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The reaction-diffusion equation

ut = uxx + f(x, u), x ∈ R, t > 0.

Solutions will behave like a traveling wave with moving interface. . . .

(i) How does the solution evolve at large times?

(ii) If f(x, u) is random, what are the statistical properties of u?



Pushed fronts in a homogeneous environment

Suppose u(t, x) satisfies

ut = uxx + f(u), x ∈ R, t > 0

u(0, x) = u0(x) ∈ [0, 1]

f(u) is nonlinear and
∫

1

0
f(u) du > 0:

f(u)

f(u)

u = 1
u = 1θ

θ



ut = uxx + f(u)

Diffusion + Reaction = front propagation

replacemen

u = 1

u = 0

c̃c̃

u0(x)

Traveling wave solutions:

ũ(t, x) = ũ(0, x − c̃t), x ∈ R, t ∈ R

ũ = 1

ũ = 0
c̃



ut = uxx + f(u)

Traveling wave solutions are attractors.

If u(t, x) solves the initial value problem with appropriate “wave-like”

initial data at t = 0, then for some τ ∈ R,

sup
x
|u(t, x) − ũ(t + τ, x)| ≤ Ce−rt, ∀ t ≥ 0

Kanel (1962), Aronson, Weinberger (1979), Fife, McLeod (1977).



The inhomogeneous environment

ut = uxx + f(x, u), x ∈ R, t > 0; u(0, x) = u0(x).

u = 1θ0

fmax(u)
fmin(u)

• fmin(u) ≤ f(x, u) ≤ fmax(u)

•
∫

1

0
fmin(u) du > 0

• For example: f(x, u) = g(x)f0(u), g(x) > 0.



ut = uxx + f(x, u)

If f(x, u) is periodic in x there are pulsed traveling waves

ũ(t +
L

c̃
, x) = ũ(t, x − L)

For example, see Berestycki, Hamel (2002), Xin (1992, 1993).

What if we do not impose a periodic structure on f?



ut = uxx + f(x, u)

What does the solution look like?

The initial data is a step function (in black).

The plot shows u(t, x) at regularly-spaced points in time.

g(x) was randomly generated.
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ut = uxx + f(x, u)

The interface width does not spread out as t → ∞.

ũ(t, x) = 1 − ǫ

ũ(t, x) = ǫ

X−(t) X+(t)

For some universal constant C,

|X+(t) − X−(t)| ≤ C

holds for all t sufficiently large.



ut = uxx + f(x, u)

Two solutions with different initial data (in black).
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A Generalized Traveling Wave:

There exists a right-moving transition-front solution ũ(t, x) of

ũt = ũxx + g(x)f0(ũ), x ∈ R, t ∈ R.

It is unique up to a time shift. Also, ũt > 0, for all x ∈ R, t ∈ R.

This solution is an attractor: if u0(x) is wave-like, then there is a

time shift τ and constants C, r > 0 such that

sup
x∈R

|u(x, t) − ũ(t + τ, x)| ≤ Ce−rt

holds for all t ≥ 0.

Mellet, Roquejoffre, Sire (2009),

N., Ryzhik (2009),

Mellet, N., Ryzhik, Roquejoffre (2009)



ut = uxx + g(x, ω)f0(u)

What if f is random?

Suppose that

f = g(x, ω)f0(u)

where g(x, ω) : R × Ω → (0,∞) is a stationary random field, with

suitable bounds and regularity.

Let {πx}x∈R be a group of measure-preserving transformations which

act ergodically on (Ω,F , P) so that g(x + h, ω) = g(x, πhω).

In this case, the preceding results hold with probability one.



ut = uxx + g(x, ω)f0(u)

A Law of Large Numbers for the interface

Let X(t, ω) be the random interface position:

X(t, ω) = sup{x ∈ R |u(t, x, ω) =
1

2
}.

Then X(t, ω) satisfies

lim
t→∞

X(t, ω)

t
= c̃, almost surely, and in L1(Ω).

The constant c̃ > 0 is independent of the initial data.

N., Ryzhik (2009)

See Freidlin-Gärtner (1979) for a related result with K.P.P.-type nonlinearity.



A Central Limit Theorem

If the environment is sufficiently mixing, then

(i) There is κ2 ≥ 0 such that

X(t, ω) − tc̃√
t

→ N(0, κ2), as t → ∞.

(ii) If κ2 > 0, the family of continuous process {Yn(t)}∞n=1 defined by

Yn(t, ω) =
X(nt, ω) − ntc̃

κ
√

n
, t ∈ [0, 1],

converges weakly (as n → ∞) to a standard Brownian motion on

[0, 1], in the sense of weak convergence of measures on C([0, 1])

with the topology of uniform convergence.

N. (2009)



Numerical observation of Gaussian fluctuations in interface position:
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QQ Plot of Sample Data versus Standard Normal

Left: Histogram for the random variable X(t, ω), 13,000 samples.

Right: Quantile-quantile plot vs. normal distribution.



Bounds on the variance κ2

One can construct random media for which κ2 > 0. Under the scaling

f(x, u) → f(
x

L
, u), L > 0

the variance is bounded by

C1L ≤ κ2(L) ≤ C2L

for L sufficiently large, while 0 < C3 < c̃(L) ≤ C4.



Statistical invariance of the generalized traveling wave:

We may normalize X̃(0, ω) = 0, so that

ũ(Tk(ω), x + k, ω) = ũ(0, x, πkω), ∀ k ∈ R

Tk = Tk(ω) is the hitting time to x = k: X̃(Tk, ω) = k.

Increments ∆Tk = Tk+1 − Tk are stationary with respect to k.

x = 0 x = k

u = θ0

In this sense, the profile is statistically invariant with respect to

reference point x = k.



How do we obtain a CLT for X(t, ω)?

Consider the hitting times

Tk(ω) = inf{t ≥ 0|X̃(t, ω) = k}.

Then

Tn − τ̃n√
n

=
1√
n

n−1
∑

k=0

(∆Tk − E[∆Tk]) ,

where ∆Tk = Tk+1 − Tk.

For the traveling wave, the increments ∆Tk are identically distributed,

but not independent.



Stability of the wave under perturbations of the environment enables

us to show that

∆Tk = Tk+1 − Tk

does not depend strongly on the distant past:

x = ℓ k k + 1

or distant future:

x = r
k k + 1

∆Tk depends primarily on the local environment near x = k.



Many interesting problems to consider:

• Propagation in multiple dimensions

• Systems of equations, propagating pulses

Thank you for your attention!
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The mixing condition

Define the family of σ-algebras

F−
k = σ (g(x, ω)| x ≤ k)

F+

k = σ (g(x, ω)| x ≥ k)

F−
k ⊂ F−

k+1
⊂ F , and F ⊃ F+

k ⊃ F+

k+1

We say the environment is φ-mixing if for all j ≥ k and any

ξ ∈ L2(Ω,F−
k , P) and η ∈ L2(Ω,F+

j , P),

|E [ξη] − E[ξ]E[η]| ≤
√

φ(j − k)
(

E[ξ2]E[η2]
)1/2

for φ(n) : Z
+ → [0,∞) is nonincreasing. If

∑

n≥1

√

φ(n) < ∞, then the

invariance principle holds.


