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Notation

Z D {0;˙1;˙2; : : :}, ZC D {0; 1; 2; : : :}.
A D closure of A, assuming A is a subset of some topological space X

A �� U means A is a compact subset of U

B n A D {x 2 B W x … A}
�
A D indicator function of A (D 1 at points of A and D 0 at points not in A)

1A D identity map A! A

Ln D Lebesgue outer measure in Rn

B�(y) D closed ball with center y radius � (more specifically denoted Bn� (y) if we wish
to emphasize that we are working in Rn ). ThusB�(y) D {x 2 Rn W jx�yj � �},
or, more generally, B�(y) D {x 2 X W d (x; y) � �} in any metric space X .

MB�(y) D open ball D {x 2 X W d (x; y) < �};

!k D
�k=2R 1

0
tk=2e�t dt

for k � 0 (so !k D Lk({x 2 Rk W jxj � 1}) if k 2 {1; 2; : : :}).

�y;� W Rn ! Rn (for � > 0, y 2 Rn ) is defined by �y;�(x) D ��1(x � y); thus �y;1 is
translation x 7! x � y, and �0;� is homothety x 7! ��1x

C k(U; V ) (U , V open subsets of Euclidean spaces Rn and Rm respectively) denotes the
space of C k maps from U into V

C kc (U; V ) D {' 2 C k(U; V ) W ' has compact support}
pL, for any linear subspace L of Rn, denotes orthogonal projection of Rn onto L

Df , for f 2 C 1(U; V ), is the derivative matrix with entries Difj in the i -th row and
j -th column, and jDf j2 D

Pn
iD1

Pm
jD1(Difj )

2.

rf , for f 2 C 1(U;R), denotes the gradient (D1f; : : : ;Dnf ) of f .

∅ D the empty set.

spt�, for a Borel measure � on a metric space X , is the support of �, i.e. {x 2 X W
�(B�(x)) > 0 8� > 0} (which is a closed subset of X ).

diamA, for any setA in ametric spaceX , denotes the diameter of the setA, i.e. supx;y2A d (x; y),
interpreted to be1 if A is not bounded, 0 if A D ∅

W 1;p(�), for� � Rn open, will denote the Sobolev space of functions f W �! R such
that f;rf 2 Lp(�).

ıij D Kronecker delta (D 1 if i D j , 0 if i ¤ j ).
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In this chapter we briefly review the basic theory of outer measure, which is based on
Caratheodory’s definition of measurability. Hausdorff (outer) measure is discussed, in-
cluding the main results concerning n-dimensional densities and the way in which they
relate more general measures to Hausdorff measures. The final two sections of the chap-
ter give the basic theory of Radon (outer) measures including the Riesz representation
theorem and the standard differentiation theory for Radon measures.

For the first section of the chapter X will denote an abstract space, and later we impose
further restrictions on X as appropriate. For example in the second and third sections X
is a metric space and in the last section of the chapter we shall assume that X is a locally
compact, separable metric space.

1 Basic Notions

Recall that an outer measure (sometimes simply called ameasure if no confusion is likely
to arise) on X is a monotone subadditive function � W X ! [0;1] (X D the collection
of all subsets of X ) with �(∅) D 0. Thus �(∅) D 0, and

1:1 �(A) �
P1
jD1�(Aj ) whenever A � [1jD1Aj
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with A, A1, A2, : : : any countable collection of subsets of X . Of course this in particular
implies �(A) � �(B) whenever A � B � X , because we can take A1 D B and Aj D ∅
for each j � 2.

We adopt Caratheodory’s notion of measurability:

1.2 Definition: A subset A � X is said to be �-measurable if

�(S) D �(S n A)C �(S \ A)

for each subset S � X . (Thus, roughly speaking,A is�-measurable if it “cuts every other
set S additively with respect to �.”)

Since X n (X nA) D A we see that �-measurability of A is equivalent to �-measurability
of X n A for any set A � X .

1.3 Remark: Then the set A is �-measurable if and only if

�(S) � �(S n A)C �(S \ A)

for each subset S � X with �(S) < 1, because this is trivially true when �(S) D 1,
and the reverse inequality also holds in both cases �(S) < 1 and �(S) D 1 by the
subadditivity 1.1 of �.

Notice that the empty set ∅ is �-measurable, as is any set of �-measure zero since in these
cases the term �(S \A) on the right side of the inequality in Remark 1.3 is zero, and so
the inequality in 1.3 holds trivially.

A key lemma, due to Caratheodory, asserts that such �-measurable sets form a � -algebra,
where the terminology is as follows:

1.4 Definition: A collection S of subsets of X is a � -algebra if
(1) ∅; X 2 S
(2) A 2 S ) X n A 2 S

(3) A1; A2; : : : 2 S ) [1jD1Aj 2 S.

1.5 Remarks: (1) Observe that then, since \1jD1Aj D X n ([1jD1(X n Aj ))), we also
have \1jD1Aj 2 S whenever A1; A2; : : : 2 S, by (2); (3).

(2) In the context of a fixed space X , it is easily checked that the intersection of any non-
empty family of � -algebras is again a � -algebra, so there is always a smallest � -algebra
which contains a given collection of subsets ofX—namely just take the intersection of all
� -algebras which contain the given collection of sets (this collection is non-empty because
the collection of all subsets of X is a � -algebra).
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In view of Remark1.5(2) above we can make the following definition:

1.6 Definition: If X is a topological space then we define the Borel subsets of X to be the
smallest � -algebra of subsets ofX which contains all the open sets (same as the smallest � -
algebra containing all the closed sets since � -algebras are closed under complementation).

As mentioned above, we have the following lemma:

1.7 Lemma. The collection M of all �-measurable subsets is a � -algebra which includes all
subsets of X of �-measure zero.

1.8 Remark: In the course of the proof we shall establish the important additional fact
that for �-measurable sets Aj ; j D 1; 2; : : :,

A1; A2; : : : pairwise disjoint ) �(S \ ([1jD1Aj )) D
P1
jD1�(S \ Aj )

for each subset S � X .

Proof of Lemma 1.7 and Remark 1.8: We already noted above that Properties1.4(1)
and 1.4(2) are trivially checked direct from the definition of measurability.

Checking 1.4(3) involves several steps:

Step1: A1; A2 2 M ) A1 [ A2 2 M. To check this we first use Definition1.2 with
A D A2 and with S n A1 in place of S and �(S) <1 to give

�(S n (A1 [ A2)) D �((S n A1) n A2)

D �(S n A1) � �((S n A1) \ A2)

and then use Definition1.2 withA D A1 on the right side together with the subadditivity
of � to give

�(S n (A1 [ A2)) D �(S) � �(S \ A1) � �((S n A1) \ A2)

� �(S) � �((S \ A1) [ ((S n A1) \ A2))

D �(S) � �(S \ (A1 [ A2));

so A2 [ A1 is �-measurable by Remark1.3. Notice that the first line above gives

�(S) � �(S n (A1 [ A2) D �(S \ A1)C �((S n A1) \ A2)

and since we have established �(S) � �(S n (A1 [ A2)) D �(S \ (A1 [ A2) we thus
conclude the important additional fact that if A1; A2 are disjoint and �-measurable then

(�) �(S \ (A1 [ A2)) D �(S \ A1)C �(S \ A2) for every S � X:
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Step2: A1; A2 2 M ) A1 \ A2 2 M. This is clear from Step1 and 1.4(2) because
A1 \ A2 D X n ((X n A1) [ (X n A2)).

Step3: For each N D 1; 2; : : :, A1; A2; : : : ; AN 2 M ) [NjD1Aj 2 M, which fol-
lows from Step2 by induction on N . Using the additional additivity conclusion (�) of
Step1 we also conclude the additivity �(S \ ([NjD1Aj )) D

PN
jD1 �(S \ Aj ) provided

A1; A2; : : : ; AN are pairwise disjoint sets in M.

Step4: If A1; A2; : : : are pairwise disjoint sets inM then [1jD1Aj 2M and furthermore
�(S \ ([1jD1Aj )) D

P1
jD1 �(S \ Aj ) for each S � X . To check this we use the

conclusions of Step3 to observe

�(S) D �(S \ ([NjD1Aj ))C �(S n ([
N
jD1Aj ))

� �(S \ ([NjD1Aj ))C �(S n ([
1
jD1Aj ))

D
PN
jD1�(S \ Aj )C �(S n ([

1
jD1Aj )):

Since
PN
jD1 �(S\Aj )!

P1
jD1 �(S\Aj ) � �(S\ ([

1
jD1Aj )), in view of Remark1.3

this completes the proof of Step3, and also establishes the additivity property of Remark
1.8.

Step5: A1; A2; : : : 2M) [1jD1Aj 2M (i.e. we do indeed have that M has property
1.4(3)). To check this, observe that [1jD1Aj D [

1
jD1Ãj , where Ãj D Aj n ([

j�1
iD0Ai ),

with A0 D ∅. Then Ãj 2 M by Step2, Step3 and 1.4(2). Since the Ãj are pairwise
disjoint we can then apply Step4 to complete the proof. �

Observe that by 1.8 we have

1:9 Aj �-measurable, Aj � AjC1 8 j � 1 ) lim
j!1

�(Aj ) D �([
1
jD1Aj );

because we can write [1jD1Aj D [
1
jD1(Aj n Aj�1) with A0 D ∅, and hence, by 1.8,

�([1jD1Aj ) D
P1
jD1�(Aj n Aj�1) D lim

Pn
jD1�(Aj n Aj�1)

D lim�([njD1(Aj n Aj�1)) D lim�(An);

where at the last step we used [njD1(Aj n Aj�1) D An.

If A1 � A2 � : : : then, for each i , Ai n \1jD1Aj D [
1
jD1(Ai n Aj ), and hence 1.9

implies limj!1 �(Ai n Aj ) D �(Ai n \1jD1Aj ), and if �(Ai ) < 1 this gives �(Ai ) �
limj �(Aj ) D �(Ai ) � �(\1jD1Aj ), and hence

Aj �-measurable and AjC1 � Aj for each j D 1; 2; : : :1.10

) lim
j!1

�(Aj ) D �(\
1
jD1Aj ); provided �(Ai ) <1 for some i :

�1 of Chapter 1: Basic Notions 5

An outer measure � on X is said to be regular if for each subset A � X there is a �-
measurable subset B � A with �(B) D �(A).

1.11 Remark: If Ai � AiC1 8i and � is regular, then the identity in 1.9 is valid, i.e.

lim
i!1

�(Ai ) D �([
1
iD1Ai );

even if the Ai are not assumed to be �-measurable, because for each i we can select a �-
measurable set Ãi � Ai with �(Ãi ) D �(Ai ), and then Âi D \1jDi Ãj (� Ai ) is in-
creasing with �(Âi ) D �(Ai ) and lim�(Ai ) � �([1iD1Ai ) � �([

1
iD1Âi ) D lim�(Âi )

(by 1.9) D lim�(Ai ).

We have the following additional corollary of 1.9.

1.12 Corollary (Egoroff’s Theorem.) If A � X is �-measurable with finite measure, if
fk W A! [�1;1] are �-measurable for each k D 1; 2; : : :, and if limfk(x) D 0 for each
x 2 A, then for each " > 0 there is a �-measurable subset B � A with fk ! 0 uniformly on
B and �(A n B) < ".

Proof: For each x 2 A and each j D 1; 2; : : : there is an ` such that jfk(x)j < 1=j for
all k � `, so x 2 Bj;` D \1kD`{x 2 A W jfk(x)j < 1=j }. Thus A D [1

`D1
Bj;` for each

j and of course Bj;` � Bj;`C1, so by 1.9 we have �(A) D lim`!1 �(Bj;`) for each j .
In particular for each " > 0 and each j D 1; 2; : : : there is j̀ with �(A n Bj; j̀ ) < "2

�j .
Hence, with B D \1jD1Bj; j̀ , �(A n B) D �([

1
jD1(A n Bj; j̀ )) � "

P1
jD1 2

�j D " and,
for each j D 1; 2; : : :, jfk(x)j < 1=j for all x 2 B(� Bj; j̀ ) and all k � j̀ . �

In case X is a topological space, an outer measure � on X is said to be Borel-regular if all
Borel sets (see Remark1.5(2)) are �-measurable and if for each subset A � X there is a
Borel setB � A such that �(B) D �(A). (Notice that this does not imply �(B nA) D 0
unless A is �-measurable and �(A) <1.)

1.13 Remark: There is a close relationship between Borel regular outer measures on
a topological space X and abstract Borel measures �0 on X . (Recall that a Borel mea-
sure �0 on X is a map �0 W {all Borel sets} ! [0;1] such that (i) �0(∅) D 0, and
(ii) �0([1jD1Bj ) D

P1
jD1 �0(Bj ) whenever B1; B2; : : : are pairwise disjoint Borel sets

in X .) In fact if �0 is such a Borel measure on X then

�(A) D inf
B Borel ;B�A

�0(B)

defines a Borel regular outer measure on X which agrees with �0 on the Borel sets; to
check �-measurability of any Borel set B we just check the inequality in 1.3 by first
choosing a Borel set C � S with �(C ) D �(S). Conversely, if � is a Borel regular outer
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measure on X then the restriction of � to the Borel sets gives us a Borel measure �0 on
X .

Given any subset Y � X and any outer measure � on X , we can define a new outer
measure � Y on X by

1:14 (� Y )(Z) D �(Y \Z); Z � X:

One readily checks (by using S \Y in place of S in Definition 1.2) that all �-measurable
subsets are also (� Y )-measurable (even if Y is not �-measurable). It is also easy
to check that � Y is Borel regular whenever � is, provided Y is �-measurable with
�(Y ) < 1. To check this, first use Borel regularity of � to pick a Borel set B1 with
B1 � Y and �(B1 n Y ) D 0 and a Borel set B2 � B1 n Y with �(B2) D 0. Then given
an arbitrary set A � X we have

A D (A \ Y ) [ (A n Y ) � (A \ Y ) [ (X n Y )

D (A \ Y ) [ (X n B1) [ (B1 n Y ) � (A \ Y ) [ (X n B1) [ B2:

Finally select a Borel set B3 � A \ Y with �(B3) D �(A \ Y ) and observe that then
A � (X n B1) [ B2 [ B3 (which is a Borel set) and (� Y )((X n B1) [ B2 [ B3) D

(� Y )(A).

The following theorem, due to Caratheodory and applicable in case X is a metric space
with metric d , is particularly useful. In the statement we use the notation

dist(A;B) D inf{d (a; b) W a 2 A; b 2 B};
interpreted as1 if A or B is empty.

1.15 Theorem (Caratheodory’s Criterion.) IfX is a metric space with metric d and if �
is an outer measure on X with the property

�(A [ B) D �(A)C �(B) for all sets A;B � X with dist(A;B) > 0;

then all Borel sets are �-measurable.

Proof: Since the measurable sets form a � -algebra, it is enough to prove that all closed
sets are �-measurable (because by definition the Borel sets are the smallest � -algebra con-
taining all the closed sets), so that by Remark 1.3 we have only to check that

(�) �(S) � �(S n C )C �(S \ C )

for all sets S � X with �(S) <1 and for all closed sets C � X .

Let Cj D {x 2 X W dist(x; C ) � 1=j }. Then dist(S n Cj ; S \ C ) > 0, hence

�(S) � �((S n Cj ) [ (S \ C )) D �(S n Cj )C �(S \ C );
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and we will have (�) if we can show limj!1 �(S nCj ) D �(S nC ). To check this, note
that since C is closed we can write

S n C D {x 2 X W dist(x; C ) > 0} D (S n Cj ) [ ([1kDjRk); j D 1; 2; : : : ;

where Rk D
{
x 2 S W 1

kC1
< dist(x; C ) � 1

k

}
. But then by subadditivity of � we have

�(S n Cj ) � �(S n C ) � �(S n Cj )C
P1
kDj�(Rk);

and hence we will have limj!1 �(S n Cj ) D �(S n C ) as required, provided only thatP1
kD1�(Rk) <1.

To check this we note that dist(Ri ; Rj ) > 0 if j � i C 2, and hence by the hypothesis of
the theorem and induction on N we have, for each N � 1,PN

kD1�(R2k) D �([
N
kD1R2k) � �(S) <1

and PN
kD1�(R2k�1) D �([

N
kD1R2k�1) � �(S) <1: �

A key example to which the above is applicable is of course Lebesgue measure Ln on
Rn. This is defined (as usual) as follows: If K denotes the collection of all n-dimensional
intervals I of the form I D (a1; b1) � (a2; b2) � � � � � (an; bn), where ai ; bi 2 R and
bi � ai > 0, and if jI j D volume of I (D (b1 � a1) � � � (bn � an)), then

1:16 Ln(A) D inf
P
j jIj j

where the inf is taken over all countable (or finite) collections {I1; I2; : : :} � K with
A � [j Ij .

Clearly for any I D (a1; b1) � (a2; b2) � � � � � (an; bn) 2 K, by using “slight fattenings”
of a sufficiently fine subdivision of each edge (aj ; bj ), for each ı; " > 0 we can find open
J1; : : : ; JN 2 K with I � [NjD1Jj ,

PN
jD1 jJj j < jI j C " and diamJj < ı for each

j D 1; : : : ; N , so for each ı > 0 we can alternatively (and equivalently) define

1:16 0 Ln(A) D inf
P
j jIj j

where the inf is taken over all countable (or finite) collections {I1; I2; : : :} � K with
A � [j Ij and diam Ij < ı.

Evidently Ln, so defined, has the additivity property needed to apply Theorem 1.15, so
all Borel sets in Rn are Ln-measurable, and direct from the definition of Ln it is also
evident that for each A � Rn there is a sequence of open sets U1; U2 with A � \jUj and
Ln(A) D Ln(\jUj ). So Ln is a Borel regular outer measure on Rn and

1:17 Ln(A) D inf
U open, U�A

Ln(U ) 8A � R
n:



8 Chapter 1: Preliminary Measure Theory

Note also that if U is any bounded open subset of Rn we can always find closed balls
B�1(x1); B�2(x2); : : : with

1:18 B�i (xi )\B�j (xj ) D ∅8i ¤ j; [jB�j (xj ) � U; L
n
(
U n ([1jD1B�j (xj ))

)
D 0:

(See problem1.5 of Ch.1 problems.) In view of 1.17, 1.18 it then evidently follows that
Ln(A) is invariant under application of orthogonal transformations to the set A. Since
Ln(A) is also trivially invariant under translation of A we thus have

1:19 Ln(y CQ(A)) D Ln(A) 8y 2 R
n; 8orthogonalQ W R

n
! R

n; 8A � R
n:

As a corollary of the above invariance property we establish the classical area formula for
linear maps Rn ! Rn:

1.20 Corollary. Suppose � W Rn ! Rn is linear and A � Rn. Then

Ln(�(A)) D j det � jLn(A); A � R
n:

Proof of 1.20: If det � D 0 then �(A) is contained in an (n � 1)-dimensional subspace
and the theorem trivially holds (with both sides zero) in this case, so we can assume
without loss of generality that det � ¤ 0. Then the symmetric transformation �� ı �
has positive eigenvalues �1; : : : ; �n, so (det �)2 D �1 � � ��n and by the spectral theorem
there is an orthogonal transformation Q W Rn ! Rn with Q� ı �� ı � ıQ D ƒ, where
ƒ is represented by a diagonal matrix with diagonal entries �1; : : : ; �n. Hence � ıQ� ı
�� ı � ıQ ı � D I , where � D

p
ƒ�1 (i.e. � is represented by a diagonal matrix with

diagonal entries ��1=21 ; : : : ; �
�1=2
n ), so �ıQı� is an orthogonal transformationP . Hence

�(A) D P (��1(Q�A)) and, by the invariance 1.19, Ln(�(A)) D Ln(��1(Q�A)), and
since ��1J D (�1=21 (a1; b1) � � � � � �

1=2
n (an; bn) for each n-dimensional interval J D

(a1; b1)�� � �� (an; bn), Definition 1.16 implies Ln(��1(Q�A)) D j det � jLn(Q�A)) D
j det � jLn(A), where we again used the invariance 1.19. �

We next prove some important regularity properties for Borel regular measures which
have an “open � -finiteness property” as in the following definition:

1.21 Definition: We say a Borel regular measure � on a topological space X is “open
� -finite” if X D [jVj where Vj is open in X and �(Vj ) <1 for each j D 1; 2; : : :.

Of course � automatically satisfies such a condition if �(X) < 1 (then we just take
Vj D X for each j ) or if X is a separable metric space and � is locally finite (i.e. x 2
X ) �(B�(x)) <1 for some � > 0).

The following theorem tells us that open � -finite Borel regular measures have a property
analogous to the property 1.17 of Ln, at least in a large class of topological spaces X ,
including all metric spaces:
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1.22 Theorem. Suppose X is a topological space with the property that every closed subset of
X is the countable intersection of open sets (this trivially holds e.g. ifX is a metric space), and
suppose � is an open � -finite (as in 1.21 above) Borel-regular measure on X . Then

(1) �(A) D inf
U open; U�A

�(U )

for each subset A � X , and

(2) �(A) D sup
C closed; C�A

�(C )

for each �-measurable subset A � X .

1.23 Remark: In case X is a Hausdorff space (so compact sets in X are closed) which is
� -compact (i.e. X D [jKj with Kj compact for each j ), then the conclusion (2) in the
above theorem guarantees that

�(A) D sup
K compact,K�A

�(K)

for each �-measurable subset A � X with �(A) < 1, because under the above con-
ditions on X any closed set C can be written as the union of an increasing sequence of
compact sets.

Proof of 1.22: We assume first that �(X) < 1. First note that in this case (2) can
be proved by applying (1) to the complement X n A. Also, by Borel regularity of the
measure �, it is enough to prove (1) in case A is a Borel set. Then let

A D { Borel sets A � X W (1) holds}:

Trivially A contains all open sets, and we claim that A is closed under both countable
unions and intersections, which we check as follows:

If A1; A2; : : : 2 A then for any given " > 0 there are open U1; U2; : : : with Uj � Aj and
�(Uj nAj ) � 2�j ". Then ([jUj ) n ([kAk) D [j (Uj n ([kAk)) � [j (Uj nAj ). Also
(\jUj ) n (\kAk) D (\jUj ) \ ([k(X n Ak)) D [k((\jUj ) n Ak) � [k(Uk n Ak).
So by subadditivity we have both �([1jD1Uj n ([kAk)) < " and limN!1 �(\NjD1Uj n

(\kAk)) D �(\
1
jD1Uj n (\kAk)) < ", so both [kAk and \kAk are in A as claimed.

In particular A must also contain the closed sets, because we are assuming any closed set
in X can be written as a countable intersection of open sets. Notice however that at this
point it is not clear that A is a � -algebra since it is not clear that A is closed under com-
plementation. For this reason, we let Ã D {A 2 A W X nA 2 A}, which we claim is a � -
algebra, since it clearly has properties 1.4 (1),(2) of � -algebra, and if A1; A2; : : : 2 Ã then
XnA1; XnA2; : : : 2 A and hence both[1jD1Aj andXn(([

1
jD1Aj )(D \

1
jD1(XnAj )) are

in A (because A is closed under countable unions and intersections); thus [1jD1Aj 2 Ã
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and indeed Ã is a � -algebra as claimed. Thus Ã is a � -algebra containing all the closed
sets, and hence Ã contains all the Borel sets. Thus A contains all the Borel sets (so actu-
ally we conclude thatA is equal to the collection of all Borel subsets ofX ) and (1),(2) are
both proved in case �(X) <1.

In the case �(X) D 1 it still suffices to prove (1) when A is a Borel set. For each
j D 1; 2; : : : apply the previous case �(X) < 1 to the measure � Vj , j D 1; 2; : : :,
with Vj as in 1.21. Then for each " > 0 we can select an open Uj � A such that

�(Uj \ Vj n A) <
"

2j
;

and hence (summing over j )

�([1jD1(Uj \ Vj ) n A) < ":

Since [1jD1(Uj \ Vj ) is open and contains A, this completes the proof of (1).

(2) for the case when �(X) D 1 also follows by applying (2) in the finite measure case
to the measure� Vj , thus giving, for each " > 0 and each j D 1; 2; : : :, a closed Cj � A
with �(A \ Vj n Cj ) < 2�j ". Since ([1jD1Vj ) n ([

1
kD1

Ck) D [
1
jD1(Vj n ([

1
kD1

Ck)) �

[1jD1(Vj nCj ), this gives, by countable subadditivity of �, �(A n ([1
kD1

Ck)) < ". Thus
either �(A) D 1 and �([NjD1Cj ) !1 or else �(A) < 1 and �(A n ([NjD1Cj )) < "

for sufficiently large N . In either case this completes the proof of (2). �

Using the above theorem, we can now prove Lusin’s Theorem:

1.24 Theorem (Lusin’s Theorem.) Let � be a Borel regular outer measure on a topolog-
ical space X having the property that every closed subset can be expressed as the countable
intersection of open sets (e.g. X is a metric space), let A be any �-measurable subset of X with
�(A) < 1, and let f W A ! R be �-measurable. Then for each " > 0 there is a closed set
C � X with C � A, �(A n C ) < ", and f jC continuous.

1.25 Remark. There are various scenarios which make it possible to drop the hypothesis
that �(A) < 1. For example if X is a metric space with each closed ball compact and
of finite �-measure, then if A is �-measurable we can take any x0 2 X and apply the
above theorem in annular regions MBj (x0) n MBj�1(x0) (= MB1(x0) if j D 1) to the subsets
Aj D A \ MBj (0) n MBj�1(0). This gives compact sets Cj � Aj with �(Aj n Cj ) < "=2j

and f jCj is continuous. Then observe that C D [1jD1Cj is closed, because for each
R > 0 there are only finitely many j with Cj \ BR(x0) ¤ ∅. Also f jC is continuous
(because d (Ci ; Cj ) > 08i ¤ j by the compactness of each Ci ), and �(A n C ) DP1
jD1 �(Aj n C ) <

P1
jD1 "=2

j D ".

Proof of Theorem 1.24: For each i D 1; 2; : : : and j D 0;˙1;˙2; : : : let

Aij D f
�1[ j�1

i
; j
i
);
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so that Aij ; j D 0;˙1;˙2; : : :, are pairwise disjoint sets in A and [1jD�1Aij D A for
each i D 1; 2; : : :. By the remarks following 1.14, we know that � A is Borel regular,
and since it is finite we can apply Theorem 1.22, so for each given " > 0 there are closed
sets Cij in X with Cij � Aij and �(Aij n Cij ) D (� A)(Aij n Cij ) < 2�i�jj j�2",
hence �(Aij n ([1`D�1Ci`)) < 2�i�jj j�2", hence �(A n ([1jD�1Cij )) < 2�i". So for
each i D 1; 2; : : : there is an integer J (i) with �(A n ([jj j�J (i)Cij )) < 2�i". Since
A n (\1iD1([jj j�J (i)Cij )) D [

1
iD1(A n ([jj j�J (i)Cij )) this implies �(A nC ) < ", where

C D \1iD1([jj j�J (i)Cij ), which is a closed set in X .

Finally, define gi W [jj j�J (i)Cij ! R by setting gi (x) D j�1
i

on Cij , jj j � J (i).
Then, since the Ci1; : : : ; CiJ (i) are pairwise disjoint closed sets, gi is clearly continuous
and its restriction to C is continuous for each i . Furthermore by construction 0 �
f (x)� gi (x) � 1=i for each x 2 C and each i D 1; 2; : : :, so gi jC converges uniformly
to f jC on C , and hence f jC is continuous. �

2 Hausdorff Measure

In this section we suppose X is a metric space with metric d , and we let

!m D
�m=2R 1

0
tm=2e�t dt

; m � 0;

so that in particular !m is the volume (Lebesgue measure) of the unit ball Bm1 (0) in Rm

in case m happens to be a positive integer.

