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Introduction

∙ Traveling fronts in the homogenous case:
The equation is

ut(t, x) = Δu + f (u) t ∈ ℝ, x ∈ ℝN . (1)

∙The Diffusion is the Id Matrix and the Reaction is f = f (u) and no
advection term (q ⋅ ∇u).
∙ Given a unitary direction e ∈ ℝN , traveling fronts propagating in the
direction of −e and with a speed c ∈ ℝ were introduced as solutions of
(1) in the form u(t, x) = �(x ⋅ e + ct) = �(s) satisfying the limiting
conditions �(−∞) = 0 and �(+∞) = 1.

Figure: Traveling front, One dimensional case
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Theorem (Kolmogorov, Petrovsky and Piskunov)

Having a KPP nonlinearity, a TF exists with a speed c iff c ≥ 2
√

f ′(0).
Moreover, this TF u(t, x) is increasing in t.

c∗ = 2
√

f ′(0)

is the minimal speed in the homogeneous case where there is no advection.
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The previous definition was extended to nonhomogeneous settings by
Shigesada et al in 1986, H. Weinberger in 2002, J. Xin, and by Berestycki,
Hamel in 2002:

∙ The domain is Ω ⊂ ℝd × ℝN−d where 1 ≤ d ≤ N such that:

∙ Each z ∈ Ω can be written as z = (x , y) ∈ ℝd × ℝN−d .

∙ Ω is bounded in the y direction. That is, ∃R > 0 s.t ∣y ∣ ≤ R for all
(x , y) ∈ Ω.

∙ There exist L1, ⋅ ⋅ ⋅ , Ld > 0 such that Ω = Ω + k for all

k = (k1, ⋅ ⋅ ⋅ , kd ,0, ⋅ ⋅ ⋅ , 0) ∈
∏d

i=1 Liℤ× {0}N−d .

∙ Notice that if d = N then Ω is unbounded in all directions.

∙ Having such domains, we assume that q = q(x , y) and f = f (x , y , u) are
L−periodic in x

q(x + L, y) = q(x , y), f (x + L, y , u) = f (x , y , u)

s.t L = (L1, ⋅ ⋅ ⋅ , Ld).
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Definition of PTFs, Existence, Minimal speed...

Equation{
ut = Δu + q(x , y) ⋅ ∇u + f (x , y , u), t ∈ ℝ, (x , y) ∈ Ω,

� ⋅ ∇u = 0 on ℝ× ∂Ω,
(2)

∙ Let e = (e1, ⋅ ⋅ ⋅ , ed) ∈ ℝd be a unitary direction and denote by
ẽ = (e, 0, ⋅ ⋅ ⋅ , 0) ∈ ℝN .

Definition

A PTF propagating in the direction of −e with a speed c is a solution

u(t, x , y) = �(s, x , y) = �(x ⋅ e + ct, x , y)

of (2) which is L−periodic in x and satisfies:

�(−∞, ⋅, ⋅) = 0, �(+∞, ⋅, ⋅) = 1 uniformly in (x , y) ∈ Ω.
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ut = div(A(x)∇u) + f (x , u)

Ω = ℝ2, d = N = 2, e ∥ (1, 1).
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Assumptions on The Advection and Reaction

∙ The advection q(x , y) = (q1(x , y), ⋅ ⋅ ⋅ , qN(x , y)) is a C 1,�(Ω) (with
� > 0) vector field satisfying

q is L- periodic with respect to x , ∇ ⋅ q = 0 in Ω,

q ⋅ � = 0 on ∂Ω (when ∂Ω ∕= ∅), and

∫
C

q dx dy = 0.

∙ Generalized KPP nonlinearity f = f (x , y , u)

f ≥ 0, f is L-periodic with respect to x , and of class C 1,�(Ω× [0, 1]),

∀ (x , y) ∈ Ω, f (x , y , 0) = f (x , y , 1) = 0,

f is decreasing in u on Ω× [1− �, 1] for some � > 0

∙ With the additional “KPP” assumption

∀ (x , y , s) ∈ Ω× (0, 1), 0 < f (x , y , s) ≤ f ′u(x , y , 0)× s.

