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Knot detection

Knot detection has been one of the many classical questions in
low-dimensional topology.

genus, unknotting number, fundamental group, Alexander polynomial,
Jones polynomial, . . .

more recent invariants: knot Floer homology, Khovanov homology, . . .
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Heegaard Floer homology (defined by Ozsváth-Szabó) and knot Floer
homology (defined by Ozsváth-Szabó, Rasmussen) are powerful invariants
of three-manifolds and knots that give many applications in
low-dimensional topology.

Theorem (Ozsváth-Szabó, ’04)

Knot Floer homology detects the unknot.

Theorem (Ghiggini, ’06)

Knot Floer homology detects genus one fibered knots, i.e. trefoil and
figure-eight.

Theorem (Ni, ’06)

Knot Floer homology detects fiberedness of knots.

Natural question: does knot Floer homology detect the torus knot T (2, 5)?
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Second to top grading

Question

The top Alexander grading of ĤFK tells us when the knot is fibered.
What does the second to top grading tell us?

Answer

Second to top grading tells us information about the monodromy of the
fibered knot.

Question

What do we know about monodromy of knots with T (2, 5) knot Floer
homology?
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Monodromy of knots with T (2, 5) knot Floer

Question

What do we know about monodromy of knots with T (2, 5) knot Floer
homology?

By Thurston, a knot K can be either a torus knot, satellite knot, or
hyperbolic. If K has the same Alexander polynomial as T (2, 5), it cannot
be a satellite knot [Baldwin-Hu-Sivek]. So this knot is either T (2, 5) or a
hyperbolic genus two fibered knot.
Indeed, there is an infinite family of hyperbolic genus two fibered knot
with the same Alexander polynomial as T (2, 5) [Misev].
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A hyperbolic fibered knot has pA monodromy

Definition

A pseudo-Anosov homeomorphism is a map ψ : S → S preserving a pair
of transverse singular measured foliations (Fu, µu) and (F s , µs) such that

ψ · (Fu, µu) = (Fu, λµu), and ψ · (F s , µs) = (F s , λ−1µs)

for some fixed real number λ > 1, called the dilatation of ψ.

p1 p2 p3
∂S

p p p

p ∂S p2 p3 p1
∂S

ψ
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Fixed point counts of surface diffeomorphisms

Theorem (Baldwin-Hu-Sivek, ’21)

Let K ⊂ S3 be a hyperbolic knot such that ĤFK ∼= ĤFK (T (2, 5)) as
bigraded vector spaces. Then the pseudo-Anosov representative of the
monodromy of K has no fixed points in the interior.

Theorem (Ni,’21 and ’22)

Let Y be a closed, oriented 3–manifold, and K ⊂ Y be a hyperbolic

fibered knot with monodromy ϕ. If rk(ĤFK (Y ,K , g − 1)) = r , then ϕ is
freely isotopic to a pseudo-Anosov map with at most r − 1 fixed points in
the interior.

Theorem (Ghiggini-Spano, ’22)

As vector spaces, ĤFK (Y ,K , g − 1) ∼= HF ♯(ϕ) where ϕ is the monodromy
associated to the fibered knot K ⊂ Y .

Slogan: count of fixed points gives rank of Floer homology!
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Main results

Theorem (Farber-Reinoso-W, ’22)

If ĤFK (K ;Q) ∼= ĤFK (T (2, 5);Q) as bi-graded vector spaces, then
K = T (2, 5).

In particular, T (2, 5) is the only genus-two L-space knot in S3.

12 / 30



A hyperbolic fibered knot K is fixed point-free (FPF) if the pA
representative of the monodromy has no fixed points in the interior.

Theorem (Farber-Reinoso-W, ’22)

Let K be a hyperbolic, genus-two, fibered knot in S3. If the fractional
Dehn twist coefficient c(K ) ̸= 0, then K is not FPF.

•Some words on c : measures the “twist” of the Thurston representative of
the monodromy along each boundary component.
•Some words on c = 0: Ni showed that if c(K ) = 0, then

ĤFK (K , g − 1) ≥ 2.
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Strategy to prove the FPF result

Step 1: Use Baldwin-Hu-Sivek to reduce to study pseudo-Anosov braids
with certain singularity types and braid closures.

If c(K ) ̸= 0, can cap off the boundary of the surface and extend the
foliations to get a pseudo-Anosov map on the closed surface Ŝ .