For any m � 0 we define the m-dimensional Hausdorff (outer) measure

2:1 Hm(A) D lim
ı#0

Hm
ı (A); A � X;

where, for each ı > 0, Hm
ı (A) (called the “size ı approximation to Hm”) is defined by

taking Hm
ı (∅) D 0 and, for any non-empty A � X ,

2:2 Hm
ı (A) D !m inf

P1
jD1

(diamCj
2

)m
;

where the inf is taken over all countable collections C1; C2; : : : of subsets of X such that
diamCj < ı and A � [1jD1Cj ; the right side is to be interpreted as1 in case there is no
such collectionC1; C2; : : :. (Of course in a separable metric spaceX there are always such
collections C1; C2; : : : for each ı > 0.) The limit in 2.1 always exists (although it may be
C1) because Hm

ı (A) is a decreasing function of ı; thus Hm(A) D supı>0H
m
ı (A) for

each m � 0. It is left as an exercise to check that Hm
ı and Hm are indeed outer measures

on X .
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Notice also that H0 is just “counting measure”: H0(∅) D 0, H0(A) D the number of
elements in the set A if A is finite, and H0(A) D1 if A is not finite.

2.3 Remarks: (1) Since diamCj D diamCj we can add the additional requirement in
the identity 2.2 that the Cj be closed without changing the value ofHm(A); indeed since
for any " > 0 we can find an open set Uj � Cj with diamUj < diamCj C "=2j , we
could also take the Cj to be open.

(2) Evidently Hm
ı (A) < 1 8m � 0, ı > 0 in case A is a totally bounded subset of the

metric space X .

One easily checks from the definition of Hm
ı that

Hm
ı (A [ B) D Hm

ı (A)CHm
ı (B) whenever d (A;B) > ı;

hence

Hm(A [ B) D Hm(A)CHm(B) whenever d (A;B) > 0;2.4

where d (A;B) D infx2A;y2B d (x; y), and therefore all Borel sets are Hm-measurable by
the Caratheodory Criterion (Theorem 1.15). It then follows from Remark 2.3(1) (see
problem 1.2 of Ch.1 problems) that

2:5 Hm is Borel-regular for each m � 0:

Note: It is not true in general that the Borel sets areHm
ı -measurable for ı > 0; for instance

if n D 2 then one easily checks that the half-space H D {x D (x1; x2) 2 Rn W x2 > 0}
is not H1

ı -measurable, because for example it does not cut the set S" D ([0; 1) � {0}) [
([0; 1)�{"}) additively for sufficiently small ". Indeed one can directly use the definition
of H1

ı to check that H1
ı (S") # 1 as " # 0 (and in particular H1

ı (S") < 2 for sufficiently
small "), whereas H1

ı (S" \H ) D H1
ı (S" nH ) D 1 for each " > 0.

We will later show that, for each integer n � 1, Hn agrees with the usual definition of
n-dimensional volume measure on an n-dimensional C 1 submanifold of RnCk , k � 0.
As a first step we want to prove thatHn and Ln (n-dimensional Lebesgue measure) agree
on Rn.

We claim that, on Rn, the outer measures Ln;Hn;Hn
ı all coincide (for each ı > 0):

2.6 Theorem.

Ln(A) D Hn(A) D Hn
ı (A) for every A � R

n and every ı > 0:

Proof: We first show

(1) Hn
ı (A) � Ln(A) 8ı > 0
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as follows: Let Ii ; i D 1; 2; : : :, be any open intervals with A � [iIi . By problem 1.5
of Ch.1 problems, for each ı > 0 and each i D 1; 2; : : : we can choose closed balls
B�j (xj ); j D 1; 2; : : : as in 1.18 with U D Ii and with �j < ı for each j . Since
Ln(Z) D 0 ) Hn

ı (Z) D 0 for each subset Z � X (by Definitions 2.2, 1.16) we then
have

Hn
ı (Ii ) D Hn

ı ([
1
jD1B�j (xj )) �

P1
jD1!n�

n
j(2)

D
P1
jD1L

n(B�j (xj )) D Ln([1jD1B�j (xj )) D Ln(Ii ) D jIi j;

and hence

(3) Hn
ı (A) � Hn

ı ([iIi ) �
P
iH

n
ı (Ii ) �

P
i jIi j:

The proof of (1) is then completed by taking inf over all such collections {Ii} and using
Definition 1.16.

To prove the reverse inequality we first need a geometric result concerning Lebesgue
measure, known as the isodiametric inequality:

2.7 Theorem (Isodiametric Inequality.)

Ln(A) � !n
(diamA

2

)n
for every set A � R

n:

Remark: Thus among all sets A � Rn with a given diameter �, the ball with diameter �
has the largest Ln measure.

Proof of 2.7: Observe that it suffices to prove this for compact sets because Ln(A) �
Ln(A), whileA has the same diameter as A and the isodiametric inequality is trivial if
diamA D1. For a compact set Awe proceed to use Steiner symmetrization: The Steiner
symmetrization Sj (A) of the compact set A with respect to the j -th coordinate plane
xj D 0 is defined as follows: For � in the coordinate plane xj D 0 let j̀ (�) D {�C tej W
t 2 R} and let � be the projection �C tej 7! t of the line j̀ (�) onto the real line R, and
let �j (A; �) denote the closed line segment {� C tej W jt j � 1

2
L1(�(A\ j̀ (�)))}. Then

Sj (A) D [{�WA\ j̀ (�)¤∅} �j (A; �):

(Thus Sj (A) is obtained by replacing A \ j̀ (�) with the segment �j (A; �) for each �
such thatA\ j̀ (�) ¤ ∅.) This process gives a new compact set Sj (A)with diameter not
larger than the diameter of the original set A (see Ch.1 problem1.1) and, by Fubini, the
same Lebesgue measure. Further if i ¤ j and if A is already invariant under reflection in
the i -th coordinate plane xi D 0, then by definition Sj (A) is invariant under reflection in
both the i -th and the j -th coordinate planes. Thus by applying Steiner symmetrization
successively with respect to coordinate planes x1 D 0; x2 D 0; : : : ; xn D 0, we get a new
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compact set Ã with diameter � diamA, having the same Lebesgue measure as A, and
being invariant with respect to the transformation x 7! �x. This means in particular
that 2jxj D jx � (�x)j � diam Ã � diamA for each x 2 Ã, so Ã is contained in the
closed ball with radius 1

2
diamA and center 0, whence

Ln(A) D Ln(Ã) � !n( 12 diamA)
n

as required. �

Completion of the proof of 2.6: We have to prove

(�) Ln(A) � Hn
ı (A) 8ı > 0; A � R

n:

Suppose ı > 0, A � Rn, and let C1; C2; : : : be any countable collection with A � [jCj
and diamCj < ı. Then

Ln(A) � Ln([jCj ) �
P
jL

n(Cj )

�
P
j!n

(
1
2
diamCj

)n by 2.7:

Taking the inf over all such collections {Cj } we have (�) as required. �

3 Densities

Throughout this sectionX will denote a metric space with metric d . We first we want to
introduce the notion of n-dimensional density of a measure � on X , where X continues
to denote a metric space with metric d . For any outer measure � on X , any subset
A � X , and any point x 2 X , we define the n-dimensional upper and lower densities
‚�n(�;A; x), ‚n�(�;A; x) by

3:1

‚�n(�;A; x) D lim sup
�#0

�(A \ B�(x))

!n�n

‚n� (�;A; x) D lim inf
�#0

�(A \ B�(x))

!n�n
:

In case A D X we simply write ‚�n(�; x) and ‚n�(�; x) to denote these quantities so
that ‚�n(�;A; x) D ‚�n(� A; x), ‚n�(�;A; x) D ‚n�(� A; x).

3.2 Remark: If all Borel sets are �-measurable and if �(B�(x)) is finite on each ball
B�(x) � X , then �(A \ B�(x)) � lim supy!x �(A \ B�(y)) for each fixed � > 0

(i.e. �(A \ B�(x)) is an upper semi-continuous function of x for each fixed � > 0).
Indeed if xk ! x and j 2 {1; 2; : : :} then B�C1=j (x) � B�(xk) for sufficiently large
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k, hence �(B�C1=j (x)) � lim supy!x �(B�(y)) for each j D 1; 2; : : :, and B�(x) D
\1jD1B�C1=j (x) (becauseB�(x) is the closed ball of radius �), hence, by 1.10,�(B�(x)) D
limj!1 �(B�C1=j (x)) � lim supk!1 �(B�(xk)), which is the claimed upper semi-
continuity of �(B�(x)). Hence inf0<�<ı(!n�n)�1�(A \ B�(x)) is also upper semi-
continuous and hence Borelmeasurable (because the inf of a family of upper semi-continuous
functions is again upper semi-continuous), and so

‚n�(�;A; x) D lim
ı#0

inf
0<�<ı

(!n�
n)�1 �(A \ B�(x))

D lim
j!1

inf
0<�<1=j

(!n�
n)�1�(A \ B�(x))

is also Borel measurable. Similarly since �(A\ MB�(x)) is lower semi-continuous (where
MB�(x) denotes the open ball of radius � and center x ) and evidently

sup
0<�<ı

(!n�
n)�1�(A \ MB�(x)) D sup

0<�<ı

(!n�
n)�1�(A \ B�(x))

(and hence it makes no difference whether we use open or closed balls in the definition
of lower density, nor in the definition of upper density for that matter), we see that
‚�n(�;A; x) can be written limj!1 sup0<�<1=j (!n�

n)�1�(A\ MB�(x)), so we also have
‚�n(�;A; x) is Borel measurable. Notice that A need not be �-measurable here.

Subsequently we use the notation that if‚�n(�;A; x) D ‚n�(�;A; x) then the common
value will be denoted ‚n(�;A; x).

Appropriate information about the upper density gives connections between � and Hn.
Specifically, we have the following comparison theorem:

3.3 Theorem. Let � be any outer measure on the metric space X such that all Borel sets are
measurable (e.g. � is Borel regular), t � 0, and A1 � A2 � X . Then

‚�n(�;A2; x) � t 8 x 2 A1) tHn(A1) � �(A2);

An important special case of this theorem is the case A1 D A2. Notice that we do not
need to assume A1; A2 are �-measurable here.

The proof of 3.3 will make use of the following important “5-times covering lemma,” in
which we use the notation that if B is a ball B�(x) � X , then B̂ D B5�(x).

3.4 Lemma (5-times Covering Lemma). If B is any family of closed balls in X with
R � sup

{
diamB W B 2 B

}
< 1, then there is a pairwise disjoint subcollection B 0 � B

such that

[B2BB � [B2B 0B̂I
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in fact we can arrange the stronger property

(�)
B 2 B) 9B 0 2 B 0 with B 0 \ B ¤ ∅ and

diam(B 0) � 1
2
diam(B); hence B̂ 0 � B:

Proof: For j D 1; 2; : : : let Bj D
{
B 2 B W R=2j < diamB � R=2j�1

}
, so that

B D [1jD1Bj , and this is a pairwise disjoint union. Proceed to define B 0j � Bj as follows:
(i) Let B 01 be any maximal pairwise disjoint subcollection of B1. Such B 01 exist by apply-
ing Zorn’s lemma to P D {A W A is a pairwise disjoint subcollection of B1}, which is
partially ordered by inclusion; notice for any totally ordered subcollection T � P we
clearly have A � [B2T B 2 P for each A 2 T , so Zorn’s lemma is indeed applicable.
Notice also that in a general metric space the collection B 01 could be uncountable, but of
course in a separable metric space (i.e. a metric space with a countable dense subset) all
pairwise disjoint collections of balls must be countable.

(ii) Assuming j � 2 and that B 01 � B1; : : : ;B 0j�1 � Bj�1 are defined, let B 0j be a maximal
pairwise disjoint subcollection of

{
B 2 Bj W B \ B 0 D ∅ whenever B 0 2 [j�1iD1B 0i

}
.

Again, Zorn’s lemma guarantees such a maximal collection exists.

Now if j � 1 and B 2 Bj we must have

B \ B 0 ¤ ∅ for some B 0 2 [jiD1B
0
i

(otherwise we contradict maximality of B 0j ), and for such a pair B , B 0 we have diamB �
R=2j�1 D 2R=2j � 2 diamB 0, so that (�) holds; in particular B � B̂ 0. �

3.5 Remark: The factor “5” in the above lemma can be improved; indeed by defining
Bk D {B 2 B W R=(1 C �)k < diamB � R=(1 C �)k�1} with � small enough,
the same argument as that used in the above proof establishes a “(3C ")-times covering
lemma” for any " > 0. However there is no such “3-times covering lemma,” as one
sees by taking B D {B�(��e1) W � < 1} [ {B�(�e1) W � < 1}. Then [B2BB D
{0} [ MB1(�e1) [ MB1(e1), whereas, since all the balls in B contain 0, a pairwise disjoint
subcollection of B must consist just of a single ball B D B�(˙�e1) for some � < 1, and
BR(�e1) � {0} [ MB1(�e1) [ MB1(e1) only if R � �C 2 D 3�C 2(1 � �) (> 3�).

3.6 Definition: In the following corollary of 3.4 we use the terminology that a subset
A � X is covered finely by a collection B of balls, meaning that

inf{diamB W x 2 B 2 B} D 0 8x 2 A:

3.7 Corollary. A � X is covered finely (as in Definition 3.6) by a collection B of closed
balls, then there is a pairwise disjoint subcollection B 0 � B such that

A n [NjD1Bj � [B2B 0n
{
B1;:::;BN

}B̂
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for each finite subcollection {B1; : : : ; BN } � B 0.

Proof: Without loss of generality we can assume diamB � 1 for each B in B, because
{B 2 B W diamB � 1} clearly still covers A finely.

Then we can apply the 5-times covering lemma 3.4 to give a pairwise disjoint collection
B 0 � B such that 3.4(�) holds. For any B1; : : : ; BN 2 B 0 take any x 2 A n [NjD1Bj ,
and, since X n [NjD1Bj is open and B covers A finely, we can then find B 2 B with
B \ ([NjD1Bj ) D ∅ and x 2 B . By 3.4(�) there is a B 0 2 B 0 with B 0 \ B ¤ ∅ and
B̂ 0 � B . Evidently B 0 ¤ Bj 8j D 1; : : : ; N , so x 2 [

B 02B 0n
{
B1;:::;BN

}B̂ 0. �

Proof of 3.3: We can assume �(A2) <1 and t > 0 otherwise the result is trivial. Take
� 2 (0; t), so that then

‚�n(�;A2; x) > � for x 2 A1:

For ı > 0, let B (depending on ı) be defined by

B D
{
closed balls B�(x) W x 2 A1; 0 < � < ı=2; �(A2 \ B�(x)) � �!n�n

}
:

Evidently B covers A1 finely and hence there is a pairwise disjoint subcollection B 0 � B
so that 3.4 (�) holds. Since �(A2\B) > 0 for eachB 2 B and sinceB1; : : : ; BN 2 B 0)PN
jD1 �(A2\Bj ) D �(A2\ ([

N
jD1Bj )) � �(A2) <1 it follows that B 0 is a countable

collection {B�1(x1); B�2(x2); : : :} and hence 3.7 implies

A1 n [
N
jD1B�j (xj ) � [

1
jDNC1B5�j (xj ) 8N � 1;

and also, by definition of B,

�
P1
jD1!n�

n
j �

1X
jD1

�(A2 \ B�j (xj )) D �(A2 \ ([1jD1B�j (xj ))) � �(A2) <1:

Since A1 � ([NjD1B�j (xj )) [ ([1jDNC1B5�j (xj )), we have

Hn
5ı(A1) �

PN
jD1!n�

n
j C 5

n
P1
jDNC1!n�

n
j

by Definition 2.2, and hence letting N !1 we deduce

�Hn
5ı(A1) � �(A2):

The required result now follows by letting ı # 0 and � " t . �

As a corollary to 3.3 we can prove the following “Upper Density Theorem.”
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3.8 Theorem (Upper Density Theorem.) If � is an outer measure on X such that all
Borel sets are measurable (e.g. � is Borel regular) and if A is a �-measurable subset of X with
�(A) <1, then

‚�n(�;A; x) D 0 forHn-a.e. x 2 X n A:

3.9 Remarks: (1) Of course � D Hn is an important special case.

(2) If � is open � -finite (i.e. X D [1jD1Vj with Vj open and �(Vj ) < 1 for each
j D 1; 2; : : :), then one can drop the hypothesis that �(A) < 1, because we can apply
the theorem with � Vj in place of � to conclude that

‚�n(�;A; x) D ‚�n(�;A \ Vj ; x) D 0 for Hn-a.e. x 2 Vj n A; j D 1; 2; : : : ;

and hence ‚�n(�;A; x) D 0 for Hn-a.e. x 2 X n A.

Proof of 3.8: Let C be any closed subset of A, t > 0 and St D
{
x 2 X n A W

‚�n(�;A; x) � t
}
. Since X nC is open and St � X nA � X nC we have ‚�n(�;A\

(X n C ); x) D ‚�n(�;A; x) � t for x 2 St . Thus we can apply 3.3 with � A, St ,
X nC in place of �, A1, A2 to give tHn(St ) � �(A nC ) for each closed set C � A. But
infC closed,C�A �(A n C ) D 0 by 1.22(2), so Hn(St ) D 0. Taking t D 1=i; i D 1; 2; : : :,
we thus conclude Hn({x 2 X n A W ‚�n(�;A; x) > 0}) D 0. �

Notice that we have the following important corollary to the above theorem:

3.10 Corollary. If A � Rn is Ln-measurable then the density ‚n(Ln; A; x) exists Ln-a.e.
x 2 Rn, and‚n(Ln; A; x) D 0 Ln-a.e. x 2 Rn n A andD 1 Ln-a.e. x 2 A.

Proof: Indeed (!n�n)�1Ln(A\B�(x))C (!n�n)�1Ln(B�(x) nA) D 1 for each � > 0,
and, by the Upper Density Theorem 3.8, the first term on the left ! 0 as � # 0 for
Ln-a.e. x 2 Rn nA while the second term on the left! 0 as � # 0 for Ln-a.e. x 2 A. �

We conclude this section with two important bounds for densities of Hausdorff measure.

3.11 Theorem. For anyHn-measurable subset of A of a metric space X :
(1) IfHn(A) <1, then‚�n(Hn; A; x) � 1 forHn-a.e. x 2 A.
(2) If Hn

ı (A) < 1 for each ı > 0 (note this is automatic if A is a totally bounded subset
of X ), then‚�n(Hn

1; A; x) � 2
�n forHn-a.e. x 2 A.

3.12 Remark: Since Hn
� Hn

ı � Hn
1 (by Definitions 2.1, 2.2) this theorem implies

2�n � ‚�n(Hn; A; x) � 1 for Hn-a.e. x 2 A,

provided A is Hn-measurable and Hn(A) <1.
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Proof of 3.11: To prove (1), let "; t > 0, let At D
{
x 2 A W ‚�n(Hn; A; x) � t

}
and

(using 1.22(1) with � D Hn A), choose an open set U � At such that

Hn(U \ A) < Hn(At )C ":

Since U is open and since At � U we have ‚�n(Hn; A \ U; x) � t for each x 2 At .
Hence 3.3 (with Hn A;At ; A \ U in place of �;A1; A2 ) implies that

tHn(At ) � Hn(A \ U ) � Hn(At )C ":

We thus have Hn(At ) D 0 for each t > 1. Since
{
x W ‚�n(Hn; A; x) > 1

}
D [1jD1Atj

for any decreasing sequence
{
tj
}
with lim tj D 1, we thus haveHn

{
x W ‚�n(Hn; A; x) >

1
}
D 0, as required.

To prove (2), suppose for contradiction that ‚�n(Hn
1 A; x) < 2�n for each x in a set

B0 � A with Hn(B0) > 0. Then for each x 2 B0 select ıx 2 (0; 1) such that

Hn
1(A \ B�(x)) �

1 � ıx

2n
!n�

n; 0 < � < ıx :

Therefore, since B0 D [1jD1
{
x 2 B0 W ıx > 1=j

}
and sinceHn

ı (A\B�(x)) � Hn
1(A\

B�(x)) for any � < ı=2 (by Definition 2.2), we can select ı > 0 and B � B0 with
Hn(B) > 0 and

(1) Hn
ı (A \ B�(x)) �

1 � ı

2n
!n�

n; 0 < � < ı=2; x 2 B:

Now using Definition 2.2 again, we can choose sets C1; C2; : : : with B � [1jD1Cj , Cj \
B ¤ ∅, diamCj < ı 8j , and

(2)
P
j!n�

n
j <

1

1 � ı
Hn
ı (B); �j D diamCj =2

Now take xj 2 Cj \ B , so that B � A \ ([1jD1B2�j (xj )), and we conclude from (1),
(2) that Hn

ı (B) D 0, hence H
n(B) D 0, contradicting our choice of B . �

4 Differentiation Theorems

We begin with discussion of the possibility of extending the Comparison and Upper
Density Theorems 3.3, 3.8 to the situation when, in a metric space X , we consider the
upper density of a Borel regular measure �with respect to another Borel regular measure
�0. In this case we always assume �0 is locally finite, so that

4:1 8x 2 X there is � > 0 with �0(B�(x)) <1:
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We note that this is automatic if �0 is open � -finite as in 1.21.

The upper density ‚��0(�; x) of � with respect to �0 at the point x 2 X is defined by

4:2 ‚��0(�; x) D


lim sup
�#0

�(B�(x))

�0(B�(x))
for x 2 X n (U0 [ V0)

1 for x 2 U0 n V0
0 for x 2 V0;

where U0 is the open set consisting of all points x 2 X with �0(B�(x)) D 0 for some
� > 0 and V0 is the open set consisting of all points x 2 X with �(B�(x)) D 0 for some
� > 0. Notice‚��0(�; x) D ‚�n(�; x) in the special case whenX D Rn and �0 D Ln.

To prove a useful analogue to the Upper Density Theorem 3.8 in this situation we need to
assume that�0 has the “Symmetric Vitali” property according to the following definition:

4.3 Definition (Symmetric Vitali Property): An outer measure �0 on a metric space
X is said to have the Symmetric Vitali Property if given any A � X with �0(A) < 1
and any collection B of closed balls with centers in A which cover A finely (i.e. inf{� W
B�(x) 2 B} D 0 for each x 2 A), 9 a countable pairwise disjoint collection B 0 D
{B�j (xj ) W j D 1; 2; : : :} � B with �0(A n ([1jD1B�j (xj ))) D 0.

Before proceeding, we make some important notes concerning the open set U0 in 4.2 and
the Symmetric Vitali Property:

4.4 Remarks: (1) First note that there are various scenarios which guarantee that the
open set U0 in the definition 4.2 of the density ‚��0(�; x) has �0-measure zero. For
example if X is separable (i.e. X has a countable dense subset) then U0 can be written as
a countable union of balls B�(x) � U0 with �(B�(x)) D 0, and hence U0 certainly has
�0-measure zero in this case. Also, if�0 is � -finite and has the Symmetric Vitali Property,
then, because U0 is trivially covered finely by the collection B of balls B�(x) � U0 with
�0(B�(x)) D 0, there is a countable subcollection of B covering �0-almost all of U0 ), so
again �0(U0) D 0.

(2) Observe also that in case X is a separable this Symmetric Vitali Property is satisfied
by any Borel regular measure �0 with �0(X) < 1 which has the “doubling property”
that there is a fixed constant C such that

(�) �0(B2�(x)) � C�0(B�(x)) 8 closed ball B�(x) � X:

Indeed in this case, given A � X with �(A) < 1 and a collection B of closed balls
which cover A finely, by the Corollary 3.7 of the 5-times Covering Lemma we can select
a pairwise disjoint subcollection B 0 (which is countable by the separability of X , hence
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expressible B 0 D {B�j (xj ) W j D 1; 2; : : :}) with

A n {B�1(x1); : : : ; B�N (xN )} � [1jDNC1B5�j (xj )
and hence, since �0(B5�(x)) � �0(B8�(x)) � C 3�0(B�(x)) by (�),

�0(A n {B�1(x1); : : : ; B�N (xN )}) � C 3
P1
jDNC1�0(B�j (xj ))! 0 as N !1

because
P
j �0(B�j (xj )) D �0([jB�j (xj )) <1. Thus

�0(A n ([
1
jD1B�j (xj ))) D 0;

as claimed.

(3) A very important fact is that any Borel regular measure �0 on Rn which is finite on
each compact subset automatically has the Symmetric Vitali Property. In order to check
this we’ll need the following famous covering lemma due to Besicovitch:

4.5 Lemma (Besicovitch Covering Lemma.) Suppose B is a collection of closed balls in
Rn, let A be the set of centers, and suppose the set of all radii of balls in B is a bounded set.
Then there are sub-collections B1; : : : ;BN � B (N D N (n)) such that each Bj is a pairwise
disjoint (or empty) collection, and [NjD1Bj still covers A—i.e. A � [NjD1([B2BjB).

We emphasize that N is a certain fixed constant depending only on n. For the proof of
this lemma we refer for example to [EG92] or [Fed69].

Proof of Remark 4.4(3) : Let � be a Radon measure on Rn, A � Rn with �(A) <1, B
a collection of closed balls with centers in A covering A finely. By the Besicovitch lemma
we can choose B1; : : : ;BN � {B 2 B W diamB � 1} such that [NjD1Bj covers A. Then
for at least one j 2

{
1; : : : ; N

}
we get

�(A n [B2BjB) � (1 �
1

N
)�(A)

and hence taking a suitable finite subcollection
{
B1; : : : ; BQ

}
� Bj ,

�(A n [Q
kD1

Bk) � (1 �
1

2N
)�(A):

Since B covers A finely, and since [Q
kD1

Bk is closed, the collection B̃ D
{
B 2 B W

B \ ([Q
kD1

Bk) D ∅
}
covers A n [Q

kD1
Bk finely, so with A n [Q

kD1
Bk in place of A the

same argument says that we can select new balls BQC1; : : : ; Bp 2 B̃ such that

�(A n [PkD1Bk) � (1 �
1

2N
)�(A n [Q

kD1
Bk)(1)

� (1 �
1

2N
)2�(A):

Continuing (inductively) in this way, we conclude that there is a pairwise disjoint se-
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quence B1; B2; : : : of balls in B such that

�(A n [1kD1Bk) D 0:

Thus Remark 4.4(3) is established. �

We now want to prove an analogue of the Comparison Theorem 3.3 in case we use
‚��0(�; x) of 4.2 in place of the upper density ‚�n(�; x).

4.6 Theorem. Suppose�;�0 are open � -finite (as in 1.21) Borel regular measures on ametric
space X , �0 has the Symmetric Vitali Property, and A � X , t � 0. Then

‚��0(�; x) � t for all x 2 A) �(A) � t�0(A):

Note: A is not assumed to be measurable.

