Dax's Work on Embedding Spaces

David Gabai
Princeton University

Topology in Dimension 4.5

November 2, 2022
Motivating example

\[M^3 = S^2 \times D^2 \times S^1 \times B^3 \times [-1, 1] \]

- \(D_0 = \text{std vertical disc} \)
- \(D_1 = \text{self-referential disc} \)
- \(= D_0 \text{ tubed to an unknotted } S^2 \)

Theorem: \(D_1 \) not isotopic to \(D_0 \) rel \(\partial \)

Facts:
1. (LBT) If \(N = M \cup 2\text{-handle} \) along \(\partial D_i \), \(D_i \)'s extended to \(S^3 \)'s then \(S_i \) isotopic to \(S_0 \) fixing \(G \) ptwse.
2. If \(f : M \to M \quad f(D_0) = D_1, \quad f \text{ id fixing } \partial M \text{ ptwise} \) (Based on H. Schwartz spheres using ccf Palais)
3. If \((D_0, D_1) = 0 \) then \(\pi_1(M) \) is torsion free (See Schneiderman - Teichner)
4. STongs \(K_m (D_0, D_1) = 0 \) \(D_0, D_1 \) have dual spheres (See Klug - Miller)
Theorem \(D_0 \) properly embedded 2-disc \(\subset M^4 \) compact, with dual sphere \(G \subset \partial M \). \(D = \) isotopy classes of embedded discs homotopic to \(D_0 \) rel \(\partial \).

Then there is a homomorphism

\[
\phi_0 : D \to \pi_1^D(Emb(\mathbb{I}, M), \mathbb{I}_0)
\]

\[
= \mathbb{Z}(\pi_1(M)/\mathbb{I})/D(\mathbb{I}_0)
\]

It maps onto subgroup generated by elements \(g+g^{-1} \) and \(x \) where \(x^2 = 1 \).

\(D_0 \) is an abelian group with \([D_0]\) the zero element.

Example when \(M = S^2 \times B^2 \cup S^1 \times B^3 \), \(D(\mathbb{I}_0) = 1 \).

\(D \) is isomorphic to subgroup \(\{z^n + z^{-n}/n \in \mathbb{N}\} \)

\(z \) generator of \(\pi_1 \).
Kosanovic - Teichner

1) Always an \cong

2) Understand the space of embeddings $D^2 \rightarrow M^4$
 with boundary dual sphere

3) general group structure
 not necessarily abelian

Hannah Schwartz
LBT for discs with dual sphere G such that
$\pi_i(M-G) \cong \pi_i(M)$.

Question (Schwartz) Is there a
LBT when $\pi_i(M-G) \rightarrow \pi_i(M)$ not \cong
Théorème A. — Soient V^n et M^m deux variétés différentielles de classe C^r, la variété V^n étant compacte sans bord.

Soit $f : V^n \to M^m$ une application continue. Si $2m - 3n - 3 \geq 0$, f est homotope à un plongement si et seulement si $\pi_0 (f)$ est l'élément neutre du groupe $\Omega_{2n-m} (C_f, \partial W; 0_f)$.

Soient k un entier ≥ 1 et $f_0 : V^n \to M^m$ un plongement. L'homomorphisme (application pointée si $k = 1$) :

\[\pi_k : \pi_k (\text{Hom} (V^n, M^m), \text{Pl}, f_0) \to \Omega_{2n-m+k} (C_{f_0}, \partial W; 0_{f_0}) \]

est un isomorphisme (bijection si $k = 1$) pour $k \leq 2m - 3n - 3$, un épimorphisme (surjection si $k = 1$) pour $k = 2m - 3n - 2$.

Jean-Pierre Dax 1972

Étude homotopique des espaces de plongements
Dax Isomorphism Theorem:

\[\alpha^K_n : \pi^K_n(\text{Hom}(V^K_n, M^K_n), \text{Pl}, f_o) \xrightarrow{\sim} \Omega_{m+k}^D(c_{f_o}, \partial W; \theta_{f_o}) \]

Let \(I_o \) be a properly embedded closed interval in the oriented \(M \).

1) \(\Pi^D_1(\text{Emb}(I, M; I_o)) \) is generated by \(\exists g \mid g \neq 1, g \in \Pi_1(M)^2 \) and is canonically \(\cong \)
\[\mathbb{Z}[\Pi_1(M) \setminus 1]/D(I_o) \]

2) There is a homomorphism
\[d_3 : \Pi_3(M, x_0) \longrightarrow \mathbb{Z}[\Pi_1(M) \setminus 1] \]
with image \(D(I_o) \) - the Dax kernel

\(\Pi^D_1(\text{Emb}(I, M; I_o)) \) is the subgroup of loops that are \(\leq \star \) in the space of maps. The \(\text{Dax group} \)

Reference "Self-Referential discs and the light bulb lemma."
Spinning (Definition of I_g)

- **Convention**
 1. Base of band below lasso on I_0
 2. An orientation rule determines sign

Fact: Spinnings commute
Dax's key idea:

Let $\alpha_t : I \to M$

with $\alpha_0 = \alpha_1 = 1_{I_0} \circ \text{id}_{I_0}$

$d_t \in \prod^{D}_t(\text{Emb}(I, M), I_0) \Rightarrow$

$\exists \alpha_{t,u} \in \text{Maps}(I, M; I_0)$ with

$\alpha_{t,u} = 1_{I_0} \circ u \text{ near } 0$ \quad $u \text{ near } 1$

Define $F_0 : I \times I^2 \to M \times I^2$

$F_0(s, t, u) = (\alpha_{t,u}(s), t, u)$

we can assume F is an immersion with finitely many double points, no triple points, self at double pts.
Double Points of F_0

