Banff Topology in Dimension 4.5
Questions and Problems

Patrick Naylor

Q Is the Gluck twist of roll spun $T_3 \cong S^4$?
unnotted $\# = 2$ so this is likely the smallest 2-knot for which we don't know the Gluck twist.

Q For any classical knot K, is the turned 1-twisted spun torus of K smoothly unknotted?
Reasonable since $\pi_1(S^1 \times T) \cong \mathbb{Z}$.

What is known about spinning links?
Q Are there similar constructions to deform spins using other ribbon disks?

Anthony Conway

P Find a 2-knot $K \subset S^4$ with trivial Alexander module but nontrivial Rochlin invariant μ.

Q If $K \subset S^4$ has $\pi_1(S^4 \setminus K) \cong \mathbb{Z}$, must K be smoothly unknotted?

This is a well-known question; the affirmative version is called the “smooth unknotting conjecture.”

Q What invariants could help with the previous question? (Also a well-known question.)
Q. Can you define \(\mu \) for nullhomologous 2-knots in other 4-manifolds?

Q. What invariants determine the homotopy type of \(S^4 \setminus \nu(K) \)?

Conjecturally \((\pi_1, \pi_2, k)\) is \"homotopy 2-type\" as a \(\mathbb{Z}_2 \)-module.

This has been studied by e.g. Lomonaco.

Arunima Ray

P. Define \(\tau_g(R, R') \) for more surfaces \(R \) and \(R' \) (e.g. positive-genus, non-orientable).

P. Extend lightbulb theorem (Gabai) to non-orientable ambient 4-manifold.

Q. Can the conditions on the dual sphere \(\Sigma \) in the lightbulb theorem be refined?
Mark Powell

Q Is every 2-link slice?

P Classify n-component link maps $\bigsqcup S^2 \to S^4$ up to link homotopy for $n \geq 3$ ($n=1$ trivial; $n=2$ Schneiderman–Teichner)

Rob Schneiderman

Q Are there settings in which f_q can be defined considering unbased homotopies?

E.g., answer is “yes” for $f_q(S^2, S^2)$ when there is an immersed sphere $G \hookrightarrow X^4$ with $G \cdot S^2 \equiv 1 \mod 2$.
More details: for H a homotopy between 2-spheres in M^4, have $f_2(H) \in \mathbb{F}_2 T$ with $T = \mathfrak{g} \in \mathfrak{g}_1 \setminus \mathfrak{g}^2 = 1$, the self-intersection invariant.

$$f_2(H) = \mu(S^2 \times I \to M \times (R \times I)) \in \mathbb{Z}_2 \mathfrak{m} \mathfrak{g}^{-1} \setminus \mathfrak{g}^2 = 1$$

So, for $R, R' \in M$ homotopic 2-spheres, could set

$$f_2(R, R') = f_2(H) \in \mathbb{F}_2 T$$

Problem

If J a basepoint of R traces out a nontrivial element $S \in \pi_1 M$ of $[R] \in \pi_2 M$ under the action of π_1, get indeterminacy in $f_2(R, R')$ described by $t \mapsto f_2(J) + st \in \mathbb{F}_2 T$ rather than $t \mapsto f_2(J) t$.

- If $f_2(J) \in \pi_2 M$ then on $\mathbb{F}_2 T / (\pi_2 M)$ this reduces to conjugation by s.
- If $\text{stab} [R] = 1$ (e.g. R has dual sphere) then $s = 1$.

So, finding a J with $f_2(J) \in \mu(\pi_2 M)$ or finding more examples of R, M where $f_2(J) \in \mu(\pi_2 M)$ & J would help in defining target of f_2 without needing a dual sphere.
Q Does there exist a self-homotopy J of some $S^2 \subset M^4$ such that $\mu(J) \neq \mu(\pi_3 M)$?

\[
(\mu(J) = \sum_{g_c \in \pi_1 M} \begin{array}{c} g_c \in \pi_1 M \\ g \leftrightarrow g^{-1} \end{array})
\]

Answer is "no" if $[S^2] \in \pi_2 M$ has a trivial stabilizer in $\pi_1 M$

e.g. if there is an immersed sphere G with $S^2 \cdot G = 1$.