Proof: The proof is similar to the proof of Theorem 3.3, except that we use the Symmetric
Vitali Property for �0 in place of the 5 times Covering Lemma: First let U0 be the open
set of �0 measure zero as in the Definition 4.2. As observed in Remark 4.4(1) we have
�0(U0) D 0. We can assume without loss of generality that t > 0. Let U � A be
open, � 2 (0; t), and consider the collection B of all closed balls B�(x) � U with
x 2 A \ X n U0 such that �(B�(x)) > ��0(B�(x)). Evidently B covers A \ (X n

U0) finely, so by the Symmetric Vitali Property for �0 there is a countable pairwise
disjoint subcollection B�j (xj ); j D 1; 2; : : :, of B with �0(A n ([jB�j (xj ))) D 0 and
�(B�j (xj )) � ��0(B�j (xj )) for each j , and hence by summing we obtain

��0(A) � �([jB�j (xj )) � �(U ):

Since �(A) D infU open, U�A �(U ) by Theorem 1.22, we thus have the stated result by
letting � " t . �

Observe that in particular the above comparison lemma gives

4.7 Corollary. If �;�0 are as in Theorem 4.6 above then ‚��0(�; x) < 1 for �0-a.e.
x 2 X .

Proof: We are given open Vj with X D [jVj and �0(Vj ) < 1 for each j . Let �j D
� Vj , j D 1; 2; : : :. Theorem 4.6, with At D {x 2 Vj nU0 W ‚��0(�; x) � t} in place
of A and �j in place of �, implies

t�0(At ) � �j (At ) � �(Vj ) 8 t > 0;

so �0({x 2 Vj W ‚��0(�; x) D 1}) � t�1�(Vj ) for each t > 0, hence �0({x 2 Vj W
‚��0(�; x) D1}) D 0 for each j �

As a second corollary we state the following general Upper Density Theorem:

�4 of Chapter 1: Differentiation Theorems 23

4.8 Theorem (General Upper Density Th.) If �;�0 are Borel regular measures on a
metric space X , if �0 open � -finite (as in 1.21) and has the Symmetric Vitali Property, and if
A is a �-measurable subset of X with �(A) <1, then

‚��0(� A; x) D 0 for �0-a.e. x 2 X n A:

Proof: The proof is essentially the same as the proof of Theorem 3.8, except that we use
the general comparison theorem 4.6 in place of 3.3. So let C be an arbitary closed subset
of A, t > 0, and St D {x 2 X n A W ‚��0(� A; x) � t}. Since X n C is an open set
containing X n A we have St D {x 2 X n A W ‚��0(� A \ (X n C ); x) � t}, and
hence, by the comparison theorem 4.6 with St in place of A,

t�0(St ) � �(St \ (A n C )) � �(A n C ):

However by the regularity property 1.22(2) we have infC closed, C�A �(A n C ) D 0, so
�0(St ) D 0 for each t > 0. �

Using the above theorem we can now prove the general density theorem:

4.9 Theorem. If � is open � -finite (as in 1.21) Borel regular measure on a metric space X , if
� has the Symmetric Vitali Property, and if A is a �-measurable subset of X , then

lim
�#0

�(A \ B�(x))

�(B�(x))
D

{
1 �- a.e. x 2 A

0 �- a.e. x 2 X n A:

Proof: SinceX D [jVj with Vj open and�(Vj ) <1 for each j , we can assumewithout
loss of generality that �(X) <1. As in Remark 4.4(1) we see that the set of x 2 X such
that �(B�(x)) D 0 for some � > 0 is an open set U0 with �(U0) D 0. For x 2 X n U0
we have

�(A \ B�(x))

�(B�(x))
C
�(B�(x) n A)

�(B�(x))
D 1 for each � > 0;

and the first term on the left! 0 for�-a.e. x 2 X nA by the Upper Density Theorem 4.8
with �0 D �, whereas the second term on the left ! 0 for �-a.e. x 2 A by the same
theorem with �0 D � and X n A in place of A. �

The following Lebesgue differentiation theorem is an easy corollary:

4.10 Corollary. If X;� are as in Theorem 4.9 and if f W X ! R is locally �-integrable
on X (i.e. f is �-measurable and x 2 X )

R
B�(x)

jf j d� <1 for some � > 0), then

lim
�#0

(�(B�(x)))
�1

∫
B�(x)

f d� D f (x) for �- a.e. x 2 X
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Proof: Since f D max{f; 0} � max{�f; 0} we can assume without loss of generality
that f � 0. Also, we can without loss of generality assume �(X) <1 because it suffices
to prove the theorem for �-a.e. x 2 Vj , where Vj are the open sets as in 1.21.

According to Lusin’s Theorem 1.24 there are closed sets Aj ; j D 1; 2; : : :, with �(X n
([jAj )) D 0 and f jAj continuous for each j . Then, for any x 2 X , j 2 {1; 2; : : : ; }
and � > 0,

(�(B�(x)))
�1
R
B�(x)

f d� D

(�(B�(x)))
�1
(R
Aj\B�(x)

(f (y) � f (x)) d�C f (x)�(Aj \ B�(x))C �(B�(x) n Aj )
)

where � is the Borel regular outer measure on X corresponding, in the sense described
in Remark1.13, to the Borel measure �0 defined by �0(A) D

R
A
f d�. By continuity

of f jAj , Theorem 4.9, and the Upper Density Theorem 4.8 (with �; � in place of �;�0
respectively), we then have, for�-a.e. x 2 Aj , (�(B�(x)))�1

R
B�(x)

f d�! 0Cf (x)C

0 D f (x) as � # 0. �

Of course we can also take the lower density ‚�0� (�; x) of � with respect to �0 which
we define, analogous to the definition of upper density in 4.2, by

4:11 ‚�0� (�; x) D


lim inf
�#0

�(B�(x))

�0(B�(x))
for x 2 X n (U0 [ V0)

1 for x 2 U0 n V0
0 for x 2 V0;

with U0; V0 as in 4.2. Then there is an analogue of the Comparison Theorem 4.6 for the
lower density. Preparatory to that we need the following lemma:

4.12 Lemma. If �;�0 is any pair of Borel regular measures on a metric space X with �
� -finite, then there is a Borel set B � X with �0(B) D 0 and � (X n B) absolutely
continuous with respect to �0 (i.e. �0(S) D 0) �(S n B) D 0).

Proof: In case �(X) < 1 we let A D {Borel sets A � X with �0(A) D 0} and
˛ D sup{�(A) W A 2 A}. Choose a sequence Aj 2 A with lim�(Aj ) D ˛. Then
B D [jAj 2 A with �(B) D ˛. By Borel regularity of �0, if S � X with �0(S) D 0

we can select A 2 A with S � A, and hence �(S nB) � �(A nB) D �(B [ (A nB))�
�(B) � ˛ � ˛ D 0, so B has the required property.

In the general case we select Borel sets Aj with X D [jAj and �(Aj ) < 18j , and,
applying Case 1 to � Aj , we obtain Borel sets Bj with �0(Bj ) D 0 and � (Aj nBj )

absolutely continuous with respect to �0. So, with B D [jBj , �0(S) D 0 ) �(S n

B) �
P
j �(S \ Aj n B) �

P
j �(S \ Aj n Bj ) D 0. �
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4.13 Remark: The set B is evidently unique up to a set of �-measure zero, so the Borel
regular measure� (XnB) is uniquely determined; it is called the absolutely continuous
part of � relative to �0.

We can now prove an analogue of the Comparison Theorem 4.6 for the lower density:

4.14 Theorem. Suppose �;�0 are open � -finite (as in 1.21) Borel regular measures on the
metric space X , t > 0, and A � X with‚�0� (�; x) � t for all x 2 A.

(i) If � has the Symmetric Vitali Property then �(A) � t�0(A).

(ii) If �0 has the Symmetric Vitali Property then �(A n B) � t�0(A), where B (with
�0(B) D 0) is as in 4.12.

Proof: The proof is similar to the proof of Theorem 4.6. In view of the open � -finiteness
property we can suppose without loss of generality that both �(X) <1 and �0(X) <

1.

Proof of (i): First observe thatA � X nU0 (because, by Definition 4.11,‚�0� (�; x) D1

on U0 ). Let � > t . By Theorem 1.22(1) we can select an open U � A with �0(U ) <

�0(A)C � � t .

Define
B D {B�(x) � U W x 2 A and �(B�(x)) < ��0(B�(x))}:

B evidently covers A finely, so by the Symmetric Vitali Property for � there is a pair-
wise disjoint collection B�j (xj ) with �(A n ([jB�j (xj ))) D 0 and �(B�j (xj )) �
��0(B�j (xj )) for each j . By summing on j we then have�(A) � ��0(U ) � �(�0(A)C

� � t), so letting � # t gives the required result.

Proof of (ii): With B be as in Lemma 4.12, �̃ D � (X n B) is absolutely continuous
with respect to �0, hence the Symmetric Vitali Property for �0 implies the Symmetric
Vitali Property for �̃, so we can apply part (i) with A nB in place of A and �̃ in place of
�. This gives the required result. �

We define the density‚�0(�; x) to be the common value of‚��0(�; x) and‚�0� (�; x)

at points where these quantities are equal. Thus if U0; V0 are the open sets in 4.2 and 4.11,
then

4:15 ‚�0(�; x) D


lim
�#0

�(B�(x))

�0(B�(x))
if x 2 X n (U0 [ V0) and this limit exists

1 at points x 2 U0 n V0
0 at points x 2 V0,

and ‚�0(�; x) is undefined at points where ‚�0� (�; x) < ‚��0(�; x).



26 Chapter 1: Preliminary Measure Theory

4.16 Theorem (Differentiation Theorem.) Suppose �;�0 are open � -finite (as in 1.21)
Borel regular measures on the metric space X .

(i) If � has the Symmetric Vitali Property, then there is a Borel set S of �-measure zero
such that‚�0(�; x) (as in 4.15) exists for all x 2 X n S .

(ii) If �0 has the Symmetric Vitali Property, then there is a Borel set S of �0-measure zero
such that‚�0(�; x) exists and is finite for all x 2 X n S .

In either case‚�0(�; x) is a Borel measurable function of x 2 X n S .

Proof: First assume �0(X); �(X) <1 and let A � X be any Borel set.

To prove (i) first note that by the Comparison Theorems 4.6 and 4.14(i), for any given
a; b > 0,

‚�0� (�; x) < a and ‚��0(�; x) > b for all x 2 A(1)

) �(A) � a�0(A) and b�0(A) � �(A):

In particular if 0 < a < b and

Ea;b D
{
x 2 X n U0 W ‚

�0
� (�; x) < a < b < ‚��0(�; x)

}
:

then a�1�(Ea;b) � �0(Ea;b) � b�1�(Ea;b), which implies that

(2) �0(Ea;b) D �(Ea;b) D 0:

Since {x W ‚�0� (�; x) < ‚��0(�; x)} D [a;b rational, 0<a<bEa;b we deduce from (2)
that ‚�0� (�; x) D ‚��0(�; x) for �0-a.e. x 2 X n U0, so indeed ‚�0(�; x) exists (in
[0;1]) for �-a.e. x 2 X n U0. ‚�0(�; x) is also defined in U0 by Definition 4.15. Thus
‚�0(�; x) is well-defined �-a.e., so by Borel regularity of � there is a Borel set S with
�(S) D 0 such that ‚�0(�; x) is well-defined for all x 2 X n S .

The measurability of ‚�0(�; x) as a function of x 2 X n S is proved as follows: For
each fixed � > 0, �(B�(x)) and �0(B�(x)) are positive upper semi-continuous func-
tions of x 2 X n (S [ V0 [ U0), hence are Borel measurable functions on X n (S [
V0 [ U0), and hence so is the quotient �(B�(x))=�0(B�(x)). Hence ‚�0(�; x) D
limi!1 �(B1=i (x))=�0(B1=i (x)) is Borel measurable onX n (S [V0[U0). Finally, by
Definition 4.15,‚�0(�; x) D1 on U0 nV0 and‚�0(�; x) D 0 on V0. Since U0; V0 are
open we then conclude that indeed‚�0(�; x) is Borel measurable in case �;�0 are finite
measures. In the general open � -finite case, when there are open sets Vj with [jVj D X
and �(Vj ); �0(Vj ) < 1, we apply the above with � Vj ; �0 Vj in place of �;�0
respectively.

To prove (ii), note first that by Corollary 4.7 we have

(3) ‚��0(�; x) <1 for �0-a.e. x 2 X:
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As in 4.12, letB be a Borel set of�0-measure zero such that �̃ D � (XnB) is absolutely
continuous with respect to �0. Then �̃ has the Symmetric Vitali Property, and hence
the argument of (i) above applies with �̃ in place of � to give

(4) �0(Ea;b) D �(Ea;b n B) D 0;

in place of (2). Hence ‚�0(�; x) exists for �0-a.e. x 2 X , and by (3) it is also finite for
�0-a.e. x 2 X , hence there is a Borel set S with �0(S) D 0 such that ‚�0(�; x) exists
and is finite for all x 2 X n S .

The measurability of ‚�0(�; x) follows similarly to case (i) above. �

Next, recall the abstract Radon-Nikodym theorem, which says that if �;�0 are abstract
� -finite measures on a � -algebraA of subsets of an abstract spaceX , and if � is absolutely
continuous with respect to �0 (i.e. A 2 A with �0(A) D 0) �(A) D 0), then there is
a non-negative A�measurable function ‚ on X such that

4:17 �(A) D
∫
A
‚d�0; A 2 A:

In these circumstances the function ‚ is called “the Radon-Nikodym derivative” of �
with respect to �0, denoted d�

d�0
or D�0�.

We show here that in case �;�0 are Borel regular open � -finite (as in 1.21) on the met-
ric space X with �0 having the Symmetric Vitali Property, then the Radon-Nikodym
derivative D�0�(x) is just the density ‚�0(�; x) D lim�#0

�(B�(x))
�0(B�(x))

:

4.18 Theorem (Radon-Nikodym.) Suppose �;�0 are open � -finite (as in 1.21) Borel regu-
lar measures on X , and �0 has the Symmetric Vitali Property.

(i) If � is absolutely continuous with respect to �0 (i.e. E � X with �0(E) D 0 )

�(E) D 0 and hence � also has the Symmetric Vitali Property), then

(�) �(A) D
∫
A
‚�0(�; x) d�0(x) for every Borel set A � X .

(ii) If we drop the condition that � is absolutely continuous with respect to �0, then in
place of (�) we can still conclude that there is a Borel set Z with �0(Z) D 0 and

(�) �(A) D
∫
A
‚�0(�; x) d�0(x)C (� Z)(A)

for each Borel set A � X .

(iii) Finally, if � also has the Symmetric Vitali Property, then we get (�) with

Z D {x 2 X W ‚�0(�; x) D1}

(which is a set of �0-measure zero by 4.16(ii)).
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4.19 Remarks: (1) By Remark 4.4(3) we always have the conclusion of 4.16(iii) if X D
Rn.

(2) � Z is called the singular part of � with respect to �0.

Proof of Theorem 4.18: Since�;�0 are open � -finite, we can assume�(X) <1; �0(X) <

1. Let S be a Borel set of �0-measure zero as in Theorem 4.16. For any Borel set
A � X n S let

�(A) D
∫
A
‚�0(�; x) d�0(x)

and for any subset A � X n S let �(A) D infB�A;B Borel �(B). By Remark 1.13, � is a
Radon measure and, with 0 < a < b, Aa;b D

{
x 2 A W a < ‚�0(�; x) < b

}
and A any

Borel set, we have

a�0(Aa;b) � �(Aa;b) � b�0(Aa;b):

On the other hand the Comparison Theorems 4.6, 4.14(i) imply

a�0(Aa;b) � �(Aa;b) � b�0(Aa;b);

and so
a

b
�(Aa;b) � �(Aa;b) �

b

a
�(Aa;b)

and it follows that �(A) D �(A). Thus (�) is proved.

In the general case (when we allow the possibility that there are sets A with �0(A) D 0
and �(A) > 0), we can apply the previous argument to the Borel regular measure �̃ D
� (X n B), where B is the set of �0-measure zero of Lemma 4.12. This gives

�(A n B) D
∫
A
‚�0(�; x) d�0 8 Borel set A � X:

Thus 4.16 (�) holds with Z D B .

Finally, in case � also has the Symmetric Vitali Property, Theorem 4.16(i) establishes
that ‚�0(�; x) exists �-almost everywhere (as well as �0-almost everywhere) in X . On
the other hand if X̃ D X n U0 and A �

{
x 2 X̃ W ‚�0(�; x) < 1

}
(D [1nD1

{
x 2 X̃ W

‚�0(�; x) < n
}
) then by Theorem 4.14(i)

�0(A) D 0) �(A) D 0;

and we can therefore apply (�) with � (X nZ), Z D {x W ‚�0(�; x) D1}, in place
of �. Hence (iii) is proved. �
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5 Radon Measures, Representation Theorem

In this section we work mainly in locally compact Hausdorff spaces, and for the reader’s
convenience we recall some basic definitions and preliminary topological results for such
spaces.

Recall that a topological space is said to be Hausdorff if it has the property that for every
pair of distinct points x; y 2 X there are open sets U; V with x 2 U , y 2 V and
U \V D ∅. In such a space all compact sets are automatically closed, the proof of which is
as follows: observe that if x … K then for each y 2 K we can (by definition of Hausdorff
space) pick open Uy ; Vy with x 2 Uy , y 2 Vy and Uy \ Vy D ∅. By compactness of K
there is a finite set y1; : : : ; yN 2 K with K � [NjD1Vyj . But then \

N
jD1Uyj is an open

set containing x which is disjoint from [jVyj and hence disjoint from K, so that K is
closed as claimed. In fact we proved a bit more: that for each x … K there are disjoint
open sets U; V with x 2 U and K � V . Then if L is another compact set disjoint from
K we can repeat this for each x 2 L thus obtaining disjoint open Ux ; Vx with x 2 Ux and
K � Vx , and then compactness of L implies 9x1; : : : ; xM 2 L such that L � [MjD1Uxj
and then [MjD1Uxj and \MjD1Vxj are disjoint open sets containing L and K respectively.
By a simple inductive argument (left as an exercise) we can extend this to finite pairwise
disjoint unions of compact subsets:

5.1 Lemma. Let X be a Hausdorff space and K1; : : : ; KN be pairwise disjoint compact
subsets of X . Then there are pairwise disjoint open subsets U1; : : : ; UN with Kj � Uj for
each j D 1; : : : ; N .

Notice in particular that we have the following corollary of Lemma 5.1:

5.2 Corollary. A compact Hausdorff space is normal: i.e. given closed disjoint subsetsK1; K2
of a compact Hausdorff space, we can find disjoint open U1; U2 withKj � Uj for j D 1; 2.

Most of the rest of the discussion here takes place in locally compact Hausdorff space: A
space X is said to be locally compact if for each x 2 X there is a neighborhood Ux of x
such that the closure U x of Ux is compact.

An important preliminary lemma in such spaces is:

5.3 Lemma. If X is a locally compact Hausdorff space and V is a neighborhood of a point
x, then there is a neighborhood Ux of x such that U x is a compact subset of V .

Proof: First pick a neighborhoodW0 of x such thatW 0 is compact and defineW D W0\
V . ThenW is compact and hence, with the subspace topology, is normal by Corollary 1
above. Hence since W nW and {x} are disjoint closed sets in this space, and since open
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sets in the subspace W can by definition be expressed as the intersection of open sets
from X with the subset W , we can find open U1; U2 in the space X with x 2 U1, W n
W � U2 and U1 \ U2 \ W D ∅. The last identity says U1 \ W � W n U2, whence
x 2 U1 \ W � W n U2 � W � V , and since W n U2 is a closed set, we then have
x 2 U1 \W � U1 \W � W nU2 � V , so the lemma is proved with Ux D U1 \W . �

Remark: In locally compact Hausdorff space, using Lemmas 5.1 and 5.3 it is easy to check
that we can select the Uj in Lemma 5.1 above to have compact pairwise disjoint closures.

The following lemma is a version of the Urysohn lemma valid in locally compact Haus-
dorff space:

5.4 Lemma. Let X be a locally compact Hausdorff space, K � X compact, and K � V , V
open. Then there is an open U � K with U � V , U compact, and an f W X ! [0; 1] with
f � 1 in a neighborhood ofK and f � 0 on X n U .

Proof: By Lemma 5.3 each x 2 K has a neighborhood Ux with U x � V . Then by
compactness ofK we haveK � U � [NjD1Uxj for some finite collection x1; : : : ; xN 2 K
and U D [NjD1U xj � V . Now U is compact, so by Corollary 1 it is a normal space and
the Urysohn lemma can be applied to give f0 W U ! [0; 1] with f0 � 1 on K and
and f0 � 0 on U n U . Then of course the function f1 defined by f1 � f0 on U and
f1 � 0 on X n U is continuous (check!) because f jU is continuous and f is identically
zero (the value of f jX n U ) on the overlap set U n U � U \ (X n U ). Finally we let
f � 2min{f1; 12} and observe that f is then identically 1 in the set where f1 > 1

2
, which

is an open set containing K, and f evidently has all the remaining stated properties. �

The following corollary of Lemma 5.4 is important:

5.5 Corollary (Partition of Unity.) If X is a locally compact Hausdorff space, K � X is
compact, and if U1; : : : ; UN is any open cover for K, then there exist continuous 'j W X !
[0; 1] such that support 'j is a compact subset of Uj for each j , and

PN
jD1'j � 1 in a

neighborhood ofK.

Proof: By Lemma 5.3, for each x 2 K there is a j 2 {1; : : : ; N } and a neighborhood
Ux of x such that U x is a compact subset of this Uj . By compactness of K we have
finitely many of these neighborhoods, say Ux1 ; : : : ; UxN , with K � [NiD1Uxi . Then for
each j D 1; : : : ; N we define Vj to be the union of all Uxi such that U xi � Uj . Then
the V j is a compact subset of Uj for each j , and the Vj cover K. So by Lemma 5.4 for
each j D 1; : : : ; N we can select  j W X ! [0; 1] with  j � 1 on V j and  j � 0 on
X nWj for some openWj withW j a compact subset of Uj andWj � V j . We can also use
Lemma 5.4 to select f0 W X ! [0; 1] with f0 � 1 in the neighborhood [NjD1Vj ofK and
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f0 � 0 on {x W
PN
jD1 j (x) D 0}. (This latter set is closed and has (open) complement

which is a neighborhood of the compact set[NjD1V j and so we can indeed construct such
f0 by Lemma 5.4.) Then set  0 D 1�f0 and observe that by construction

PN
iD0 i > 0

everywhere on X , so we can define continuous functions 'j by

'j D
 jPN
iD0 i

; j D 1; : : : ; N:

Evidently these functions have the required properties. �

We now give the definition of Radon measure. Radon measures are typically used only in
locally compact Hausdorff space, but the definition and the first two lemmas following
it are valid in arbitrary Hausdorff space:

5.6 Definition: Given aHausdorff spaceX , a “Radonmeasure” onX is an outer measure
� on X having the 3 properties:

� is Borel regular and �(K) <1 8 compact K � X (R1)

�(A) D inf
U open; U�A

�(U ) for each subset A � X (R2)

�(U ) D sup
K compact;K�U

�(K) for each open U � X: (R3)

Such measures automatically have a property like (R3) with an arbitrary �-measurable
subset of finite measure:

5.7 Lemma. LetX be aHausdorff space and� aRadonmeasure onX . Then� automatically
has the property

�(A) D sup
K�A;K compact

�(K)

for every �-measurable set A � X with �(A) <1.

Proof: Let " > 0. By definition of Radon measure we can choose an open U containing
Awith�(U nA) < ", and then a compactK � U with�(U nK) < " and finally an open
W containing U n A with �(W n (U n A)) < " (so that �(W ) � "C �(U n A) < 2").
Then we have that K nW is a compact subset of U nW , which is a subset of A, and also

�(A n (K nW )) � �(U n (K nW )) � �(U nK)C �(W ) � 3";

which completes the proof. �

The following lemma asserts that the defining property (R1) of Radon measures follows
automatically from the remaining two properties ((R2) and (R3)) in case � is finite and
additive on finite disjoint unions of compact sets.
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5.8 Lemma. Let X be a Hausdorff space and assume that � is an outer measure on X satis-
fying the properties (R2), (R3) above, and in addition assume that

�(K1 [K2) D �(K1)C �(K2) <1 wheneverK1; K2 are compact and disjoint.

Then (R1) holds and hence � is a Radon measure.

Proof: Note that (R2) implies that for every set A � X we can find open sets Uj such
that A � \jUj and �(A) D �(\jUj ). So to complete the proof of (R1) we just have to
check that all Borel sets are �-measurable; since the �-measurable sets form a � -algebra
and the Borel sets form the smallest � -algebra of subsets ofX which contains all the open
sets, we thus need only to check that all open sets are �-measurable.

Let " > 0 be arbitrary, Y an arbitrary subset of X with �(Y ) < 1 and let U be an
arbitrary open subset of X . By (R2) we can pick an open set V � Y with �(V ) <
�(Y )C" and by (R3) we can pick a compact setK1 � V \U with�(V \U ) � �(K1)C",
and then a compact set K2 � V nK1 with �(V nK1) � �(K2)C ". Then

�(V n U )C �(V \ U ) � �(V nK1)C �(K1)C "

� �(K2)C �(K1)C 2"

D �(K2 [K1)C 2" (by (i))

� �((V nK1) [K1)C 2" D �(V )C 2" � �(Y )C 3";

hence�(Y nU )C�(Y \U ) � �(V nU )C�(V \U ) � �(Y )C3"which by arbitrariness
of " gives �(Y n U )C �(Y \ U ) � �(Y ), which establishes the �-measurability of U .
Thus all open sets are�-measurable, and hence all Borel sets are�-measurable, and so (R1)
is established. �

The following lemma guarantees the convenient fact that, in a locally compact space such
that all open subsets are � -compact, all locally finite Borel regular outer measures are in
fact Radon measures.

5.9 Lemma. Let X be a locally compact Hausdorff space and suppose that each open set is
the countable union of compact subsets. Then any Borel regular outer measure on X which is
finite on each compact set is automatically a Radon measure.

Proof: First observe that in a Hausdorff space X the statement “each open set is the
countable union of compact subsets” is equivalent to the statement “X is � -compact (i.e.
the countable union of compact sets) and every closed set is the countable intersection
of open sets” as one readily checks by using De Morgan’s laws and the fact that a set is
open if and only if its complement is closed. Thus we have at our disposal the facts that
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X is � -compact and every closed set is a countable intersection of open sets. The latter
fact enables us to apply the Theorem 1.22 on Borel regular outer measures, and we can
therefore assert that

�(A) D inf
U open;A�U

�(U ) whenever A � X has the property(1)

9 open Vj with A � [jVj and �(Vj ) <1 8j
and

�(A) D sup
C closed; C�A

�(C ); provided A D [jAj with(2)

Aj is �-measurable and �(Aj ) <1 8j .

Now observe that, in a locally compact Hausdorff space X , for each compact K � X

there is an open set V � K such that V (the closure of V ) is compact. If X D [1jD1Kj ,
where each Kj is compact, that we can apply this with Kj in place of K, and we deduce
that there are open sets Vj in X such that [jVj D X and �(Vj ) <1 for each j , and so
in this case (when X is � -compact) the identity in (1) holds for every subset A � X ; that
is

�(A) D inf
U open;A�U

�(U ) for every A � X;

which is the property (R2). Next we note that if A � X is �-measurable, then we can
write A D [jAj , where Aj D A \Kj (because X D [jKj ) and �(Aj ) � �(Kj ) <1
for each j , so (2) actually holds for every �-measurable A in case X is � -compact (i.e. in
case X D [1jD1Kj with Kj compact), and for any closed set C we can write C D [jCj
where Cj is the increasing sequence of compact sets given by Cj D C \ ([jiD1Ki ) and so
�(C ) D limj �(Cj ) and hence �(C ) D supK�C;K compact �(K). Thus in the � -compact
case (2) actually tells us that �(A) D supK�A;K compact �(K) for any �-measurable set A.
This in particular holds for A D an open set, which is the remaining property (R3) we
needed. �

Next we have the following important density result:

5.10 Theorem. Let X be a locally compact Hausdorff space, � a Radon measure on X and
1 � p <1. Then Cc(X) is dense in Lp(�); that is, for each " > 0 and each f 2 Lp there
is a g 2 Cc(X) such that kg � f kp < ".

In view of Remark 1.13 and Lemma 5.9 we see that Theorem 5.10 directly implies the
following:

5.11 Corollary. If X is a locally compact Hausdorff space such that every open set in X is
the countable union of compact sets, and if � is any Borel regular outer measure on X which
is finite on each compact set, then the space Cc(X) is dense in L1(�).
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Proof of Theorem 5.10: Let f W X ! R be �-measurable with kf kp < 1 and let
" > 0. Observe that the simple functions are dense in Lp(�) (which one can check using
the dominated convergence theorem and the fact that both fC and f� can be expressed
as the pointwise limits of increasing sequences of non-negative simple functions), so we
can pick a simple function ' D

PN
jD1aj

�
Aj , where the aj are distinct non-zero reals

and Aj are pairwise disjoint �-measurable subsets of X , such that kf � 'kp < ". Since
k'kp � k' � f kp C kf kp < 1 we must then have �(Aj ) < 1 for each j . Pick
M > max{ja1j; : : : ; jaN j} and use Lemma 5.7 to select compact Kj � Aj with �(Aj n
Kj ) < "p=(2pC1MpN ). Also, using the definition of Radon measure, we can find open
Uj � Kj with�(Uj nKj ) < "p=(2pC1MpN ) and by Lemma 5.7 we can assume without
loss of generality that these open sets U1; : : : ; UN are pairwise disjoint (otherwise replace
Uj by Uj \ U 0j , where U 01 ; : : : ; U

0
N are pairwise disjoint open sets with Kj � U 0j ). By

Lemma 5.4 we have gj 2 Cc(X) with gj � aj on Kj , {x W gj (x) ¤ 0} contained in a
compact subset of Uj , and sup jgj j � jaj j, and hence by the pairwise disjointness of the
Uj we have that g �

PN
jD1gj agrees with ' on each Kj and sup jgj D sup j'j < M .