∙ Simple example: (x , y , u) 7→ u(1− u)h(x , y) defined on Ω× [0, 1] where
h is a positive C 1,�( Ω ) L-periodic function.
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Existence, Minimal Speed

Theorem (Berestycki and Hamel, CPAM 2002)

∙ For any prefixed e ∈ ℝd , there exists a minimal speed c∗ := c∗Ω,q,f (e) > 0
such that a PTF with a speed c exists if and only if c ≥ c∗.
∙ Any PTF is increasing in time.
∙ Moreover, for any c ≥ c∗, Hamel and Roques proved that the fronts
u(t, x , y) with a speed c are unique up to a translation in t.
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Variational formula for the minimal speed

∙ A variational formula of this minimal speed was given in 2005 (will be
shown in the next slides...).

∙ This formula shows that this minimal speed depends strongly on the
coefficients of the equation (Reaction, diffusion and advection) and on the
geometry of the domain.

∙ Many asymptotic behaviors of c∗ and many homogenization results have
been studied by Berestycki-Hamel-Naderashvili, S. Heinze, Shigesada et al.,
J. Xin, A. Zlatoš, Zlatoš-Constantin-Kiselev-Ryzhik, E., and many others.

∙ In this talk, we will show a result about the asymptotic behavior of the
minimal speed within large drift Mq (M → +∞) and we will give some
details about the limit in the case N=2.
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Variational Formula for the Parametric Minimal Speed

The equation that we study{
ut = Δu + Mq(x , y) ⋅ ∇u + f (x , y , u), t ∈ ℝ, (x , y) ∈ Ω,

� ⋅ ∇u = 0 on ℝ× ∂Ω.

c∗(M, e) = min
�>0

k(�,M)

�
;

∙ k(�,M) is the principal eigenvalue of the elliptic operator L� defined by

L� := Δ + 2�ẽ ⋅ ∇ + M q ⋅ ∇ + [�2 + �M q ⋅ ẽ + �] in Ω,

E� =
{
 (x , y) ∈ C 2(Ω),  is L-periodic in x , � ⋅ ∇ = −�(� ⋅ ẽ) on ∂Ω

}
.

∙ The principal eigenfunction  �,M is positive in Ω. It is unique up to
multiplication by a nonzero real number.

∙k(�,M) > 0 for all (�,M) ∈ (0,+∞)× (0,+∞).
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First integrals

Definition (First integrals)

The family of first integrals of q is defined by

ℐ :=
{

w ∈ H1
loc(Ω), w ∕= 0, w is L− periodic in x , and

q ⋅ ∇w = 0 almost everywhere in Ω} .

We also define the two subsets ℐ1 and ℐ2 :

ℐ1 :=

{
w ∈ ℐ, such that

∫
C
�w 2 ≥

∫
C
∣∇w ∣2

}
, (3)

ℐ2 :=

{
w ∈ ℐ, such that

∫
C
�w 2 ≤

∫
C
∣∇w ∣2

}
.

�(x , y) := f ′u(x , y , 0). � = f ′(0) when f = f (u).
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About “first integrals” of a vector field q

∙ The set ℐ is a closed subspace of H1
loc(Ω).

Notice

One can see that if w ∈ ℐ is a first integral of q and � : ℝ→ ℝ is a
Lipschitz function, then � ∘ w ∈ ℐ.
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Asymptotics within large advection in any space dimension

Theorem (E.-Kirsch 2009)

We fix a unit direction e ∈ ℝd . Let q be an advection field which satisfies
the previous assumptions. Then,

lim
M→+∞

c∗(Mq, e)

M
= max

w ∈ ℐ1

∫
C

(q ⋅ ẽ) w 2∫
C

w 2
. (4)

1 Berestycki, Hamel and Nadirashvili (2005) gave estimates showing
that the limit exists, but exact limit was still unknown.

