition along the
shocks.

• One can choose a unique such solution satisfying Laxs entropy condition.

• For ν > 0 global existence of classical solutions is known.



Method of characteristics for
inviscid Burgers’ equation

∂tut + ut∂xut = 0, u0(x) is given, x ∈ R, t ∈ R+

On the line
x = x0 + u0(x0)t

the function u(x, t) is constant.



x = x0 + u0(x0)t





A stochastic Lagrangian approach to
viscous Burgers’ equation

∂tut + ut∂xut = ν∂2
xut, ut=0(x) = u0(x), x ∈ R, t ∈ R+.

Method of “random” characteristics:

dXt = ut(Xt)dt +
√

2ν dWt, ut = E
[
u0 ◦ (X−1

t )
]
.

Note that Wt is independent of x.



Idea of proof

dXt = ut(Xt)dt +
√

2ν dWt, X0(a) = a.

Itô: If θt is constant along trajectories of Xt, then θt satisfies

dθt +
(
ut∂xθt − ν∂2

xθt
)
dt +

√
2ν ∂xθt dWt = 0.

In particular At = X−1
t and θt = θ0◦At both are constant along trajectories.

Thus θ̄t = E [θt] solves convection-diffusion equation:

dθ̄t + ut∂xθ̄t = ν∂2
xθ̄t.

We force θ̄t ≡ ut by fixed point argument.



Monte-Carlo simulations

Exact

dXt = ut(Xt)dt +
√

2ν dWt, ut = E [u0 ◦ At] , At = X−1
t .

Approximate by a particle system
take N independent copies of Brownian motions

dX i
t = uNt (X i

t)dt +
√

2ν dW i
t , i = 1, ..., N,

uNt =
1

N

N∑
i=1

u0 ◦ Ai
t, A

i
t = (X i

t)
−1.



x ≈ x0 + u0(x0)t +
√

2νWt



Motivation: Navier-Stokes equations
• Numerical random vortex method in 2 dimensions:

time-splitting: vortex method + neat flow
(A.Chorin, 1973, 1978 J.Goodman, 1987, D.Long, 1988).
If ω = ∇× u, then u = −∆−1∇× ω and we obtain
vorticity formulation of the Navier-Stokes equations:

∂tω + u · ∇ω = ν∆ω.

• Stochastic cascade by backward in time branching in Fourier space
(Y. LeJan& A. S. Sznitman 1997).

• Noisy flow paths + Girsanov’s change of variables
(2D B.Busnello, 1999, 3D B.Busnello, F.Flandoli & M.Romito, 2005).



Self-contained stochastic formulation of NSE

• Noisy flow paths + Fixed point (P.Constantin&G.Iyer,2006)

• Self-contained proof of localC1,α existence of the 2D solutions (G.Iyer,2005)
and of the 3D small solutions (G.Iyer,2007).

• Further generalizations to MHD (G.Eyink, 2009).

• Self-contained proof of local C[(0, T ),W k+2,p] existence of 3D solutions
(Y.Zhang,2009).



Small probability “proof” for
the Navier-Stokes equations

• We have probabilistic interpretation of the Navier-Stokes equations.

• Can we discard some “bad” set in the probability space and show that
the Navier-Stokes equations are regular on its complement?

• Vlasov-McKean nonlinearity. For the stochastic-Lagrangian formulation

dXt = ut(Xt)dt +
√

2ν dWt,

ut = E [u0 ◦ (X−1
t )] depends on the whole probability space.



Particle Systems are free of
Vlasov-McKean nonlinearity

dX i
t = uNt (X i,N

t )dt +
√

2ν dW i
t , i = 1, . . . , N,

where W i
t are N independent copies of Brownian motion, and

uNt =
1

N

N∑
i=1

u0 ◦ Ai
t, A

i
t = (X i

t)
−1.

Note that uNt is a random variable, defined for each elementary event ω ∈ Ω.

Also uNt → ut, the solution of the viscous Burgers’ equation, as N →∞.

Same is true for the analogous Navier-Stokes system (G.Iyer&Mattingly,2009).



Shocks and other deficiencies of Particle Systems
Theorem (with G.Iyer 2009). Suppose u0 ∈ C1(R) is decreasing, and ut

is the solution of the particle system. Let the stopping time τ be the largest
time of existence of the continuous solution of the particle system. Then

τ <
N

||∂xu0||L∞
.

Further, entropy-type arguments do not help in defining a weak solu-
tion past shocks, because weak formulation involves second-order spatial
derivatives.

Theorem (G.Iyer&Mattingly, 2009). For the 2D Navier-Stokes analogue

lim sup
t→∞

E||∇uNt ||2L2 >
C

N
||u0||2L2, C = C(Ω).



Resetting
Solve

dX i
t = uδt(X

i
t)dt +

√
2ν dW i

t , u
δ
t =

1

N

N∑
i=1

u0 ◦ (Ai
t), A

i
t = (X i

t)
−1.

only on t ∈ [0, δ]. Then reset:

uδδ =
1

N

N∑
i=1

u0 ◦ (Ai,N
δ ).