Then '�g vanishes off the set [j ((Uj nKj )[ (Aj nKj )) and we have
R
X
j'�gjp d� �P

j

R
(Uj nKj )[(Aj�Kj )

j' � gjp d� � (2M )p
P
j (�(Aj nKj )C �(Uj nKj )) � "

p , and
hence kf � gkp � kf � 'kp C k' � gkp � 2", as required. �

We now state the Riesz representation theorem for non-negative functionals on the space
KC, where, here and subsequently, KC denotes the set of non-negative Cc(X;R) func-
tions, i.e. the set of continuous functions f W X ! [0;1) with compact support.

5.12 Theorem (Riesz for non-negative functionals.) Suppose X is a locally compact
Hausdorff space, � W KC ! [0; 1) with �(cf ) D c�(f ), �(f C g) D �(f ) C �(g)

whenever c � 0 and f; g 2 KC, whereKC is the set of all non-negative continuous functions
f on X with compact support. Then there is a Radon measure � on X such that �(f ) DR
X
f d� for all f 2 KC.

Before we begin the proof of 5.12 we observe the following 2 facts about the functional
�:

5.13 Remarks (1): Observe that if f; g 2 KC with f � g then g � f 2 KC and hence
�(g) D �(f C (g � f )) D �(f )C �(g � f ) � �(f ).

(2) If K is compact, if support f � K and if g 2 KC with g � 1 on K, then we have
f � (supf )g and f g D f , so by Remark (1) above we have

(�) �(f ) � (supf ) �(g); f 2 KC; support f � K:

Notice in particular that ifU is an arbitrary neighborhood ofK thenwe can by Lemma 5.4
select neighborhood W of K with W a compact subset of U and a g 2 KC with g � 1
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in a neighborhood of W , g � 1 everywhere, and support g � U , whence the above
inequality with W in place of K implies

(��) sup
f 2KC;f�1; support f�W

�(f ) � inf
g2KC;g�1;g�1 in a nhd. ofW ; support g�U

�(g):

Proof of Theorem 5.12: For U � X open, we define

(1) �(U ) D sup
f 2KC;f�1;supportf�U

�(f );

and for arbitrary A � X we define

(2) �(A) D inf
U open; U�A

�(U ):

Notice that these definitions are consistent when A is itself open. Notice also that by
(��) we have �(K) < 1 for each compact K; indeed (��) and the definitions (1), (2)
evidently imply

(3) �(K) D inf
g2KC;g�1;g�1 in a nhd: ofK

�(g) for each compact K � X;

Next we prove that � is an outer measure. To see this, first let U1; U2; : : : be open and
U D [jUj , then for any f 2 KC with supf � 1 and support f � U we have, by
compactness of support f , that support f � [NjD1Uj for some integerN , and by using a
partition of unity '1; : : : ; 'N for support f subordinate toU1; : : : ; UN (see theCorollary
to Lemma 5.4 above), we have �(f ) D

PN
jD1�('jf ) �

PN
jD1�(Uj ). Taking sup over

all such f we then have �(U ) �
P
j�(Uj ). It then easily follows that �([jAj ) �P

j�(Aj ) for each j . Since we trivially also have �(∅) D 0 and A � B ) �(A) �

�(B) we thus have that � is an outer measure on X .

Finally we want to show that � is a Radon measure. For this we are going to use
Lemma 5.8, so we have to check (R2), (R3) and the additivity property �(K1 [K2) D
�(K1)C �(K2) whenever K1; K2 are disjoint compact sets. But hypothesis (R2), (R3)
are true by the definitions (1), (2), so we only have to check the the additivity on dis-
joint compact sets. In fact if K1 and K2 are disjoint compact subsets then for " > 0

we can use (3) to find g 2 KC with g � 1, g � 1 in a neighborhood W of K1 [ K2,
and with �(g) � �(K1 [ K2) C ". By Lemma 5.1 we can then select disjoint open
U1; U2 with K1 � U1 and K2 � U2, and by Lemma 5.4 we can select f1; f2 2 KC with
fj � 1 in a neighborhood of Kj such that support fj is a compact subset of Uj and
fj � 1 everywhere, j D 1; 2. Then by (3) �(K1)C �(K2) � �(f1 � g)C �(f2 � g) D

�((f1 C f2) � g) � �(g) � �(K1 [ K2) C ". Thus �(K1) C �(K2) � �(K1 [ K2),
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and of course the reverse inequality holds by subadditivity of �, hence the hypotheses of
Lemma 5.8 are all established and � is a Radon measure.

Next observe that by (�) we have �(h) � �(support h) sup h; h 2 KC, and hence
(observing that h is the uniform limit of max{h � 1=n; 0} in X ) we have

(4) �(h) � �({x W h(x) > 0}) sup h; h 2 KC:

For f 2 KC and " > 0, we can select points 0 D t0 < t1 < t2 < : : : < tN�1 < supf <

tN with tj � tj�1 < " for each j D 1; : : : ; N and with �({f �1{tj }}) D 0 for each j D
1; : : : ; N . Notice that the latter requirement is no problem because �({f �1{t}}) D 0

for all but a countable set of t > 0, by virtue of the fact that �{x 2 X W f (x) > 0} <1.

Now let Uj D f �1{(tj�1; tj )}, j D 1; : : : ; N . (Notice that then the Uj are pair-
wise disjoint and each Uj � K, where K, compact, is the support of f .) Now by
the definition (1) we can find gj 2 KC such that gj � 1, supportgj � Uj , and
�(gj ) � �(Uj ) � "=N . Also for any compact Kj � Uj we can construct a function
hj 2 KC with hj � 1 in a neighborhood of Kj [ supportgj , support hj � Uj , and
hj � 1 everywhere. Then hj � gj , hj � 1 everywhere and support hj is a compact
subset of Uj and so

(5) �(Uj ) � "=N � �(gj ) � �(hj ) � �(Uj ); j D 1; : : : ; N:

Since � is a Radon measure, we can in fact choose the compact Kj � Uj such that
�(Uj n Kj ) < "=N . Then, because {x W (f � f

PN
jD1hj )(x) > 0} � [(Uj n Kj ),

by (4) we have

(6) �(f � f
PN
jD1hj ) � " supf:

Then by using (5); (6) and the linearity of � (together with the fact tj�1hj � f hj �

tjhj ) for each j D 1; : : : ; N ), we see thatPN
jD1tj�1�(Uj ) � " supf � �(f

P
jhj ) � �(f ) � �(f

P
jhj )C " supf

�
PN
jD1tj�(Uj )C " supf:

Since trivially PN
jD1tj�1�(Uj ) �

∫
X
f d� �

PN
jD1tj�(Uj );

we then have

�"(�(K)C supf ) � �
PN
jD1(tj � tj�1)�(Uj ) � " supf

�

∫
X
f d� � �(f )

�
PN
jD1(tj � tj�1)�(Uj )C " supf � "(�(K)C supf );
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where K D supportf . This completes the proof of 5.12. �

We can now state the Riesz Representation Theorem. In the statement, Cc(X;H ) will
denote the set of vector functions f W X ! H which are continuous and which have
compact support, where H is a given finite dimensional real Hilbert space with inner
product 〈 ; 〉 and inner product norm j j.

5.14 Theorem (Riesz Representation Theorem.) Suppose X is a locally compact Haus-
dorff space, and L W Cc(X;H )! R is linear with

sup
f 2Cc (X;H );jf j�1; supportf�K

L(f ) <1 wheneverK � X is compact.

Then there is a Radon measure � on X and Borel measurable � W X ! H with j�j D 1

�-a.e. on X , and
L(f ) D

∫
X

〈
f; �
〉
d� for any f 2 Cc(X;H ).

Proof: By using an orthonormal basis for H , it suffices to prove the theorem with H D
Rn. We first define

�(f ) D sup
!2Cc (X;Rn); j!j�f

L(!)

for any f 2 KC. We claim that � has the linearity properties of the lemma. Indeed
it is clear that �(cf ) D c�(f ) for any constant c � 0 and any f 2 KC. Now let
f; g 2 KC, and notice that if !1; !2 2 Cc(X;Rn) with j!1j � f and j!2j � g, then
j!1 C !2j � f C g and hence �(f C g) � L(!1) C L(!2). Taking sup over all such
!1; !2 we then have �(f C g) � �(f )C �(g). To prove the reverse inequality we let
! 2 Cc(X;Rn) with j!j � f C g, and define

!1 D

{
f

fCg
! if f C g > 0

0 if f C g D 0;
!2 D

{
g

fCg
! if f C g > 0

0 if f C g D 0:

Then !1 C !2 D !, j!1j � f , j!2j � g and it is readily checked that !1; !2 2
Cc(X;Rn). ThenL(!) D L(!1)CL(!2) � �(f )C�(g), and hence taking sup over all
such ! we have �(f Cg) � �(f )C�(g). Therefore we have �(f Cg) D �(f )C�(g)
as claimed. Thus � satisfies the conditions of the lemma, hence there is a Radon measure
� on X such that

�(f ) D
∫
X
f d�; f 2 KC; j D 1; : : : ; n:

That is, we have

(�) sup
!2Cc (X;Rn); j!j�f

L(!) D
∫
X
f d�; f 2 KC:
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Thus if j 2 {1; : : : ; n} we have in particular (since jfej j D jf j 2 KC for any f 2
Cc(X;R)) that

jL(fej )j �
∫
X
jf j d� � kf kL1(�) 8f 2 Cc(X;R):

Thus Lj (f ) � L(fej ) extends to a bounded linear functional on L1(�), and hence
by the Riesz representation theorem for L1(�) we know that there is a bounded �-
measurable function �j such that

L(fej ) D
∫
X
f �j d�; f 2 Cc(X;R):

Since any f D (f1; : : : ; fn) can be expressed as f D
Pn
jD1fj ej , we thus deduce

(�) L(f ) D
∫
X
f � � d�; f 2 Cc(X;R

n);

where � D (�1; : : : ; �n). Then it only remains to check that j�j D 1 �-a.e. To see this,
first note that by using the Cauchy-Schwarz inequality in the integral on the right of (�)
we have for any f 2 KC that

(i) sup
jgj�f;g2Cc (X;Rn)

jL(g)j �
∫
X
f j�j d�:

On the other hand, we know (sinceCc(X;Rn) is dense inL1(�)), we can find a sequence
gk 2 Cc(X;R

n) such that lim
R
X
jgk � �̂j D 0, where �̂ is j�j�1� at points where � ¤ 0

and �̂ D 0 at all other points. Then of course lim
R
X
jĝk� �̂j D 0with jĝkj � 1, provided

we define ĝk D R(gk), withR(y) D jyj�1y if jyj > 1 andR(y) D y if jyj � 1, because
jR(y) � vj � jy � vj for any y; v 2 Rn with jvj D 1. Thus we deduce that actually
equality holds in (i). On the other hand by (�) for any f 2 KC we have that the left side
of (i) is

R
X
f d�. Thus finally

R
X
f d� D

R
X
f j�j d�, and this evidently implies j�j D 1

�-a.e., again using the density of Cc(X;R) in L1(�). �

Using the Riesz Theorem 5.12 we can deduce the following compactness theorem for
Radon measures:

5.15 Theorem (Compactness Theorem for Radon Measures.) Suppose {�k} is a se-
quence of Radon measures on the locally compact, � -compact Hausdorff space X with the
property supk �k(K) < 1 for each compact K � X . Then there is a subsequence

{
�k 0
}

which converges to a Radon measure � on X in the sense that

lim�k 0(f ) D �(f ) for each f 2 K(X);
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where K(X) denotes the set of continuous functions f W X ! R with compact support on X
and where we use the notation

�(f ) D
∫
X
f d�; f 2 K(X):

Proof: Let K1; K2; : : : be an increasing sequence of compact sets with X D [jKj and
let Fj;k W C (Kj ) ! R be defined by Fj;k(f ) D

R
Kj
f d�k , k D 1; 2; : : :. By the

Banach-Alaoglu theorem (which guarantees weak� compactness of the closed unit ball in
the Banach space of bounded linear functionals on C (Kj )) there is a subsequence Fj;k 0
and a non-negative bounded functional Fj W C (Kj ) ! R with Fj;k 0(f ) ! Fj (f )

for each f 2 C (Kj ). By choosing the subsequences successively and taking a diagonal
sequence, we then get a subsequence �k 0 and a non-negative linear F W K(X) ! R

with
R
X
f d�k 0 ! F (f ) for each f 2 K(X), where F (f ) D Fj (f jKj ) whenever

sptf � Kj . (Notice that this is unambiguous because if sptf � Kj and ` > j then
F`(f jK`) D Fj (f jKj ) by construction.) Then by applying Theorem 5.12 we have
a Radon measure � on X such that F (f ) D

R
X
f d� for each f 2 K(X), and soR

X
f d�k 0 !

R
X
f d� for each f 2 K(X). �



Chapter 1 Problems

1.1 (i) If A1; A2 are non-empty compact subsets of R, prove 9 aj 2 Aj ; j D 1; 2, such
that ja2 � a1j � 1

2
(L1(A1)C L1(A2)). (L1 denotes Lebesgue measure on R.)

( ii) Let the notation be as in the proof of Theorem 2.7 and j 2 {1; : : : ; n}. By applying
the result of (i) above to the sets A1 D �( j̀ (�1) \ A); A2 D �( j̀ (�2) \ A), prove that
if A � Rn is compact then diam(Sj (A)) � diam(A).

( iii) If A is compact, prove that L1(�(A\ j̀ (�))) (where j̀ (�); � are as in the proof of
Theorem 2.7) is an upper semi-continuous function of � if � is restricted to lie in the j -th
coordinate hyperplane xj D 0.
Hint: For " > 0 we can select openU � R with �(A\ j̀ (�)) � U and L1(U ) � L1(�(A\ j̀ (�)))C".

(iv) Using the result of (iii) prove that A compact) Sj (A) is compact (where Sj (A) is
the Steiner symmetrization of A as in the proof of Theorem 2.7).

1.2 (Borel regularity ofHausdorffmeasure.) LetHm bem-dimensionalHausdorff (outer)
measure on a metric space X; d . Prove that Hm is Borel regular.
Note: As mentioned in lecture, Hm evidently has the property that Hm(A [ B) D Hm(A) C Hm(B)
whenever d (A;B) > 0, so all Borel sets are Hm-measurable by the Caratheodory theorem 1.15 of the text;
thus for this question you merely need to check (directly from the definition ofHm ) that for every setA � X
there is a Borel set B � A with Hm(B) D Hm(A).

1.3 Let X; d be a metric space and let � be a Borel-regular outer measure on X which
is finite on each ball B�(x) � X . In �3 we proved that the lower density ‚n�(�; x)(D
lim inf�#0

�(B�(x))
!n�n

) is Borel measurable on X .

With a similar argument, prove that ‚�n(�; x) D lim sup�#0
�(B�(x))
!n�n

is also Borel mea-
surable.
Hint: Start by proving that lim sup�#0

�(B�(x))
!n�n

D lim sup�#0
�( MB�(x))
!n�n

, where MB�(x) denotes the open
ball of radius � and center x.

1.4 SupposeX is anymetric space and� is an open � -finite (as in 1.21) Borel regular outer
measure with the Symmetric Vitali property. (For example this is true by Corollary 3.7
ifX D Rn and � D Ln.) f is said to be approximately continuous at x 2 X with respect
to � if �(B�(x)) > 0 for each � > 0 and

lim
�#0

(�(B�(x)))
�1�{({y 2 B�(x) W jf (y) � f (x)j � "}) D 0 8" > 0:

Prove that if f is�-measurable onX then f is approximately continuous at�-a.e. x 2 X .
Hint: Use Lusin’s Theorem 1.24 and the Upper Density Theorem 4.8.

1.5 IfU is any bounded open set inRn and ı > 0, prove there is are closed ballsB�j (xj ) �
U with �j < ı 8j , B�i (xi )\B�j (xj ) D ∅8i ¤ j , and Ln

(
U n ([1jD1B�j (xj ))

)
D 0 .
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Hint: Using the cubes 2�i ([j1; j1 C 1] � � � � � [jn; jn C 1]), j1; : : : ; jn 2 Z, i 2 ZC, decompose U as a
union [1

jD1
Cj of closed cubes Cj of diameter < ı and with pairwise disjoint interiors, and for each j select

a ball Bj � interior Cj with diamBj > edge-length of Cj =2. Then Ln(Cj n Bj ) < (1 � �n)Ln(Cj ),
�n D !n=4

n, and henceLn(U n([1
jD1

Bj )) < (1��n)Ln(U ), soLn(U n([N
jD1

Bj )) < (1��n)Ln(U )
for suitably largeN . Since U n ([N

jD1
Bj ) is open, we can repeat this process, starting with U n ([N

jD1
Bj )

in place of U.
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Here we develop the necessary further analytical background material needed for later
developments. In particular we prove some basic results about Lipschitz and BV func-
tions, and we also present the basic facts concerning C k submanifolds of Euclidean space.
We also discuss the area and co-area formulae and first and second variation formulae for
C 2 submanifolds of Euclidean space. These latter topics will be discussed in a much more
general context later.

1 Lipschitz Functions

If X is a metric space with metric d , recall that a function f W X ! R is said to be
Lipschitz if there is L <1 such that

1:1 jf (x) � f (y)j � Ld (x; y) 8x; y 2 X:

Lipf denotes the least such constant L.
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First we have the following basic extension theorem.

1.2 Theorem. IfA is a non-empty subset ofX and f W A! R is Lipschitz, then 9 f W X !
R with Lipf D Lipf , and f D f jA. Also, f can be chosen so that supX jf j D supA jf j.

Proof: With L D Lipf , we claim that

f (x) D inf
´2A

(f (´)C Ld (x; ´)); x 2 X;

has the required properties, except possibly the requirement supX jf j D supA jf j. To
check this, first note that f (x) > �1 for each x 2 X , because if x0 2 A then f (´) C
Ld (x; ´) D f (x0)C f (´) � f (x0)C Ld (x; ´) � f (x0)C L(d (x; ´) � d (x0; ´)) �

f (x0) � Ld (x; x0) by the triangle inequality. Also, if x 2 A then f (x) � f (x) D
inf´2A(f (´) � f (x) C Ld (x; ´)) � inf´2A(�Ld (x; ´) C Ld (x; ´)) D 0, so f (x) �
f (x), and of course the reverse inequality holds trivially. Hence f (x) D f (x) for
x 2 A. So f is well-defined as a map X ! R and it agrees with f on A.

For any x1; x2 2 X

f (x1) � f (x2) D sup
´22A

inf
´12A

(f (´1)C Ld (x1; ´1) � f (´2) � Ld (x2; ´2))

� sup
´22A

(Ld (x1; ´2) � Ld (x2; ´2)) � Ld (x1; x2)

and the reverse inequality holds by interchanging x1; x2.

Finally, observe that we can replace f by its truncation (f ), where

(t) D max{min{t; �};��}; � D sup
A

jf j: �

1.3 Remark: Observe that the above proof has a geometric interpretation: the graph
of the extension f is obtained by taking the “lower envelope” (inf) of all the half-cones
C´ D {(x; y) 2 X � R W y D f (´)C Ld (x; ´)}; notice that C´ is a half-cone of slope
L with vertex on the graph of the original function f .

Next we need the theorem of Rademacher concerning differentiability of Lipschitz func-
tions on Rn. (The proof given here is due to C.B. Morrey.)

1.4 Theorem (Rademacher’s theorem.) If f is Lipschitz on Rn, then f is differentiable
Ln-almost everywhere; that is, the gradient rf (x) D (D1f (x); : : : ;Dnf (x)) exists and

(�) lim
y!x

f (y) � f (x) � rf (x) � (y � x)

jy � xj
D 0

for Ln-a.e. x 2 Rn.

�1 of Chapter 2: Lipschitz Functions 45

Proof: Let v 2 Sn�1, and whenever it exists letDvf (x) denote the directional derivative
d
dt
f (xC tv)

ˇ̌
tD0

. Since
ˇ̌
f (y)�f (x)
jy�xj

ˇ̌
� Lipf for y ¤ x (so jDvf j � Lipf whenever it

exists) and we see that Dvf (x) exists precisely when the bounded functions

lim sup
t!0

f (x C tv) � f (x)

t
; lim inf

t!0

f (x C tv) � f (x)

t

coincide. Now lim supt!0
f (xCtv)�f (x)

t
D limj!1 sup0<jt j<j�1

f (xCtv)�f (x)
t

which is
Borel measurable because sup0<jt j<j�1

f (xCtv)�f (x)
t

is lower semi-continuous, and hence
Borel measurable, for each j . Similarly lim inft!0

f (xCtv)�f (x)
t

is Borel measurable,
so the set Av D {x 2 Rn W Dvf does not exist} is Borel measurable and hence Ln-
measurable. However '(t) D f (x C tv) is an absolutely continuous function of t 2 R

for any fixed x and v, and hence is differentiable for almost all t . ThusAv intersects every
line L which is parallel to v in a set of H1 measure zero and hence by Fubini’s theorem
the Borel set Av has Ln-measure zero for each v. That is, for each v 2 Sn�1,

(1) Dvf (x) exists Ln-a.e. x 2 R
n:

Now take any C1c (Rn) function � and note that for any h > 0

(2)
∫

Rn

f (x C hv) � f (x)

h
�(x) dLn(x) D �

∫
Rn

�(x) � �(x � hv)

h
f (x) dLn(x)

(by the change of variable ´ D xC hv in the first part of the integral on the left). Using
the dominated convergence theorem and (1) we then have∫

Dvf � D �

∫
fDv� D �

∫
f v � r�(3)

D �
Pn
jD1v

j

∫
fDj � D C

Pn
jD1v

j

∫
�Djf D

∫
�v � rf;

where rf is the gradient of f (i.e. rf D (D1f; : : : ;Dnf ), all integrals are with respect
to Lebesgue measure on Rn, and we have used Fubini’s theorem and the absolute conti-
nuity of f on lines to justify the integration by parts. Since � is arbitrary in (3) we then
have, for each v 2 Sn�1,

(4) rf (x); Dvf (x) exist and Dvf (x) D v � rf (x) for Ln-a.e. x 2 R
n:

Of course at such points x we also have

(5) jrf (x)j � L:

Now let v1; v2; : : : be a countable dense subset of Sn�1, and let

Ak D {x W rf (x);Dvkf (x) exist and Dvkf (x) D vk � rf (x)}:
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Then A D \1
kD1

Ak we have by (4) that

(6) Ln(R
n
n A) D 0; Dvkf (x) D vk � rf (x) 8x 2 A; k D 1; 2; : : : :

Using this, we are now going to prove that f is differentiable at each point x of A. To
see this, for any x 2 A, v 2 Sn�1 and h > 0 define

(7) Q(x; v; h) D
f (x C hv) � f (x)

h
� v � rf (x);

so by (6)
(8) lim

h!0
Q(x; vj ; h) D 0; x 2 A; j D 1; 2; : : : :

Now for any given " > 0, select P large enough so that

(9) Sn�1 � [PiD1B"(vi );

and for each i D 1; : : : ; P use (8) to choose ıi > 0 so that

(10) 0 < jhj < ıj ) jQ(x; vi ; h)j < ":

By (9), for any v 2 Sn�1 we can select i 2 {1; : : : ; P } with jv � vi j < ", and hence
by (10)

jQ(x; h; v)j � jQ(x; v; h) �Q(x; vi ; h)j C jQ(x; vi ; h)j

(11)

� jhj�1jf (x C hv) � f (x C hvi )j C jv � vi jjrf (x)j C jQ(x; vi ; h)j

< (2LC 1)" for all 0 < jhj < ı D min{ı1; : : : ; ıP }
by (5). Thus v 2 Sn�1 and 0 < jhj < ı ) jQ(x; h; v)j < (2L C 1)", hence f is
differentiable at x. �

We shall need the following C 1 approximation theorem for Lipschitz functions in our
discussion of rectifiable sets in the next chapter.

1.5 Theorem. (C 1 Approximation Theorem.) Suppose f W Rn ! R is Lipschitz. Then
for each " > 0 there is a C 1(Rn) function g with

Ln(
{
x W f (x) ¤ g(x)

}
[
{
x W rf (x) ¤ rg(x)

}
) < ":

Before we begin the proof of 1.5 we need to recall Whitney’s extension theorem for C 1

functions:

1.6 Theorem (Whitney Extension Theorem.) If C � Rn is closed and if h W C ! R

and � W C ! Rn are continuous, and if for each compactK � C

(�) lim
y!x; y2K

R(x; y) D 0 uniformly for x 2 K;
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where
R(x; y) D

h(y) � h(x) � �(x) � (y � x)

jx � yj
;

then there is a C 1 function g W Rn ! R such that g D h and rg D � on C .

(For the proof see for example [EG92] or [Fed69]; for the case n D 1, see Remark 1.7(2)
below.)

1.7 Remarks: (1) The hypothesis 1.6 (�) above cannot be weakened to the requirement
that

lim
y!x; y2C

R(x; y) D 0; x 2 C:

For instance we have the example (for n D 1) whenC D {0}[([1
kD1

{1=k}) and h(0) D
0, h(1=k) D (�1)k=k3=2, � � 0. Evidently in this casewe do have limy!x; y2C R(x; y) D
0 8x 2 C , but there is no C 1 extension becauseˇ̌

h(1=k) � h(1=(k C 1))
ˇ̌

(1=k � 1=(k C 1))
!1 as k !1:

In fact the condition 1.6 (�) is equivalent to the existence of a C 1 extension g of h with
rg D � onC . Indeed if g is such an extension and ifK � C is compact then for x; y 2 K
we have

R(x; y) D jy � xj�1(h(y) � h(x) � �(x) � (y � x) D g(y) � g(x) � rg(x) � (y � x))

D

∫ 1
0

d
dt
g(x C t(y � x)) dt � rg(x) � (y � x)=jy � xj

D

∫ 1
0
(rg(x C t(y � x)) � rg(x)) � (y � x)=jy � xj dt

and, since rg is uniformly continuous on the convex hull of K, we do indeed have 1.6
(�).

(2) In the case n D 1, the Whitney Extension Theorem 1.6 above has a simple direct
proof. Namely in this case define

R(x; y) D
h(y) � h(x)

y � x
� �(x)

and note that the hypothesis 1.6 (�) guarantees that for each compact subset K of C we
have a function "K with "K(t) # 0 as t # 0, and

jR(x; y)j � "K(jx � yj) 8x; y 2 K;

and of course since � is uniformly continuous on K we can suppose that "K is chosen so
that

(�) j�(x) � �(y)j � "K(jx � yj) 8x; y 2 K:
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Also R n C is a countable disjoint union of open intervals I1; I2; : : :. If Ij D (a; b), we
then select gj 2 C 1([a; b]) as follows

gj (a) D h(a); gj (b) D h(b); g
0
j (a) D �(a); g

0
j (b) D �(b)

and
sup
x2Ij

ˇ̌
g 0j (x) � �(a)

ˇ̌
� 2"K(b � a); K D [a � 1; b C 1] \ C:

This is possible by (�), with (x; y) D (a; b). One now defines g(x) D gj (x) 8x 2 Ij ,
j D 1; 2; : : :, and g(x) D h(x) 8x 2 C . It is then easy to check g 2 C 1(R) and g 0 D �
on C .

Proof of Theorem 1.5: By Rademacher’s Theorem rf exists and f is differentiable
Ln-a.e. on Rn. Thus withR(x; y) D jy�xj�1jf (y)�f (x)�rf (x) � (y�x)jwe have

�k(x) D sup
0<jy�xj<1=k

jR(x; y)j # 0 for Ln-a.e. x 2 R
n:

Hence by Egoroff’s Theorem (1.12 of Ch.1), applied to the finite measure annular regions
Bj (0)nBj�1(0); j D 1; 2; : : :, there is an Ln-measurable setEj � Bj (0)nBj�1(0) such
that Ln((Bj (0) n Bj�1(0)) nEj ) < "=2jC1 and �k converges uniformly to zero Ej .

