Sharp energy estimates and 1D symmetry for nonlinear equations involving fractional Laplacians

Eleonora Cinti

Università degli Studi di Bologna - Universitat Politécnica de Catalunya

(joint work with Xavier Cabré)

Banff, March, 2010

We consider nonlinear fractional equations of the type:

$$(-\Delta)^s u = f(u)$$
 in \mathbb{R}^n , $0 < s < 1$, (1)

where $f : \mathbb{R} \to \mathbb{R}$ is a $C^{1,\beta}$ function, for some $\beta > \max\{0, 1-2s\}$.

The fractional Laplacian of a function $u: \mathbb{R}^n \to \mathbb{R}$ is expressed by the formula

$$(-\Delta)^{s}u(x) = C_{n,s} P.V. \int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy.$$

It can also be defined using Fourier transform, in the following way:

$$\widehat{(-\Delta)^s}u(\xi) = |\xi|^{2s}\widehat{u}(\xi).$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

We consider nonlinear fractional equations of the type:

$$(-\Delta)^s u = f(u)$$
 in \mathbb{R}^n , $0 < s < 1$, (1)

where $f : \mathbb{R} \to \mathbb{R}$ is a $C^{1,\beta}$ function, for some $\beta > \max\{0, 1-2s\}$.

The fractional Laplacian of a function $u: \mathbb{R}^n \to \mathbb{R}$ is expressed by the formula

$$(-\Delta)^{s}u(x)=C_{n,s}P.V.\int_{\mathbb{R}^{n}}\frac{u(x)-u(y)}{|x-y|^{n+2s}}dy.$$

It can also be defined using Fourier transform, in the following way:

$$(-\Delta)^{s}u(\xi) = |\xi|^{2s}\widehat{u}(\xi).$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

We consider nonlinear fractional equations of the type:

$$(-\Delta)^s u = f(u)$$
 in \mathbb{R}^n , $0 < s < 1$, (1)

where $f : \mathbb{R} \to \mathbb{R}$ is a $C^{1,\beta}$ function, for some $\beta > \max\{0, 1-2s\}$.

The fractional Laplacian of a function $u: \mathbb{R}^n \to \mathbb{R}$ is expressed by the formula

$$(-\Delta)^{s}u(x)=C_{n,s}P.V.\int_{\mathbb{R}^{n}}\frac{u(x)-u(y)}{|x-y|^{n+2s}}dy.$$

It can also be defined using Fourier transform, in the following way:

$$(-\Delta)^s u(\xi) = |\xi|^{2s} \widehat{u}(\xi).$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Case s=1/2

We will realize the non local problem (1) in a local problem in \mathbb{R}^{n+1}_+ with a nonlinear Neumann condition.

More precisely: u is a solution of $(-\Delta)^{1/2}u = f(u)$ in \mathbb{R}^n , if and only if its harmonic extension $v(x, \lambda)$ defined on $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times \mathbb{R}_+$ satisfies the problem

$$\begin{cases} \Delta v = 0 & \text{ in } \mathbb{R}^{n+1}_+, \\ -\frac{\partial v}{\partial \lambda} = f(v) & \text{ on } \mathbb{R}^n = \partial \mathbb{R}^{n+1}_+. \end{cases}$$
(2)

イロト イポト イヨト イヨト

We define

$$G(u)=\int_u^1 f.$$

If the following conditions holds we call the nonlinearity f of balanced bistable type and the potential G of double well type:

(H1)
$$f$$
 is odd;
(H2) $G \ge 0 = G(\pm 1)$ in \mathbb{R} , and $G > 0$ in $(-1, 1)$; (3)
(H3) f' is decreasing in $(0, 1)$.

For example $G(u) = \frac{1}{4}(1 - u^2)^2$.

- E - N

・ロト ・日下・ ・ ヨト・

A conjecture of De Giorgi (1978)

Let $u: \mathbb{R}^n \to (-1, 1)$ be a solution in all of \mathbb{R}^n of the equation

$$-\Delta u = u - u^3,$$

such that $\partial_{x_n} u > 0$. Then, at least if $n \le 8$, all the level sets $\{u = t\}$ of u are hyperplanes, or equivalently u is of the form

$$u(x) = g(a \cdot x + b)$$
 in \mathbb{R}^n

for some $a \in \mathbb{R}^n$, |a| = 1, $b \in \mathbb{R}$.

