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The reaction-diffusion equation

U = Uge + f(x,u), = €R, t>0.

Solutions will behave like a traveling wave with moving interface. . . .

(i) How does the solution evolve at large times?

(ii)) If f(x,u) is random, what are the statistical properties of u?



Pushed fronts in a homogeneous environment

Suppose u(t, x) satisfies

Up = Uy + f(u), T €R, t>0
U(O,I‘) — UO(ZE) = [07 1]

f(u) is nonlinear and fol f(u) du > 0:

f(u)
f(u)




Diffusion + Reaction = front propagation

v=1
4= uo(x

Traveling wave solutions:

u(t,z) =u(0,x —¢ct), z€R, teR




Traveling wave solutions are attractors.

If u(t, x) solves the initial value problem with appropriate “wave-like”

initial data at ¢ = 0, then for some 7 € R,

suplu(t,z) —a(t +71,2)| < Ce ™™, Vt>0

i

Kanel (1962), Aronson, Weinberger (1979), Fife, McLeod (1977).



The inhomogeneous environment

U = Uy + f(z,u), xE€R, t>0; u(0, x) = ug(z).
fmaaz(u) fmm(u)
, |
/ 0o u=1

o fmM(u) < flz,u) < fm(u)
o [T (u)du>0

e For example: f(z,u) = g(x)fo(u), g(z) > 0.



Ut = Ugy —|—f(33‘,U)

If f(x,u) is periodic in = there are pulsed traveling waves

L
a(t+ =, 2) = a(t,x — L)
C

For example, see Berestycki, Hamel (2002), Xin (1992, 1993).

What if we do not impose a periodic structure on f?






Ut = Ugy +f(a;*,u)

The interface width does not spread out as t — oc.

ca(t,r)=1—c¢€

For some universal constant C,

X+t - X~ ()| <C

holds for all ¢ sufficiently large.






A Generalized Traveling Wave:

There exists a right-moving transition-front solution u(t, z) of
ﬂt:ﬂxaz—l_g(x)f()(a)? ZE’GR, t €R.

It is unique up to a time shift. Also, u; > 0, for all x € R, t € R.
This solution is an attractor: if ug(x) is wave-like, then there is a
time shift 7 and constants C,r > 0 such that

sup |u(z,t) — u(t + 7, 2)] < Ce™™
reR

holds for all ¢ > 0.

Mellet, Roquejoffre, Sire (2009),
N., Ryzhik (2009),
Mellet, N., Ryzhik, Roquejoffre (2009)



Ut = Ugy T g(SU,W)fo(U)

What if f is random?

Suppose that
f — g(CC,W)fQ(U)
where g(z,w) : R x Q — (0,00) is a stationary random field, with

suitable bounds and regularity.

Let {7, }.er be a group of measure-preserving transformations which
act ergodically on (2, F,P) so that g(x + h,w) = g(x, mpw).

In this case, the preceding results hold with probability one.



Ut = Ugy T g(x,w)fo(u)

A Law of Large Numbers for the interface

Let X (t,w) be the random interface position:

1
X(t,w) =sup{r € R |u(t,z,w) = 5}

Then X (t,w) satisfies
X(t,w)

lim
t—00

= ¢, almost surely, and in L'().

The constant ¢ > 0 is independent of the initial data.

N., Ryzhik (2009)
See Freidlin-Gartner (1979) for a related result with K.P.P.-type nonlinearity.



A Central Limit Theorem

If the environment is sufficiently mixing, then

(i) There is k* > 0 such that
X(t,w) —tc

Vi
(ii) If k% > 0, the family of continuous process {Y;,(t)}°°, defined by
X (nt,w) — nté
K/ ’

converges weakly (as n — 00) to a standard Brownian motion on

— N(0, K?), as t — oo.

Y, (t,w) = te[0,1],

0, 1], in the sense of weak convergence of measures on C(]0, 1])

with the topology of uniform convergence.

N. (2009)



Numerical observation of Gaussian fluctuations in interface position:

QQ Plot of Sample Data versus Standard Normal
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Left: Histogram for the random variable X (¢,w), 13,000 samples.

Right: Quantile-quantile plot vs. normal distribution.



Bounds on the variance x2

One can construct random media for which x* > 0. Under the scaling

X

f(xau)ﬁf(Z/u)a L>0
the variance is bounded by
ClL S 52([/) S CQL

for L sufficiently large, while 0 < C5 < ¢(L) < Cy.



Statistical invariance of the generalized traveling wave:

We may normalize X (0,w) = 0, so that
W(Tp(w), z + k,w) =u(0,z, pw), VEeR

Ti = Ti(w) is the hitting time to = = k: X (T}, w) = k.

Increments ATy, = Ty, — T}, are stationary with respect to k.

In this sense, the profile is statistically invariant with respect to

reference point x = k.



How do we obtain a CLT for X (t,w)?

Consider the hitting times
Ti(w) = inf{t > 0| X (¢t,w) = k}.

Then

i
—_

1T, —Tn
Vn
where ATk = Tk_|_1 — Tk

(AT, — E[ATL]),

0

<~
i

For the traveling wave, the increments AT}, are identically distributed,

but not independent.



Stability of the wave under perturbations of the environment enables

us to show that
ATy = Ty — Ty

does not depend strongly on the distant past:

or distant future:

AT}, depends primarily on the local environment near x = k.



Many interesting problems to consider:
e Propagation in multiple dimensions

e Systems of equations, propagating pulses

Thank you for your attention!
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The mixing condition

Define the family of o-algebras

N——"

L =0 (g(z,w)|x <k
Ffr=o(g9(z,w)| x> k)

F, C Fpq CF, and FOF DF 4

We say the environment is ¢-mixing if for all 7 > k and any

e L*(Q,F, ,P)and n € LQ(Q,F;F,IP’),

E[¢n] - EEIEM| < Vo5 — k) (E[E°]E[?)])

for ¢(n) : Z* — [0, 00) is nonincreasing. If ) -, \/¢(n) < oo, then the
invariance principle holds.
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