Traveling waves steered by the non linearity

Guillemette Chapuisat

"Deterministic and stochastic front propagation", Banff.

Guillemette Chapuisat Traveling waves steered by the non linearity

Modeling

æ

∃ → < ∃</p>

Brain pathophysiology: Spreading depressions Spreading depression (SD): Transient depolarization of neurons that propagates slowly (3mm/min) through the brain.

- SD are important for different pathologies: stroke, migraine with aura, epilepsy, head injuries.
- SD are well studied in rodent,

never clearly observed in human!

Influence of the brain morphology

Brain is composed of white and gray matter.

SD: reaction-diffusion mechanism in the gray matter and diffusion and absorption in the white matter.

• Rodent brain: rather smooth and entirely composed of gray matter.

The morphology of the human brain may prevent the propagation of SD!

Effect of the white matter on SD propagation

$$\partial_t u - \Delta u = \lambda u (1 - u) (u - \theta) \mathbb{1}_{|y| \le R} - \alpha u \mathbb{1}_{|y| > R}$$

where $u \in C^1$ is bounded.

• If the gray matter is large

• If the gray matter is thin

Population dynamic: spatial mutation

Dynamic of a population with a quantitative trait

Let $f(t, x, v) \ge 0$ be the density of individuals who at time t and point $x \in \mathbb{R}$ possess the quantitative trait $v \in \mathbb{R}$. Assumptions:

- spatial diffusion,
- mutation of the trait,
- logistic growth,
- the most adapted trait depends on x.

$$\partial_t f - \nu \partial_{xx} f - \mu \int_{w \in \mathbb{R}} e^{-\frac{|v-w|^2}{\tau}} f(t, x, w) \, dw = \\ \left((a - b \, |v - \phi(x)|^2) - \int_{w \in \mathbb{R}} f(t, x, w) \, dw \right) f(t, x, v)$$

Example of front propagation

We assume $\phi(x) = x$.

э

- Mutations are represented by diffusion of the traits
- Most adapted trait is always y = 0.
- Competition between individuals with the same trait y.

$$\partial_t u - \triangle u = \lambda u (1 - u) - \alpha y^2 u.$$

Existence of traveling front depending on α ?

Oncology: Cord tumor growth

э

Tumoral cells need oxygen to survive and multiply. Tumeur cords are tumour growing along a blood vessel.

Mathematical model:

$$\begin{cases} \partial_t u - \nu \triangle u = \lambda u(K(n) - u) \\ \partial_t n - \triangle n = -\alpha n - \beta u \end{cases}$$

with K(n) = n, n(|y| = 0) = 1, n and u bounded.

• • = • • = •

Here $\beta = 0$ so *n* can be calculated explicitely.

Traveling fronts

Joint work with H. Berestycki.

Guillemette Chapuisat Traveling waves steered by the non linearity

 $\partial_t u - \triangle u = \lambda u (1-u) - \alpha |y|^2 u$ with $t \in \mathbb{R}$ and $X = (x, y) \in \mathbb{R} \times \mathbb{R}^{N-1}$.

Traveling front: a solution u(t, x, y) = u(x - ct, y) with a stationary state invading another state, i.e. $\lim_{x \to \infty} u(., y) \neq \lim_{x \to \infty} u(., y).$

.

 $\partial_t u - \triangle u = \lambda u (1-u) - \alpha |y|^2 u$ with $t \in \mathbb{R}$ and $X = (x, y) \in \mathbb{R} \times \mathbb{R}^{N-1}$.

Traveling front: a solution u(t, x, y) = u(x - ct, y) with a stationary state invading another state, i.e. $\lim_{x \to \infty} u(., y) \neq \lim_{x \to \infty} u(., y).$

So we are looking for $u \in \mathcal{C}^2(\mathbb{R}^N)$ bounded and $c \in \mathbb{R}$ solution of

$$\begin{cases} \triangle u + c\partial_x u + f(y, u) = 0 \quad \text{on } \mathbb{R}^N, \\ u(-\infty, y) = \varphi(y) > 0, \quad u(+\infty, y) = 0, \end{cases}$$

with $f(y, u) = \lambda u(1-u) - \alpha |y|^2 u$.