Use uδδ as initial conditions, and solve

dX i
t = uδt(X

i
t)dt +

√
2ν dW i

t , u
δ
t =

1

N

N∑
i=1

uδδ ◦ Ai
t, A

i
t = (X i

t)
−1.

only on t ∈ [δ, 2δ], and so on.



Main difference between resetting and no-resetting

duit + uδt∂xu
i
t dt− ν∂2

xu
i
t dt + ν

2∂xu
i
t dW

i
t = 0, for i ∈ {1, . . . , N}

duδt + uδt∂xu
δ
t dt− ν∂2

xu
δ
t dt +

ν

2N

N∑
j=1

∂xu
j
t dW

j
t = 0

If we reset, then uit ≈ uδt . Thus, as δ → 0, uδt → vt and vt satisfies

dvt + vt∂xvt dt− ν∂2
xvt dt + ν

∂xvt
2N

N∑
j=1

dW j
t = 0.



Markov property

• Original system with is Markov

dXt = ut(Xt)dt +
√

2ν dWt, ut = E [u0 ◦ (At)] , At = X−1
t ,

because ut solves

∂tut + u∂xut = ν∂2
xut, u0(x) is given, x ∈ R, t ∈ R+.

• Markov property is lost for the non-reset particle system

dX i
t = uNt (X i

t)dt +
√

2ν dW i
t , u

N
t =

1

N

N∑
i=1

u0 ◦ Ai
t, A

i
t = (X i

t)
−1.

• Approximate Markov property for uδt , because vt is Markov.



Regularizing effect of resetting
Fix a small probability ε > 0, arbitrary time T , and sufficiently regular

initial conditions u0 ∈ Hs(T), s > 6+ 1
2. We know a δt, so that the solution

is smooth with probability 1− ε.
Theorem (with G.Iyer 2009). There exists δ0, that depends only on the
above, so that for δ 6 δ0 there exists a spatially independent stopping time
τ with

P (τ > T ) > 1− ε, and uδt∧τ ∈ C6([0, τ ]; T),

where uδt is the reset process:

dX i
t = uδt(X

i
t)dt +

√
2ν dW i

t , u
δ
t =

1

N

N∑
i=1

uδkδ ◦ Ai
t, A

i
t = (X i

t)
−1

on t ∈ [kδ, (k + 1)δ].



Idea of proof
• Show that as δ → 0, uδt → vt and vt satisfies

dvt + vt∂xvt dt− ν∂2
xvt dt + ν

∂xvt
2N

N∑
j=1

dW j
t = 0.

• SPDE above is dissipative for N > 1! Prove a strong norm of v is
uniformly bounded in time. (Fourier series estimate).

• Show supt6T E||uδt − vt||2Hs 6 C
√
δ almost surely.

• Gives a uniform in time bound on ||uδtt ||C1 with large probability.

• Local existence depends only on ||uδtt ||C1. Thus global existence.



Deficiencies of proof

• No R, only T. Due to Fourier series argument.

• We do not know how to handle boundaries: Stopping loses invertibility.

• Numerically even large stopping δ prevents formation of shocks.

• No geometry! Fourier series = Sobolev spaces. Sobolev embedding
gives C1.

THANK YOU!



Shocks in Particle Systems
Theorem (with G.Iyer 2009). Suppose u0 ∈ C1(R) is decreasing, and ut

is the solution of the particle system. Let the stopping time τ be the largest
time of existence of the continuous solution of the particle system. Then

τ <
N

||∂xu0||L∞
.

Further, entropy-type arguments do not help in defining a weak solu-
tion past shocks, because weak formulation involves second-order spatial
derivatives.



Shocks for the Particle System. Idea of proof
• The method characteristics defines a family of smooth maps

X i,N
t : R→ R, X i,N

t : a→ X i,N
t (a).

• This map is bijection, thus ∂xX
i,N
t > 0, ∂xA

i,N
t > 0 (1D argument).

• This map stops to be bijection exactly when characteristics meet, or,
alternatively, when the inverse function theorem to Xt could not be
applied. Thus we must estimate the first time T when ∂xX

i,N
T = 0.

• Monotonicity of u0 imply that ∂xu0 < 0. Say ∂xu0|0 = −1.

dt(∂xX
1,N
t )
∣∣∣
0

= ∂xu
N
t

∣∣∣
X1,N

t

∂xX
1,N
t

∣∣∣
0

(noise does not depend on x)

=
1

N

[
∂xu0

∣∣∣
0

+

N∑
i=2

∂xu0

∣∣∣
Ai,N

t ◦X
1,N
t

· ∂xAi,N
t

∣∣∣
X1,N

t

∂xX
1,N
t

∣∣∣
0

]
6 −1/N.



Further work

• Quasigeostrophic equation

• Small probability existence of Navier-Stokes

• Resetting for Navier-Stokes removes phenomenon

lim sup
t→∞

E||∇uNt ||2L2 >
C

N
||u0||2L2, C = C(Ω).

• . . .


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

