An unfortunate misprint

Robert L. Jerrard

Department of Mathematics
University of Toronto

March 22, 2010, BIRS

Consider the equation ${ }^{1}$

$$
\begin{equation*}
\varepsilon\left(u_{t t}-u_{x x}\right)+\frac{2}{\varepsilon}\left(u^{2}-1\right)(u-\varepsilon \alpha)=0 \tag{1}
\end{equation*}
$$

for $0<\varepsilon \ll 1$.
Model problem related to

- mechanics: undamped dynamic phase transition
- cosmology: "decay of a false vacuum"

By analogy with well-studied parabolic equations, one expects (?) relativistic accelerating fronts.

Potential difficulty: the equation has a conserved energy, and accelerating fronts would release large amounts of it.

[^0]
Theorem (J., 2010)

There exists initial data for which the corresponding solution u of (1) satisfy

$$
\left\|u-U_{\varepsilon}\right\|_{L^{2}(K)} \leq C \sqrt{\varepsilon}, \quad K \text { compact in } \mathbb{R}^{2}, \quad C=C(K)
$$

Here U_{ε} is an explicitly constructed function with a Lorenz-contracted interface that travels along a curve of constant Minkowskian curvature 2α in \mathbb{R}^{2}.

This result is stable with respect to suitable small perturbations in $H^{1} \times L^{2}$ of the initial data.

The next few slides present most of the proof.

Step 1: change of variables.
Introduce polar coordinates $(r, \theta) \mapsto(r \cosh \theta, r \sinh \theta)=\psi(r, \theta)$.
Let $v=u \circ \psi$. Then

$$
\varepsilon\left(\frac{1}{r^{2}} v_{\theta \theta}-v_{r r}-\frac{1}{r} v_{r}\right)+\frac{2}{\varepsilon}\left(v^{2}-1\right)(v-\varepsilon \alpha)=0
$$

The θ variable is timelike and r is spacelike.
If we imagine $v_{\theta \theta} \approx 0$ and $\frac{1}{r} \approx c$, then the above looks like the equation for traveling waves for a reaction-diffusion equation:

$$
\varepsilon\left(-q_{r r}-c q_{r}\right)+\frac{2}{\varepsilon}\left(q^{2}-1\right)(q-\varepsilon \alpha)=0
$$

The heuristic $\frac{1}{r} \approx c$ may be reasonable for solutions with an interface concentrated at $r=\frac{1}{c}$.
The traveling wave equation has a unique solution

$$
c=2 \alpha, \quad q(r)=\tanh \left(\frac{r}{\varepsilon}\right) .
$$

Step 2: introduce pseudo-energy density
Define

$$
e_{\varepsilon}(v):=\frac{\varepsilon}{2}\left(\frac{v_{\theta}^{2}}{r^{2}}+v_{r}^{2}\right)+\frac{1}{2 \varepsilon^{2}}\left(v^{2}-1\right)^{2} .
$$

Then

$$
\begin{aligned}
\frac{d}{d \theta} e_{\varepsilon}(v) & =\varepsilon\left(v_{r} v_{\theta}\right)_{r}+\varepsilon \frac{v_{\theta}}{r} v_{r}-2 \alpha v_{\theta}\left(1-v^{2}\right) \\
& =\varepsilon\left(v_{r} v_{\theta}\right)_{r}+\varepsilon \frac{v_{\theta}}{r} v_{r}(1-2 \alpha r)+2 \alpha \varepsilon v_{\theta}\left(v_{r}-\frac{1}{\varepsilon}\left(1-v^{2}\right)\right) \\
& =\varepsilon\left(v_{r} v_{\theta}\right)_{r}+\text { Term } 1+\text { Term } 2 .
\end{aligned}
$$

Note: the equation has a conserved energy that we are not using.

- Term 1 small if v_{r} concentrated near $r=\frac{1}{2 \alpha}$
- Traveling wave $q=\tanh (r / \varepsilon)$ solves $q^{\prime}-\frac{1}{\varepsilon}\left(1-q^{2}\right)=0$, so Term 2 small if $v \approx q$ in strong enough sense, up to translation.

Step 3: weighted energy and related functionals.
Write $r_{0}=\frac{1}{2 \alpha}$, and define

$$
\eta_{1}(\theta)=\int_{0}^{\infty} w(r) e_{\varepsilon}(v) d r-\kappa_{1}
$$

for $w(r)=\min \left\{1+\left(r-r_{0}\right)^{2}, 2\right\}$ and $\kappa_{1}=$ minimal interface energy.
Further define

$$
\eta_{2}(\theta)=\int_{0}^{\infty} \varepsilon \frac{v_{\theta}^{2}}{r^{2}}+\left(r-r_{0}\right)^{2}\left(\frac{\varepsilon}{2} v_{r}^{2}+\frac{1}{2 \varepsilon}\left(v^{2}-1\right)^{2}\right) d r
$$

and

$$
\eta_{3}(\theta)=\int_{0}^{\infty}\left|v-\operatorname{sign}\left(r-r_{0}\right)\right|^{2}\left|r-r_{0}\right| d r
$$

Step 4: energy flux.
Compute:

$$
\eta_{1}^{\prime}(\theta) \leq \eta_{2}(\theta)+\int_{0}^{\infty}\left(\sqrt{\varepsilon} v_{r}-\frac{1}{\sqrt{\varepsilon}}\left(1-v^{2}\right)\right)^{2} d r=: \eta_{2}(\theta)+\eta_{4}(\theta)
$$

The new term η_{4} is small if v is approximately solves the first-order equation characterizing traveling waves.

