Exit times of diffusions with incompressible drift

Gautam Iyer, Carnegie Mellon University gautam@math.cmu.edu

Collaborators:

Alexei Novikov, Penn. State Lenya Ryzhik, Stanford University Andrej Zlatoš, University of Chicago

Partially supported by the National Science Foundation and the Center for Nonlinear Analysis.

- Aim: Study certain incompressible flows which 'promote' the creation of hot spots.
- Existence of such flows is surprising.
- We can prove very little.

Incompressible flows usually 'help' mixing.

• If $\nabla \cdot u = 0$, principal eigenvalue of $L^u = (u \cdot \nabla) - \triangle$ (with Dirichlet B.C.) is larger than that of $L^0 = -\triangle$.

Follows immediately by minimising the Raleigh quotient: If $\phi \in H_0^1(\Omega)$ and $L^u \phi = \lambda^u \phi$, with $\int_{\Omega} \phi^2 = 1$ then

$$\lambda^{u}\int_{\Omega}\phi^{2}=\int_{\Omega}\phi L^{u}\phi=\int_{\Omega}\left|\nabla\phi\right|^{2}\geqslant\lambda^{0}$$

- Consequently, solutions to $\partial_t \theta + u \cdot \nabla \theta \Delta \theta = 0$ approach the equilibrium state faster than solutions to $\partial_t \theta \Delta \theta = 0$.
- In the periodic setting, the *effective diffusivity* in the presence of an incompressible drift is larger than the diffusivity without. (Fannjiang, Papanicolaou '94).

Decrease of the explosion threshold by incompressible drift.

• Explosion problem:
$$\begin{aligned} - \bigtriangleup \phi + u \cdot \nabla \phi &= \lambda e^{\phi} & \text{in } \Omega, \\ \phi &= 0 & \text{on } \partial \Omega. \end{aligned}$$

- There exists an explosion threshold $\lambda_*(u)$:
 - For all $\lambda \leq \lambda_*(u)$ above PDE has a solution.
 - For all $\lambda > \lambda_*(u)$ above PDE has no solutions.
 - Joseph, Lundgreen '72/73; Keener, H. Keller '74; Crandall, Rabinowitz '75; Berestycki, Kiselev, Novikov, Ryzhik '09.
- Incompressible flows can *decrease* the explosion threshold!
 - Berestycki, Kagan, Joulin, Sivashinsky '97: Numerical example in a long rectangle.
 - Usually expect stirring to avoid 'hot spot' creation, and *increase* the explosion threshold!

The exit time problem.

• Let
$$\nabla \cdot u = 0$$
 and consider $\begin{cases} -\Delta \tau^u + u \cdot \nabla \tau^u = 1 & \text{in } \Omega, \\ \tau^u = 0 & \text{on } \partial \Omega \end{cases}$

• τ^u is the expected exit time of the diffusion

$$dX_t = u(X_t) \, dt + \sqrt{2} \, dW_t$$

from the domain Ω .

Main problem: Under the constraints

$$\nabla \cdot u = 0$$
 and $u \cdot \hat{n} = 0$ on $\partial \Omega$,

what drift maximizes τ^u in some sense.

A few remarks

- Without the divergence free constraint, can make τ^u arbitrarily large by a strong inward stirring.
- Using fast incompressible cellular flows, we can always make τ^u arbitrarily small.
- If incompressible stirring only 'helps' mixing, then $u \equiv 0$ should produce the largest τ^u .
- Surprisingly(?) this is false.

Theorem. Let $\Omega \subset \mathbb{R}^2$ be nice¹. Then $u \equiv 0$ maximises $\|\tau^u\|_{L^{\infty}}$ if and only if Ω is a disk.

¹Nice = Bounded, simply connected and Lipschitz

Exit times in a disk.

In a disk, no incompressible stirring can ever increase the expected exit time.

Proposition. Let $\Omega \subset \mathbb{R}^n$ be nice, and v be any divergence free vector field which is tangential on $\partial\Omega$. Then

 $\left\|\tau^{v}\right\|_{L^{p}(\Omega)} \leqslant \left\|\tau^{0,D}\right\|_{L^{p}(D)}$

where $D \subset \mathbb{R}^n$ is a disk with $|D| = |\Omega|$, and $\tau^{0,D}$ is the expected exit time from D with 0 drift.

Proof

- Given any $\tau = \tau^v$, consider the symmetric rearrangement τ^* :
 - $|D| = |\Omega|$, and $\tau^* : D \to \mathbb{R}^+$ is radial.

- For all
$$h$$
, $|\{\tau > h\}| = |\{\tau^* > h\}|$.

• Let
$$\Omega_h = \{\tau > h\}, \ \Omega_h^* = \{\tau^* > h\}$$
. Then

$$\int_{\partial \Omega_h^*} |\nabla \tau^*| \, d\sigma \int_{\partial \Omega_h^*} \frac{1}{|\nabla \tau^*|} \, d\sigma = |\partial \Omega_h^*|^2 \leqslant |\partial \Omega_h|^2 \leqslant \int_{\partial \Omega_h} |\nabla \tau| \, d\sigma \int_{\partial \Omega_h} \frac{1}{|\nabla \tau|} \, d\sigma.$$

• Co-area implies $\int_{\partial\Omega_h} \frac{1}{|\nabla\tau|} d\sigma = -\frac{d}{dh} |\Omega_h| = -\frac{d}{dh} |\Omega_h^*| = \int_{\partial\Omega_h^*} \frac{1}{|\nabla\tau^*|} d\sigma$

•
$$\implies \int_{\partial \Omega_h^*} |\nabla \tau^*| \, d\sigma \leqslant \int_{\partial \Omega_h} |\nabla \tau| \, d\sigma = |\Omega_h^*|.$$

• Since τ^* is radial \implies QED.