2 A. Zlatoš considered the same problem in any space dimension N.

3 We did this study in any dimension N, and we gave details about the
limit in the case N = 2.
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Remarks and simple ideas

c∗(M) = min
�>0

k(�,M)

�
,

L� := Δ + 2�ẽ ⋅ ∇ + M q ⋅ ∇ + [�2 + �M q ⋅ ẽ + �] in Ω,

We call

�′ = �×M, and �(�′,M) = k(�,M) and  �
′,M =  �,M .

Then,

∀M > 0,
c∗(M)

M
= min

�′>0

�(�′,M)

�′
.

(E )

⎧⎨⎩

�(�′,M) �
′,M = Δ �

′,M + 2
�′

M
ẽ ⋅ ∇ + M q ⋅ ∇ �,M

+

[(
�′

M

)2

+ �′ q ⋅ ẽ + �

]
 �
′,M in Ω,

� ⋅ ∇ �′,M = −�
′

M
(� ⋅ ẽ) �

′,M on ∂Ω (whenever ∂Ω ∕= ∅).
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We call

�′ = �×M, and �(�′,M) = k(�,M) and  �
′,M =  �,M .

Then,

∀M > 0,
c∗(M)

M
= min

�′>0

�(�′,M)

�′
.

(E )

⎧⎨⎩

�(�′,M) �
′,M = Δ �

′,M + 2
�′

M
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We call

�′ = �×M, and �(�′,M) = k(�,M) and  �
′,M =  �,M .

Then,

∀M > 0,
c∗(M)

M
= min

�′>0

�(�′,M)

�′
.

(E )

⎧⎨⎩

�(�′,M) �
′,M = Δ �

′,M + 2
�′

M
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Remark: Eigenfunctions converge to first integrals

For a fixed �′, we take a sequence
{
 �
′,Mn

}
n∈ℕ

such that∫
C

(
 �
′,Mn

)2
= 1.

We get
{
 �
′,Mn

}
n∈ℕ

is bounded in H1(C ).

Hence there exists  �
′,+∞ ∈ H1

loc(Ω) s.t.  �
′,Mn →  �

′,+∞ in H1
loc(Ω)

weak, in L2
loc(Ω) strong, and almost everywhere in Ω as n→ +∞.

Elliptic eigenvalue problem implies that  �
′,+∞ is a first integral.
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In dimension N = 2, the domain Ω may be:
1- The whole space ℝ2 (d = N = 2).

2- ℝ2 except a periodic array of holes (d = N = 2)

3- For d = 1, Ω can be an infinite cylinder with a uniform boundary or
with an oscillating boundary.

4- For d = 1, the cylinder is connected but it may have a periodic array of
holes.
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A Question and Some Remarks

∙ We were interested in getting Necessary and Sufficient Conditions on the
advection field for which the limit of c∗(M)/M is positive.
∙ In dimension N = 2 the geometry helps to study the divergence free
advection field q which appears explicitly in the limit.

Proposition (E.-Kirsch 2009)

Let d = 1 or 2 where d is defined before. Let q = q(x , y) ∈ C 1,�(Ω),
L-periodic with respect to x and verifying the conditions∫

C
q = 0, ∇ ⋅ q = 0 in Ω, q ⋅ � = 0 on ∂Ω. (5)

Then, there exists � ∈ C 2,�(Ω), L-periodic with respect to x, such that

q = ∇⊥� in Ω. (6)

Moreover, � is constant on every connected component of ∂Ω.
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Remark

∙ The representation q = ∇⊥� is well-known in the case where the
domain Ω is bounded and simply connected or equal to whole space ℝ2.
∙ However, the above proposition applies for domains which are not simply
connected.