<ロ> (日) (日) (日) (日) (日)

True for:

- n = 2 (Ghoussoub and Gui, 1998),
- In = 3 (Ambrosio and Cabré, 2000 Alberti, Ambrosio, and Cabré, 2001),
- **③** $4 \le n \le 8$ if, in addition, $u \to \pm 1$ for $x_n \to \pm \infty$ (Savin 2009),
- counterexample for $n \ge 9$ (Del Pino, Kowalczyk and Wei).

イロト イポト イヨト イヨト

1-D symmetry for the fractional equation: known results

- In dimension n = 2 the 1-D symmetry property of stable solutions for problem (1) with s = 1/2 was proven by Cabré and Solá-Morales
- In dimension n = 2 and for every 0 < s < 1, 1-D symmetry property for stable solutions has been proven by Cabré and Sire and by Sire and Valdinoci.

Some definitions

Consider the cylinder

$$C_R = B_R \times (0, R) \subset \mathbb{R}^{n+1}_+,$$

where B_R is the ball of radius R centerd at 0 in \mathbb{R}^n .

We consider the energy functional

$$\mathcal{E}_{C_R}(v) = \int_{C_R} \frac{1}{2} |\nabla v|^2 dx d\lambda + \int_{B_R} G(v) dx.$$
(4)

- E - N

・ロト ・日下・ ・ ヨト・

Definition

We say that a bounded solution v of (2) is *stable* if the second variation of energy $\delta^2 \mathcal{E}/\delta^2 \xi$ with respect to perturbations ξ compactly supported in $\overline{\mathbb{R}^{n+1}_+}$, is nonnegative. That is, if

$$Q_{\nu}(\xi) := \int_{\mathbb{R}^{n+1}_{+}} |\nabla \xi|^2 - \int_{\partial \mathbb{R}^{n+1}_{+}} f'(\nu)\xi^2 \ge 0$$
 (5)

for every $\xi \in C_0^{\infty}(\overline{\mathbb{R}^{n+1}_+}).$

We say that v is *unstable* if and only if v is not stable.

Definition

We say that a bounded solution u(x) of (1) in \mathbb{R}^n is *stable* (*unstable*) if its harmonic extension $v(x, \lambda)$ is a stable (unstable) solution for the problem (2).

A B A B A B A

Definition

We say that a bounded $C^1(\overline{\mathbb{R}^{n+1}_+})$ function v in \mathbb{R}^{n+1}_+ is a global minimizer of (2) if

 $\mathcal{E}_{C_R}(v) \leq \mathcal{E}_{C_R}(w),$

for every bounded cylinder $C_R \subset \overline{\mathbb{R}^{n+1}_+}$ and every $C^{\infty}(\mathbb{R}^{n+1}_+)$ function w such that $w \equiv v$ in $\mathbb{R}^{n+1}_+ \setminus \overline{C}_R$.

Definition

We say that a bounded C^1 function u in \mathbb{R}^n is a global minimizer of (1) if its harmonic extension v is a global minimizer of (2).

< ロ > < 同 > < 三 > < 三 >

Definition

We call *layer solutions* for the problem (1) bounded solutions that are monotone increasing, say from -1 to 1, in one of the x-variables

Remark

We remind that every layer solution is a global minimizer (Cabré and Solá-Morales).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Principal ingredients in the proof of the conjecture of De Giorgi:

- Stability of solutions;
- Estimate for the Dirichlet energy:

$$\int_{\mathcal{C}_R} rac{1}{2} |
abla v|^2 \leq CR^2 \log R.$$

・ロト ・厚ト ・ヨト ・ヨ

Principal results

Theorem (Energy estimate for minimizers in dimension n)

