Stochastic nonlinear Schrödinger equations and modulation of solitary waves

A. de Bouard

CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan)

Deterministic and stochastic front propagation Banff, mars 22-26, 2010

Optically confined Bose-Einstein condensates

Stamper-Kurn et al., Phys. Rev. Lett, 1998

Advantages

- ▶ Obtain different geometrical configurations
- study magnetic properties of atoms (trapping not limited to specific magnetic states)

Drawbacks

ex : fluctuations of the laser intensity

→ introduce stochasticity in the dynamical behavior of the
condensate, which has to be taken into account in real situations

Dynamics of BEC under regular variations of trap parameters : widely studied

Castin and Dum, Phys. Rev. Lett. 1996

Kagan, et. al; Phys. Rev. A, 1996

Ripoll, Perez-Garcia, Phys. Rev. A, 1999, etc...

Mean field theory: fluctuations of laser field intensity regarded as modulations of the harmonic trap → NLS equation (Gross-Pitaevskii) with harmonic potential and noise

Randomly varying optical trap potential

Abdullaev, Baizakov, Konotop, in Nonlinearity and disorder, 2001

2D radially symmetric Gross-Pitaevskii equation :

$$i\frac{\partial \psi}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial \psi}{\partial r} + (1 + e(t))r^2\psi + \chi|\psi|^2\psi - i\gamma\psi$$

in dimensionless variables, with

 $\chi=\pm 1$ (related to the sign of the s-wave scattering length $\it a$ of atoms)

 γ damping coefficient (thermal cloud)

 $e(t) = \frac{E(t) - E_0}{E_0}$ with E(t) = laser field intensity, mean value E_0 .

Assume e(t) is δ -correlated with zero mean : $\langle e(t) \rangle = 0$, $\langle e(t)e(t') \rangle = \sigma^2 \delta(t-t')$

Mathematical description of the equation

- \blacktriangleright $(\Omega, \mathcal{F}, \mathbf{P})$ probability space
- W(t) real valued standard Brownian motion; $e(t) = \varepsilon \dot{W}(t)$
- lacktriangledown ψ macroscopic wave function (complex valued)

Use of a Stratonovich product :

$$id\psi + (\Delta\psi - |x|^2\psi)dt - \chi|\psi|^2\psi dt + i\gamma\psi dt = \varepsilon|x|^2\psi \circ dW$$

- ► Conservation of the squared L^2 norm (total number of atoms) in the absence of damping (W is real valued)
- ▶ limit case of processes with non vanishing correlation length

Equivalent equation in Itô form:

$$id\psi + (\Delta\psi - |x|^2\psi)dt - \chi|\psi|^2\psi dt + i\gamma\psi dt = \varepsilon|x|^2\psi dW - i\frac{\varepsilon^2}{2}|x|^4\psi dt$$

More generally:

Consider the equation

$$id\psi + (\Delta\psi - |x|^2\psi)dt - \chi|\psi|^{2\alpha}\psi dt + i\gamma\psi dt + i\frac{\varepsilon^2}{2}|x|^4\psi dt = \varepsilon|x|^2\psi dW$$

 $\alpha > 0$, $\gamma \ge 0$, $x \in \mathbf{R}^d$, d = 1 or 2.

We consider solutions with paths having finite "energy" almost surely (Σ : energy space)

$$H(\psi) = \frac{1}{2} \int (|\nabla \psi|^2 + |x|^2 |\psi|^2) dx + \frac{\chi}{2\alpha + 2} \int |\psi|^{2\alpha + 2} dx$$

H: hamiltonian for the corresponding deterministic equation (without damping): combination of the energy of the wave packet, and mean square width of the atomic cloud

Existence result (up to now...)

