Traveling waves in an inhomogeneous medium

Jim Nolen (Duke University)

Including joint work with Lenya Ryzhik (Stanford), Antoine Mellet (Univ. Maryland),
Jean-Michel Roquejoffre (Univ. Paul Sabatier, Toulouse)

The reaction-diffusion equation

$$
u_{t}=u_{x x}+f(x, u), \quad x \in \mathbb{R}, t>0 .
$$

Solutions will behave like a traveling wave with moving interface. . . .
(i) How does the solution evolve at large times?
(ii) If $f(x, u)$ is random, what are the statistical properties of u ?

Pushed fronts in a homogeneous environment
Suppose $u(t, x)$ satisfies

$$
\begin{gathered}
u_{t}=u_{x x}+f(u), \quad x \in \mathbb{R}, \quad t>0 \\
u(0, x)=u_{0}(x) \in[0,1]
\end{gathered}
$$

$f(u)$ is nonlinear and $\int_{0}^{1} f(u) d u>0$:

Diffusion + Reaction $=$ front propagation

Traveling wave solutions:

$$
\tilde{u}(t, x)=\tilde{u}(0, x-\tilde{c} t), \quad x \in \mathbb{R}, t \in \mathbb{R}
$$

$$
\tilde{u}=1
$$

Traveling wave solutions are attractors.

If $u(t, x)$ solves the initial value problem with appropriate "wave-like" initial data at $t=0$, then for some $\tau \in \mathbb{R}$,

$$
\sup _{x}|u(t, x)-\tilde{u}(t+\tau, x)| \leq C e^{-r t}, \quad \forall t \geq 0
$$

Kanel (1962), Aronson, Weinberger (1979), Fife, McLeod (1977).

The inhomogeneous environment

$$
u_{t}=u_{x x}+f(x, u), \quad x \in \mathbb{R}, \quad t>0 ; \quad u(0, x)=u_{0}(x)
$$

- $f^{\text {min }}(u) \leq f(x, u) \leq f^{\max }(u)$
- $\int_{0}^{1} f^{m i n}(u) d u>0$
- For example: $f(x, u)=g(x) f_{0}(u), \quad g(x)>0$.

If $f(x, u)$ is periodic in x there are pulsed traveling waves

$$
\tilde{u}\left(t+\frac{L}{\tilde{c}}, x\right)=\tilde{u}(t, x-L)
$$

For example, see Berestycki, Hamel (2002), Xin (1992, 1993).

What if we do not impose a periodic structure on f ?

What does the solution look like?

The initial data is a step function (in black).
The plot shows $u(t, x)$ at regularly-spaced points in time.
$g(x)$ was randomly generated.

The interface width does not spread out as $t \rightarrow \infty$.

For some universal constant C,

$$
\left|X^{+}(t)-X^{-}(t)\right| \leq C
$$

holds for all t sufficiently large.

Two solutions with different initial data (in black).

A Generalized Traveling Wave:

There exists a right-moving transition-front solution $\tilde{u}(t, x)$ of

$$
\tilde{u}_{t}=\tilde{u}_{x x}+g(x) f_{0}(\tilde{u}), \quad x \in \mathbb{R}, \quad t \in \mathbb{R}
$$

It is unique up to a time shift. Also, $\tilde{u}_{t}>0$, for all $x \in \mathbb{R}, t \in \mathbb{R}$.
This solution is an attractor: if $u_{0}(x)$ is wave-like, then there is a time shift τ and constants $C, r>0$ such that

$$
\sup _{x \in \mathbb{R}}|u(x, t)-\tilde{u}(t+\tau, x)| \leq C e^{-r t}
$$

holds for all $t \geq 0$.

Mellet, Roquejoffre, Sire (2009),
N., Ryzhik (2009),

Mellet, N., Ryzhik, Roquejoffre (2009)

What if f is random?

Suppose that

$$
f=g(x, \omega) f_{0}(u)
$$

where $g(x, \omega): \mathbb{R} \times \Omega \rightarrow(0, \infty)$ is a stationary random field, with suitable bounds and regularity.

Let $\left\{\pi_{x}\right\}_{x \in \mathbb{R}}$ be a group of measure-preserving transformations which act ergodically on $(\Omega, \mathcal{F}, \mathbb{P})$ so that $g(x+h, \omega)=g\left(x, \pi_{h} \omega\right)$.

In this case, the preceding results hold with probability one.

A Law of Large Numbers for the interface

Let $X(t, \omega)$ be the random interface position:

$$
X(t, \omega)=\sup \left\{x \in \mathbb{R} \left\lvert\, u(t, x, \omega)=\frac{1}{2}\right.\right\}
$$

Then $X(t, \omega)$ satisfies

$$
\lim _{t \rightarrow \infty} \frac{X(t, \omega)}{t}=\tilde{c}, \quad \text { almost surely, and in } L^{1}(\Omega)
$$

The constant $\tilde{c}>0$ is independent of the initial data.
N., Ryzhik (2009)

See Freidlin-Gärtner (1979) for a related result with K.P.P.-type nonlinearity.