Set $c_u = \min\{G(s) : \inf v \le s \le \sup v\}$. Let f be any $C^{1,\beta}$ nonlinearity with $\beta \in (0,1)$ and $u : \mathbb{R}^n \to \mathbb{R}$ be a bounded global minimizer of (1). Let v be the harmonic extension of u in \mathbb{R}^{n+1}_+ . Then, for all R > 2.

$$\int_{C_R} \frac{1}{2} |\nabla v|^2 dx d\lambda + \int_{B_R} \{G(u) - c_u\} dx \le CR^{n-1} \log R, \tag{6}$$

where $C_R = B_R \times (0, R)$ and C is a constant depending only on n, $||f||_{C^1}$, and on $||u||_{L^{\infty}(\mathbb{R}^n)}$.

In particular we have that

$$\int_{C_R} \frac{1}{2} |\nabla v|^2 dx d\lambda \le C R^{n-1} \log R.$$
(7)

A D N A B N A B

Remark

As a consequence we have that the energy estimate (15) holds for layer solutions of problem (1).

Theorem (Energy estimate for monotone solutions in dimension 3)

Let n = 3, f be any $C^{1,\beta}$ nonlinearity with $\beta \in (0,1)$ and u be a bounded solution of (1) such that $\partial_{x_n} u > 0$ in \mathbb{R}^3 . Let v be its harmonic extension in \mathbb{R}^4_+ . Then, for all R > 2,

$$\int_{C_R} \frac{1}{2} |\nabla v|^2 dx d\lambda + \int_{B_R} \{G(u) - c_u\} dx \le CR^2 \log R, \tag{8}$$

where C is a constant depending only on $||u||_{L^{\infty}}$ and on $||f||_{C^1}$.

Eleonora Cinti (Università degli Studi di Bologna - UnSharp energy estimates and 1D symmetry for nonlinear

Theorem (1-D symmetry)

Let n = 3, s = 1/2 and f be any $C^{1,\beta}$ nonlinearity with $\beta \in (0,1)$. Let u be either a bounded global minimizer of (1), or a bounded solution monotone in the direction x_n .

Then, u depends only on one variable, i.e., there exists $a \in \mathbb{R}^3$ and $g : \mathbb{R} \to \mathbb{R}$, such that $u(x) = g(a \cdot x)$ for all $x \in \mathbb{R}^3$, or equivalently the level sets of u are planes.

Some remarks

- Energy estimate (15) is sharp because it is optimal for 1-D solutions (Cabré, Solá-Morales).
- In dimension n = 1 energy estimate (15), for layer solutions, has been proved by Cabré and Solá-Morales; more precisely they give estimates for kinetic and potential energies separately:

$$\int_{C_R} |\nabla v|^2 dx d\lambda \leq C \log R, \quad \int_{-\infty}^{+\infty} G(v(x,0)) dx < \infty.$$

In Theorem 5 we have a weaker estimate because we cannot prove that the potential energy in dimension n is bounded by R^{n-1} .

イロト イポト イヨト イヨト

Some remarks

- Energy estimate (15) is sharp because it is optimal for 1-D solutions (Cabré, Solá-Morales).
- In dimension n = 1 energy estimate (15), for layer solutions, has been proved by Cabré and Solá-Morales; more precisely they give estimates for kinetic and potential energies separately:

$$\int_{\mathcal{C}_R} |\nabla v|^2 dx d\lambda \leq C \log R, \quad \int_{-\infty}^{+\infty} G(v(x,0)) dx < \infty.$$

In Theorem 5 we have a weaker estimate because we cannot prove that the potential energy in dimension n is bounded by R^{n-1} .