Theorem: dB, Fukuizumi, 2007

Assume $\alpha>0,\ \gamma\geq0$ and $\chi=\pm1.$ Assume $\psi_0\in\Sigma$ if d=1, or $\psi_0\in\Sigma^2$ and $1/2\leq\alpha\leq1$ if d=2. Then there exist a stopping time $\tau^*(\psi_0)$ and a unique solution $\psi^\varepsilon(t)$ of

$$id\psi + (\Delta\psi - |x|^2\psi)dt - \chi|\psi|^{2\alpha}\psi dt + i\gamma\psi dt + i\frac{\varepsilon^2}{2}|x|^4\psi dt = \varepsilon|x|^2\psi dW$$

with $\psi^{\varepsilon}(0) = \psi_0$, such that $\psi^{\varepsilon} \in C([0,\tau];\Sigma)$ for any $\tau < \tau^*(\psi_0)$, and ψ^{ε} is adapted w.r. to the filtration generated by W. Moreover, we have almost surely,

$$au^*(\psi_0,\omega)=+\infty \ \ ext{or} \ \ \lim\sup_{t
eq au^*(\psi_0,\omega)}|\psi^arepsilon(t)|_\Sigma=+\infty.$$

where:

$$\psi_0 \in \Sigma^2$$
 if $\psi_0 \in L^2$, $\Delta \psi_0 \in L^2$ and $|x|^2 \psi_0 \in L^2$

Moreover:

$$\begin{array}{lll} \chi=+1 & \text{or} & \chi=-1 \text{ and } \alpha<2/d \\ \text{or} & \chi=-1 \text{, } \alpha=2/d \text{ and } |\psi_0|_{L^2}^{4/d}<1/\mathcal{C}_{\alpha} \end{array}$$

 \leadsto the solution in Σ exists for all t i.e. $\tau^*(\psi_0) = +\infty$ a.s.

- \triangleright Pathwise conservation of L^2 norm
- ▶ Energy equality (Itô formula) for all $\tau < \tau^*(\psi_0)$ a.s.

$$H(\psi(\tau)) = H(\psi_0) - 2\varepsilon \operatorname{Im} \int_0^{\tau} \int x \cdot \nabla \psi \bar{\psi} dx dW(s) + 2\varepsilon^2 \int_0^{\tau} |x\psi(s)|_{L^2}^2 ds$$

From now on:

$$\chi = -1$$
 (attractive condensate), $\gamma = 0$ (no damping)

Standing wave of the deterministic equation

Two parameter family of solutions ($\varepsilon = 0$)

$$\psi_{\mu,\theta}(t,x) = e^{i(\mu t + \theta)}\phi_{\mu}(x), \quad \theta, \mu \in \mathbf{R}$$

 ϕ_{μ} localized profile, positive, radially symmetric (ground state), critical point of

$$S_{\mu}(u) = H(u) + \frac{\mu}{2}|u|_{L^{2}}^{2}$$

 ϕ_{μ} exists and is unique provided

$$\mu \ge -\inf\left\{|\nabla u|_{L^2}^2 + |xu|_{L^2}^2, u \in \Sigma, |u|_{L^2} = 1\right\} = -d$$

Moreover as $\mu \rightarrow -d$,

$$\phi_{\mu} \sim (\alpha + 1)^{d/4\alpha} \pi^{d/4} (\mu + d)^{1/2\alpha} \Phi_0$$

where Φ_0 ground state of $-\Delta + x^2$ (first Hermite function in 1-D)

Dynamics of the deterministic equation

The family $\{e^{i\theta}\phi_{\mu}, \theta \in \mathbf{R}\}$ is stable for μ close to -d (Fukuizumi, Ohta, D.I.E. 2003)

Consider the functional S_μ as a Lyapunov functional; then $S_\mu''(\phi_\mu)=\mathcal{L}_\mu$ satisfies

$$\langle \mathcal{L}_{\mu} \mathbf{v}, \mathbf{v} \rangle \geq \nu \| \mathbf{v} \|_{\Sigma}^2$$

for any $\mathbf{v}=(v_1,v_2)^t$, $v_i\in\Sigma$, with $(\mathbf{v},\phi_\mu)=(\mathbf{v},i\phi_\mu)=0$.