By Lusin’s Theorem 1.24 of Ch.1 there is a compact set Cj � Ej such that rf jCj is
continuous and Ln(Ej n Cj ) < "=2jC1. Thus with C D [1jD1Cj we have C closed,
rf jC continuous, Ln(Rn n C ) < 2

P1
jD1 2

�j�1" D ", and �k converges uniformly to
zero on each bounded subset of C . Hence we can apply Whitney’s Theorem 1.6 with
h D f and � D rf (x) in order to give the required C 1 function g. �

Next we establish some basic facts about Hausdorff measure of Lipschitz images. In this
direction we first observe that if X; Y are metric spaces, if A � X and if f W A ! Y is
Lipschitz then, for each m � 0 (m need not be an integer),

1:8 Hm(f (A)) � (Lipf )mHm(A):

Of course this is trivial if m D 0, while if ı;m > 0 and if C1; C2; : : : are chosen with
A � [jCj and diamCj < ı for each j , then f (A) � [jf (Cj ) and diam(f (Cj )) �

(Lip f)ı < (1C Lipf )ı. Hence

Hm
(1CLipf )ı(f (A)) �

P
j!m(diamf (Cj )=2)

m
� (Lipf )m

P
j!m(diamCj =2)

m;

and taking inf over all such collections {Cj } and then letting ı # 0 we obtain 1.8 as
claimed.

The following theorem refines 1.8 in case Hm(A) < 1 and X is � -compact (i.e. in case
there are compact K1; K2; : : : with X D [jKj ).
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1.9 Theorem. Suppose X; Y are metric spaces, X is � -compact, A � X is Hm-measurable,
Hm(A) < 1 and f W A! Y is Lipschitz, and let N (f; y) D H0(f �1y) (i.e. N (f; y) is
the multiplicity function, counting the number of points, possibly1, in the preimage f �1y ).
Then

(i) f (A) isHm-measurable.

(ii) N (f; y) is anHm-measurable function of y 2 Y with∫
Y
N (f; y)dHm

� (Lipf )mHm(A):

Proof: Since A is Hm-measurable and Hm(A) < 1 we can use the regularity property
1.22(2) of Ch.1 together with the � -compactness of X to find a sequence K1; K2; : : : of
compact sets in X with Kj � A for each j andHm(A n ([jKj )) D 0. ThenHm(f (A n

([jKj ))) D 0 by 1.8, so f (A) D f (A n ([jKj )) [ ([jf (Kj )) is the union of a set
ofHm-measure zero and countably many compact (hence Borel) sets f (Kj ), so f (A) is
Hm-measurable as claimed. This completes the proof of (i).

To prove (ii) observe that, by the � -compactness ofX , for each i D 1; 2; : : :we can parti-
tion A into a disjoint union [1jD1Aij where each Aij isHm-measurable and diam(Aij ) <

1=i ; furthermore we can do this inductively, partitioning each Aik to give the new sets
AiC1j , so that each of the sets AiC1j is contained in one of the Aik . Observe that thenP
j
�
f (Aij ) is a non-negative function which is Hm-measurable by (i) above and which

increases pointwise (at every point y 2 Y ) toN (f; y), and soN (f; y) isHm-measurable.
Also, by the monotone convergence theorem,∫

Y
N (f; y) dHm(y) D lim

i!1

∫
Y

P
j
�
f (Aij ) dH

m
D lim
i!1

P
jH

m(f (Aij ));

and P
jH

m(f (Aij )) � (Lipf )m
P
jH

m(Aij ) D (Lipf )mHm(A)

by 1.8. �

Next, in the case when m 2 {1; 2; : : :}, we want to extend the inequality of Theo-
rem 1.9(ii) to the case when the k-dimensional Hausdorff measure of f �1y (instead
of H0(f �1y)) appears on the left. For this we assume for convenience that Y D Rm

(more general cases, e.g. when Y is a metric space such that each closed ball is compact,
are discussed in [Fed69, 10.2.25], but the case Y D Rm is adequate for the subsequent
development here, and furthermore the proof is relatively elementary in this case).

1.10 Theorem. Suppose X is a � -compact metric space, m 2 {1; 2; : : :}; k > 0 (k need not
be an integer), A � X is HmCk -measurable and HmCk(A) < 1, and f W A ! Rm is
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Lipschitz. ThenHk(f �1y) is an Lm-measurable function of y 2 Rm and∫
Rm

Hk(f �1y) d Lm(y) �
!m!k

!mCk
(Lipf )mHmCk(A):

In particular, for each R > 0, Hk(f �1y) � R except possibly for an Lm-measurable set E
with Lm(E) � !m!k

!mCk
(Lipf )mHmCk(A)=R.

1.11 Remark: At one step in the proof below we are going to use the upper Lebesgue
integral

R �
Rm
f dLm of a not necessarily measurable function f W Rm ! [0;1]. This is

defined by ∫ �
Rm
f dLm D inf

 �f; measurable

∫
Rm
 dLm:

Observe that then there is always a measurable function  f which attains the inf; that is,
 f � f and ∫ �

Rm
f dLm D

∫
Rm
 f dLm;

and if
R �

Rm
f dLm < 1 the function  f is unique up to change on a set of measure

zero. Notice also that if {fi} is an increasing sequence of maps Rm ! [0;1] and if
f D limi!1 fi , then limi!1

R �
Rm
fi dLm D

R �
Rm
f dLm.

Proof of 1.10: f is Lipschitz, hence uniformly continuous onA, and alsoRm is complete.
So if xk 2 A ! x 2 A then the sequence {f (xk)}kD1;2;::: is Cauchy in Rm, hence has
a limit which we denote Nf (x), and evidently Nf W A ! Rm so defined is a Lipschitz
extension of f to A with Lipf D Lipf .

For each i D 1; 2; : : : pick closed subsets Ci1; Ci2; : : : of X with diamCij < 1=i , A �
[jCij and

(1)
P
j!mCk(diamCij =2)

mCk
� HmCk

1=i
(A)C 1=i:

Next, observe that

Hk
1=i (f

�1y) �
P
j Wf �1y\Cij¤∅!k(diamCij =2)

k(2)

D
P
j Wy2f (A\Cij )

!k(diamCij =2)k

�
P
j Wy2 Nf (A\Cij )

!k(diamCij =2)k

D
P
j!k(diamCij =2)

k�
Nf ( NA\Cij )

(y):

Notice that the right side here is a Borel measurable function of y (because Nf is con-
tinuous and A \ Cij can be written as a countable union of compact sets for each j by
� -compactness of X ), but the left side need not be measurable. Nevertheless (see the
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discussion in Remark 1.11 above) (2) implies

∫ �
Rm

Hk
1=i (f

�1y) dLm(y)
(3)

�
P
j!k(diamCij =2)

kLm( Nf (A \ Cij )) �
P
j!k!m(Lipf )

m(diamCij =2)mCk

�

(!m!k
!mCk

)
(Lipf )m(HmCk

1=i
(A)C 1=i);

where we used Lm( Nf (A \ Cij )) � !m(
diam Nf (A\Cij )

2
)m (by the isodiametric inequal-

ity 2.7) � !m(Lipf )m(
diamCij

2
)m. Letting i ! 1 (and noting the discussion in Re-

mark 1.11), we conclude

(4)
∫ �

Rm
Hk(f �1y) dLm(y) �

(!m!k
!mCk

)
(Lipf )mHmCk(A):

It remains to check that Hk(f �1y) is an Hm-measurable function of y 2 Rm (which
will enable us to replace the upper integral on the left of (4) with the standard integral).
This is left as an exercise (Problem 2.8 in Ch.2 problems). �

We conclude this section with a discussion of Lipschitz domains in Rn.

1.12 Definition: A bounded open set � � Rn is said to be a Lipschitz domain if there
are constants 0 < � � � such that 8y 2 @� there is a v 2 Sn�1 and a Lipschitz function
u W B� (0) \ v? ! (��; �) such that

Uy \� D {y C x C tv W x 2 MB� (0) \ v?; t < u(x)}
Uy \ @� D {y C x C tv W x 2 MB� (0) \ v?; t D u(x)};

where Uy is the open neighborhood of y given by

Uy D {y C x C tv W x 2 MB� (0) \ v?; �� < t < �}:
Thus, roughly speaking,� is Lipschitz means that locally, near each of its points, @� can
be expressed as the graph of a Lipschitz function.

Of course the bounded open convex subsets of Rn are automatically Lipschitz domains;
more precisely, we have the following lemma:

1.13 Lemma. Suppose that � � Rn is an open, bounded and convex. Then � is Lipschitz.
In fact if 0 2 �, and R > 0; ı 2 (0; 1) are such that BıR(0) � � � BR(0), then for each
y 2 @� there is a Lipschitz function

u W MBıR=2(0) \ y
?
! (0;1) with u(0) 2 (ıR;R]; Lipu � 2=ı;

and
UCy \� D {x C ty W x 2 MBıR=2(0) \ y?; 0 < t < u(x)}
UCy \ @� D {x C ty W x 2 MBıR=2(0) \ y?; t D u(x)};
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where UCy is the open neighborhood of y defined by

UCy D {x C ty W x 2 MBıR=2(0) \ y?; t > 0}:

Proof: By scaling we can assume without loss of generality that R D 1, so Bı(0) � � �
B1(0). Let y 2 @�. By applying a suitable rotation we can also assume that y D �en

with � 2 (ı; 1]. If p W Rn D Rn�1 � R ! Rn�1 is the projection (x; t) 7! x and if
U D MBn�1

ı=2
(0) � (0;1) then evidently

(1) p(U \ @�) D MBn�1ı=2 (0):

Let (x1; t1); (x2; t2) 2 U \ @� be arbitrary with t2 � t1, and let � be a supporting
hyperplane for � at (x1; t1), so that there is an open half space H with

� D @H; Bı(0) � � � H; (x1; t1) 2 �:

Then � \ Bı(0) D ∅, so � is not a vertical hyperplane and we can write

� D {(x; t) W t D t1 C a � (x � x1)} and H D {(x; t) W t < t1 C a � (x � x1)};

where a 2 Rn�1. We must also then have jaj � 2=ı, since otherwise there is a point x 2
MBn�1
ı

(0) with a � (x � x1) D �t1 which would imply (x; 0) 2 � \ MBı(0), contradicting
� \ Bı(0) D ∅.

Finally (x2; t2) 2 H , so 0 � t2 � t1 � a � (x2 � x1) and hence

(2) 0 � t2 � t1 � 2ı
�1
jx2 � x1j:

The existence of u W MBn�1
ı=2

(0)! (0;1)with Lipu � 2=ı and MBn�1
ı=2

(0)�(0;1)\@� D

graphu is now a direct consequence of (1), (2). �

2 BV Functions

In this section we gather together the basic facts about locally BV (i.e. bounded variation)
functions which will be needed later.

First recall that if U is open in Rn and if u 2 L1loc(U ), then u is said to be in BVloc(U ) if
for each W �� U there is a constant c(W ) <1 such that

2:1

∫
W
u divg dLn � c(W ) sup jgj

for all vector functions g D (g1; : : : ; gn), gj 2 C1c (W ). Notice that this means that
the functional

∫
U
u divg extends uniquely to give a (real-valued) linear functional on
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K(U;Rn) � {continuous g D (g1; : : : ; gn) W U ! Rn with spt jgj compact} which is
bounded on

KW (U;Rn) �
{
g 2 K(U;Rn) W spt jgj � W

}
for everyW �� U . Then, by the Riesz Representation Theorem 5.14 of Ch.1, there is a
Radon measure � on U and a Borel measurable function � D (�1; : : : ; �n), j�j D 1 a.e.,
such that

2:2

∫
U
u divg dLn D

∫
U
g � � d�:

Thus, in the language of distribution theory, the generalized derivatives Dju of u are
represented by the signed measures �j d�, j D 1; : : : ; n. For this reason we often denote
the total variation measure � of Ch.1) by jDuj. In fact if u 2 W 1;1

loc (U ) we evidently do
have d� D jDuj dLn and

2:3 �j D

{
Dju

jDuj
if jDuj ¤ 0

0 if jDuj D 0:

Thus for u 2 BVloc(U ), jDuj will henceforth denote the Radon measure on U which is
uniquely characterized by

2:4 jDuj(W ) D sup
jgj�1; spt jgj��W;g Lipschitz

∫
u divg dLn; W open � U:

The left side here is more usually denoted
R
W
jDuj. Indeed if f is any non-negative

Borelmeasurable function function onU , then
R
f d jDuj is more usually denoted simply

by
R
f jDuj (�

R
f jDuj dLn in case u 2 W 1;1

loc (U )). We shall henceforth adopt this
notation.

There are a number of important results about BV functions which can be obtained
by mollification. We let '� (x) D ��n'(x=�), where ' is a symmetric mollifier (so
that ' 2 C1c (Rn), ' � 0, spt' � B1(0),

R
Rn
' D 1, and '(x) D '(�x)), and for

u 2 L1loc(U ) let u(�) D '� � ũ be the mollified functions, where we set ũ D u on
U� , ũ D 0 outside U� , U� D

{
x 2 U W dist(x; @U ) > �

}
. A key result concerning

mollification is then as follows:

2.5 Lemma. If u 2 BVloc(U ), then u(�) ! u in L1loc(U ) and
ˇ̌
Du(�)

ˇ̌
! jDuj in the

sense of Radon measures in U (see 5.15 of Ch.1) as � # 0.

The convergence of u(�) to u in L1loc(U ) is standard. Thus it remains to prove

(1) lim
�#0

∫
f
ˇ̌
Du(�)

ˇ̌
D

∫
f jDuj
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for each f 2 C 0c (U ), f � 0. In fact by definition of jDuj it is rather easy to prove that

(2)
∫
f jDuj � lim inf

�#0

∫
f
ˇ̌
Du(�)

ˇ̌
;

so we only have to check

(3) lim sup
�#0

∫
f
ˇ̌
Du(�)

ˇ̌
�

∫
f jDuj

for each f 2 C 0c (U ), f � 0.

This is achieved as follows: First note that

(4)
∫
f
ˇ̌
Du(�)

ˇ̌
D sup
jgj�f;g smooth

∫
g � ru(�) dLn:

On the other hand for fixed g with g smooth and jgj � f , and for � < dist{sptf; @U },
we have ∫

g � ru(�) dLn D �
∫
u(�) divg dLn

D �

∫
'� � u divg dLn

D �

∫
u('� � divg) dLn

D �

∫
u div('� � g) dLn:

On the other hand by definition of jDuj, the right side here is

�

∫
W�

(f C "(�))jDuj

where W� D
{
x 2 U W dist(x; sptf ) < �

}
, becauseˇ̌

'� � g
ˇ̌
�
ˇ̌
('� � g

1; : : : ; '� � g
n)
ˇ̌

� '� � jgj � '� � f

and because '� � f ! f uniformly in W�0 as � # 0, where �0 < dist(sptf; @U ). Thus
(3) follows from (4). �

2.6 Theorem (Compactness Theorem for BV Functions.) If
{
uk
}
is a sequence of

BVloc(U ) functions satisfying

sup
k�1

(kukkL1(W ) C

∫
W

ˇ̌
Duk

ˇ̌
) <1
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for each W �� U , then there is a subsequence
{
uk 0
}
�
{
uk
}
and a BVloc(U ) function u

such that uk 0 ! u in L1loc(U ) and∫
W
jDuj � lim inf

∫
W

ˇ̌
Duk 0

ˇ̌
8W �� U:

Proof: By virtue of the previous lemma, in order to prove uk 0 ! u in L1loc(U ) for some
subsequence

{
uk 0
}
, it is enough to prove that the sets{

u 2 C1(U ) W
∫
W
(juj C jDuj) dLn � c(W )

}
; W �� U;

(for given constants c(W ) <1) are precompact inL1loc(U ). For the simple proof of this
(involving mollification and Arzela’s theorem) see for example [GT01, Theorem 7.22].

Finally the fact that
R
W
jDuj � lim inf

R
W

ˇ̌
Duk 0

ˇ̌
is a direct consequence of the definition

of jDuj,
ˇ̌
Duk 0

ˇ̌
. �

Next we have the Poincaré inequality for BV functions.

2.7 Lemma. Suppose U is bounded, open and convex, let ı 2 (0; 1) be such that there is
R > 0 and � 2 U with BıR(�) � U � BR(�), and let u 2 BV (U ). Then for any
� 2 (0; 1) and any ˇ 2 R with

(�) min
{
Ln
{
x 2 U W u(x) � ˇ

}
; Ln

{
x 2 U W u(x) � ˇ

}}
� �Ln(U ):

we have ∫
U
ju � ˇj dLn � CR

∫
U
jDuj;

where C D C (�; ı; n).

Proof: By rescaling x 7! R�1(x � �) we can without loss of generality assume R D 1

and � D 0.

Let ˇ, � be as in 2.7 (�) and choose convex W � U such that

(�)
∫
W
ju � ˇj dLn � 1

2

∫
U
ju � ˇj dLn

and such that 2.7 (�) holds with W in place of U and �=2 in place � . (For example we
may take W D

{
x 2 U W dist(x; @U ) > �

}
with � small.)

Letting u� denote the mollified functions corresponding to u, note that for sufficiently
small � we must have 2.7 (�) with u� in place of u, �=4 in place of � , and W in place of
U . Hence by the usual Poincaré inequality for smooth functions (see e.g. [GT01]) we
have, with suitable ˇ(�) ! ˇ in place of ˇ,∫

W

ˇ̌
u� � ˇ

(�)
ˇ̌
dLn � c

∫
W

ˇ̌
Du�

ˇ̌
dLn;
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c D c(n; �; ı), for all sufficiently small � . The required inequality now follows by letting
� # 0 and using (�) above together with 2.5. �

2.8 Lemma. Suppose U; ı; �; R are as in 2.7, u 2 BV (Rn) with sptu � U . Then∫
Rn
jDuj

(
D

∫
U
jDuj

)
� C

(∫
U
jDuj CR�1

∫
U
juj dLn

)
;

where C D C (ı; n).

2.9 Remark: Note that by combining this with the Poincaré inequality in 2.7, we con-
clude

R�1
∫

Rn

ˇ̌
u � ˇ�U

ˇ̌
C

∫
Rn

ˇ̌
D(u � ˇ�U )

ˇ̌
� C

∫
U
jDuj;

C D C (�; ı), whenever ˇ is as in 2.7 (�).

Proof of 2.8: As in the proof of 2.7, we can assume without loss of generality thatR D 1
and � D 0.

Let d (x) D dist(x; @U ); x 2 Rn. Observe x; ´ 2 U with d (x) � d (´)) d (xC t(´�

x)) � d (x)8t 2 [0; 1] (otherwise mint2[0;1] d (x C t(´ � x)) < min{d (x); d (´)},
which evidently contradicts the convexity of U ). Thus d (x C t(´� x))j[0; 1] attains its
minimum value d (x) at t D 0, and hence

(1) (´ � x) �Dd (x) D
d

dt
d (x C t(´ � x))

ˇ̌
tD0
� 0

for all pairs x; ´ 2 U such that d is differentiable at x and d (x) � d (´). In particular
since Bı(0) � U (recall we assume BıR(�) � U � BR(�) with R D 1 and � D 0), for
any � > 0 such that BıC� (0) � U and any x 2 U with d (x) < � and d differentiable at
x we can take ´ D �ıDd (x) in (1) (because then ´ 2 Bı(0) and so d (´) > � > d (x)).
Hence (�x � ıDd (x)) �Dd (x) � 0, and so

(2) �x �Dd (x) � ı; a.e. x 2 U with d (x) < �:

Then we let � W R ! [0; 1] be an increasing C 1 function with � (t) � 0 for t � �=2
and (t) � 1 for t � � , and set

(3) '� D � ı d

Then by (2) and (3) we have, for � < dist(Bı(0); @U ),

(4) ı
ˇ̌
D'� (x)

ˇ̌
� �x �D'� (x); x 2 U :

Now by definition of jDwj for BVloc(Rn) functions w, we have

(5)
∫

Rn

ˇ̌
D('�u)

ˇ̌
�

∫
Rn

ˇ̌
D'�

ˇ̌
juj dLn C

∫
Rn
'� jDuj
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and by (4)

ı

∫
Rn

ˇ̌
D'�

ˇ̌
juj dLn � �

∫
x �D'� juj dLn(6)

D �

∫
juj div(x'� ) dLn C n

∫
juj'� dLn

�

∫
U
jDjujj C n

∫
Rn
juj dLn (by definition of jDjujj)

�

∫
U
jDuj C n

∫
Rn
juj dLn

(because jDjujj � jDuj by virtue of 2.5 and the fact that jDjujj � lim inf�#0
ˇ̌
Dju� j

ˇ̌
).

Finally, to complete the proof of 2.8, we note that (using the definition of jDwj for the
BVloc(Rn) functions w D u, '�u, together with the fact that '�u ! u in L1(Rn) as
� # 0) ∫

Rn
jDuj � lim inf

�#0

∫
Rn

ˇ̌
D('�u)

ˇ̌
:

Then 2.8 follows from (5), (6). �

3 The Area Formula

The area formula, which we establish in this section, generalizes the classical formula

3:1 Ln(�(A)) D j det � jLn(A)

established in Corollary 1.20 of Ch.1, valid for any linear transformation � W Rn ! Rn

and any subset A � Rn.

In the statement below we assume f W U ! Rm (U � Rn open) is locally Lipschitz (i.e.
Lispchitz on each ball B�(y) � U ), with n � m, and we define

3:2 Jf (x) D
q
det
(
(dxf )�(dxf )

)
D

q
det
(
Dif (x) �Djf (x)

)
at all points where this exists (which is for Ln-a.e. x 2 U by virtue of Rademacher’s
Theorem 1.4).

3.3 Theorem (Area Formula.) Suppose U is open in Rn and f W U ! Rm is locally
Lipschitz, with n � m, and Jf is as in 3.2. Then∫

A
Jf dLn D

Z
Rm

H0(A \ f �1y) dHn(y)

for each Lebesgue measurable A � U . In particular∫
A
JF dLn D Hn(f (A)) provided f jA is 1:1.
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3.4 Remarks: (1) Observe that H0(A \ f �1y) is by definition just the “multiplicity
function of f jA”—i.e. the number of points (possibly 1) in {x 2 A W f (x) D y}.
Part of the conclusion of the above theorem is that H0(A\ f �1y) is an Hn-measurable
function of y.

(2) If h is a non-negative Ln-measurable function on U then we have the more general
formula ∫

U
hJf dLn D

∫
Rm

∫
f �1y

h(x) dH0(x) dHn(y)

D

∫
Rm

(P
x2f �1yh(x)

)
dHn(y):

This clearly follows from the above theorem by writing h as the pointwise limit (every-
where) of an increasing sequence of non-negative (real-valued) simple functions.

Proof of Theorem 3.3: Since both sides of the identity are additive with respect to pair-
wise disjoint unions, it suffices to give the proof for the case when f is Lipschitz (rather
than merely locally Lipschitz) and Ln(A) <1.

We first consider Case (i):

A � {x 2 U W f is differentiable at x and Jf (x) > 0}:
Then for each x 2 A and each " 2 (0; 1), dxf exists, kdxf k � Lipf andminv2Sn�1 jdxf (v)j >
0, and there is ıx D ıx(") > 0 such that jf (´)�f (x)�dxf (´�x)j � 1

2
"jdxf (´�x)j

for all ´ 2 Bıx (x), hence in particular

(1) (1 � 1
2
")jdxf (´ � x)j � jf (x) � f (´)j � (1C 1

2
")jdxf (´ � x)j 8´ 2 Bıx (x):

Observe also the general fact that if � W Rn ! Rm is a rank n linear map, then �� ı � is a
positive definite symmetric linear map Rn ! Rn so by the Spectral Theorem there is an
orthogonal transformation q W Rn ! Rn with

(2) q� ı �� ı � ı q D ƒ;

whereƒ is the diagonal transformationƒej D �j ej , j D 1; : : : ; n, with 0 < �1 � �2 �
� � � � �n the eigenvalues of �� ı �. Thus

(3) �� ı � D �2;

where � W Rn ! Rn is the symmetric linear transformation given by

(4) � D q ı
p
ƒ ı q�;

and hence by (3)

(5) j�(v)j D j�(v)j 8v 2 R
n and j det � j D

q
det(�� ı �):
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Let {�j W j D 1; 2; : : :} be a dense set of rank n linear maps Rn ! Rm. Then, since
minv2Sn�1 jdxf (v)j > 0 for x 2 A, (1) implies that for each x 2 A there is some j with

(1 � ")j�j (´ � x)j � jf (x) � f (´)j � (1C ")j�j (´ � x)j 8´ 2 Bıx (x);

where ıx is as in (1), and

(1 � ")
q
det(��j ı �j ) �

q
det((dxf )� ı (dxf )) D Jf (x) � (1C ")

q
det(��j ı �j );

and, by (3) and (5), for each j there is a symmetric rank n linearmap �j with �2j D �
�
j ı�j ,

and hence
j�j (v)j D j�j (v)j 8v 2 R

n and j det �j j D
q
det(��j ı �j ):

Thus, with such �j , for each x 2 A there is j with

(1 � ")j�j (´ � x)j � jf (x) � f (´)j � (1C ")j�j (´ � x)j 8´ 2 Bıx (x) and(6)

(1 � ")j det �j j � Jf (x) � (1C ")j det �j j:(7)

Thus we can decompose A into a disjoint union [jAj of Hn-measurable sets Aj such
that (6), (7) hold for each x 2 Aj , and for each j we let Aj i D {x 2 Aj W ıx � 1=i}; i D
1; 2; : : :. Observe that then, by (6),

(1 � ")j�j (x1 � x2)j � jf (x1) � f (x2)j � (1C ")j�j (x1 � x2)j

for each x1; x2 2 Aj i such that jx1 � x2j < 1=i , so we can select pairwise disjoint Hn-
measurable sets Aj i` � Aj i with diamAj i` < 1=i for each ` and [`Aj i` D Aj i , giving

Lip(f ı��1j j�j (Aj i`)) � (1C"); Lip
(
(f ı��1j j�j (Aj i`))

�1
)
� 1=(1�"); ` D 1; 2; : : : :

Since f (Aj i`) D (f ı ��1j )(�j (Aj i`)), we can then use 1.8 to yield

(1 � ")nj det �j jLn(Aj i`) D (1 � ")nHn(�j (Aj i`))(8)

� Hn(f (Aj i`)) � (1C ")nHn(�j (Aj i`)) D (1C ")nj det �j jLn(Aj i`):

Hence, by (7),

(1 � ")nC1
∫
Aji`

Jf (x) dLn(x) � Hn(f (Aj i`)) � (1C ")nC1
∫
Aji`

Jf (x) dLn(x);

and, since P
`�f (Aji`)(y) D H0(Aj i \ f

�1y); y 2 R
m;

by summing on ` we obtain

(1 � ")nC1
∫
Aji

Jf dLn �
Z

Rm
H0
(
Aj i \ f

�1y
)
dHn(y) � (1C ")nC1

∫
Aji

Jf dLn:
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Then we get the Area Formula in Case (i) by letting i ! 1 (using Aj i � Aj iC1 and
Aj D [iAj i ), then summing over j , and finally letting " # 0.

Case (ii): A � {x 2 U W f is differentiable at x and Jf (x) D 0}:

In this case we define F W Rn ! RmCn by

F (x) D (f (x); "x):

F is then a 1:1 rank n map, so by Case (i)

(9) Hn(F (A)) D
∫

RmCn
JF (x) dHn(x):

Now p ı F D f where p is the projection (x; y) 2 Rn � Rm 7! x 2 Rn, and jp(´1) �
p(´2)j � j´1 � ´2j, so, using 1.8 with f D p,

(10) Hn(f (A)) D Hn(p(F (A))) � Hn(F (A)):

Also by direct computation we have

JF (x) D
q
det
(
Dif (x) �Djf (x)C "2ıij

)
D Jf (x)CE(x); 0 � E(x) � C"2;

where C D C (n;m;Lipf ). But for x 2 A we have Jf (x) D 0, so using (9), (10) and
letting " # 0 we obtain the Area Formula (with both sides 0) in Case (ii).