Invading asymptotic profile

э

If
$$u \xrightarrow{x \to \pm \infty} \varphi$$
 in C^1_{loc} ,
 $\Delta \varphi + \lambda \varphi (1 - \varphi) - \alpha |y|^2 \varphi = 0, \qquad y \in \mathbb{R}^{n-1}.$

0 is a trivial solution. We are looking for solution $\varphi \ge 0$, $\varphi \not\equiv 0$.

伺 と く ヨ と く ヨ と

æ

Linearizing around 0

Let
$$\mathcal{H} = \{ u \in H^1(\mathbb{R}^{N-1}), |y|u \in L^2 \}, \mathcal{H} \hookrightarrow L^2 \text{ compact.}$$

$$\triangle \psi + (1 - \alpha |y|^2 \psi) + \lambda \psi = 0 \qquad (\mathsf{L})$$

• (L) has a principal eigenvalue

$$\lambda_{\alpha} = \min_{\psi \in \mathcal{H}, \int \psi^2 = 1} \int |\nabla \psi|^2 + (\alpha |y|^2 - 1)\psi^2$$

- $\alpha \mapsto \lambda_{\alpha}$ is continuous, increasing, concave.
- $\lambda_{\alpha} \xrightarrow{\alpha \to 0} -1$ and for α large enough $\lambda_{\alpha} \ge 0$.
- There exists $\alpha_0 > 0$ such that $\lambda_{\alpha} < 0$ if $\alpha < \alpha_0$ and $\lambda_{\alpha} \ge 0$ if $\alpha \ge \alpha_0$.

2 If $\alpha \ge \alpha_0$, **0** is the unique bounded solution of

 $riangle \varphi + \lambda \varphi (1 - \varphi) - \alpha |y|^2 \varphi = 0, \qquad y \in \mathbb{R}^{N-1}.$

(a) If $\alpha < \alpha_0$, there exists a unique bounded solution $\varphi > 0$.

For $w \in \mathcal{H}$, we define

$$H(w) = \int_{\mathbb{R}^{N-1}} \left(\frac{1}{2}|\nabla w|^2 - F(y,w)\right) dy$$

where $F(y,s) = \int_0^s f(y,\rho) d\rho$. If $\alpha < \alpha_0$,

$$H(\varphi) = \min_{w \in \mathcal{H}} H(w) < H(0) = 0.$$

3

æ

Existence of traveling front for $\alpha < \alpha_0$

Solving the equation in a box

For
$$-a < 0 \le b$$
,
$$\begin{cases} \triangle u + c\partial_x u + f(y, u) = 0 \quad (x, y) \in] - a, b[\times \mathbb{R}^{N-1}, u(-a, .) = \varphi, \quad u(b, .) = 0. \end{cases}$$

- There exists $u_{a,b}$ solution of this equation φ is supersolution and 0 is subsolution.
- *u_{a,b}* is unique and decreasing in x with c ∈ ℝ fixed: Slinding method.
- $c \mapsto u_{a,b}^c$ is continuous and decreasing. $u_{a,b}^c$ is supersolution of the equation with c' > c.
- $a \mapsto u_{a,b}$ is decreasing and $b \mapsto u_{a,b}$ is increasing. $u_{a,b}$ is subsolution of the problem with a' < a.

