Light bulb concordance (20 min)

Thm (4D light bulb) [Gabai 2017]

\[R, R' \rightarrow X^4 \]

2-spheres which have common dual sphere

Def. Given \(R \times X^4 \), say \(G \) is a dual sphere for \(R \) if \(G \) = 2-sphere w/ triv. normal bundle and \(R \cap G = pt \)

and \(\pi_1(X^4) \) has no 2-torsion.

Then \(R \) and \(R' \) are ambiently isotopic.

If modified statement when \(\pi_1(X^4) \) has 2-torsion: Study homotopy between \(R \) \& \(R' \).

Domain \(S^3 \times I \)

\[1 \text{ circle } \Rightarrow \mathbb{S}^2 \]

\[2 \text{ circles in gauge } \Rightarrow \mathbb{S}^1 \]

immersed circles of self-int \(\Rightarrow \) element of \(\pi_1(X^4) \)
Gabai's condition: Every element of $T_2 - \{1\}$ appears as a self-intersection of trade of homotopy an even # of times.

$\Rightarrow R, R^1$ isotopic

Thm (Schwartz)

This condition is necessary.

3D analogue

Let $K \subset S^1 \times S^2$ be a circle intersecting $pt \times S^2$ once (transversely). Then K isotopic to $S^1 \times pt$.

(Analogue: $K = R^1, S^1 \times pt = R, pt \times S^2 = G$)
What if \(|K \cap \mathbb{P}^+ \times S^2| > 1\)?

Say \([K] = [S' \times \text{pt}]\) in \(H_1(S' \times S^2)\)

\[K \not\sim S' \times \text{pt} \quad \text{(Thm: Yildiz, Davis-Nagel-Park-Ray)} \]

But if \([K] = [S' \times \text{pt}]\) in \(H_1(S' \times S^2)\),
then \(K\) concordant to \(S' \times \text{pt}\).
Pf that K concordant to $S^1 \times pt$

- K homotopic to $S^1 \times pt$ through crossing changes

Build concordance from crossing changes

$(S^1 \times S^2) \times 0 \quad (S^1 \times S^2) \times t \quad (S^1 \times S^3) \times 1$

\rightarrow

\rightarrow
This is a picture of surface

Annulus

no concordance from K to S¹×pt.

Back to dim 'n 4

Then

If $R, R' \subset X^4$ have 2-spheres

R has transverse sphere G

and $\pi_1(X^4)$ has no 2-torsion

then R and R' are concordant.

Same condition on homotopy

Feeeman:
5-twist spun trefoil has group $A_5 \times \mathbb{Z}$

surger μ to get $S^3 > S^3$, K hom to $S^1 \times pt$

$\pi_1(S^3 \times S^3 \setminus K) \cong A_5$, so K not isotopic
to $S^1 \times pt$ (Due to Sato)
4DLBT Proof idea

Step 1

R' can be put into standard form: tubed surface

$\pi_5(\mathbf{i})$ $\pi_5(\mathbf{P})$ $\pi_5(\mathbf{Q})$

single tube
double tube
Regular surfaces

(see e.g. Freedman-Quinn)

Finger move

Whitney move
Thm (Smale)
If R, R' embedded htpc surfaces in X^n, then R and R' are reg htpc.

Thm (Quinn?)
Then if a sequence of finger moves f_1, \ldots, f_n followed by Whitney moves w_1, \ldots, w_n (with intermediate isotopies) so $R' \to f_1, f_2, \ldots, f_n, w_1, \ldots, w_n \to R$.
Have \(R' \) isotopic to tubed surface \(R'' \) on \(R \).

Gabai:

\[\rightarrow \text{List} \]

\[\exists [\gamma] \in \pi_1(X, x) \]

\[\ni \text{a double tube of } R'' \]

If every 2-torsion element of \(\pi_1(X, x) \) appears an even number of times, then \(R'' \) isotopic to \(R \).
Now prove concordance theorem

Setup R, R' (reg) htpc 2-spheres in X^4

G a transverse sphere for R

finger moves f_1, \ldots, f_n then

Whitney moves w_1, \ldots, w_n

takes R' to R.
Step 1

\[S = \mathbb{R}^1 \text{ after } f_1, \ldots, f_n \]

\[S_+ = \text{genus-}n \text{ surface} \]

\[\text{S immersed but } S_+ \text{ embedded.} \]

Can also obtain \(S_+ \) by attaching tubes to \(\mathbb{R} \).
This gives a cobordism M, from R to S^+ in $X^4 \times I$ where $M = R \times I$ \cup \text{n 1-handles}$.

To geometrically cancel 1-handles, we want to attach 2-handles along these circles.
Isotope S_+ near Whitney moves (in order, tubes disjoint from interior of disk by dimensionality)
Take B_i still centered about point b_i in R. Choose arcs from b_i to z and compress T_i along disks parallel to tube around arcs + G to obtain R''.
my cobordism $M_2 \subset X^u \times I$

from $S_+ \to R''$

$M_2 = S_+ \times I \cup \nu \, n \, 2$-handles

$N = M_1 \cup M_2$

= concordance from $R' \to R''$
\mathbb{R}^n is a realization of a tubed surface on R.

Diagram representing a tubed surface.
uncrossed \(w_i \) vs single tubes

crossed \(w_i \) vs double tubes

\(\pi_1 \left(X^4 \right) \) no 2-torsion, then \(R^{11} \) isotopic to \(R \) -> done.

Stop here
Thm (4D LBT Gabai)

Let R, R' be finite 2-spheres embedded in X^4 with mutual transverse sphere G.

Say finger moves f_1, \ldots, f_n followed by Whitney moves w_1, \ldots, w_n take R' to R.

Let $S = R'$ after f_1, \ldots, f_n.