Case (iii): A � {x 2 U W f is not differentiable at x}:
By Rademacher’s Theorem 1.4,Hn(A) D 0 and, since f is Lipschitz, in this case we can
apply 1.8 to concludeHn(f (A)) D 0, hence the Area Formula trivially holds, with both
sides 0, in Case (iii). �

3.5 Examples: (1) Space curves: Using the above area formula we first check that H1-
measure agrees with the usual arc-length measure for C 1 curves in Rn. In fact if  W
[a; b] ! Rn is a 1:1 C 1 map then the Jacobian J is just

p
j P j2 D j P j, so that the Area

Formula 3.3 gives
H1((A)) D

∫
A
j P j dL1

as required.

(2) Submanifolds of RnCk : IfM is any n-dimensional embeddedC 1 submanifold of RnCk

(see next section for a systematic discussion of such submanifolds), we want to check that
Hn M (where Hn is n-dimensional Hausdorff measure in RnCk ) agrees with the usual
n-dimensional volume measure onM , i.e. that if vol denotes the volume measure (in the
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usual sense of Riemannian geometry) on the submanifold M , and if Hn is Hausdorff
measure on the ambient space RnCk , then for Borel sets A � M (or more generally for
Hn-measurable sets A �M ) we have

(�) vol(A) D Hn(A):

It is enough to check this in a region where a local coordinate representation (see the dis-
cussion in �4 below) applies, because we can decompose the Borel set A into a countable
pairwise disjoint union of Borel setsAj , each of which is contained in the image of a local
coordinate representation. Thus we suppose U is open in RnCk and that there is a local
representation  forM such that

 W V ! R
nCk is C 1;  (V ) DM \W and A �M \W;

where W is open in RnCk and let A0 D  �1(A) � V be the preimage (of course A0 is
then also Borel). By the Area Formula 3.3

Hn(A) D
∫
A0

J dLn;

where J D
p
det(Di �Dj ). Now notice on the other hand that gij D Di �Dj is

the metric forM (relative to the local coordinates in V ) in the usual sense of Riemannian
geometry, so this says Hn(A) D

R
A0

p
g dLn, where g D det(gij ), and the right side

here is indeed the usual definition of vol(A) in the sense of Riemannian geometry, so (�)
is established.

(3) n-dimensional graphs in RnC1: If � is a domain in Rn and if M D graph u, where
u 2 C 1(�), thenM is globally represented by the “graph map”  W x 7! (x; u(x)); in
this case

J (x) �
q
det
(
Di �Dj 

)
�

q
det(ıij CDiuDju) D

p
1C jDuj2;

so the Area Formula 3.3 in this case gives Hn(M ) D
∫
�

p
1C jDuj2 dx.

4 Submanifolds of RnCk

LetM denote an n-dimensional embedded C q submanifold of RnCk , 0 � k, r � 1. By
this we meanM is a subset of RnCk such that for each x 2M there are open sets V � Rn,
W � RnCk , and a 1:1 C q map  W V ! W with

4:1 x 2  (V ) D W \M;

whereD (�)(D (Di j (�))iD1;:::;n; jD1;:::;nCk) has rank n at each point � 2 V , and the
inverse map ' W  (�) 2 W \M 7! � 2 V is continuous. Such a map  will be referred
to as “a local coordinate representation ofM near x.”
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4.2 Remarks: (1) The condition in the above definition that the inverse map ' is contin-
uous allows examples likeM D {(x; sin 1=x W x > 0)} � R2 as C1 submanifolds, but
eliminates examples such asM D ({0} � (�1; 1)) [ {(x; sin 1=x W x > 0)}. In fact the
above definition (which requires that the local representation  is a homeomorphism of
V onto the imageM \W ) ensures that  is an open map onto its image; that is

V0 � V; V0 open ) 9 an open W0 � W with  (V0) DM \W0:

(2) If the notation is as in the 4.1 and y0 2 M \ W; x0 2 V with y0 D  (x0),
then since  has rank n we can select 1 � `1 < `2 < � � � < `n � n C k with
det(Di j̀ (x0)) ¤ 0, and so, by the inverse function theorem, there is ıx0 > 0 such
that, with � W (y1; : : : ; ynCk) 7! (y`1 ; : : : ; y`n), the map � ı  j MBıx0 (x0) is a 1:1 C

q

map onto an open set U0 � Rn such that the inverse (� ı  )�1 W U0 ! MBıx0 (x0)

is also C q . Observe that then 'y0 D (� ı  )�1 ı � W ��1U0 ! MBı0(x0) is also a
C q map and it agrees with ' (the inverse of  ) on  ( MBı0(x0)), because 'y0( (x)) D
(� ı )�1 ı(� ı )(x) D x for x 2 MBı0(x0). So 'y0 is a C

q extension of 'j ( MBıx0 (x0))
to the open set ��1(U0).

(3) Local graphical representations forM : Using the notation of Remark (2) above, in the
special case when j̀ D j; j D 1; : : : ; n, so � is just the projection of y D (y1; : : : ; ynCk)

onto the first n coordinates (y1; : : : ; yn), we have  ı (� ı  )�1(x) D (x; u(x)), with
u D (u1; : : : ; uk), uj D  nCj ı (� ı  )�1 W U0 ! R, j D 1; : : : ; k, and

 ( MBıx0 (x0)) D graphu D {(x; u(x)) W x 2 U0}:

Also, by Remark (1) above,  ( MBıx0 (x0)) D M \ W0 for some open W0, so then the
“graph map” G W x 7! (x; u(x)); x 2 U0, defines an alternate local representation for
M near y0. Without the assumption j̀ D j; j D 1; : : : ; n, this of course remains true
modulo composition with a permutation map (permuting the coordinates x1; : : : ; xnCk

in RnCk so that the coordinates x`1 ; : : : ; x`n are moved to the first n slots), so for each
y0 2M there is an open W0 with y0 2 W0 and

(�) M \W0 D Q(graphu)

for some orthogonal transformationQ (whereQ is in fact just a permutation of coordi-
nates in RnCk ) and for some C q vector function u D (u1; : : : ; uk) defined on an open
set U0 � Rn. ThusM is a C q embedded submanifold of RnCk if and only ifM is locally
representable, near each of its points, as the graph of a C q function u; i.e. each y0 2 M
lies on some open W0 such that (�) holds, with u D (u1; : : : ; uk) a C q vector function
on some open U0 � Rn.

If  W V ! W is as in 4.1 above, if A �M \W and h W A! [0;1) areHn-measurable,
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then we have the formula

4:3

∫
A
h dHn

D

∫
 �1(A)

h ı  J dLn;

where J D
p
det(Di �Dj ), which is checked using approximation of h by simple

functions and using the special case of the area formula in Example 3.5(2) above.

Then if, for j D 1; 2, Mj is a C q submanifold of dimension nj in RnjCkj with local
representation j W Vj ! RnjCkj such that (as in 4.1)  j (Vj ) DMj \Wj , thenM1�M2

is a C q submanifold of dimension n D n1 C n2 in RnCk (k D k1 C k2 ) with local
representation

‰ W (x; y) 2 V1 � V2 7! ( 1(x);  2(y)) 2 (M1 �M2) \ (W1 �W2) � R
nCk ;

and evidently

4:4 J‰(x; y) D J 1(x)J 2(y); (x; y) 2 V1 � V2;

so by 4.3 and Fubini’s theorem we see that

4:5 Hn(A1 � A2) D Hn1(A1)Hn2(A2)

for any Hnj -measurable subsets Aj �Mj ; j D 1; 2. In particular

4:6 Hn(M1 �M2) D Hn1(M1)Hn2(M2):

4.7 Definition: The tangent space TxM ofM at x 2M is the subspace ofRnCk consisting
of those � 2 RnCk such that � D P(0) for some C 1 curve  W (�"; ")! RnCk (for some
" > 0) with 

(
(�"; ")

)
�M , (0) D x.

Note that

4:8 TxM is a linear subspace of R
nCk with basis D1 (�); : : :Dn (�);

where  is any local representation as in 4.1 above with  (�) D x. Indeed if  W
(�"; ") ! RnCk is C 1 with ((�"; ")) � M and (0) D x then for all sufficiently
small t we have (t) D  ('((t))), where ' is the inverse of  on M \ W . With 'x
the C q extension of ' to a neighborhood of x defined in Remark 4.2(2) above, we thus
have (t) D  ('x((t))) for sufficiently small t and hence by the chain rule  0(0) DPn
jD1 c

jDj (�), where (c1; : : : ; cn) D d
dt
'x((t))jtD0. SoTxM � span{D1 (�); : : : ;Dn (�)},

and of course the reverse inclusion is trivial because
Pn
jD1 c

jDj (�) D
d
dt
 (�Ctc)jtD0

for any c D (c1; : : : ; cn) 2 Rn.

4.9 Definition: A function f W M ! RnCk (k � 0) is said to be C q on M if f is the
restriction to M of a C q function f W U ! RnCk , where U is an open set in RnCk

containingM .

We next want to discuss some differentiability properties for locally Lipschitz maps f W
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M ! RP with P � 1. Thus for each x 2M we assume there are �;L > 0 with

4:10 jf (y) � f (´)j � Ljy � ´j y; ´ 2M \ B�(x):

First we discuss directional derivatives of such an f : For given � 2 TxM the directional
derivative D�f 2 RP is defined by

4:11 D�f D
d
dt
f ((t))

ˇ̌
tD0

for any C 1 curve  W (�1; 1) ! M with (0) D x, P(0) D � , whenever this derivative
exists. Of course it is easy to see that existence and the actual value is independent of the
particular curve  we use to represent � because if ̃ is another such curve then, by 4.10,

4:12 lim
t#0

t�1jf ((t)) � f (̃(t))j � L lim
t#0

t�1j(t) � ̃(t)j D 0

because (0) D ̃(0)(D x) and  0(0) D ̃ 0(0)(D �).

We claim that in fact there is a set E of Hn-measure zero such that 8x 2M nE

4:13 D�f (x) exists and the map � 7! D�f (x) is a linear map TxM ! R
P ;

so we can define the induced linear map dMx f W TxM ! RP by

4:14 dMx f (v) D Dvf (x); v 2 TxM:

Indeed 4.13 is a consequence of the Rademacher theorem in Rn proved in 1.4, as follows:
Let x 2 M and let  W V ! RnCk be C 1 with x 2  (V ) D M \ W as in 4.1. Then
according to 1.4 there is E0 � V with Hn(E0) D 0 such that f ı  is differentiable
at every point of V n E0 and in particular for every � 2 Rn and x 2 V n E0 we have
D�(f ı  )(x) D

d
dt
f ( (x C t�))jtD0 exists and is linear in �. But (t) D  (x C t�)

is a curve as in 4.11 with � D
Pn
jD1 �jDj (x), so in fact this says that the directional

derivatives

4:15 DPn
jD1 �jDj (�)f (x) exist and D D�(f ı  )(�)

and that furthermore this is linear in � for all � 2 V n E0 and x D  (�) 2 W \M n

 (E0). Hence, since D1 (�); : : : ;Dn n(�) is a basis for T (�)M by 4.8, this says that
indeed 4.13 does hold at points of W \ M n  (E0), and of course  (E0) is a set of
Hn-measure zero by 1.8 because  is locally Lipschitz in V .

Notice also that if in fact f is the restriction of a locally Lipschitz function Nf defined in
an open set U �M then (by the same argument as in 4.12 with ̃(t) D xC t� ) we have
(for each given x 2M and � 2 TxM )

4:16 D�f (x) exists ” d
dt
Nf (x C t�)jtD0 exists,
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and in that case the two quantities are equal; furthermore (by 4.13) for Hn-a.e. x 2 M ,
D�f (x) does exist for each � 2 TxM and it is a linear function of � 2 TxM .

Taking the particular choice � D ei , x D  (�) 2 W \M n  (E0) in 4.15, and letting
�1; : : : ; �n be an orthonormal basis for TxM , so that

Di (x) D
Pn
`D1Di (x) � �` �`;

we then have

Di (f ı  )(x) D
Pn
`D1Di (�) � �`D�`f (x); i D 1; : : : ; n:

Thus

Di (f ı )(x)�Dj (f ı )(x) D
Pn
`;mD1(Di (x)��`)(Dj (x)��m)D�`f (x)�D�mf (x):

Since detAB D detA detB for square matrices A;B , we thus have

Jf ı (x) D
ˇ̌
det
(
D` (x) � �m

)ˇ̌q
det
(
D�`f (x) �D�mf (x)

)
4.17

D J (x)J
M
f (x)

with x D  (�), where J D
p
det(Di �Dj ) (in accordance with 3.2) and

4:18 JMf (x) D
q
det
(
D�`f (x) �D�mf (x)

)
;

with �1; : : : ; �n any orthonormal basis for TxM ; JM
f

is the “Jacobian of f W M ! Rm”
(which is consistent with the terminology introduced in �3 in the special case when k D 0
andM is an open subset of Rn ).

Using 4.17 we now want to discuss the natural extension of the area formula 3.3 to the
case when f W M ! Rm is locally Lipschitz and m � n. We claim that in this case we
have the general area formula

4:19

∫
f (A)

H0(A \ f �1y) dHn(y) D
∫
A
JMf dHn:

Since both sides here are additive with respect to disjoint unions, it is evidently enough
to check this under the assumption that A D  (A0) with  W V ! RnCk a local
representation forM as in 4.1 and A0 � V an Hn-measurable set. Since f ı  is locally
Lipschitz on V we can use the Area Formula 3.3 with f ı in place of f and A0 in place



66 Chapter 2: Some Further Preliminaries from Analysis

of A to give∫
f (A)

H0(A \ f �1y) dHn(y) D
∫
f ı (A0)

H0(A0 \  
�1f �1y) dHn(y)

D

Z
A0

Jf ı (x) dHn(x)

D

Z
A0

JMf ( (x))J (x) dHn(x) (by 4.17)

D

Z
A

JMf (y) dHn(y);

where at the last step we used Remark 3.4(2) with  in place of f and with h D JM
f
ı .

Thus 4.19 is proved.

More generally (by approximating h by an increasing sequence of non-negative simple
functions and using 4.19),

4:20

∫
f (M )

(P
x2f �1(y)h(x)

)
dHn(y) D

∫
M
h(x)JMf (x) dHn(x)

for any non-negative Hn measurable function h onM .

We can also (for any m � 1) define the induced linear map df Mx W TxM ! Rm just as
we did in Rn by

4:21 df Mx (�) D D�f (x); � 2 TxM:

In case f is real-valued (i.e. m D 1) then we define the gradient rMf of f by

4:22 r
Mf (x) D

Pn
jD1(D�j f (x))�j ; x 2M;

where �1; : : : ; �n is any orthonormal basis for TxM . If we letrMj f D ej �r
Mf (ej D j -

th standard basis vector in RnCk , j D 1; : : : ; nC k ) then

4:23 r
Mf (x) D

PnCk
jD1r

M
j f (x)ej :

If f is the restriction toM of a C 1 function f on U , where U is an open subset of RnCk

containingM , then

r
Mf (x) D pTxM (rRnCkf (x)); x 2M;

where rRnCkf is the usual RnCk gradient (D1f ; : : : ;DnCkf ) on U . Indeed, with
�1; : : : ; �n any orthonormal basis forTxM , pTxM (rRnCkf (x)) D

Pn
iD1�i �rRnCkf (x) �i DPn

iD1D�if (x)�i D
Pn
iD1D�if (x)�i D r

Mf (x).
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Now given a vector function (“vector field”) X D (X1; : : : ; XnCk) W M ! RnCk with
each component Xj a Lipschitz function onM , we define

4:24 divM X D
PnCk
jD1r

M
j Xj

onM . (Notice that we do not require Xx 2 TxM .) Then, at x 2M , we have

divM X D
PnCk
jD1 ej � (r

MXj )4.25

D
PnCk
jD1 ej � (

Pn
iD1(D�iX

j )�i );

so that (since X D
PnCk
jD1X

j ej )

4:26 divM X D
Pn
iD1�i �D�iX;

where �1; : : : ; �n is any orthonormal basis for TxM .

Recall that the classicalDivergence Theorem of Riemannian geometry states that ifM is an
n-dimensional C 2 submanifold of RnCk and if X is a C 1 tangent vector field onM with
compact support inM (i.e. X(y) 2 TyM for each y 2 M and {y 2 M W X(y) ¤ 0} is
contained in a compact subset K ofM ), then

4:27

∫
M

divM X dHn
D 0:

This can be proved using local coordinates and a partition of unity, but to better motivate
our later discussion of first variation of varifolds we give a more intrinsic proof as follows:

Proof of 4.27: Let K be a compact subset of M containing {y 2 M W X(y) ¤ 0} and
let '(t; x); (t; x) 2 (�"; ") �M , be the geometric flow onM generated by the tangent
vector field X . Thus {

@'(t; x)=@t D X('(t; x))

'(0; x) D x

By ODE theory (see e.g. [HL]) ' and its velocity @'(t; x)=@t exist and are C 1 on
(�"; ") � M for small enough ". Furthermore if 't (x) D '(t; x), then, for jt j < ı,
ı > 0 sufficiently small, 't is a C 1 diffeomorphism ofM ontoM and 't the identity on
M n K. So in particular 't (M \ K) D M \ K for all sufficiently small jt j, and hence
trivially

(�) d
dt
Hn
(
't (M \K)

)
jtD0 D 0:

But on the other hand the area formula gives

Hn
(
't (M \K)

)
D

∫
M\K

J't dHn;
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where J't (y) D
q
det(D�i't (y) �D�j 't (y)), and, since '(t; y) D y C t(X(y) C

E(t; y)) with supy2K(jE(t; y)j C sup�2TyM; j� jD1 jD�E(t; y)j) ! 0 as t ! 0, we have
D�i'(y) D �i C t(D�iX(y)CEi (t; y)), where supy2K jEi (t; y)j ! 0 as t # 0. Hence

J't D
q
det(ıij C t(�i �D�jX(y)C �j �D�iX(y)CEij (t; y));

where supy2K jEij (t; y)j ! 0 as t ! 0. Using the formula det(ICtA) D 1Ct traceAC
O(t2) as t ! 0, we thus conclude

d
dt
J't (y)jtD0 D

Pn
iD1�i �D�iX(y) D divM X(y):

Hence by (�) we have 4.27 as claimed. �

4.28 Remarks: (1) M need not be orientable in the above discussion.

(2) If we drop the condition that {y 2M W X(y) ¤ 0} is contained in a compact subset
of M , and instead assume M (the closure of M in RnCk ) is a compact manifold with
C 1 boundary @M D M nM and if we let X be any C 1 vector field on M , still with
X(y) 2 TyM for each y 2M , then in place of 4.27 we get

(�)
∫
M

divM X dHn
D �

∫
@M
X � � dHn�1;

where � is the inward pointing unit co-normal of @M ; that is, j�j D 1, � is normal to
@M , tangent toM , and points intoM at each point of @M .

(3) In general the closureM ofM will not be a nice manifold with boundary; indeed it
can certainly happen thatHn(M nM ) > 0. (For example considerM D {(x; y) 2 R2 W

x > 0; y D sin(1=x)}, in which caseM is a C1 1-dimensional embedded submanifold
of R2 in the sense of the above definitions, but M nM is the interval {0} � [�1; 1] on
the y-coordinate axis.) Nevertheless, as we have shown above, 4.27 does hold provided
{y 2M W X(y) ¤ 0} is contained in a compact subset ofM and Xy 2 TyM 8y 2M .

In case M is at least C 2 we define the second fundamental form of M at y to be the
bilinear form

4:29 By W TyM � TyM ! (TyM )?

such that

4:30 By(�; �) D �
Pk
˛D1 (� �D��

˛)�˛
ˇ̌
y
; �; � 2 TyM;

where �1; : : : ; �k are (locally defined, near y ) vector fields with �˛(´) � �ˇ (´) D ı˛ˇ and
�˛(´) 2 (T´M )? for every ´ in some neighborhood of y. Of course such �˛ exist in a
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neighborhood of any given y0 2 M , because we can use a local representation  W V !
Rn for M with y0 D  (x0) for some x0 2 V , and then choose vectors �1; : : : ; �k 2
RnCk such that D1 (x0); : : : ;Dn n(x0); �1; : : : ; �k are linearly independent. Then,
for ı > 0 small enough,D1 (x); : : : ;Dn n(x); �1; : : : ; �k are still linearly independent
vectors in RnCk for all x 2 MBı(x0), so the Gram-Schmidt orthogonalization process gives
orthonormalC 1 vector fields �1(y); : : : ; �nCk(y) onM\ ( MBı(x0)) (where y D  (x))
such that �1(y); : : : ; �n(y) is an orthonormal basis for TyM and �j (y) D �nCj (y); j D
1; : : : ; k, is an orthonormal basis for (TyM )? for each y 2  ( MBı(x0)).

The geometric significance ofB is as follows: If � 2 TyM with j� j D 1 and  W (�"; ")!
RnCk (for some " > 0) is a C 2 curve with (0) D y, (�"; ") �M , and P(0) D � , then

4:31 By(�; �) D ( R(0))?;

which is just the normal component (relative to M ) of the curvature of  at 0,  being
considered as an ordinary space-curve in RnCk . (Thus By(�; �) measures the “normal
curvature” ofM in the direction � .) To check this, simply note that �˛((t)) � P(t) � 0,
jt j < 1, because P(t) 2 T(t)M and �˛((t)) 2 (T(t)M )?. Differentiating this relation
with respect to t , we get (after setting t D 0)

�˛(y) � R(0) D �(D��
˛) � �

and hence (multiplying by �˛(y) and summing over ˛) we have

( R(0))? D �
Pk
˛D1(� �D��

˛)�˛(y)

D By(�; �)

as required. (Note that the parameter t here need not be arc-length for  ; it suffices
that P(0) D � , j� j D 1.) More generally, by a similar argument, if �; � 2 TyM and if
' W U ! RnCk is a C 2 mapping of a neighborhood U of 0 in R2 with '(U ) � M ,
'(0; 0) D y, @'

@s
(0; 0) D � , @'

@t
(0; 0) D �, then

4:32 By(�; �) D �
( @2'
@s@t

(0; 0)
)?
:

Of course such maps ' do exist for any given �; � 2 TyM—for example we can let  W
V ! W be a C 2 local representation for M , y D  (x), and select ´ D (´1; : : : ; ´n)

w D (w1; : : : ; wn) 2 Rn such that � D
Pn
jD1 ´

jDj (x) and � D
Pn
jD1w

jDj (x),
and then '(s; t) D  (xCs´Ctw) is a suitable choice for '. Since @2'=@s@t D @2'=@t@s,
4.32 implies in particular thatBy(�; �) D By(�; �); that isBy is a symmetric bilinear form
with values in (TyM )?.

We define the mean curvature vector H ofM at y to be traceBy ; thus

4:33 H (y) D
Pn
iD1By(�i ; �i ) 2 (TyM )?;
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where �1; : : : ; �n is an orthonormal basis for TyM . Notice that then (if �1; : : : ; �k 2
(TyM )? are as in 4.30)

H (y) D �
Pk
˛D1

Pn
iD1(�i �D�i �

˛)�˛(y);

so that

4:34 H (y) D �
Pk
˛D1(divM �˛)�˛

near y.

5 First Variation of a Submanifold

LetM be an n-dimensionalC 2 submanifold embedded in RnCk as in the previous section.
We want to compute the initial rate of change (“first variation”) of Hn(M ) when M is
undergoes a compactly supported perturbation via a 1-parameter family of maps 't W
M ! RnCk with '0 equal to the identity on M . So let K � M be compact and let
' W (�"; ") �M ! RnCk (where " > 0) be a map such that

5:1

{
'(0; x) D x; 8x 2M

'(t; x) D x; 8(t; x) 2 (�"; ") � (M nK);

and such that the velocity @'(t; x)=@t is C 1 on ("; ") � M . Then the initial velocity
vector X(y) D @'(t; y)=@t jtD0 is a C 1 vector field onM and we can write

5:2 '(t; y) D y C t(X(y)CE(t; y));

where supy2K(jE(t; y)j C sup�2TxM; j� j�1 jD�E(t; y)j)! 0 as t ! 0.

For example given any C 1 vector function X W M ! RnCk with {y 2 M W X(y) ¤ 0}
contained in a compact setK ofM , we can construct such a ' simply by taking '(t; y) D
y C tX(y); jt j < 1.

We want to compute the first variation

d
dt
Hn('t (M \K))jtD0;

where 't (y) D '(t; y) with '; K as in 5.1. To do this we first note that, by the area
formula,

5:3 Hn
(
't (M \K)

)
D

∫
M\K

J't dHn;
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and, by 5.2, D�i'(y) D �i C t(D�iX(y) C Ei (t; y)), where supy2K jEi (t; y)j ! 0 as
t # 0, and hence

J't D

q
det
(
ıij C t

(
�i �D�jX(y)C �j �D�iX(y)CEij (t; y)

))
;

where supy2K jEij (t; y)j ! 0 as t ! 0. Using the formula det(ICtA) D 1Ct traceAC
O(t2) as t ! 0, we thus conclude

d
dt
J't (y)jtD0 D

Pn
iD1�i �D�iX(y) D divM X(y):

Hence, by 5.3,

5:4 d
dt
Hn('t (M \K))jtD0 D

∫
M

divM X;

where X is the initial velocity vector of 't : X(y) D @
@t
'(t; y)jtD0.

If we now decompose X into its tangent and normal parts:

X D X> CX?

where (at least locally, in the notation introduced in 4.30 above)

X? D
Pk
˛D1(�

˛
�X)�˛:

and X> D pTxM (X). Then we have (near y )

divM X? D
Pk
˛D1(�

˛
�X) div �˛;

so that by 4.34

5:5 divM X? D �X �H

at each point ofM . On the other hand
R
M

divM X> D 0 by 4.27. Hence, since divM X D

divM X> C divM X?, we obtain

5:6

∫
M

divM X dHn
D �

∫
M
X �H dHn

for any C 1 vector function X W M ! RnCk with {y 2 M W X(y) ¤ 0} contained in
a compact subset K of M ; this identity is sometimes referred to as “the first variation
formula” for the submanifoldM .

5.7 Remarks: (1) Observe then that M is “stationary,” i.e. has first variation zero, i.e.R
M

divM X dHn
D 0wheneverX has compact support inM (which by 5.4 is equivalent

to d
dt
Hn('t (M \K))jtD0 D 0 whenever ' is as in 5.1) if an only if the mean curvature
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ofM is identically zero. Such C 2 submanifolds are usually referred to as “minimal sub-
manifolds.”

(2) We should explain the appropriateness (or otherwise) of the terminology “minimal
submanifold” introduced in the above remark: Observe that if M is area minimizing
in the sense that Hn(M \ K) � Hn('t (M \ K)) whenever ' and K are as in 5.1,
then Hn('t (M \ K)) has a minimum at t D 0 and hence we do have stationarity
d
dt
Hn('t (M \K))jtD0 D 0. The converse is false though (as the example of the catenoid

shows), so one could perhaps criticize the terminology “minimal” on this basis; never-
theless the converse is true (in the present context when M is C 2 ) at least locally, i.e.
provided we stipulate that the compact set K D B�(y0) in 5.1 above is a ball of suffi-
ciently small radius � (depending onM and y0 2M ). See problem 7 of Ch.2 problems.

(3) In case the situation is as in Remark 4.28(2), so that we drop the condition that
{y 2M W X(y) ¤ 0} is contained in a compact subset ofM and instead assumeM (the
closure ofM in RnCk ) is a compact manifold with C 1 boundary @M DM nM and X is
any C 1 vector field onM , still with X(y) 2 TyM for each y 2 M , then in place of 5.7
we get ∫

M
divM X dHn

D �

∫
M
X �H dHn

�

∫
@M
X � � dHn�1:

So far we have only discussed submanifolds of RnCk , and the concept of first variation
using ambient space RnCk . For some applications it is important to allow the ambient
space to be a complete (n C k)-dimensional Riemannian submanifold N rather than
RnCk . By the Nash embedding theorem there is no loss of generality in assuming that
N is (isometrically) embedded in RnCL for some L � k. So suppose N is a C 2 (nC k)-
dimensional embedded submanifold of RnCL, 0 � k � L, let K be any compact subset
of N , and let ' W (�"; ") � N ! N (for some " > 0) be a C 1 map with velocity vector
@'(t; y)=@t also C 1 on (�"; ") �M , and

5:8 '(0; y) D y for all y 2 N; '(t; y) D y for all (t; y) 2 (�"; ") �N nK:

Then we have the following definition for a C 2 submanifoldM of N :

5.9 Definition: M � N is a stationary in N (or “a minimal submanifold of N ”) if
d
dt
Hn('t (M \K)jtD0 D 0 whenever K; ' are as in 5.8 and 't (y) D '(t; y).