Step 5: some stability estimates. First, straightforward estimates show that

$$
\eta_{3}(\theta) \leq \eta_{3}(0)+\int_{0}^{\theta} \eta_{2}(\phi) d \phi
$$

This uses the pointwise inequality

$$
\frac{v_{\theta}^{2}}{r^{2}}+\frac{1}{4 \varepsilon}\left(r-r_{0}\right)^{2}\left(v^{2}-1\right)^{2} \geq\left|r-r_{0}\right|\left|\left(v-\frac{v^{3}}{3}\right)_{\theta}\right|
$$

Further straightforward estimates show that

$$
\eta_{2}(\theta)+\eta_{4}(\theta) \leq C\left(\eta_{1}(\theta)+\eta_{3}(\theta)\right)
$$

Heuristically,
η_{3} small \Rightarrow interface present $\Rightarrow \eta_{1} \geq \eta_{2}$, and
surplus energy dominates $\sqrt{\varepsilon} v_{r}-\frac{1}{\sqrt{\varepsilon}}\left(1-v^{2}\right)$

Step 6: Main conclusion:

$$
\left(\eta_{2}+\eta_{4}\right)(\theta) \leq C \int_{0}^{\theta}\left(\eta_{1}+\eta_{3}\right) d \phi \leq C \int_{0}^{\theta}\left(\eta_{2}+\eta_{4}\right) d \phi
$$

Thus

$$
\eta_{i}(\theta) \leq C e^{C \theta} \sup _{i} \eta_{i}(0) \approx C e^{C \theta} \varepsilon^{2} \text { for good data. }
$$

This forces $v(0, r) \approx q\left(\frac{r-r_{0}}{\varepsilon}\right)$ and $v_{\theta}(0, r) \approx 0$, a nearly stationary interface near $r=r_{0}$. In particular

$$
\int \frac{1}{r^{2}} v_{\theta}^{2} d r \leq C(k) \varepsilon
$$

for $|\theta| \leq k$ so that

$$
\int \frac{1}{r^{2}}|v(r, \theta)-v(r, 0)|^{2} d r \leq C(k) \varepsilon
$$

Thus the interface remains concentrated near $\left\{(\theta, r): r=\frac{1}{2 \alpha}\right\}$, which is a curve of constant curvature 2α.

Essentially the same argument yields much more general results.
Consider the PDE for $u: \mathbb{R}_{t} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\varepsilon \square u+\frac{2}{\varepsilon}\left(u^{2}-1\right) u=\alpha\left(1-u^{2}\right) \tag{2}
\end{equation*}
$$

where α is a fixed smooth function; or qualitatively similar equations with more general nonlinearities.

Suppose that Γ is

- a timelike hypersurface, smooth in $(-T, T) \times \mathbb{R}^{N}$,
- with prescribed Minkowski mean curvature α,
- and with velocity 0 at $t=0$.

Theorem (J., 2010)

For initial data exhibiting an interface near $\{x:(x, 0) \in \Gamma\}$ and with surplus energy $O\left(\varepsilon^{2}\right)$, the solution u of (2) satisfies

$$
\left\|u-U_{\varepsilon}\right\|_{L^{2}(K)} \leq C \sqrt{\varepsilon}, \quad K \text { compact in }(-T, T) \times R^{N}, C=C(K, \Gamma)
$$

where

$$
U_{\varepsilon}(t, x)=q\left(\frac{d(t, x)}{\varepsilon}\right)
$$

for a specific profile q, and d is the signed Minkowski distance to Γ, so that

$$
-d_{t}^{2}+|\nabla d|^{2}=1 \text { near } \Gamma, \quad d=0 \text { on } \Gamma .
$$

The first theorem can surely be proved by other techniques, eg splitting the equation.

I do not know of any viable alternative approach to the second theorem.

Some related work

- Decay of a false vacuum:
- formal results on quantum tunneling from higher-energy stable state
- exact radial outward accelerating solutions in \mathbb{R}^{1+3} (?)

Coleman, Callan-Coleman, Coleman-Glaser-Martin, Iate 70s.

- scalar elliptic PDE and minimal/prescribed curvature surfaces: Modica-Mortola, Mortola, Hutchinson-Tonegawa, Pacard-Ritoré, del Pino-Kowalczyk-Wei....
- scalar parabolic PDE and mean curvature flow: Bronsard-Kohn, de Mottoni-Schatzmann, X. Chen, Evans-Soner-Souganidis, Ilmanen, Soner
- scalar parabolic PDE and front propagation: very long history

On wave equations:

- Many related results in (J 2009) concerning $\alpha=0$.
- prior to that, all work addressed dynamics of point defects, eg: J, Lin, Gustafson-Sigal, Stuart

[^0]: ${ }^{1}$ The second time derivative may appear to be an unfortunate misprint, as suggested in the title of the talk. In fact it is not.