Let ψ be a solution of the equation (with $\varepsilon=\gamma=0$) and write

$$\psi(t,x) = e^{i\theta(t)} [\phi_{\mu}(x) + v(t,x)]$$

with $\theta(t)$ such that $(v_2, \phi_\mu) = (v, i\phi_\mu) = 0$; then

$$\begin{array}{rcl} S_{\mu}(e^{-i\theta(t)}\psi(t,x)) - S_{\mu}(\phi_{\mu}) & = & S_{\mu}(\psi(0,x)) - S_{\mu}(\phi_{\mu}) \\ & = & S'_{\mu}(\phi_{\mu})v + \frac{1}{2}(S''_{\mu}(\phi_{\mu})v,v) + o(|v|_{\Sigma}^{2}) \end{array}$$

In general, $(v, \phi_{\mu}) = (v_1, \phi_{\mu}) \neq 0$, but conservation of L^2 norm $(v, \phi_{\mu}) = O(|v|_{\Sigma}^2)$

Dynamics of the stochastic equation

dB, Fukuizumi, 2009 Let $\psi^{\varepsilon}(0,x)=\phi_{\mu_0}(x)$ (μ_0 close to -d, $\alpha\geq 1/2$); in order to use the stability of the standing wave of the deterministic equation, write the solution ψ^{ε} of the stochastic equation as

$$\psi^{\varepsilon}(t,x) = e^{i\theta^{\varepsilon}(t)}(\phi_{\mu^{\varepsilon}(t)}(x) + \varepsilon \eta^{\varepsilon}(t,x))$$

with $\theta^{\varepsilon}(t)$ and $\mu^{\varepsilon}(t)$ random modulation parameters, chosen such that for all t, $(\eta^{\varepsilon}(t), \phi_{\mu_0}) = (\eta^{\varepsilon}(t), i\phi_{\mu_0}) = 0$.

This decomposition holds as long as $\|\varepsilon\eta^{\varepsilon}\|_{\Sigma} \leq \delta$ and $|\mu^{\varepsilon}(t) - \mu_{0}| \leq \delta$ for $\delta > 0$ sufficiently small.

Let:

$$\tau_{\delta}^{\varepsilon} = \inf\{t > 0, \; \|\varepsilon\eta^{\varepsilon}\|_{H^{1}} \geq \delta \text{ or } |c^{\varepsilon}(t) - c_{0}| \geq \delta\}$$

then : \exists $C(\alpha, \mu_0) > 0$, such that $\forall T > 0$, $\exists \varepsilon_0 > 0$ such that $\forall \varepsilon \leq \varepsilon_0$,

$$\mathbf{P}(au_{\delta}^{arepsilon} < T) \leq \exp(-rac{C}{arepsilon^2 T_{+}})$$

Change of the orthogonality conditions

Spectral projection on the generalized null-space of $J\mathcal{L}_{\mu_0}$:

defined for $w = w_1 + iw_2$ by

$$P_{\mu_0}w = (\partial_{\mu}\phi_{\mu_0}, \phi_{\mu_0})^{-1}[(w_1, \phi_{\mu_0})\partial_{\mu}\phi_{\mu_0} + i(w_2, \partial_{\mu}\phi_{\mu_0})\phi_{\mu_0}]$$

ightarrow preceding orthogonality conditions do not imply $P_{\mu_0}\eta^{arepsilon}=0$

Change in the orthogonality conditions:

by setting $\tilde{\theta}^{\varepsilon}(t) = \theta^{\varepsilon}(t) - \varepsilon h(t)$, with h(t) a well chosen Itô process (driven by W) one gets

$$\psi^{\varepsilon}(t,x) = e^{i\tilde{\theta}^{\varepsilon}(t)}(\phi_{\mu^{\varepsilon}(t)}(x) + \varepsilon \tilde{\eta}^{\varepsilon}(t,x))$$

for $t \leq au_{lpha}^{arepsilon}$ and with : $P_{\mu_0} ilde{\eta}^{arepsilon} = O(arepsilon)$