< ロト < 同ト < ヨト < ヨト

Sketch of the proof of Theorem 5

The proof of energy estimates for global minimizer is based on a comparison argument. It can be resumed in 3 steps:

• Construct the comparison function w, which takes the same value of v on $\partial C_R \cap \{\lambda > 0\}$ and thus, such that

 $\mathcal{E}_{C_R}(v) \leq \mathcal{E}_{C_R}(w),$

イロト 不得下 イヨト イヨト

Sketch of the proof of Theorem 5

The proof of energy estimates for global minimizer is based on a comparison argument. It can be resumed in 3 steps:

• Construct the comparison function w, which takes the same value of v on $\partial C_R \cap \{\lambda > 0\}$ and thus, such that

$$\mathcal{E}_{C_R}(v) \leq \mathcal{E}_{C_R}(w),$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• use the rescaled $H^{1/2}(\partial C_1) \to H^1(C_1)$ estimate in the cylinder of radius 1 and height 1:

$$\int_{\mathcal{C}_1} |\nabla \overline{w}|^2 \leq C ||w||_{L^2(\partial \mathcal{C}_1)}^2 + C \int_{\partial \mathcal{C}_1} \int_{\partial \mathcal{C}_1} \frac{|w(x) - w(\overline{x})|^2}{|x - \overline{x}|^{n+1}} d\sigma_x d\sigma_{\overline{x}},$$

where w is the trace of \overline{w} on ∂C_1 ,

• give the key estimate

$$\int_{\partial C_R} \int_{\partial C_R} \frac{|w(x) - w(\overline{x})|^2}{|x - \overline{x}|^{n+1}} d\sigma_x d\sigma_{\overline{x}} \le CR^{n-1} \log R.$$

Eleonora Cinti (Università degli Studi di Bologna - UnSharp energy estimates and 1D symmetry for nonlinear

イロト イロト イヨト イヨト

• use the rescaled $H^{1/2}(\partial C_1) \to H^1(C_1)$ estimate in the cylinder of radius 1 and height 1:

$$\int_{\mathcal{C}_1} |\nabla \overline{w}|^2 \leq C ||w||_{L^2(\partial \mathcal{C}_1)}^2 + C \int_{\partial \mathcal{C}_1} \int_{\partial \mathcal{C}_1} \frac{|w(x) - w(\overline{x})|^2}{|x - \overline{x}|^{n+1}} d\sigma_x d\sigma_{\overline{x}},$$

where w is the trace of \overline{w} on ∂C_1 ,

• give the key estimate

$$\int_{\partial C_R} \int_{\partial C_R} \frac{|w(x) - w(\overline{x})|^2}{|x - \overline{x}|^{n+1}} d\sigma_x d\sigma_{\overline{x}} \leq CR^{n-1} \log R.$$

Eleonora Cinti (Università degli Studi di Bologna - UnSharp energy estimates and 1D symmetry for nonlinear

・ロト ・回ト ・ヨト ・ヨ

The comparison function \overline{w} satisfies:

$$\begin{cases} \Delta \overline{w} = 0 & \text{in } C_R \\ \overline{w}(x,0) = 1 & \text{on } B_{R-1} \times \{\lambda = 0\} \\ \overline{w}(x,\lambda) = v(x,\lambda) & \text{on } \partial C_R \cap \{\lambda > 0\}. \end{cases}$$
(9)

Eleonora Cinti (Università degli Studi di Bologna - Un<mark>Sharp energy estimates and 1D symmetry for nonlinear</mark>

イロン イロン イヨン イヨン

Sketch of the proof of 1-D symmetry result in dimension 3

1-D symmetry of minimizers and of monotone solutions in dimension 3 follows by our energy estimate and the following Liouville type Theorem due to Moschini: Proposition (Moschini)

Let $\varphi \in L^{\infty}_{loc}(\mathbb{R}^{n+1}_+)$ be a positive function. Suppose that $\sigma \in H^1_{loc}(\mathbb{R}^{n+1}_+)$ satisfies

$$\begin{cases} -\sigma \operatorname{div}(\varphi^2 \nabla \sigma) \le 0 & \text{ in } \mathbb{R}^{n+1}_+ \\ -\sigma \partial_\lambda \sigma \le 0 & \text{ on } \partial \mathbb{R}^{n+1}_+ \end{cases}$$
(10)

in the weak sense. If

$$\int_{C_R} (\varphi \sigma)^2 dx \leq C R^2 \log R$$

for some finite constant C independent of R, then σ is constant.

