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Perthame (Univ. Paris 6) and Axel Buguin, Jonathan
Saragosti, Pascal Silberzan (Institut Curie, Paris).



E. coli Kinetic model Bacterial pulses

Contents

Bacterial self-organization : the case of E. coli

The Othmer-Dunbar-Alt mesoscopic model

Application to bacterial traveling pulses



E. coli Kinetic model Bacterial pulses

Contents

Bacterial self-organization : the case of E. coli

The Othmer-Dunbar-Alt mesoscopic model

Application to bacterial traveling pulses



E. coli Kinetic model Bacterial pulses

Description of E. coli movements

Alternatively:

• Straight swimming
trajectories (∼ 1sec.): run

• Reorientation events
(∼ 0.1sec.): tumble

Howard Berg’s lab
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Chemical signaling
• Bacteria can sense multiple chemical substances along their

trajectories.
Chemoattractants: amino-acids (e.g. aspartate), glucose. . .

• Bacteria are able to produce themselves some of these
chemicals.
Positive feedback: accumulation of bacteria in opposition to
the natural dispersion.

N. Mittal, E.O. Budrene, M.P. Brenner, A. van Oudenaarden, PNAS
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Response to the chemical signal

E. coli reacts to the time variations of the signal: tumbling events
decrease when the signal concentration increases.

Complex signal integration inside
each individual:

• Memory effects

• High sensibility to signal
changes (excitation)

• Adaptation
J.E. Segall, S.M. Block, H.C. Berg, PNAS
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Kinetic modeling

• Bacterial density f (t, x , v) is described in the space
(0,T )× R2 × V (time×position×velocity).

• Velocity space V is bounded (speed of bacteria is almost
constant ≈ 20µms−1).

The Othmer-Dunbar-Alt model (’80) :

∂t f + v · ∇x f︸ ︷︷ ︸
run

=

∫
v ′∈V

T[S ]f (t, x , v ′) dv ′ −
∫

v ′∈V
T∗[S ]f (t, x , v) dv ′︸ ︷︷ ︸

tumble

• The tumbling kernel T[S ](v , v ′) denotes the frequency of
reorientation v ′ → v .

• The chemical signal is secreted by the bacteria, following a
reaction-diffusion equation:

∂tS = DS∆S − αS + βρ , ρ(t, x) =

∫
v∈V

f (t, x , v) dv
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What about the tumbling frequency?

• First approach, not including memory effects
(Dolak and Schmeiser):

T[S ](v , v ′) = ψ

(
DS

Dt

∣∣∣∣
v ′

)
= ψ

(
∂tS + v ′ · ∇xS

)
• Phenomenological approach by Segall et al.:

memory effect = time convolution along the
past trajectory:

T[S ](v , v ′) = ψ

(∫ 4sec.

0sec.
K (s)S(t − s, x − sv ′) ds

)
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Experimental evidence for traveling pulses

• Bacteria initially lie on the left side of a channel,
• They secrete a chemoattractant (presumably glycine),
• A fraction travels to the right with constant speed and

constant profile (asymmetric).
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One possible scenario

• Bacteria gather due to secretion of a chemottractant (as for
cluster formation),

• They consume another chemical (the nutrient N). This
triggers the motion of a pulse.

Kinetic description:

∂t f + v · ∇x f = Q[S ,N]f

And reaction-diffusion equations:

∂tS = DS∆S − αS + βρ

∂tN = DN∆N − γρN .
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Derivation of a simpler model

Analysis of the previous system is not that simple. In adimensional
form it writes:

ε∂t f + v · ∇x f =
1

ε
Q[S ,N]f

Taking the limit when ε→ 0 leads to a parabolic equation for the
density ρ(t, x):

∂tρ− Dρ∆ρ︸ ︷︷ ︸
diffusion

+∇ · (ρuS + ρuN)︸ ︷︷ ︸
chemotactic flux

= 0

uS = −
∫

v∈V
vψ (v · ∇S)

dv

|V |

In the case of a stiff response function ψ = Heaviside:

uS = χS
∇S

|∇S |
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Numerical evidence for traveling pulses
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Numerical evidence, ctd.

.
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Numerical evidence, ctd.

.



E. coli Kinetic model Bacterial pulses

Numerical evidence, ctd.

Limited nutrient: coexistence of a stationary state and a traveling pulse
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Some quantitative features
In the case of a stiff response function ψ = Heaviside, we obtain a
formula for the speed of the pulse:

χN − σ = χS
σ√

4DSα + σ2
.

The profile is a combination of two exponential tails.

ρ(z) =

{
ρ0 exp (λ−z) , z < 0

ρ0 exp (λ+z) , z > 0

Asymmetry of the profile is given by:

λ−

|λ+|
=

√
4DSα + σ2 + σ√
4DSα + σ2 − σ

.

Therefore it is strongly asymmetric when σ � 2
√

DSα (speed of
chemical diffusion).
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Traveling kinetic pulses
In fact... The diffusion scaling is not valid in some experimental
setting. Traveling waves are likely to exist at the kinetic level too.
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Future: test micro effects such as angular diffusion during
tumbling.
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Conclusions

• There is a hierarchy of mathematical models for collective cell
motion (micro-, meso-, macroscopic).

• The appropriate choice relies on a compromise between
accuracy of description and simplicity of formulation.

• The ODA kinetic model is suitable for bacterial motion. It is
possible to derive simplified model (of parabolic types) which
are better adapted than the usual ones.

• Existence of stable traveling pulses is linked to the stationary
chemotaxis problem (without nutrient).
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Thank you for your attention!
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