$a, b \rightarrow +\infty$

We can define $u^b = \lim_{a \to +\infty} u_{a,b}$ and as well $u_a = \lim_{b \to +\infty} u_{a,b}$. The function u^b is solution of

$$\begin{cases} \triangle u^b + c \partial_x u^b + f(y, u^b) = 0 \quad \text{on }] - \infty, b] \times \mathbb{R}^{N-1} \\ u^b(b, .) = 0, \quad \partial_x u^b \le 0. \end{cases}$$

2 cases depending on c: $u^b \equiv 0$ or $\lim_{x \to -\infty} u^b(x, y) = \varphi$. Let us define

$$\mathcal{A}_0 = \left\{ c \in \mathbb{R} | u^b(x, .) \xrightarrow{x \to -\infty} 0 \right\} \text{ and } \mathcal{A}_{\varphi} = \left\{ c \in \mathbb{R} | u^b(x, .) \xrightarrow{x \to -\infty} \varphi \right\}$$

And as well

$$\mathcal{B}_0 = \left\{ c \in \mathbb{R} | u_a(x,.) \xrightarrow{x \to +\infty} 0 \right\}$$
 and $\mathcal{B}_{\varphi} = \left\{ c \in \mathbb{R} | u_a(x,.) \xrightarrow{x \to +\infty} \varphi \right\}$

3

Some properties of \mathcal{A}

There exists $c^* > 0$ such that $\mathcal{A}_{\varphi} =] - \infty$, $c^*[$ and $\mathcal{A}_0 = [c^*, +\infty[$.

- \mathcal{A}_0 and \mathcal{A}_{φ} are intervals. $c \mapsto u_{a,b}$ is decreasing. If $c_0 \in \mathcal{A}_0$, $\forall c > c_0$ $c \in \mathcal{A}_0$ and if $c_0 \in \mathcal{A}_{\varphi}$, $\forall c < c_0$ $c \in \mathcal{A}_{\varphi}$.
- $0 \in \mathcal{A}_{\varphi}$. Energy estimate:

$$c \int_{x_1}^{x_2} \int_{\mathbb{R}^{N-1}} \partial_x u(x,y)^2 dy dx = H(u(x_2,.)) - H(u(x_1,.))$$
$$+ \int_{\mathbb{R}^{N-1}} \partial_x u(x_1,y)^2 dy - \int_{\mathbb{R}^{N-1}} \partial_x u(x_2,y)^2 dy$$

Thus for c = 0, $x_1 = -a$ and $x_2 = b$, $\int_{\mathbb{R}^{N-1}} \partial_x u(b, y)^2 dy \ge H(0) - H(\varphi) > 0$ and $u \notin A_0$.

- c ∈ A₀ if c is large enough.
 Construction of a supersolution on [-a, b], →∞ 0.
- \mathcal{A}_0 is closed.

- \mathcal{B}_0 and \mathcal{B}_{φ} are intervals.
- \mathcal{B}_{φ} is closed.
- $\mathcal{A}_{\varphi} \cap \mathcal{B}_0 = \emptyset$

By using the sliding method.

 $\Rightarrow c^* \in \mathcal{B}_{\varphi}$

3

Construction of traveling fronts

() For $c = c^*$, there exists a traveling front.

 $\begin{array}{l} a=n, \ b=0: \ There \ exists \ h_n \in]0, \ n[\ such \ that \ u_{n,0}(-h_n,0) = \frac{1}{2}\varphi(0).\\ c \in \mathcal{A}_0 \Rightarrow h_n \xrightarrow{n \to \infty} +\infty, \ c \in \mathcal{B}_{\varphi} \Rightarrow h_n - n \xrightarrow{n \to \infty} +\infty. \ Hence\\ u_{n,0}(.-h_n,.) \xrightarrow{n \to \infty} U \ and \ U \ is \ a \ traveling \ front. \end{array}$

2 For $c > c^*$, there exists a traveling front.

Use the traveling front with c^* to build sub- and super-solution.

③ For $c < c^*$, there is no traveling front.

Assume there is a traveling front U, then $u^b < U$ by a maximum principle and there is a contradiction using the sliding method.

- Uniqueness: study of the exponential decay in x to initiate a sliding method.
- Spreading
- Tumor cords.
- Influence of circumvolutions.
- . . .

• = • •

э

- Uniqueness: study of the exponential decay in x to initiate a sliding method.
- Spreading
- Tumor cords.
- Influence of circumvolutions.
- . . .

Thank you for your attention!