The modulation parameters

At first order in ε , the equations for the modulation parameters are given by

$$\left\{egin{array}{l} d\mu^arepsilon(t) = o(arepsilon), \ d ilde{ heta}^arepsilon(t) = \mu_0 dt - arepsilonrac{(|x|^2\phi_{\mu_0},\partial_\mu\phi_{\mu_0})}{(\phi_{\mu_0},\partial_\mu\phi_{\mu_0})}dW + o(arepsilon). \end{array}
ight.$$

- ► This shows in particular that at first order the noise does not act on the frequency of the standing wave, but only on its phase.
- ▶ Note that coupling with $\tilde{\eta}^{\varepsilon}$ only at next order (due to the change in the orthogonality conditions)

Central limit Theorem

Theorem : dB, Fukuizumi, 2009 Assume d=1 and $\alpha \geq 1$, or d=2 and $\alpha=1$. Then, for any T>0, the process $(\tilde{\eta}^{\varepsilon}(t))_{t\in[0,T\wedge\tau^{\varepsilon}_{\alpha}]}$ converges in probability, as ε goes to zero, to a process $\tilde{\eta}$ satisfying

$$d ilde{\eta} = J\mathcal{L}_{\mu_0} ilde{\eta}dt - (I - P_{\mu_0}) egin{pmatrix} 0 \ |x|^2\phi_{\mu_0} \end{pmatrix} dW,$$

with $\tilde{\eta}(0)=0$, where P_{μ_0} is the spectral projection onto the generalized null space of $J\mathcal{L}_{\mu_0}$. The convergence holds in $C([0,\tau^{\varepsilon}_{\delta}\wedge T],L^2)$.

Moreover, $\tilde{\eta}$ satisfies for any T>0 the estimate

$$\mathbf{E}\left(\sup_{t\leq T}|\tilde{\eta}(t)|_{\Sigma}^{2}\right)\leq CT\tag{1}$$

for some constant C > 0.

Asymptotics on the frequency

Assume d=1 and $\alpha>1$; as the frequency decreases to -1, the operator $J\mathcal{L}_{\mu_0}$ converges to

$$J\begin{pmatrix} -\partial_x^2 + x^2 + 1 & 0\\ 0 & -\partial_x^2 + x^2 + 1 \end{pmatrix}$$

which has simple, purely imaginary eigenvalues $\xi_k^{\pm}=\pm 2i(k+1)$, and a corresponding complete system of eigenfunctions

Let $\tilde{\eta}_k^\pm$ be the corresponding component of the process $\tilde{\eta}$; then as μ_0 goes to -1

$$\begin{split} \mathbf{E}(|\tilde{\eta}_2^{\pm}(t)|^2) &= \frac{\sqrt{\pi}}{4}(\alpha+1)^{\frac{1}{2\alpha}}(\mu_0+1)^{1/\alpha}t + O((\mu_0+1)^{\kappa+1/\alpha}t), \\ \mathbf{E}(|\tilde{\eta}_k^{\pm}(t)|^2) &= O((\mu_0+1)^{\kappa+1/\alpha}t) \quad \text{for } k \neq 2. \end{split}$$

with $\kappa = \min\{1 - 1/\alpha, 1/2\alpha\} > 0$.

Conclusion

- ▶ We have considered small multiplicative, time white noise perturbations of a NLS equation with confining potential and standing wave (ground state) as initial data
- ▶ The time scale on which the solution stays in a neighborhood of the randomly modulated standing wave is ε^{-2} .
- We obtained at order one a simple behaviour for the modulation parameters
- ▶ A central limit theorem holds, i.e. the order one part of the remaining term converges as ε goes to 0 to a centered Gaussian process
- ► As the frequency tends to its minimal value, this latter process "concentrates" in the third eigenmode
- Open problem : parameters of dark solitons (positive scattering length) : much less invariances in the equation