∙ ∇⊥� ⋅ � = q ⋅ � = 0 on ∂Ω⇒ � is constant on every connected
component of ∂Ω.
∙ In the proof of existence of �, (d = 2 let’s say)

Ω̂ := Ω/(L1ℤ× L2ℤ) and T := ℝ2/(L1ℤ× L2ℤ).

If x ∈ ℝ2, we denote by x̂ its class of equivalence in T , and if � : ℝ2 → ℝ
is L- periodic, we denote �̂ the function T → ℝ2 verifying �(x) = �̂(x̂).
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Define

q̃ : T −→ ℝ2,

x̂ ∈ Ω̂ 7−→ q(x),

x̂ /∈ Ω̂ 7−→ 0.

∙ q̃ is a divergence free vector field on T in the sense of distributions:

∀ ∈ C∞(T ),

< div(q̃),  > := − < q̃,∇ > = −
∫
T

q̃ ⋅ ∇ 

= −
∫

Ω̂
q ⋅ ∇ = −

∫
∂Ω̂
 q ⋅ � +

∫
Ω̂
 ∇ ⋅ q

= 0 + 0 = 0,
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We first get �̃ solution of

Δ�̃ = ∇ ⋅ Rq̃ in T

in the weak sense.
We then have �̃ ∈ H1(T ) such that in the sense of distributions

∇ ⋅ R(q̃ −∇⊥�̃) = 0 in T and

∇ ⋅ (q̃ −∇⊥�̃) = 0 in T since ∇ ⋅ q̃ = 0 in D′(T ) and div(∇⊥⋅) = 0.

This implies that q̃ −∇⊥�̃ is a harmonic distribution on T . Using Weyl’s
theorem, we conclude that q̃ −∇⊥�̃ is a harmonic function on the torus T
and therefore is constant.
∙ Then we define �̂ = �̃∣Ω̂ and we take � the corresponding L− periodic
function on Ω.

∙ Also we get ∇⊥�̃ = q̃ = 0 on T ∖ Ω̂.

∙ Hence �̃ =Constant on T ∖ Ω̂.
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Corollary (Now we know more about first integrals...)

Let
J := {� ∘ �, such that � : ℝ→ ℝ is Lipschitz} , (7)

where �, such that q = ∇⊥�, is given by Proposition 6. Then,

J ⊂ ℐ.
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The first integrals of the form w = � ∘ �, J

∀w ∈ J , we have

∫
C

(q ⋅ ẽ)w 2 = 0.

∙ Indeed, w = � ∘ � and q = ∇⊥�. This gives∫
C (q ⋅ ẽ)w 2 = ẽ ⋅

∫
C

(
∇⊥�

)
�2(�)

= ẽ ⋅ R
∫
C ∇ (F ∘ �) = ẽ ⋅ R

∫
Ω̂
∇(F ∘ �̃),

where R the matrix of a direct rotation of angle �/2, F ′ = �2,

and where

T := ℝ2/(L1ℤ× L2ℤ) and Ω̂ := Ω/(L1ℤ× L2ℤ) if d = 2,

T := ℝ2/ (L1ℤ× {0}) and Ω̂ := Ω/ (L1ℤ× {0}) if d = 1.
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∙ �̃ is constant on every connected component of T∖Ω̂, and so is F ∘ �̃.
We then have ∫

T∖Ω̂
∇
(

F ∘ �̃
)

= 0.

∙ Hence,
∫
C (q ⋅ ẽ)w 2 = ẽ ⋅ R

∫
T ∇

(
F ∘ �̃

)
= 0, because T has no

boundary. □
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After studying the quantities of the form
∫
C q ⋅ ẽw 2, where w ∈ ℐ, it

turned out that the limit of c∗(M)/M depends strongly on the trajectories
(stream lines) of the advection field q.
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Trajectories of an L−periodic vector field, Periodicity of
trajectories?