5.10 Remark: In view of the fact that for each given compact K � M and each C 1

vector field X on N with compact supportK such that Xx 2 TxN at each x 2 N (i.e. X
is a tangent vector field on N with support inK ), there is (cf. the discussion in the proof
of 4.27) a 1-parameter family 't as in 5.8 above with @

@t
'(y; t)jtD0 D X jy at each point
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y 2 N , we see thatM is stationary in N as in 5.9 above if and only if

(�)
∫
M

divM X D 0

whenever X is a C 1 on N with compact support K and Xjy 2 TyN 8y 2 N .

If we let �1; : : : ; �L be an orthonormal family (defined locally near a point y 2 M ) of
vector fields normal to M , such that �1; : : : ; �k are tangent to N and �kC1; : : : ; �L are
normal to N , then for any vector field X on M we can write X D X> C X?, where
X>´ 2 T´N and X? D

PL
jDkC1(�

j � X)�j (D the part of X normal to N ). Then if
�1; : : : ; �n is any orthonormal basis for TyM , we have, at the point y,

divM X D divM X> C
PL
jDkC1(�

j
�X) divM �j5.11

D divM X> C
PL
jDkC1(�

j
�X)

Pn
iD1�i �D�i �

j

D divM X> �
Pn
iD1X � B

N
y (�i ; �i );

where BNy is the second fundamental form of N at y and where we used the definition
of second fundamental form as in 4.30 (with N in place of M ) and hence by virtue
of Remark5.10 (with X> in place of X ) we conclude:

5.12 Lemma. If N is an (nC k)-dimensional embedded C 2 submanifold of RnCL and if
M � N is an n-dimensional embedded C 2 submanifold of N , then M is stationary in N
(i.e. d

dt
M('t (M \K))jtD0 D 0 whenever the 't andM \K are as in 5.8) if and only if∫

M
divM X D �

∫
M
HN
M �X

for each C 1 vector field X with {y 2 M W Xjy ¤ 0} contained in a compact subset ofM .
Here

HN
M (y) D

Pn
iD1B

N
y (�i ; �i ); y 2M;

whereBNy denotes the second fundamental form ofN at y and �1; : : : ; �n is any orthonormal
basis of TyM (� TyN � RnCL).

6 Second Variation

We continue to suppose thatM is an n-dimensional C 2 embedded submanifold of RnCk .
Also, let K � M be compact and ' W (�"; ") �M ! RnCk as in 5.1 except that now
we require also that @2'(t; y)=@t2 exists and is C 1 on (�"; ") �M , so both the initial
velocityX(y) D @'(t; y)=@t jtD0 and the initial accelerationZ(x) D @2'(t; y)=@t2jtD0
will be C 1 vector fields onM . Clearly then

6:1 't (x) D x C tXx C
1
2
t2(Zx CE(t; x)) where E(t; x)! 0 as t ! 0
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in the sense that supx2K(jE(t; x)j C sup�2TxM; j� jD1 jD�E(t; x)j)! 0 as t ! 0.

Thus {'t (M \ K)}jt j<" is a 1-parameter family of submanifolds, each with finite Hn-
measure, which agrees withM\K at t D 0. We computed the first variation d

dt
Hn('t (M\

K))jtD0 in the previous section: by 5.4 we have

6:2 d
dt
Hn('t (M \K))jtD0 D

∫
M

divM X:

Here we want to compute d2

dt2
Hn't (M \ K)jtD0 (i.e. the “second variation” of M ),

which, as for the first variation, involves using the area formula

Hn('t (M \K)) D
∫
M
J't dHn:

This time we need to compute the terms up of second order in the Taylor series expansion
(in the variable t ) of J't . With �1; : : : ; �n any orthonormal basis for TxM , we have by 6.1

D�i't (x) D �i C tD�iX C
t2

2
(D�iZ CEi (t; x)))

for i D 1; : : : ; n, where supx2K\M jEi (t; x)j ! 0 as t ! 0, so J 2't (x) D det(D�i't (x) �
D�j 't (x)) has the form

(J't (x))
2
D ıij C t(�i �D�jX C �j �D�iX)

C t2( 1
2
(�i �D�jZ C �j �D�iZ)C (D�iX) � (D�jX)CEij (t; x));

where supx2K jEij (t; x)j ! 0 as t ! 0. By the general formula

det(I C A) D 1C traceAC 1
2
(traceA)2 � 1

2
trace(A2)CO(jAj3);

we then have

(J't (x))
2
D 1C 2t divM X C t2(divM Z C

Pn
iD1

ˇ̌
D�iX

ˇ̌2
C 2(divM X)2 � 1

2

Pn
i;jD1(�i �D�jX C �j �D�iX)2 C F (t; x))

D 1C 2t divM X C t2(divM Z C
Pn
iD1

ˇ̌
(D�iX)?

ˇ̌2
C 2(divM X)2 �

Pn
i;jD1(�i �D�jX)(�j �D�iX))C t2F (t; x);

where (D�iX)? (D the normal part ofD�iX )D D�iX�
Pn
jD1(�j �D�iX)�j , and where

supx2K jF (t; x)j ! 0 as t ! 0. Using
p
1C x D 1C 1

2
x � 1

8
x2 CO(x3), we thus get

J't D 1C t divM X C t2

2
(divM Z C (divM X)2 C

Pn
iD1

ˇ̌
(D�iX)?

ˇ̌2
�
Pn
i;jD1(�i �D�jX)(�j �D�iX)C eF (t; x));

where again supx2K jeF (t; x)j ! 0. Thus

d2

dt2
Hn
(
't (M \K)

)
jtD0 D

∫
M
(divM Z C (divM X)2 C

Pn
iD1

ˇ̌
(D�iX)?

ˇ̌26.3

�
Pn
i;jD1(�i �D�jX)(�j �D�iX)) dHn:
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Finally, we shall need later the following important fact about the second variation for-
mula 6.3.

6.4 Lemma. If M is a C 2 minimal submanifold (as in Definition 5.9) and if {y 2 M W

Xjy ¤ 0} is contained in a compact subset ofM with Xjy 2 (TyM )? 8y 2 M (thus X jM
is a compactly supported tangent vector field onM ), then 6.3 says

d2

dt2
Hn
(
't (M \K)

)ˇ̌̌̌
tD0

D

∫
M

(Pn
iD1

ˇ̌
(D�iX)?

ˇ̌2
�
Pn
i;jD1(X � B(�i ; �j ))

2
)
dHn:

6.5 Remark: In case k D 1 and M is orientable, with continuous unit normal �, then
X D �� for some scalar function � with compact support onM , and the above identity
has the simple form

(�)
d2

dt2
Hn
(
't (M \K)

)ˇ̌̌̌
tD0

D

∫
M

(ˇ̌
r
M �
ˇ̌2
� �2jBj2

)
dHn;

where jBj2 D
Pn
i;jD1

ˇ̌
B(�i ; �j )

ˇ̌2
�

Pn
i;jD1

ˇ̌
� � B(�i ; �j )

ˇ̌2. This is clear, because
(D�i (��))

? D �D�i � by virtue of the fact that D�i �
ˇ̌
y
2 TyM 8y 2M .

Proof of 6.4: First we note that
R
M

divM Z dHn
D 0 by virtue of the fact that M is

stationary, and divM X D �X � H D 0 by virtue of 5.5. The proof is then completed
by noting that �i �D�jX D �X � B(�i ; �j ) by virtue of the fact that X is normal toM
together with 4.30. �

7 Co-Area Formula and C 1 Sard Theorem

Let M be a C 1 submanifold of a Euclidean space RnC`, where ` 2 {0; 1; : : :} (note the
case ` D 0 is included, which is the case when M is an open subset U of Rn ), and let
f D (f 1; : : : ; f m) WM ! Rm be locally Lipschitz, withm � n, so that n D mCk; k 2
{0; 1; : : :}.
From 1.10 in case X D RnC`, Hk(M \ f �1´) is an Hm-measurable function of ´ and

7:1

∫
Rm

Hk(A \ f �1´) dLm(´) � CHn(A); C D C (n; `);

for eachHn-measurable set A �M . The coarea formula, which we now present, enables
us to replace this inequality with an exact identity. In the statement, we use the notation

JMf (x) D
q
det
(
(dfx) ı (dfx)�

)
D

q
det
(
rMf i (x) � rMf j (x)

)
;
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when these quantities exist (which isHn-a.e. inM by 4.13); in terms of an orthonormal
basis �1; : : : ; �n for TxM we thus have, by 4.22,

7:2 JMf (x) D
q
det
(
(
Pn
qD1D�qf

i (x)D�qf
j (x))i;jD1;:::;m

)
:

7.3 Theorem (Coarea Formula.) As above, letM be an n-dimensional C 1 submanifold of
RnC` and let f W M ! Rm be locally Lipschitz with m D n � k, where k 2 {0; 1; 2; : : :}
(som � n in contrast to the Area Formula 4.19, where we assumedm � n). Then∫

Rm
Hk
(
A \ f �1y

)
dLm(y) D

∫
A
JMf dHn

for anyHn-measurable set A �M , where JM
f

is as in 7.2.

7.4 Remarks: (1) We then have the general formula∫
M
hJMf dHn

D

∫
Rm

∫
f �1(y)

h(x) dHk(x) dLm(y):

for any non-negativeHn-measurable function h WM ! Rm, which follows directly from
the above theorem by approximating h pointwise (everywhere) by an increasing sequence
of non-negative simple functions.

(2) Observe that if ` D 0 (so that M is an open subset U of Rn ) and if f D p, where
p W x D (x1; : : : ; xn) 7! (x1; : : : ; xm) is the projection onto the first m coordinates,
then JM

f
� 1 and the above is just Fubini’s Theorem. Thus the coarea formula can be

viewed as a generalization of Fubini’s Theorem. It is then not surprising that the proof
given below depends in part of Fubini’s Theorem.

Proof of Theorem 7.3: If n D m the result of the theorem is covered by the Area
Formula 4.19, so we assume k D n�m � 1. Using the additivity of the relevant integrals
on each side of the identity with respect to decompositions of A into pairwise disjoint
unions, we can also assume without loss of generality that f is Lipschitz (rather than
merely locally Lipschitz) and Hn(A) <1.

The proof will be based on the Area Formula 4.19 and Fubini’s Theorem.

LetMC be the set of points x 2M such that TxM and the directional derivativesD�f (x)
exist for all � 2 TxM and are linear in � 2 TxM , and recall that (by 4.13)

(1) Hn(M nMC) D 0:

We claim that for each " > 0 and each x 2MC there is ıx > 0 such that

(2) ´ 2M\Bıx (x)n{x} with f (´) D f (x)) jpKx (f )(´�x)�(´�x)j � "j´�xj;

�7 of Chapter 2: Co-Area Formula and C 1 Sard Theorem 77

which follows from the fact that if xj 2 M n {x} with xj ! x, if f (xj ) D f (x)8j

and if jxj � xj�1(xj � x) ! v, then v 2 TxM and Dvf (x) D 0. (See problem 2.6 of
Ch.2 problems.)

SinceA D {x 2 A\MC W Jf (x) > 0}[{x 2 A\MC W Jf (x) D 0}[(A\(M nMC)),
it suffices to consider just Case 1: A � {x 2 A \MC W Jf (x) > 0}, Case 2: A � {x 2
A \MC W Jf (x) D 0}, Case 3: A �M nMC.
In Case 1 dMx f has rank m and Kx(f ) has dimension k at each point of A. Let L be
any k-dimensional subspace of RnC` with orthonormal basis �1; : : : ; �k , let " 2 (0; 1

2
),

define

(3) AL;" D {x 2 A W kpKx (f ) � pLk < "}:

Then for each x 2 AL;" there is an orthonormal basis �1; : : : ; �n for TxM with

(4) Kx(f ) D span{�mC1; : : : ; �n} and j�i � �mCi j < C"; i D 1; : : : ; k;

with C D C (m; k), and we can define g WM ! Rn by

(5) g(x) D (f (x); x � �1; : : : ; x � �k); x 2M:

Now JMg (x) D (det(D�ig(x) �D�j g(x)))
1=2 and, by (4), for x 2 AL;",

(
D�ig(x) �D�j g(x)

)
D

((
D�if (x) �D�j f (x)

)
i;jD1;:::;m

Om�k

Ok�m Ik�k

)
CE; jEj � C";

where Ok�m is the k � m zero matrix, Ik�k is the k � k identity matrix and C D
C (m; k;Lipf ). Also, by 7.2 and (4), JM

f
f (x) D (det((D�if (x)�D�j f (x))i;jD1;:::;m))

1=2,
so, for each x 2 AL;",

(6) JMg (x) D JMf (x)C e; jej � C"; C D C (m; k;Lipf ):

Now, with ıx as in (2), we write

AL;";j D {x 2 AL;" W ıx � 1=j }; j D 1; 2; : : : :

Since j(�1 � y; : : : ; �k � y)j D jpL(y)j D jy C (pKx (f )y � y) C (pL � pKx (f ))yj for
y 2 RnC`, we then have, by (2), (3) and (5),

x1; x2 2 AL;";j with f (x1) D f (x2) and jx1 � x2j < 1=j )(7)

(1 � 2")jx1 � x2j � jg(x1) � g(x2)j � (1C 2")jx1 � x2j:
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Next, for any Hn-measurable subset B � AL;", choose pairwise disjoint Hn-measurable
subsets B1; B2; : : : of AL;";j with diameter Bi < 1=j for each i and [iBi D B \ AL;";j .
Then, by the Area Formula 4.19 and Fubini’s Theorem,Z

Bi

JMg dHn
D Hn

(
g(Bi )

)
(8)

D

∫
Rm

Hk
(
g(Bi ) \ ({y} � R

k)
)
dy

D

∫
Rm

Hk
(
g(Bi \ f

�1y)
)
dy;

and, since LipgjBi \ f �1y � (1C 2") and Lip(gjBi \ f �1y)�1 � (1 � 2")�1 by (7),
we use 1.8 to conclude

(1 � 2")kHk
(
Bi \ f

�1y
)
� Hk

(
g(Bi \ f

�1y)
)
� (1C 2")kHk

(
Bi \ f

�1y
)
:

Hence, in view of (6), (8) givesˇ̌̌Z
Bi

JMf dHn
�

Z
Rm

Hk
(
Bi \ f

�1y
)
dy
ˇ̌̌
� C"Hn(Bi ); C D C (m; k;Lipf ):

Hence, by first summing on i and then letting j !1, we obtain, for anyHn-measurable
B � AL;",

(9)
ˇ̌̌Z
B

JMf dHn
�

∫
Rm

Hk
(
B \ f �1y

)
dy
ˇ̌̌
� C"Hn(B)

Now, still with " 2 (0; 1
2
) arbitrary, let L1; : : : ; LN (N D N (n; `; ")) be k-dimensional

subspaces of RnC` such that for every k-dimensional subspace L of RnC` there is j 2
{1; : : : ; N } with jpL � pLj j < ". Then we can decompose A into a disjoint union
[NjD1Aj ofH

n-measurable subsets such that Aj � ALj ;" for each j , and hence, using (9)
with Lj in place of L and Aj in place of B , we haveˇ̌̌Z

Aj

JMf dHn
�

∫
Rm

Hk
(
Aj \ f

�1y
)
dy
ˇ̌̌
� C"Hn(Aj );

and the required identity follows by first summing over j and then letting " # 0. The
completes the proof of Case 1.

In Case 2 we are assuming A � {x 2MC W JMf (x) D 0}, and we can apply Case 1 with
M̃ DM � (0; 1)m, Ã D A� (0; 1)m and mC k in place ofM; A and k respectively, and
F W M̃ ! Rm in place of f , where

F (x; ´) D f (x)C "´; x 2M; ´ 2 (0; 1)m (" 2 (0; 1)):
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Notice that d M̃x;´F evidently has rank m at each point (x; ´) 2 M̃ , so Case 1 is indeed
applicable and gives

(10)
∫

Rm
HmCk(Ã \ F �1y) dLm(y) D

∫
Ã
J M̃F dHmCn:

Using the formula J M̃F (x; ´) D
q
det(

PnCm
qD1 D�qF

i (x; ´) �D�qF
j (x; ´)) (Cf. 7.2),

where �q D (�q; 0) for q D 1; : : : ; n and �nCq D (0; eq) for q D 1; : : : ; m, with
�1; : : : ; �n an orthonormal basis for TxM and e1; : : : ; em the standard basis for Rm, we
see that

J M̃F (x; ´) D
q
det
(
(
Pn
qD1D�qf

i (x)D�qf
j (x)C "2ıij )i;jD1;:::;m

)
D JMf (x)CE(x; ´) by 7.2;

where jE(x; ´)j � C", C D C (n; `;Lipf ). Since JM
f
jA D 0, (10) then implies

(11)
∫

Rm
HmCk(eA \ F �1y) dLm(y) � C"Hn(A)

With p is the projection p W (x; ´) 2 RnC` � Rm 7! ´ 2 Rm we have

(Ã\F �1y)\p�1(´) D {(x; ´) W x 2 A; f (x) D y� "´} D (A\f �1(y� "´))�{´}

for ´ 2 (0; 1)m, so, by 7.1 with Ã \ F �1y in place of A and p in place of f ,Z
(0;1)m

Hk
(
A \ f �1(y � "´)

)
dLm(´) � CHmCk(Ã \ F �1y); y 2 R

m:

Integrating this inequality with respect to y 2 Rm, using Fubini’s Theorem to change the
order of integration on the left, and noting that

R
Rm

Hk
(
A \ f �1(y � "´)

)
dLm(y) DR

Rm
Hk
(
A \ f �1(y)

)
dLm(y) (by change of variable y 7! y � "´), we conclude∫

Rm
Hk
(
A\f �1(y)

)
dLm(y) �

∫
Rm

HmCk(eA\F �1y) dLm(y) � C"Hn(A) (by (11)):

So the Coarea Formula (with both sides D 0) is proved in Case 2 by letting " # 0.

In Case 3, A � M nMC, so Hn(A) D 0 by (1), and the Coarea Formula holds (again
with each side D 0) by virtue of 7.1.

This completes the proof of the Coarea Formula. �

In case f W M ! Rm is C 1 (rather than merely locally Lipschitz) with m < n, there is
an important additional consequence of 7.3: namely if C D {x 2 M W JM

f
(x) D 0},

then (by using 7.3 with A D C ) Hk(C \ f �1(y)) D 0 for Lm-a.e. y 2 Rm. Also, since
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JM
f

(x) ¤ 0 precisely when dMx f has rankm, the implicit function theorem implies that
either f �1(y) n C is empty or else is a k-dimensional C 1 embedded submanifold in the
sense of �4 above.

In summary we thus have the following important result.

7.5 Theorem (C 1Sard-type Theorem.) Suppose f WM ! Rm,m � n, is C 1, withM is
an n-dimensional C 1 embedded submanifold of RN . Then for Lm-a.e. y 2 f (M ), f �1(y)
decomposes into a k-dimensional C 1 embedded submanifold and a closed set of Hk -measure
zero, where k D n �m. Specifically,

f �1(y) D (f �1(y) n C ) [ (f �1(y) \ C );

C D {x 2 M W JM
f

(x) D 0} (� {x 2 M W rank(dfx) < m}), Hk(f �1(y) \ C ) D

0, Lm-a.e. y 2 Rm, and f �1(y) n C is either empty or an k-dimensional C 1 embedded
submanifold.

7.6 Remark: If f and M are of class C kC1, then Sard’s Theorem asserts the stronger
result that in fact f �1(y) \ C D ∅ for Lm-a.e. y 2 Rm, so that f �1(y) is either empty
or a k-dimensional C kC1 embedded submanifold for Lm-a.e. y 2 Rm.

We conclude this section with some important remarks about selection of “good” slices
by a given locally Lipschitz function f WM ! Rm:

7.7 Remarks: (1) First notice that the formula 7.4(1) enables us to bound theHk measure
of the “slices” f �1y for a good set of y. Specifically if jf j � R and g is as in 7.4 (g � 1
is an important case), then there must be set S � BR(0) (� Rm ), S D S(g; f;M ), with
Lm(S) � 1

2
Lm(BR(0)) and with

∫
f �1(y)

g dHk
�

2

Lm(BR(0))

∫
M
g J �f dH

n

for each y 2 S . For otherwise there would be a set T � BR(0) with Lm(T ) >
1
2
Lm(BR(0)) and∫

f �1(y)
g dHk

�
2

Lm(BR(0))

∫
M
g J �f dH

n; y 2 T;

so that, integrating over T we obtain a contradiction to 7.4 if
R
M
g J �

f
dHn > 0. On the

other hand if
R
M
q J �

f
dHn

D 0 then the required result is a trivial consequence of 7.4.

(2) The above has an important extension to the case when we have f W RN ! Rn and
sequences {Mj },

{
gj
}
satisfying the conditions ofM , g above. In this case there is a set

S � BR(0) with Lm(S) � 1
2
Lm(BR(0)) such that for each y 2 S there is a subsequence
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j 0
}
(depending on y ) with∫

Mj 0\f
�1(y)

gj 0 dHk
�

2

Lm(BR(0))

∫
Mj 0

gj 0 J
�
f dH

n:

Indeed otherwise there is a set T with Lm(T ) > 1
2
Lm(BR(0)) so that for each y 2 T

there is `(y) such that

(�)
∫
Mj\f

�1(y)
gj dHk >

2

Lm(BR(0))

∫
Mj

gj J
�
f dH

n

for each j > `(y). But T D [1jD1Tj , Tj D
{
y 2 T W `(y) � j

}
, and hence there must

exist j so that Lm(Tj ) > 1
2
Lm(BR(0)). Then, integrating (�) over y 2 Tj , we obtain a

contradiction to 7.4 as before.
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Chapter 2 Problems

2.1 f W Rm ! Rn is said to be approximately differentiable at x 2 Rm with respect to
Lebesgue measure if there is a linear map vx W Rm ! Rn such that

lim
�#0

��mLm({y 2 B�(x)n{x} W jy�xj�1jf (y)�f (x)�vx(y�x)j � "}) D 0 8" > 0:

If f is locally Lipschitz near x (i.e. 9K;R > 0 such that jf (´) � f (y)j � Kj´ �

yj for all y; ´ 2 BR(x)), prove that approximate differentiability at x is equivalent to
differentiability at x.

(Recall differentiability at x means that there is a linear map vx W Rm ! Rn such that
limy!x jx � yj�1jf (y)� f (x)� vx(y � x)j D 0; i.e. for each " > 0 there is ı > 0 such
that jx � yj�1jf (y) � f (x) � vx(y � x)j < " for all y 2 Bı(x) n {x}.)

2.2 (Tietze extension theorem) Assume X is an arbitrary metric space, A � X is closed,
� > 0, and f W A! R is bounded continuous with supA jf j � �.

( i) Let AC D {x W f (x) � �=3}, A� D {x W f (x) � ��=3} and check that if A˙
are non-empty then h1(x) D �

3
(d (x;A�)�d (x;AC))=(d (x;AC)Cd (x;A�)) defines

a continuous function h1 W X ! [��=3; �=3] on X such that h1 � �=3 on AC and
h1 � ��=3 on A�; note also that such a function h1 is obtained by taking h1 � �=3 if
A� D ∅ and h1 � ��=3 if AC D ∅.

( ii) Prove by (i) and induction on k that for each k D 1; 2; : : : there exist continuous
h1; h2; : : : ; hk on X such that supA jf �

Pk
jD1 hj j � (2=3)k� and jhj j � 2j�1�=3j on

X , j D 1; 2; : : : ; k.

( iii) By letting k ! 1 in (ii), prove there is a continuous H W X ! [��; �] such that
H jA D f .

( iv) Prove there is a continuous H W X ! R with H jA D f even if no boundedness
hypothesis is assumed for f .
Hint for (iv): Start by applying (iii) with arctanf in place of f . Caution: In this case (iii) would be applied
with � D �=2 and the extension H may possibly have a non-empty set C D {x W jH (x)j D �=2}, so you
cannot get the required extension for f simply by using tanH . (Note however that C is a closed set disjoint
from A.)

2.3 Suppose f W Rm ! Rn is continuous onRm and satisfies lim supy!x jy�xj
�1jf (y)�

f (x)j <1 at almost all points x 2 Rm (that is, lim�#0 sup0<jy�xj<� jy � xj
�1jf (y) �

f (x)j) <1 a.e.)

(i) If Cj D {x W jf (y) � f (x)j � j jy � xj whenever jy � xj < 1=j }, prove that Cj is
closed and that Ln(Rn n ([jCj )) D 0.
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(ii) Let [iCj;i be a decomposition of Cj into closed (not necessarily disjoint) subsets of
diameter < 1=j . Prove that f jCj;i is Lipschitz.

(iii) Prove that f is approximately differentiable (see 2.1 above) at Ln-a.e. point x 2 Rm

2.4 (Chain rule for composite of a Lipschitz and an AC function.) If g W R ! R is
Lipschitz and f W [a; b]! R is absolutely continuous (AC) (hence both f; g ı f are AC
on (a; b) and so both (g ı f ) 0(x); f 0(x) exist a.e. x 2 (a; b)), prove:

(i) x 2 (a; b) and f 0(x) D 0) (g ı f ) 0(x) exists and is equal to zero.

(ii) If (y) D g 0(y) when this exists, and (y) D 0 at points y where g 0(y) does not
exist, prove that (g ı f ) 0(x) D (f (x))f 0(x) for a.e. x 2 (a; b).
Hint for (ii): By (i), (g ı f ) 0(x) exists and is equal to zero at all points of F0 D {x 2 (a; b) W f 0(x) D 0}.
Then show, directly by using difference quotients, that (g ı f ) 0(x) and g 0(f (x))f 0(x) both exist and are
equal at every point of (a; b) n (E [F0), where E D {x 2 (a; b) W f 0(x) does not exist}[ {x 2 (a; b) W
(g ı f ) 0(x) does not exist}.

2.5 Let X; Y be metric spaces with X � -compact and let f W A ! Y be Lipschitz with
A � X and A D [1jD1Aj with Hm(Aj ) <1 for each j .

( i) Prove that Hm({y W H0(Aj \ f �1y) D1}) D 0 for each j .
( ii) Give an example to show that Hm({y W H0(A \ f �1y) D 1}) D 1 is possible
with the stated hypotheses.

2.6 LetM be an n-dimensional embedded C 1 submanifold of RnCk , and x 2M .

( i) If xj 2M n{x}with xj ! x and jxj �xj�1(xj �x)! v 2 SnCk�1, prove v 2 TxM .

( ii) If f W RnCk ! Rm is Lipschitz, if xj ; v are as in (i) above with f (xj ) D f (x) for
each j , then Dvf (x) D 0. Note: Part of what is to be proved is that Dvf (x) exists.

2.7 Suppose f W Rn ! R is Lipschitz and
R

Rn
jDf j � 1. Prove that for each K > 0 the

slices {x 2 Rn W f (x) D t} have (n � 1)-dimensional Hausdorff measure � K with the
exception of a set of t of Lebesgue measure � 1=K. Hint: Coarea formula.

2.8 Suppose X is a � -compact metric space, m 2 {1; 2; : : :}, k > 0, A � X is HmCk -
measurable with HmCk(A) <1, and f W A! Rm is continuous. Prove

(i) If A is compact and U is an open subset of X , then {y 2 X W f �1y � U } is an open
subset of Rm.