Let $(x_1, y_1), \ldots, (x_{2n}, y_{2n})$ be preimages of self-intersections of S (made $2n$ choices).
Say \(w_i \) Whitney move on disk \(W_i \), bandeye \(W_i \) connects

\[
\begin{array}{cc}
\text{uncrossed} & \text{crossed} \\
\end{array}
\]

Let \(\gamma_i \) be the arc in \(X^4 \) with bandeye on \(R \) defining inverse finger move to \(w_i \).

List \(\exists [\gamma_i] \in \pi_1 (X^4, \tau) \) \(w_i \) crossed \(3 \)

If every element of 2-torsion appears even \# of times, then \(R \) and \(R' \) isotopic.
Thm

Same as above except only R transverse to G.

\implies conclude R and R' are concordant.

The remainder of the talk is joint work with Michael Klug.
Let \(R, R' \hookrightarrow X^4 \) 2-spheres w/ common dual \(G \). Assume \(R, R' \) htpc. Then \(R, R' \) isotopic iff \(f_q(R, R') = 0 \).

\(f_q = \) Freedman-Quinn invariant

Defined for homotopic pair of 2-spheres \(A, B \hookrightarrow X^4 \)

\[f_q(A, B) \subset F_2 T_\mathcal{M} / \mu_3(\pi_3 \mathcal{M}) \]

where \(T_\mathcal{M} \subset \pi_1 X \) is the 2-torsion subset \((T_\mathcal{M} = \{ 2\text{-torsion elements} \}) \) and \(F_2 T_\mathcal{M} \) is a vector space.
Def \((f_q)\)

\[X^4 \times S^2 \times \mathbb{I} \]

\[C \rightarrow A \]

\[A \]

Have immersion

\[f : S^2 \times \mathbb{I} \rightarrow X^4 \times \mathbb{I} \]

\[f(S^2 \times 0) = A \times 0 \]

\[f(S^2 \times 1) = B \times 1 \]

e.g. track of homotopy

Domain

\[f \]

\[\Sigma a_i \gamma_i \in \mathbb{F}_2 T_m / M \gamma_3 \gamma_3 M \]

\[\gamma_i \in T_m, a_i = \# \text{times} \gamma_i \text{ a self-int} \]

(Oriented)

every circle of self-int corresponds to element of

circles of self-intersection
of f with connected double cover (mod 2)

Turns out this does not depend on choice of f.

(Up to $\mu_3 \pi_3 M$)

Rmk. If A, B concordant,

then $f_2'(A, B) = 0$.

If $\pi_1 X^4$ no 2-torsion,

then $f_2(A, B) = 0$.

Sunukjian (2013)

If $R, T \hookrightarrow X$ are 2-spheres

- R, T homotopic
- $i: \pi_1(X \setminus R) \rightarrow \pi_1(X)$ isomorphism (i.e. meridian of R nullhomotopic in $X \setminus R$)
- $\pi_1(X)$ no 2-torsion

then R and T are concordant.

(Didn’t mention this before)
(Because originally no 2-torsion hypothesis)
(Idea of proof)
- First prove for $\pi_1 X = 0$
- Now for other π_1, lift to universal cover
Problem: What if $y \in \mathbb{Z}$, X fixes some circle setwise? $y^2 = 1$

Thm (Klug - M) Berkeley/Max Planck

Let $R, T \subset X'$ 2-spheres

- R, T homotopic
- $i : \pi_1(X \setminus R) \to \pi_1(X)$ isomorphism
Then R,T concordant iff $f_{(R,T)} = 0$

Lightbulbs (htpc spheres w/ common dual)

- 4-mfds
- 4-mfds
- No 2-torsion
- Gabai
- Schneidersman - Teichner
htpc spheres, one has dual 4-mfds

4-mfds
No 2-torsion
Sunukjian

spheres are concordant

spheres are not concordant

Klug - M

Zeeman:
5-twist spun trefoil K has group $A_5 \times \mathbb{Z}$
surger μ to get $S^2 \times S^2$, K htpc to $S^2 \times pt$

$\pi_1 (S^2 \times S^2 \setminus K) \approx A_5$ so K not isotopic to $S^2 \times pt$
Redefine f_q in terms of covering spaces

Now $US^2 \times I$ has circle self-ints, which are acted on by $\pi_1 X^4$

If no circle of self-intersection is fixed by some nontrivial $Y \subset \pi_1 X^4$, then Samulejian: Ambiently equivariantly surger the self-intersections away.
Say \(C < M, n M \) a circle of self-int fixed setwise by \(Y \)

so \(Y \cdot 1 \sim 2 \quad Y \cdot 2 = 1 \)

\[\Rightarrow Y^2 = 1 \]

Def \(f_2 (R, T) = \sum a_i Y_i \)

over \(Y_i \in T_2 \) (2-torsion in \(nX \))

\(a_i = \# M_i \cap M \); \(\text{fixed by } Y_i \) (mod 2)

\[\left(\text{in } \frac{F_2 T_2}{\mu_3 \pi_3 M} \right) \]

Thm (KM) Equivalent to

Schneiderman-Teichner definition

\[\Rightarrow \text{if nonzero, then } R, T \text{ not concordant} \]
And if \(i = 0 \)

(ignore \(\mu_m, \pi_m M \) part)

Then have even \# circles in \(M, nM \) fixed by \(\gamma \)

\[\simxI \]

equivariantly

\[\simsurger \]

\(C_1, C_2 \) both fixed set \(\gamma \)

\(C_1, C_2 \) fixed set \(\gamma \)

\(M_1 \)

\(M_2 \)

\[Z \text{ fixed circles} \]

\[O \text{ fixed circles} \]
Repeat until no fixed circles, then apply Sunakjian's construction

⇒ R, T are concordant.