Definition (Trajectory of a vector field)

Assume that N = 2. Let x ∈ Ω such that q(x) ∕= 0. The trajectory of q at
x is the largest (in the sense of inclusion) connected differentiable curve
T (x) in Ω verifying:

(i) x ∈ T (x),

(ii) ∀y ∈ T (x), q(y) ∕= 0,

(iii) ∀y ∈ T (x), q(y) is tangent to T (x) at the point y .
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The decision about the limit (null or positive) will depend on the existence
of periodic unbounded trajs. for q!

Lemma (unbounded periodic trajectories)

Let T (x) be an unbounded periodic trajectory of q in Ω, that is:
∙ there exists a ∈ L1ℤ× L2ℤ ∖ {0} (resp. L1ℤ× {0} ∖ {0}) when d = 2
(resp. d = 1) such that T (x) = T (x) + a.
∙ In this case, we say that T (x) is a−periodic.

Then,

if T (y) is another unbounded periodic trajectory of q, T (y) is also
a−periodic.

Moreover,

in the case d = 1, a = L1e1. That is, all the unbounded periodic
trajectories of q in Ω are L1e1−periodic.
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∙ There may exist unbounded trajectories which are not periodic, even
though the vector field q is periodic.

A periodic vector field whose unbounded trajectories are not periodic!

Let

�(x , y) :=

⎧⎨⎩ e
− 1

sin2(�y) sin(2�(x + ln(y − [y ]))) if y ∕∈ ℤ,
0 otherwise.

∙ � is C∞ on ℝ2, and 1-periodic in x and y .
∙ Hence the vector field q = ∇⊥� is also C∞, 1-periodic in x and y , and∫

[0,1]×[0,1] q = 0 with ∇ ⋅ q ≡ 0.

∙ The part of the graph of x 7→ e−x lying between y = 0 and y = 1 is a
trajectory of q, and is obviously unbounded and not periodic.
∙ There exist no periodic unbounded trajectory for this vector field, so the
theorem asserts that for all w ∈ ℐ we have∫

C
qw 2 = 0.
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Theorem (E.-Kirsch 2009)

Assume that N = 2 and that Ω and q satisfy the assumptions. The two
following statements are equivalent:

(i) There exists w ∈ ℐ, such that

∫
C

qw 2 ∕= 0.

(ii) There exists a periodic unbounded trajectory T (x) of q in Ω.
Moreover, if (ii) is verified and T (x) is a−periodic, then for any w ∈ ℐ we

have

∫
C

q w 2 ∈ ℝa.
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Consequences

As a direct consequence of the previous Theorems, we get the following
about the asymptotic behavior of the minimal speed within large drift:

Assume that N = 2. Then,

(i) If there exists no periodic unbounded trajectory of q in Ω, then

lim
M→+∞

c∗Ω,M q,f (e)

M
= 0,

for any unit direction e.
(ii) If there exists a periodic unbounded trajectory T (x) of q in Ω (which
will be a−periodic for some vector a ∈ ℝ2) then

lim
M→+∞

c∗Ω,M q,f (e)

M
> 0 ⇐⇒ ẽ ⋅ a ∕= 0. (8)
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Notice that in the case where d = 1, we have ẽ = ±e1. Lemma 10 yields
that ẽ ⋅ a = ±L1 ∕= 0.

Thus, for d = 1,

lim
M→+∞

c∗M q(e)

M
> 0⇐⇒ ∃ a periodic unbounded traj. T (x) of q in Ω.
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Proof of the Theorem

Definition

We define here the set of “regular trajectories” in Ω̂. Let

Û :=
{

x̂ ∈ Ω̂ such that T (x̂) is well defined and closed in Ω̂
}
.

∙ We denote by Ûi the connected components of Û.

Proposition

The set Û is exactly the union of the trajectories which are simple closed
curves in Ω̂.

Proof of the Theorem.
∙

∫
C qw 2 = R

∫
C (∇�)w 2 = R

∫
Ω̂(∇�̂)ŵ 2.