Sketch of the proof of 1-D symmetry result in dimension 3

Suppose $v_{x_3} > 0$; set $\varphi = v_{x_3}$ and for i = 1, ..., n - 1 fixed, consider the function:

$$\sigma_i = \frac{\mathbf{v}_{\mathbf{x}_i}}{\varphi}.$$

We prove that σ_i is constant in \mathbb{R}^{n+1}_+ , using the Liouville result due to Moschini and our energy estimate.

イロン イロン イヨン イヨン

• the function σ_i satisfies

$$\begin{cases} -\sigma_i \operatorname{div}(\varphi^2 \nabla \sigma_i) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ -\sigma_i \partial_\lambda \sigma_i = 0 & \text{in } \partial \mathbb{R}^{n+1}_+ \end{cases},$$
(11)

by our energy estimate, we get

$$\int_{C_R} (\varphi \sigma_i)^2 \leq \int_{C_R} |\nabla v|^2 \leq CR^2 \log R,$$

 by Proposition (4) we deduce σ_i = c_i is constant then v depends only on λ and the variable parallel to the vector (c₁, c₂, c₃, 0) and then u(x) = v(x, 0) is 1-D.

イロト イヨト イヨト イヨト

• the function σ_i satisfies

$$\begin{cases} -\sigma_i \operatorname{div}(\varphi^2 \nabla \sigma_i) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ -\sigma_i \partial_\lambda \sigma_i = 0 & \text{in } \partial \mathbb{R}^{n+1}_+ \end{cases},$$
(11)

• by our energy estimate, we get

$$\int_{C_R} (\varphi \sigma_i)^2 \leq \int_{C_R} |\nabla v|^2 \leq C R^2 \log R,$$

 by Proposition (4) we deduce σ_i = c_i is constant then v depends only on λ and the variable parallel to the vector (c₁, c₂, c₃, 0) and then u(x) = v(x, 0) is 1-D.

イロト イヨト イヨト イヨト

• the function σ_i satisfies

$$\begin{cases} -\sigma_i \operatorname{div}(\varphi^2 \nabla \sigma_i) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ -\sigma_i \partial_\lambda \sigma_i = 0 & \text{in } \partial \mathbb{R}^{n+1}_+ \end{cases},$$
(11)

• by our energy estimate, we get

$$\int_{C_R} (\varphi \sigma_i)^2 \leq \int_{C_R} |\nabla v|^2 \leq CR^2 \log R,$$

 by Proposition (4) we deduce σ_i = c_i is constant then v depends only on λ and the variable parallel to the vector (c₁, c₂, c₃, 0) and then u(x) = v(x, 0) is 1-D.

Energy estimate for global minimizers of $(-\Delta)^s u = f(u)$, with 0 < s < 1Local problem:

u is a solution of

$$(-\Delta)^s u = f(u) \text{ in } \mathbb{R}^n,$$
 (12)

if and only if, v defined on $\mathbb{R}^{n+1}_+ = \{(x, \lambda) : x \in \mathbb{R}^n, \lambda > 0\}$, is a solution of the problem

$$\begin{cases} \operatorname{div}(\lambda^{1-2s}\nabla v) = 0 & \text{ in } \mathbb{R}^{n+1}_+, \\ v(x,0) = u(x) & \text{ on } \mathbb{R}^n = \partial \mathbb{R}^{n+1}_+, \\ -\lim_{\lambda \to 0} \lambda^{1-2s} \partial_\lambda v = f(v). \end{cases}$$
(13)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The energy functional associated to problem (13) is given by

$$\mathcal{E}_{s,C_R}(v) = \int_{C_R} \frac{1}{2} \lambda^{1-2s} |\nabla v|^2 dx d\lambda + \int_{B_R} G(v) dx.$$
(14)

Remark

• The weight λ^{1-2s} belongs to the Muckenoupt class A_2 , since

-1 < 1 - 2s < 1 [theory of Fabes-Kenig-Serapioni];

• problem (13) is invariant under translations in the x_i -directions.

Theorem (Energy estimate for minimizers in dimension n)

Let f be any $C^{1,\beta}$ nonlinearity, with $\beta > \max\{0, 1-2s\}$, and $u : \mathbb{R}^n \to \mathbb{R}$ be a global minimizer of (1). Let v be the s-extension of u in \mathbb{R}^{n+1}_+ .