Increasing the exit times for non-circular domains.

• Consider 'infinite amplitude' flows:

- For
$$A \in \mathbb{R}$$
, $\nabla \cdot u = 0$, let τ^{Au} solve
 $-\Delta \tau^{Au} + Au \cdot \nabla \tau^{Au} = 1$ in Ω ,
 $\tau^{Au} = 0$ on $\partial \Omega$

- Let
$$\bar{\tau}^u \stackrel{\text{def}}{=} \lim_{A \to \infty} \tau^{Au}$$
 (convergence is uniform in Ω).

- The limit $\bar{\tau}^u$ satisfies the *Freidlin problem*.
- If $u = \nabla^{\perp} \psi \stackrel{\text{def}}{=} \begin{pmatrix} -\partial_2 \psi \\ \partial_1 \psi \end{pmatrix}$, and ψ has 'one hill', then $\bar{\tau}^u$ is given explicitly by

$$\bar{\tau}^{u}(y) \stackrel{\text{def}}{=} \lim_{A \to \infty} \tau^{Au}(y) = -\int_{0}^{\psi(y)} \frac{|\Omega_{\psi,h}|}{\int_{\Omega_{\psi,h}} \Delta \psi \, dx} \, dh$$

where $\Omega_{\psi,h} = \{x \mid \psi(x) > h\}.$

• If D is not a disk, we will show that there is some ψ such that for $u = \nabla^{\perp} \psi$, $\|\bar{\tau}^u\|_{L^{\infty}} > \|\tau^0\|_{L^{\infty}}$.

- Will of course imply that for large A, $\|\tau^{Au}\|_{L^{\infty}} > \|\tau^0\|_{L^{\infty}}$.

- Main idea: Let $I(\psi) = \|\bar{\tau}^{\nabla^{\perp}\psi}\|_{L^{\infty}}$. Set up a variational principle for 'one hill' stream functions using the explicit solution of the Freidlin problem. Show τ^0 is not a critical point.
 - If τ^0 doesn't have 'one hill', then reduce the domain to a level set of τ^0 near it's maximum. Increasing expected exit time from this domain will increase it from the larger domain.
 - If τ^0 is not a critical point of the said variational principle, then for some u, large A,

$$\left\|\tau^{Au}\right\|_{L^{\infty}} > \|\bar{\tau}^{u}\|_{L^{\infty}} - \varepsilon > \left\|\bar{\tau}^{\nabla^{\perp}\tau^{0}}\right\|_{L^{\infty}} = \left\|\tau^{0}\right\|_{L^{\infty}}$$

The variational principle

• Let $v : \Omega \to \mathbb{R}^2$ be smooth (not necessarily divergence free), with $v \cdot \hat{n} = 0$ on $\partial \Omega$. ('Direction' of the variation.)

• Let
$$\frac{dX_{\varepsilon}}{d\varepsilon} = v(X_{\varepsilon})$$
 with $X_0(x) = x$.

• Compute
$$V(\psi, v) = \left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} I(\psi \circ X_{\varepsilon}).$$

• Some suffering shows $V(\psi, v) = 0$ for all v if and only if

$$-2\triangle\phi(x) = 1 + |\nabla\phi(x)|^2 \left(\int_{\{\phi=\phi(x)\}} \frac{d\sigma}{|\nabla\phi|}\right) \left(\int_{\{\phi=\phi(x)\}} |\nabla\phi| \, d\sigma\right)^{-1}$$

where $\phi = \bar{\tau}^{\nabla^{\perp} \psi}$.

Gautam Iyer: Large exit times of diffusions with incompressible drift.

• From above $V(\psi, v) = 0$ for all v if and only if

$$-2\triangle\phi(x) = 1 + |\nabla\phi(x)|^2 \left(\int_{\{\phi=\phi(x)\}} \frac{d\sigma}{|\nabla\phi|}\right) \left(\int_{\{\phi=\phi(x)\}} |\nabla\phi| \, d\sigma\right)^{-1}$$

where $\phi = \bar{\tau}^{\nabla^{\perp} \psi}$.

• If
$$V(\tau^0, v) = 0$$
 for all v , then

$$2 = 1 + \left|\nabla\tau^0\right|^2 M(\tau^0)$$

and so τ^0 solves the eikonal equation.

• If Ω is not a disk, the eikonal equation necessarily has interior singularities. However τ^0 is analytic.

Simulations

(a) Maximiser ψ

(b) Expected exit time τ_0

Simulations

(c) Maximiser ψ

(d) Expected exit time τ_0

Open questions

- Existence/uniqueness of solutions to the previous PDE.
- Are such solutions indeed maximisers?
- An understanding of why such stirring increases the exit time.
- Maximising other norms (L^p) . Other constraints (e.g. finite power).
- Characterize flows that increase the explosion threshold.