∙ Let W := {x̂ ∈ Ω̂ such that �̂(x̂) is a critical value of �̂}.
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∙ Co-area ⇒
∣∣∣∫W ŵ 2∇�̂

∣∣∣ ≤ ∫W ŵ 2∣∇�̂∣ =
∫
�̂(W )

(∫
�̂−1(t) ŵ 2(x)

)
dt.

∙ From Sard’s theorem, since �̂ is C 2, ℒ1(�̂(W )) = 0, where ℒ1 denotes
the Lebesgue measure on ℝ.
One then gets ∫

W
ŵ 2∇�̂ = 0.

∙ Ω̂∖W ⊂ Û ⊂ Ω̂, we get∫
C

qw 2 = R

∫
Ω̂

(∇�̂)ŵ 2 = R

∫
Û

(∇�̂)ŵ 2 = R
∑
i

∫
Ûi

(∇�̂)ŵ 2. (9)
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We need the following preliminary lemma in order to give details about the
limit when N = 2:

Lemma

Let Ω̂ be the set defined before, V̂ be an open subset of Ω̂, and �̂ given by
(6). Suppose that:

(i) q̂(x̂) ∕= 0 for all x̂ ∈ V̂ ,

(ii) the level sets of �̂ in V̂ are all connected.

Then, for every w ∈ ℐ, there exists a continuous function � : �̂(V̂ )→ ℝ
such that

ŵ = � ∘ �̂ on V̂ . (10)
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We now use Lemma 14 to get �i continuous such that∫
Ûi

(∇�̂)ŵ 2 =

∫
Ûi

(∇�̂)�2
i (�̂).

We define the function Fi by F ′i = �2
i and Fi (0) = 0, and we obtain∫

Ûi

(∇�̂)ŵ 2 =

∫
Ûi

∇Fi (�̂).

Lemma

Let Ûi as in the previous definition. Then,
(i) all the level sets of �̂ in Ûi are connected,
(ii) all the level sets of �̂ in Ûi are homeomorphic,
(iii) ∂Ûi has exactly two connected components 
̂1 and 
̂2 such that

�̂(
̂1) = supx̂∈Ûi
�̂(x̂) and �̂(
̂2) = inf x̂∈Ûi

�̂(x̂).
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Due to the condition q ⋅ � = 0 on ∂Ω, we have

Trajs of q follow the boundary, and this led us to: 
1 (resp. 
2) is either a
connected component of ∂Ω̂ or contains a critical point of �̂.

If we define

Û"
i := {x̂ ∈ Ûi such that inf

Ûi

�̂+ " < �̂(x) < sup
Ûi

�̂− "},

then it follows from dominated convergence theorem that∫
Û"
i

(∇�̂)ŵ 2 −−−→
"→0

∫
Ûi

(∇�̂)ŵ 2. (11)

∙ ℸii) =⇒ ℸi) We suppose that there exist no periodic unbounded
trajectories of q. In Ûi , the trajectories of q are exactly the level sets of �̂.
We consider the following set

U"
i := Π−1(Û"

i ).

Let x0 ∈ U"
i and let U"

i ,0 be the connected component of U"
i containing x0.

∙ We proved that Π is a measure preserving bijection from U"
i ,0 to Û"

i .
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∙ Thus
∫
Û"
i
(∇�̂)ŵ 2 =

∫
U"
i,0

(∇�)w 2 =
∫
U"
i,0
∇Fi (�) =

∫
∂U"

i,0
Fi (�)n,

∙ ∂U"
i ,0 is the union of two level sets C1 and C2 of � in Ω, which are both

simple closed curves!
∙ So we can write∫

U"
i,0

(∇�)w 2 = F (�(C1))

∫
C1

n + F (�(C2))

∫
C2

n,

with ∫
C1

n =

∫
C2

n = 0,

because the integral of the unit normal on a C 1 closed curve in ℝ2 is zero.
□
ii) =⇒ i) was proved using the same technics.
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Thank You
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