Then, for all R > 2,

$$\begin{split} &\int_{C_R} \frac{1}{2} \lambda^{1-2s} |\nabla v|^2 dx d\lambda + \int_{B_R} \{G(u) - c_u\} dx \le CR^{n-2s} \quad \text{if } 0 < s < 1/2 \\ &\left(\int_{C_R} \frac{1}{2} |\nabla v|^2 dx d\lambda + \int_{B_R} \{G(u) - c_u\} dx \le CR^{n-1} \log R \quad \text{if } s = 1/2 \right) \\ &\int_{C_R} \frac{1}{2} \lambda^{1-2s} |\nabla v|^2 dx d\lambda + \int_{B_R} \{G(u) - c_u\} dx \le CR^{n-1} \quad \text{if } 1/2 < s < 1, \end{split}$$
(15)

where C denotes different positive constants depending only on n, $||f||_{C^1}$, $||u||_{L^{\infty}(\mathbb{R}^n)}$ and s.

The proof is based on a comparison argument as before. Here a crucial ingredient is the following extension theorem.

Theorem

Let Ω be a bounded subset of \mathbb{R}^{n+1} with Lipschitz boundary $\partial \Omega$ and M a Lipschitz subset of $\partial \Omega$. For $z \in \mathbb{R}^{n+1}$, let $d_M(z)$ denote the Euclidean distance from the point z to the set M. Let w belong to $C(\partial \Omega)$. Then, there exists an extension \widetilde{w} of w in Ω belonging to $C^1(\Omega) \cap C(\overline{\Omega})$, such that

Then, there exists an extension \widetilde{w} of w in Ω belonging to $C^1(\Omega) \cap C(\overline{\Omega})$, such that

$$\int_{\Omega} d_{M}(z)^{1-2s} |\nabla \widetilde{w}|^{2} dz \leq C ||w||_{L^{2}(\partial\Omega)}^{2} + C \int \int_{B_{s}} \frac{|w(z) - w(\overline{z})|^{2}}{|z - \overline{z}|^{n+2s}} d\sigma_{z} d\sigma_{\overline{z}}$$

$$+ C \int \int_{B_{w}} d_{M}(z)^{1-2s} \frac{|w(z) - w(\overline{z})|^{2}}{|z - \overline{z}|^{n+1}} d\sigma_{z} d\sigma_{\overline{z}}.$$

$$(16)$$

The sets B_s and B_w are defined as follows:

$$B_{s} = \begin{cases} \partial \Omega \times \partial \Omega & \text{if } 0 < s < 1/2 \\ M \times M & \text{if } 1/2 < s < 1, \end{cases}$$
(17)

and

$$B_{w} = \begin{cases} (\partial \Omega \setminus M) \times (\partial \Omega \setminus M) & \text{if } 0 < s < 1/2 \\ (\partial \Omega \setminus M) \times \partial \Omega & \text{if } 1/2 < s < 1. \end{cases}$$
(18)

After rescaling, we apply this result for $\Omega = C_1$ and $M = B_1 \times \{0\}$

Eleonora Cinti (Università degli Studi di Bologna - UnSharp energy estimates and 1D symmetry for nonlinear

イロン イロン イヨン イヨ

Theorem (1-D symmetry)

Let n = 3, $1/2 \le s < 1$ and f be any $C^{1,\beta}$ nonlinearity with $\beta > \max\{0, 1 - 2s\}$. Let u be either a bounded global minimizer of (1), or a bounded solution monotone in the direction x_n .

Then, u depends only on one variable, i.e., there exists $a \in \mathbb{R}^3$ and $g : \mathbb{R} \to \mathbb{R}$, such that $u(x) = g(a \cdot x)$ for all $x \in \mathbb{R}^3$, or equivalently the level sets of u are planes.

A D N A B N A B N

Some open problems:

- 1-D symmetry for n = 3 and 0 < s < 1/2;
- 1-D symmetry for n > 3 and 0 < s < 1;
- critical dimension;
- counterexample in large dimensions.

イロト イポト イヨト イヨト