How to compute g_x

Sign $= \sigma_x$

oriented self-intersection $\#$

The orientation of the interval informs which tangent space comes first.
\[F_0 \rightarrow d(x_{i, u}) = \sum_{i=1}^{n} \sigma_i g_{x_i} \in \mathbb{Z}[\pi_1(M)/1] \]

Summed over double points with \(g_{x_i} \neq 1 \)

This is well defined

If \(x_{i, u}^0, x_{i, u}^1 \) two homotopies in \(\text{Maps}(I, M; I_0) \) and \(x_{i, u}^0 \simeq x_{i, u}^1 \) fix \(\partial \) then the usual intersection theory argument - considering double curves of interpolating homotopy shows \(d(x_{i, u}^0) = d(x_{i, u}^1) \)

Caveat - some double curves come off - but this corresponds to loops \(g_x = 1 \).
If $\alpha_{k,4} \neq \alpha_{t,4}^1$ then they differ by an element of Π_3.

Define $d_3 : \Pi_3(M, x_0) \to \mathbb{Z}[\Pi_3(M) \setminus \{1\}]$ where $a \in \Pi_3$ is represented by $\alpha_{x_0}^a$ where $\alpha_{x_0}^{x_0}, \alpha_{x_1}^{x_1} = 1_{x_0}$.

Define $D(x_0) = d_3(\Pi_3(M, x_0))$

Then

$d : \Pi_1^0(\text{Emb}(I, M; x_0)) \to \mathbb{Z}[\Pi_1(M) \setminus \{1\}] / D(x_0)$

is a homomorphism.
Looking closely at
\[F_0 \rightarrow \sum_{i=1}^{n} \sigma_{x_i}, g_{x_i} \in \mathbb{Z}[\pi_1(M)] \]
where the sum is without cancellation and \(g_{x_i} \) possibly 1 then one
see that \(d_\ast \) is a concatenation
of the spin maps \(\sigma_{x_i}, g_{x_i} \).
I.e. \(d_\ast \) differs from \(1_{I_0} \) by
this concatenation of spinnings
Since spin maps \(\in \Pi_{1}^{D}(\text{Emb}(I, M; I_0)) \)
It follows that
\[d : \Pi_{1}^{D}(\text{Emb}(I, M; I_0)) \rightarrow \mathbb{Z}[\pi_1(M) \backslash \mathbb{I}] / D(I_0) \]
is surjective. Since spinnings commute and spinning around
\(1 \) is \(\ast \), \(d \) is injective.
Technical pt: This avoids a double point
s-cobordism like elimination argument
of Dax
Example

\[\Pi_1^D(\text{Emb}(I, s^1 x B^3; i_0)) \cong \mathbb{Z}[\mathbb{Z} \setminus 0] \]

Proof \[\Pi_3 = 0 \]

\[\Pi_1^D(\text{Emb}(I, s^2 x D^2 \sqcup s^1 x B^3; i_0)) \cong \mathbb{Z}[\mathbb{Z} \setminus 0] \]

Proof: Same generators - less space to kill them.
Dax Isomorphism Theorem:

\[\alpha_k : \pi_k(\text{Hom}(V^h, M^y), \text{Pl}, f_0) \xrightarrow{\cong} \Omega_{\partial W}^{m+k}(e_{f_0}, \partial W; \theta_{f_0}) \]

Let \(I_0 \) be a properly embedded closed interval in the oriented \(M^y \).

i) \(\Pi_i(D(\text{Emb}(I, M; I_0))) \) is generated by \(\forall g \neq 1, g \in \pi_i(M) \) and is canonically \(\cong \) to

\[\mathbb{Z} [\pi_i(M) \setminus 1] / D(I_0) \]

ii) There is a homomorphism

\[d_3 : \pi_3(M, x_0) \rightarrow \mathbb{Z} [\pi_1(M) \setminus 1] \]

with image \(D(I_0) \) - the Dax Kernel

Differences between two Dax \(\cong \) Theorems

1) working in different spaces
2) Part ii) is not part of his theory
3) we identify the generators geometrically
\[\pi^D_1 \left(\operatorname{Emb}(I, S^2 \times D^2 \# S^1 \times B^3; i_0) \right) = \mathbb{Z}[N] \]

Idea & Proof: The separating \(S^3 := \Sigma \) gives relations. A 2-sphere \(\Sigma \) bounds \(B^3 \),

One gives spinning \(J_0 \)

Other gives spinning \(J_{g-1} \)

\[\therefore J_0 \sim J_{g-1} \quad \text{up to sign} \]

\[\alpha_k : \pi_k^H(\operatorname{Hom}(V, M^k), \Pi, f_0) \rightarrow \Omega_{2n-m+k}^0 (c_{f_0}, \partial W; \theta f_0) \]

These "homotopies" \(\ast, \ast \) represent different elements of the source of \(\alpha_2 \), but are homotopic in \(\pi^D_1 \).
View $D_i \in \Pi_1^D(\text{Emb}(I,M);I_0)$

$d(D_i) = g + g^{-1}$

(using correct choice of sweeping across D_i)

Proof

D_i is the concatenation of I_g, $I_{g^{-1}}$
How to compute $d(D)$ up to $\Sigma(D_0)$ (after H. Schwartz)

Reference (Schwartz) "A LBT for discs"

Step 1: Consider a regular homotopy of D_0 to D.

Step 2: Consider the self-intersection locus viewed as a plat.

Step 3: Add up crossings (projection into I, J plane) corresponding to identified arcs.

- Each crossing comes with a sign and group element.

Ignore crossings with $g_k = 1$