Ryan Budney

Q Do barbells generate $\pi_0 \text{Diff}(D^4)$?

Or $\pi_0 \text{Diff}(S^1 \times D^3)$?

\[\Theta_2 : S^1 \times D^3 \text{ see Budney-Gabai} \]

Q Is Θ_2 nontrivial? (Budney-Gabai show Θ_n nontrivial for $n > 3$.)

Q Can Watanabe's invariants be described in terms of scanning?
Q. Does knotting of barbells matter?

Q. Are the Hatcher-Wagoner invariants surjective in dimension 4?

P. Understand $\text{Diff}(S^2 \times S^2)$ or $\text{Diff}(\mathbb{C}P^2)$. Can you find generators of π_0?

Q. What is the difference between $\text{Diff}(\text{spin 4-mfld})$ and $\text{Diff}(\text{non-spin 4-mfld})$?

Q. What is $\pi_0 \text{Diff}(D^4)$?
Q Barbells generate the subgroup of \(\pi_0 \text{Diff}(S^1 \times B^{n-1}) \) that is null in pseudoisotopy for \(n \geq 6 \) (Hatcher-Wagoner). Does this hold for \(n = 5 \) too?

P Find null-pseudoisotopies for the Budney-Gabai diffeomorphisms of \(S^1 \times D^3 \) and compute their Hatcher-Wagoner obstructions.

Q Budney-Gabai proved \(\pi_0 \text{Diff}(S^1 \times B^3, s) \) contains an infinite set of linearly independent elements. Are (some of) these elements still non-trivial up to topological isotopy?
Dave Auckly

P. Compare $\pi_n(Diff(Z, D^4))$ to $\pi_n(Homeo(Z, D^4))$ up to stabilizing Z^4 by $S^2 \times S^2$.

Tadayuki Watanabe

Q. Do the graph classes in $\pi_k BDiff(D^4)$ survive under the map $\pi_k BDiff(D^4) \to \pi_k BDiff(D^4 \# (S^2 \times S^2))$?

(From the Weiss fiber sequence)

Q. Are the theta-graph (or barbell) classes mapped to nontrivial elements by $\pi_1 BDiff(D^3 \times S^1) \to \pi_1 BHomeo(D^3 \times S^1)$?

- Yes for $\pi_1 BDiff(D^{d+1} \times S^1)$, $d \geq 5$.
- Yes for $\pi_1 BPL(D^3 \times S^1)$.
Q Can a configuration space integral invariant be defined on \(\pi_1 B\text{Homeo}_2(D^3 \times S^1) \)?

Are invariants of topological embeddings \(\tilde{\Delta}_x \to \tilde{X} \times \tilde{X} \) helpful?

What about in \(\pi_{d-3} B\text{Homeo}_2(D^{d-1} \times S^1) \)?

Q What is the image of

\[p : \pi_1 M^{\text{psc}}_{2c} (X^4) \to \pi_1 B\text{Diff}_2^c (X^4) \]

moduli space of positive scalar curvature metrics.

- Classes detected by Seiberg-Witten theory are not in \(\text{Im} \ p \) (don't admit fiberwise psc metrics)

- Graph classes are in \(\text{Im} \ p \) (Botvinnik-W 2021)

compare to \(M_{GL}(X^4) \subset \pi_0 \text{Diff}_2^c (X^4) \)

the subgroup for which parameterized Gromov-Lawson construction works; see Botvinnik-Hanke-Schick-Walsh

Gay-Hartman 2022: \(M_{GL}(D^4) \cong \mathbb{Z}/2 \text{ or 0} \).