By the Euler-Poincaré formula
∑k

i (2− pi ) = 2χ(Ŝ), among other
arguments in Baldwin-Hu-Sivek (Prop 3.8) assuming FPF, obtain that
the singularity types of interest are (6; ∅; ∅) and (4; ∅, 32).
Furthermore, we know these FPF pAs on the genus two surface with
one boundary component quotient to pA braids with unknot closures
and singularity types (3; 15; ∅) and (2; 15; 3).
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Strategy to prove the FPF result

Step 2: Show that there are no pAs (of the above singularity types)
coming from the monodromy of a hyperbolic genus 2 fibered knot in S3.

(6; ∅; ∅)
(4; ∅, 32).

17 / 30



(6; ∅; ∅): the case with orientable foliation

This case can be ignored if one only cares about ĤFK detection.

Alexander polynomial of a fibered knot is the characteristic
polynomial of action of monodromy on the first homology.

Use Lefschetz fixed point theorem to constrain the trace and therefore
coefficients of the possible Alexander polynomials.
∆K (t) = t4 − t3+?t2 − t + 1

? = −1

This polynomial gives the minimal dilatation achieved by any pA on a
genus two surface [Cho-Ham].

This restricts our braid of interest to be conjugate to some full twists
of σ1σ2σ3σ4σ1σ2 [Lanneau-Thiffeault, e.g. given by Ham-Song]

By FDTC consideration, we cannot have an unknot closure, so the
double branched cover over the braid closure cannot be S3

[Waldhausen].
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(4; ∅, 32): the “harder” case

Obtain a set of “canonical tracks” that carry all possible conjugacy
classes of pAs in this stratum.

The Peacock The Snail

Classify all possible fixed point free pAs on these “canonical” tracks.

Show that the only fixed point free train track map possible does not
correspond to a braid of unknot closure.
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Train track and train track maps

Roughly speaking, a train track τ is a smoothed 1-dimensional graph that
“encodes” information about particular pAs it can “carry”.
We will focus on standardly embedded train tracks. In particular, cusps
only occur at vertices of infinitesimal polygons.

Definition

A train track map is a map f : τ → τ such that for any train path
g : I → τ the composition f ◦ g : I → τ is a train path.
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Tight splitting

Obtain a set of “canonical tracks” that carry all possible conjugacy
classes of pAs in this stratum. This uses tight splitting.

Definition

Let τ ↪→ S1
0,n be a standardly embedded train track. Let v be a vertex of

τ . Fix a train track map f : τ → τ . We say we can tight split v if every
appearance of an adjacent real edge a (resp. ā) in an image train path
f (α) is in fact an appearance of the word aeb (resp. b̄ēā) for some real
edge b.
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Tight splitting
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Case reduction by tight splitting

Definition

Let τ ↪→ S1
0,n be a standardly embedded train track. We say a loop switch

v ∈ τ is a joint if it is adjacent to ≥ 2 real edges.

Theorem

Let ψ be a pseudo-Anosov on the punctured disk with at least one
k-pronged singularity away from the boundary with k ≥ 2. Then ψ is
carried by a train track τ with no joints.

The Peacock The Snail
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Why no joint is good

Theorem (Los, Cotton-Clay)

If a pA is fixed point-free in the interior, then the trace of the incidence
matrix is zero.

Remark

In our case of “no joint”, fixed point free upstairs in particular implies that
the trace of the incidence matrix downstairs is also zero.

Lemma

Any pA carried by the Snail tightly splits to one carried by the Peacock.

So the remaining task is to examine all possible trace zero pAs downstairs
on the Peacock track.
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The Peacock track

(Optimistic) goal: Eliminate all potential trace zero pAs downstairs on the
Peacock track in order to eliminate counterexamples of genus two pAs
that are fixed point free. This is impossible!

Theorem

There is a unique family of trace zero pAs on the Peacock track, but none
of the examples in this family can come from a hyperbolic fibered knot in
S3.
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The special FPF family

Example

Set βn = σn+2
1 σ2σ3σ4σ1σ2σ3σ

2
4 for n ≥ 0. Then, β−1

n is pseudo-Anosov,
and conjugate to a braid carried by the Peacock track τ , which induces
the train track map fn : τ → τ defined by:

fn(o) = p◦ fn(g) = b◦ fn(r) = g◦

fn(p) =

{
(r−o−)(

n
2
+1)r◦

(r−o−)
n+1
2 r−o◦

fn(b) =

{
(r−o−)

n
2 r−o◦

(r−o−)
n+1
2 r◦

Proposition

The braid closure ∆̂2kβ±1
n is not an unknot for any k, n ∈ Z.
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Thanks for listening!
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