A Central Limit Theorem

If the environment is sufficiently mixing, then
(i) There is $\kappa^{2} \geq 0$ such that

$$
\frac{X(t, \omega)-t \tilde{c}}{\sqrt{t}} \rightarrow N\left(0, \kappa^{2}\right), \quad \text { as } t \rightarrow \infty
$$

(ii) If $\kappa^{2}>0$, the family of continuous process $\left\{Y_{n}(t)\right\}_{n=1}^{\infty}$ defined by

$$
Y_{n}(t, \omega)=\frac{X(n t, \omega)-n t \tilde{c}}{\kappa \sqrt{n}}, \quad t \in[0,1]
$$

converges weakly (as $n \rightarrow \infty$) to a standard Brownian motion on $[0,1]$, in the sense of weak convergence of measures on $C([0,1])$ with the topology of uniform convergence.
N. (2009)

Numerical observation of Gaussian fluctuations in interface position:

Left: Histogram for the random variable $X(t, \omega), 13,000$ samples.
Right: Quantile-quantile plot vs. normal distribution.

Bounds on the variance κ^{2}

One can construct random media for which $\kappa^{2}>0$. Under the scaling

$$
f(x, u) \rightarrow f\left(\frac{x}{L}, u\right), \quad L>0
$$

the variance is bounded by

$$
C_{1} L \leq \kappa^{2}(L) \leq C_{2} L
$$

for L sufficiently large, while $0<C_{3}<\tilde{c}(L) \leq C_{4}$.

Statistical invariance of the generalized traveling wave:
We may normalize $\tilde{X}(0, \omega)=0$, so that

$$
\tilde{u}\left(T_{k}(\omega), x+k, \omega\right)=\tilde{u}\left(0, x, \pi_{k} \omega\right), \quad \forall k \in \mathbb{R}
$$

$T_{k}=T_{k}(\omega)$ is the hitting time to $x=k: \tilde{X}\left(T_{k}, \omega\right)=k$.
Increments $\Delta T_{k}=T_{k+1}-T_{k}$ are stationary with respect to k.

In this sense, the profile is statistically invariant with respect to reference point $x=k$.

How do we obtain a CLT for $X(t, \omega)$?

Consider the hitting times

$$
T_{k}(\omega)=\inf \{t \geq 0 \mid \tilde{X}(t, \omega)=k\} .
$$

Then

$$
\frac{T_{n}-\tilde{\tau} n}{\sqrt{n}}=\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1}\left(\Delta T_{k}-\mathbb{E}\left[\Delta T_{k}\right]\right),
$$

where $\Delta T_{k}=T_{k+1}-T_{k}$.
For the traveling wave, the increments ΔT_{k} are identically distributed, but not independent.

Stability of the wave under perturbations of the environment enables us to show that

$$
\Delta T_{k}=T_{k+1}-T_{k}
$$

does not depend strongly on the distant past:

or distant future:

ΔT_{k} depends primarily on the local environment near $x=k$.

Many interesting problems to consider:

- Propagation in multiple dimensions
- Systems of equations, propagating pulses

Thank you for your attention!

References:

Traveling waves: Nolen, Ryzhik, AIHP-Analyse Nonlineaire, 26, 2009.
Stability: Mellet, Nolen, Roquejoffre, Ryzhik, Comm. PDE, 34, 2009.
Central Limit Theorem: Nolen, preprint (2009).

The mixing condition

Define the family of σ-algebras

$$
\begin{aligned}
\mathcal{F}_{k}^{-} & =\sigma(g(x, \omega) \mid x \leq k) \\
\mathcal{F}_{k}^{+} & =\sigma(g(x, \omega) \mid x \geq k)
\end{aligned}
$$

$$
\mathcal{F}_{k}^{-} \subset \mathcal{F}_{k+1}^{-} \subset \mathcal{F}, \quad \text { and } \quad \mathcal{F} \supset \mathcal{F}_{k}^{+} \supset \mathcal{F}_{k+1}^{+}
$$

We say the environment is ϕ-mixing if for all $j \geq k$ and any $\xi \in L^{2}\left(\Omega, \mathcal{F}_{k}^{-}, \mathbb{P}\right)$ and $\eta \in L^{2}\left(\Omega, \mathcal{F}_{j}^{+}, \mathbb{P}\right)$,

$$
|\mathbb{E}[\xi \eta]-\mathbb{E}[\xi] \mathbb{E}[\eta]| \leq \sqrt{\phi(j-k)}\left(\mathbb{E}\left[\xi^{2}\right] \mathbb{E}\left[\eta^{2}\right]\right)^{1 / 2}
$$

for $\phi(n): \mathbb{Z}^{+} \rightarrow[0, \infty)$ is nonincreasing. If $\sum_{n \geq 1} \sqrt{\phi(n)}<\infty$, then the invariance principle holds.