( ii) If A is compact then {y 2 Rm W Hk
ı (f

�1(y)) < t} is open for each t 2 R and each
ı > 0.
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(iii) Hk(f �1y)) is an Hm-measurable function of y 2 Rm, provided f W A ! Rm is
Lipschitz.
Hint for (iii): Using the inequality (4) in the proof of Theorem 1.10, start by showing that if HmCk(A) D 0
then Hk(f �1y) D 0 for Lm-a.e. y 2 Rm.

2.9 Let j W [aj ; bj ] ! Rn be absolutely continuous and such that j (aj ) D 0 and
length j D 1 for each j D 1; 2; : : :.

( i) Prove there is a Lipschitz map  W [0; 1]! Rn with Lipf � 1 such that a subsequence
of j ([aj ; bj ])! ([0; 1]) in the Hausdorff distance sense.
Note on terminology: Given setsA;B in a metric spaceX , the Hausdorff distance betweenA;B is defined as
the inf of the set of � > 0 such that A � {x 2 X W d (x;B) < �} and B � {x 2 X W d (x;A) < �}.

(ii) Construct an example of a sequence j which shows that  in (i) may have length
strictly less than 1.

2.10 For each N D 2; 3; : : : letMN be the 2-dimensional C1 submanifold of R3 defined
by

MN D [j;k2{0;˙1;˙2;:::}{(x; y) 2 R
2
� R W jx � (j=N; k=N )j D 1=N 2}:

(Thus MN is a countable pairwise disjoint union of cylinders with axes parallel to the
third coordinate axis.)

Prove that H2 MN ! 2�L3 (i.e. 2� times Lebesgue measure on R3 ) as N !1; i.e.
prove Z

MN

f dH2
! 2�

Z
R3
f dL3 for each f 2 C 0c (R

3):

Hint: First show thatN�2
P
j;kD0;˙1;˙2;:::

R
R f (j=N; k=N;y)dy!

R
R3 f dL

3 for eachf 2 C0c (R3).

2.11 WithMN as in Q2.10 above, prove that
R
MN

! ! 0 asN !1 for each continuous
2-form ! on R3 with compact support in R3.

Note: Here we use the usual definition of
R
M ! for a 2-dimensional oriented C1 submanifold of R3 and a

continuous 2-form ! D !1dx
2 ^ dx3 C !2dx

1 ^ dx3 C !3dx
1 ^ dx2; namely, we assume that we

have selected a continuous unit normal � D (�1; �2; �3) forM and then
R
M ! D

R
M !� � � dH2, where

!� D (!1;�!2; !3) the vector field dual to !.
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1 Basic Notions, Tangent Properties

Firstly, a setM � RnCk is said to be countably n-rectifiable if

1:1 M �M0 [
(
[
1
jD1Fj (R

n)
)
;

where Hn(M0) D 0 and Fj W Rn ! RnCk are Lipschitz functions for j D 1; 2; : : :.1

Notice also that by the extension theorem 1.2 of Ch.2 this is equivalent to saying

M DM0 [ ([1jD1Fj (Aj ))

where Hn(M0) D 0, Fj W Aj ! RnCk Lipschitz, Aj � Rn. More importantly, we have
the following lemma.

1.2 Lemma. M is countably n-rectifiable if and only ifM � [1jD0Nj , whereH
n(N0) D 0

and where each Nj , j � 1, is an n-dimensional embedded C 1 submanifold of RnCk .

Proof: The “if” part is essentially trivial because if N is an n-dimensional C 1 embedded
submanifold, then using local representations for N as in Remark 4.2(3) of Ch.2 we see

1Notice that this differs slightly from the terminology of [Fed69] in that we allow a setM0 withHn(M0) D
0.
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that for each x 2 N there is �x > 0 such that B�x (x) \N D  (V ) for suitable C 1 map
 W V ! RnCk , V � Rn open. Since such C 1 maps are automatically Lipschitz in each
closed ball � V it is then clear thatM satisfies the definition 1.1.

The “only if” part is a consequence of the C 1 Approximation Theorem 1.5 of Ch.2,
which guarantees that if Fj are Lipschitz functions as in the Definition 1.1 above, then
for each j 2 {1; 2; : : :} we can choose C 1 functions G1j ; G2j ; : : : W Rn ! Rk such that
Hn({x W Fj (x) ¤ Gij (x)}) < 1=i . So, with

Zj D R
n
n ([1iD1{x W Fj (x) D Gij (x)});

we have Hn(Zj ) D 0, in which case

(1) Fj (R
n) � Fj (Zj ) [ ([1iD1Gij (R

n)); j D 1; 2; : : : :

Then Hn(Fj (Zj )) D 0 because Fj is Lipschitz and Hn(Zj ) D 0, so

(2) Hn(N0) D 0; where N0 D ([1jD1Fj (Zj ));

and we have proved
M �M0 [N0 [ ([1i;jD1Gij (R

n)):

Let Cij D the critical set ofGij ; i.e. Cij D {x 2 Rn W JGij (x) D 0}. By the area formula
Hn(Gij (Cij )) D 0, whereas if x 2 Rn n Cij , then by an inverse function theorem
argument similar to that in Remark 4.2(2), there is a � > 0 such that Gij ( MB�(x)) is
an n-dimensional C 1 embedded submanifold of Rn (with Gij j MB�(x) providing a local
representation in a neighborhood of the point y D Gij (x)). So [ijGij (Rn) can be
written as the union of a set of measure zero and countably many n-dimensional C 1

embedded submanifolds of RnCk . �

1.3 Remark: IfM is countably n-rectifiable, the above lemma guarantees that we can find
N0 with Hn measure zero and n-dimensional C 1 embedded submanifolds N1; N2; : : :
with M � [1jD0Nj , and so we can write M as a disjoint union M D [1jD0Mj with
Mj � Nj for each j D 0; 1; 2; : : :. To achieve this, just define the Mj inductively by
M0 D M \ N0 and Mj D M \ Nj n [

j�1
iD0Mi , j � 1. Of course the sets Mj so

constructed are all Hn-measurable ifM is.

We now want to give an important characterization of countably n-rectifiable sets in
terms of approximate tangent spaces, which we first define:

1.4 Definition: If M is an Hn-measurable subset of RnCk with Hn(M \ K) < 18

compactK, then we say that an n-dimensional subspace of P of RnCk is the approximate
tangent space forM at x (x a given point in RnCk ) if

lim
�#0

∫
�x;�(M )

f (y) dHn(y) D
∫
P
f (y) dHn(y) 8f 2 C 0c (R

nCk):
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(Recall �x;� W RnCk ! RnCk is defined by �x;�(y) D ��1(y � x), x; y 2 RnCk , � > 0.)

1.5 Remarks: (1) Of course P is unique if it exists; we shall denote it by TxM .

(2) We show below (in the proof of the “)” part of 1.6) that, with Mj ; Nj as in Re-
mark 1.3 above,

TxM D TxNj ; Hn-a.e. x 2Mj ; j D 1; 2; : : : :
This is a very useful fact.

(3) By choosing f W RnCk ! [0; 1] 2 C 0c (RnCk) with f � 1 on B1(0) and f � 0 on
RnCk n B1C"(0) in Definition 1.4, we see (after letting " # 0) that TxM exists)

lim
�#0

(!n�
n)�1Hn(M \ B�(x)) D 1:

and similarly, if TxM exists, if 0 < ˛ < 1, and if we let f W RnCk ! [0; 1] 2 C 0c (RnCk)

in Definition 1.4 approximate the indicator function of {y 2 RnCk W dist(y; (TxM )?) �

˛jyj} \ B1(0) then
lim
�#0

(!n�
n)�1Hn(M \ {y 2 R

nCk
W dist(y � x; (TxM )?) � ˛jy � xj} \ B�(x)) D 0:

The following theorem gives the important characterization of countably n-rectifiable
sets in terms of existence of approximate tangent spaces.

1.6 Theorem. Suppose M is Hn-measurable with Hn(M \ K) < 1 for each compact
K � RnCk . Then M countably n-rectifiable ” the approximate tangent space TxM
exists forHn-a.e. x 2M .

Proof of 1.6 “)”: As described in Remark 1.3 above, we may write M as the disjoint
union [1jD0Mj , where Hn(M0) D 0,Mj � Nj , j � 1, Nj embedded C 1 submanifolds
of dimensions n, andMj Hn-measurable. Let R > 0 and f 2 C 0c (RnCk) with f � 0 in
RnCk n BR(0). For each j D 1; 2; : : : we can write

M D (M nNj ) [ (M \Nj ) D (M nNj ) [ (Nj n (Nj nM ));

and hence∫
�x;�(M )

f dHn
D

∫
�x;�(Nj )

f dHn
�

∫
�x;�(Nj nM )

f dHn
C

∫
�x;�(MnNj )

f dHn

If x 2Mj , then x 2 Nj and Nj is a C 1 embedded submanifold, so

lim
�#0

∫
�x;�(Nj )

f dHn
D

∫
TxNj

f dHn:
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Also, by the Upper Density Theorem 3.8 of Ch.1,ˇ̌̌∫
�x;�(MnNj )

f dHn
ˇ̌̌
� sup jf jHn(BR(0) \ �x;�(M nNj ))

D sup jf j��nHn(B�R(x) \M nNj )! 0 for Hn-a.e. x 2Mj :

Similarly, again by the Upper Density Theorem,ˇ̌̌∫
�x;�(Nj nM )

f dHn
ˇ̌̌
! 0 for Hn-a.e. x 2Mj :

Thus we have shown that TxM exists and D TxNj for Hn-a.e. x 2 Mj . In particular
Remark 1.5(2) is checked. �

Proof of 1.6 “(”: We can of course assume Hn(M ) > 0. Define � D Hn (M \

BR(0)), with any R > 0 such that M \ BR(0) has positive measure. Then � is Borel
regular with 0 < �(RnCk) <1.

Given any k-dimensional subspace � � RnCk and any ˛ 2 (0; 1) we letX˛(�; x) denote
the double cone

(1) X˛(�; x) D {y 2 R
nCk
W dist(y � x; �) � ˛jy � xj};

which can alternatively be written

(2) X˛(�; x) D {y 2 R
nCk
W jq� (y � x)j � ˛jy � xj};

where q� denotes orthogonal projection of RnCk onto �?, with

�? D {´ 2 R
nCk
W ´ � w D 08w 2 �}:

For k-dimensional subspaces� , � 0we define the distance between� , � 0, denoted d (�; � 0),
by

(3) d (�; � 0) D sup
jxjD1

jp� (x) � p� 0(x)j;

where �� denotes orthogonal projection of RnCk to � , so that in fact d (�; � 0) is just the
norm kp� � p� 0k of the linear map p� � p� 0.

By Remark 1.5(3) we have

(4) lim
�#0

�(B�(x))

!n�n
D 1

and

(5) lim
�#0

�(X 1
2
(�x ; x) \ B�(x))

!n�n
D 0;
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for �-a.e. x 2M \ BR(0), where �x D (Px)?.

For k D 1; 2; : : : and Hn-a.e. x 2M \ BR(0), define

fk(x) D inf
0<�< 1

k

�(B�(x))

!n�n

and

qk(x) D sup
0<�< 1

k

�(X 1
2
(�x ; x) \ B�(x))

!n�n
:

Then

(6) limfk(x) D 1 and lim qk(x) D 0 �-a.e. x 2M \ BR(0);

and hence by Egoroff’s Theorem (1.12 of Ch. 1) we can choose a Borel setE �M\BR(0)
with

(7) �(R
nCk
nE) � 1

2
�(R

nCk)

and with (6) holding uniformly for x 2 E. Thus for each " > 0 there is a ı > 0 such that

(8)
�(B�(x))

!n�n
� 1 � ";

�(X 1
2
(�x ; x) \ B�(x))

!n�n
� "

x 2 E, 0 < � � ı.

Now choose k-dimensional subspaces �1; : : : ; �N of RnCk (N D N (n; k)) such that for
each k-dimensional subspace � of RnCk , there is a j 2 {1; : : : ; N } such that d (�; �j ) <
1
16
, and let E1; : : : ; EN be the subsets of E defined by

Ej D {x 2 E W d (�j ; �x) < 1
16
}:

Then E D [NjD1Ej and we claim that if we take ı > 0 such that (8) holds with " D
1=16nC1, then

(9) X 1
4
(�j ; x) \Ej \ Bı=2(x) D {x}; 8x 2 Ej ; j D 1; : : : ; N:

Indeed otherwise we could find a point x 2 Ej and a y 2 X 1
4
(�j ; x) \Ej \ @B�(x) for

some 0 < � � ı=2. But since x 2 E and 2� � ı, we have (by (8) with " D 1=16nC1 )

(10) �(X 1
2
(�x ; x) \ B2�(x)) < 16

�n�1!n(2�)
n < 1

2
(�=8)n:

On the other hand B�=8(y) � X 1
2
(�j ; x) \ B2�(x), because j´ � yj < �=8 ) d (´ �

x; �x) � �=8 C d (y � x; �x) D �=8 C j(y � x) � p�x (y � x)j � �=8 C j(y � x) �
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p�j (y � x)j C j(p�j � p�x )(y � x)j � 7�=16 � j´ � xj=2. Hence we have also (again
by (8))

�(X 1
2
(�x ; x) \ B2�(x)) � �(B�=8(y)) >

1
2
!n(�=8)

n;

which contradicts (10). We have therefore proved (9).

Take any fixed x0 2 Ej . Since Bı=4(x0) � Bı=2(x) for each x 2 Bı=4(x0), (9) implies

(11) X 1
4
(�j ; x) \ (Ej \ Bı=4(x0)) D {x}; 8x 2 Ej \ Bı=4(x0); j D 1; : : : ; N:

If Q is an orthogonal transformation of RnCk with �j D Q({0} � Rk), (11) evidently
implies that Ej \Bı=4(x0) is contained in the graph of a Lipschitz function defined over
a domain in Rn, and hence by the extension theorem 1.2 of Ch.2, we have

Ej \ Bı=4(x0) � Q(graphf );

where f D (f 1; : : : ; f k) W Rn ! Rk is Lipschitz.

Since j 2 {1; : : : ; N } and x0 2 Ej are arbitrary and since we can cover E by finitely
many balls Bı=4(xi ), where xi 2 E, we conclude that there are finitely many Lipschitz
functions f1; : : : ; fJ W Rn ! Rk and orthogonal transformations Q1; : : : ;QJ of RnCk

such that
E � [JjD1Qj (graphfj ):

Thus by (7) we have

�(R
nCk
n [

J
jD1Qj (graphfj )) �

1
2
�(R

nCk):

Since we can now repeat the argument, starting withM \BR(0) n ([JjD1Qj (graphfj ))
in place ofM \ BR(0), we thus deduce that there are countably many Lipschitz graphs
graphfj ; j D 1; 2; : : :, fj W Rn ! Rk , and corresponding orthogonal transformations
Q1;Q2; : : : with �(RnCk n [1jD1Qj (graphfj )) D 0. Taking Gj to be the graph map
x 7! (x; fj (x)) and Fj D Qj ı Gj we then have Fj W Rn ! RnCk Lipschitz and
Hn(M \ BR(0) n ([1jD1Fj (Rn))) D 0, so, since M D [1jD1M \ Bj (0), we conclude
M is countably n-rectifiable. �

It is often convenient to be able to relax the condition Hn(M \K) <1 8 compact K
in 1.4 and 1.6 and consider instead setsM which can be written as the countable union
[1jD1Mj ofH

n-measurable setsMj withHn(Mj \K) <1 for each j and each compact
K � RnCk . This is evidently equivalent to the requirement that M is Hn-measurable
and there exists a positiveHn-measurable function � onM such that

R
M\K

� dHn <1

for each compact K, so we proceed to discuss this situation, starting with the definition
of approximate tangent space in such a setting:
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1.7 Definition: LetM be an Hn-measurable subset of RnCk and let � be a positive Hn-
measurable function on M with

R
M\K

� dHn < 1 for each compact K � RnCk . We
say an n-dimensional subpace Px is an approximate tangent space of M with respect to
� at the point x 2M if

(�) lim
�#0

∫
�x;�(M )

f (y)�(x C �y) dHn(y) D �(x)
∫
Px

f (y) dHn(y)

for each f 2 C 0c (RnCk). Evidently Px is unique if it exists at all so we denote it TxM ,
and also TxM agrees Hn-a.e. with our previous notion of approximate tangent space in
case � is equal to 1 Hn-.a.e. inM .

1.8 Remark: By taking a C 0 function f W RnCk ! [0; 1] with f � 1 in B1(0) and
f � 0 in RnCk n B1C"(0), and then letting " # 0, we see that the definition (�) implies
in particular that

lim
�#0

(!n�
n)�1

∫
M\B�(y)

� dHn
D �(y)

wheneverM has an approximate tangent space with respect to � at y.

We now have the following generalization of Theorem 1.6:

1.9 Theorem. Suppose M � RnCk is Hn-measurable and � is a positive Hn-measurable
function onM with

R
M\K

� dHn <1 for each compactK � RnCk . ThenM is countably
n-rectifiable ” M has an approximate tangent space TxM with respect to � for Hn-a.e.
x 2M .

Proof: Let � D Hn � . By Lusin’s Theorem 1.24 and Remark1.25 of Ch.1 there is an
increasing sequence {Mj }jD1;2;::: of closed sets withMj �M , �(M n ([jMj )) D 0 and
� jMj continuous for each j , hence of course then infMj\K � > 0 for each compactK �
RnCk and in particular Hn(Mj \K) <1 for each compact K � RnCk , j D 1; 2; : : :.

Using the continuity of � jMj ,

8x 2Mj W TxMj exists (as in Definition 1.4) ” TxMj is the(1)
approximate tangent space ofMj with respect to � (as in Definition 1.7).

Also the Upper Density Theorem 3.8 of Ch.1 implies that lim�#0 �
�n�((M n Mj ) \

B�(x)) D 0 for Hn-a.e. x 2Mj and hence, for Hn-a.e. x 2Mj ,

TxMj is the approximate tangent space ofMj with respect to � ”(2)
TxMj is the approximate tangent space ofM with respect to �:

But, according to Theorem 1.6,Mj countable rectifiable ” TxMj exists for Hn-a.e.
x 2Mj , and of courseM countably rectifiable ” Mj is countably rectifiable for each
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j . So by (1) and (2) we have M countably n-rectifiable ” M has an approximate
tangent space with respect to � at x (as in Definition 1.7) for Hn-a.e. x 2M . �

2 Gradients, Jacobians, Area, Co-Area

Throughout this sectionM is supposed to beHn-measurable with locally finiteHn mea-
sure, and countably n-rectifiable, so that we can expressM as the disjoint union [1jD0Mj
(as in Remark 1.3 of the present chapter), where Hn(M0) D 0, Mj is Hn-measurable
of finite Hn-measure, andMj � Nj , j � 1, where Nj are n-dimensional C 1 embedded
submanifolds of RnCk .

Let f be a locally Lipschitz function on U , where U is an open set in RnCk containing
M . Then according to the discussion in �4 of Ch.2 we can define the gradient of f ,
rMf , Hn-a.e. y 2M by

2.1 Definition:
r
Mf (y) D rNj f (y); y 2Mj ;

where the notation is as above.

Notice that, up to change on sets of Hn-measure zero, this is independent of the decom-
positionM D [Mj (and independent of the choice of theC 1 submanifoldsNj ). Because
forHn-a.e. y 2M we haveD�f (y) D d

dt
f (yC t�)j�D0 for all � 2 TyM , and is a linear

function of � 2 TyM , by 4.16 of Ch.2 and the fact that TyM agrees with TyNj forHn-a.e.
y 2Mj (DM \Nj ). In particular rMf (x) D

Pn
iD1D�if (x)�i , where �1; : : : ; �n is an

orthonormal basis for TyM , is well defined as an L1 function with respect to Hausdorff
measure Hn onM .

Having defined rMf , we can now define the linear dMfx W TxM ! R induced by f by
setting

dMfx(�) D D�f (y) (D
〈
�;rMf (x)

〉
); � 2 TxM

at all points where TxM and rMf (x) exist.

More generally, if f D (f 1; : : : ; f Q) takes values in RQ (f j still locally Lipschitz on
U , j D 1; : : : ; k ), we define dMfx W TxM ! RQ by

2:2 dMfx(�) D D�f (x):

With such an f , in case Q D nC k (k � 0), we define the Jacobian JM
f

(x) for Hn-a.e.
x 2M as in 4.18 of Ch.2; thus

2:3 JMf (x) D
q
det
(
(dMfx)� ı (dMfx)

)
D

q
det
(
D�if (x) �D�j f (x)

)
;
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where �1; : : : ; �n is any orthonormal basis for TxM and and (dMfx)� W RnCk1 ! TxM

denotes the adjoint of dMfx .

We then have the general area formula (still assumingQ � n)

2:4

∫
A
JMf dHn

D

∫
RnCk

H0(A \ f �1(y)) dHn(y)

for any Hn-measurable set A � M . Indeed by 4.19 of Ch.2 we do have 2.4 with Nj in
place ofM and A \Mj � Nj in place of A and j � 1, because, for j � 1, JNj

f
D JM

f

Hn-a.e. on Mj . We then conclude 2.4 by summing over j � 1 and using the (easily
checked) fact that if  W U ! Rm is locally Lipschitz and B has Hn-measure zero, then
Hn( (B)) D 0.

We note also that if h is any non-negative Hn-measurable function on M , then, by ap-
proximation of h by simple functions, 2.4 implies the more general formula

2:5

∫
M
h JMf dHn

D

∫
RnCk

(∫
f �1(y)

h dH0
)
dHn(y):

In case f jM is 1:1 this becomes

2:6

∫
M
h JMf dHn

D

∫
f (M )

h ı f �1 dHn:

There is also a version of the co-area formula in caseM is merelyHn-measurable, count-
ably n-rectifiable and f W U ! Rm (U open U � M ) is locally Lipschitz with m < n,
so that n D mC k with k 2 {0; 1; : : :}.
In fact we can define (Cf. the smooth case described in �7 of Ch.2)

2:7 JMf (x) D
q
det
(
dMfx ı (dMfx)�

)
D

q
det
(
rMf i (x) � rMf j (x)

)
;

with dMfx as in 2.2 and (dMfx)� D adjoint of dMfx . Then, for any Hn-measurable set
A �M ,

2:8

∫
A
JMf dHn

D

∫
Rm

Hk(A \ f �1(y)) dLm(y):

This follows from theC 1 case (see �7 of Ch.2) by using the decompositionM D [1jD0Mj
of Remark 1.3 and the C 1 Approximation Theorem 1.5 of Ch.2 in a similar manner to
the procedure used for the discussion of the area formula above.

As for the smooth case, approximating a given non-negative Hn-measurable function g
by simple functions, we deduce directly from 2.8 the more general formula

2:9

∫
A
g JMf dHn

D

∫
Rm

(∫
f �1(y)\M

g dHk
)
dLm(y):
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2.10 Remarks: (1) Note that Remark 7.7 of Ch.2 carries over without change to this
setting.

(2) The “slices”M \ f �1(y) are countably k-rectifiable subsets of RnCk for Lm-a.e. y 2
Rm. This follows directly from the decompositionM D [1jD0Mj of Remark 1.3 together
with the C 1 Sard-type Theorem 7.5 of Ch.2 and the C 1 Approximation Theorem 1.5 of
Ch.2.

3 Purely Unrectifiable Sets, Structure Theorem

3.1 Definition: A subset S � RnCk is said to be purely n-unrectifiable if P contains no
countably n-rectifiable subsets of positive Hn-measure.

3.2 Lemma. If A is an arbitrary Hn � -finite subset of RnCk (i.e. A D [1jD1Aj with
Hn(Aj ) <1 for each j ), it is always possible to decompose A into a disjoint union

A D R [ P;

where R is countably n-rectifiable and P is purely n-unrectifiable. Also R can be chosen to be
a Borel set if A isHn measurable.

Proof: First observe that in case A is Hn-measurable we can also take each Aj to be Hn-
measurable (e.g. first take a Borel set Bj � Aj withHn(Bj ) D Hn(Aj ) and then replace
Aj by A\Bj ), then by Theorem 1.22(2) of Ch.1 we can take a Borel set Cj � Aj with
�(Aj n Cj ) D 0. In this case we let

j̨ D sup{Hn(S) W S � Cj ; S a countably n-rectifiable Borel set}:

By definition of j̨ we can select countably n-rectifiable Borel setsRij � Cj withHn(Rij ) >

j̨ � 1=i and let Rj D [iRij . Evidently Rj is a countably n-rectifiable Borel set and
Cj nRj is purely unrectifiable, because if Cj nRj contains a countably n-rectifiable set of
positive measure then Cj nRj contains a countably n-rectifiable Borel set Bj of positive
measure and hence R [ Bj � Cj with Hn-measure > j̨ , contradicting the definition of
j̨ . So 3.2 is proved with R D [jRj Borel and P D A nR Hn-measurable.

To handle the case when A is not necessarily Hn-measurable, we first pick a Borel set
B D [jBj , where each Bj is a Borel set containing Aj with the sameHn-measure as Aj .
Then by the case of the theorem when A is Hn-measurable which we established above,
we have B D R [ P (disjoint union) with R countably n-rectifiable Borel and P purely
n-unrectifiable, and then A D (A \R) [ (A \ P ) is a suitable decomposition of A. �
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The following lemma gives a simple and convenient sufficient condition for checking if
a set is purely n-unrectifiable. In this lemma we adopt the notation that pL denotes the
orthogonal projection of RnCk onto L for any n-dimensional subspace L � RnCk .

3.3 Lemma. For 1 � j1 < j2 < � � � < jn � n C k let pj1;:::;jn denote the orthogonal
projection of RnCk onto span{ej1 ; : : : ; ejn}, and suppose S � RnCk has the property that
Hn(pj1;:::;jn(S)) D 0 for each 1 � j1 < � � � < jn � nCk. Then S is purely n-unrectifiable.

Proof of 3.3: Suppose on the contrary thatS is not purely n-unrectifiable. Then Lemma 1.2
implies there is an n-dimensional C 1 embedded submanifold N with Hn(S \ N ) > 0,
so there must be some x 2 S \ N with Hn

(
S \ N \ B�(x)

)
> 0 for all � > 0. With

such an x we see that, by Remark 4.2(2) of Ch.2 (withM D N ) that there is 1 � j1 <
j2 < � � � < jn � nC k and � > 0 such that pj1;:::;jn jN \ MB�(x) is a C 1 diffeomorphism
onto an open W � span{ej1 ; : : : ; ejn} and so Hn(pj1;:::;jn(S \N \ MB�(x))) > 0. �

3.4 Example. A simple example (in the case n D k D 1) of the use of Lemma 3.3 is
the following: Let C0 D [0; 1] � [0; 1], C1 D the union of the 4 sub-squares of C0 with
edge length 1

4
each sharing one corner with C0. Observe that the orthogonal projection

p onto the line y D 1
2
x projects C1 onto a full line segment � of length 3p

5
. Thus if

we inductively define a sequence Cn of sets, each of which is the union of 4n squares
with edge length 4�n and if we stipulate that CnC1 is obtained from Cn by replacing
each square s of Cn with 4 squares of edge-length 4�n�1, each sharing a corner with s,
then CnC1 � Cn and each Cn projects via the orthogonal projection p onto the full line
segment � , and hence so does the compact set C D \1nD0Cn. Furthermore H1(C ) �

H1(p(C )) D 3p
5
> 0, and also H1(C ) �

p
2 < 1 because each of the 4n squares

comprising Cn has diameter 4�n
p
2. Finally, each Cn projects via orthogonal projection

px of R2 onto the x-axis to a union of 2n closed intervals each of length 4�n, and hence
L1(px(C )) D limL1(px(Cn)) D 0. Similarly L1(py(C )) D 0, where py denotes
orthogonal projection onto the y-axis. Evidently then Lemma 3.3 is applicable with
n D k D 1, so C is purely 1-unrectifiable.

A very non-trivial theorem (the Structure Theorem) due to Besicovitch [Bes28, Bes38,
Bes39] in case n D k D 1 and Federer [Fed69] in general, says that the purely unrecti-
fiable sets Q of RnCk which (like the subset P in 3.2) can be written as the countable
union of sets of finite Hn-measure, are characterized by the fact that they have Hn-null
projection via almost all orthogonal projections onto n-dimensional subspaces of RnCk .
More precisely:

3.5 Theorem. Suppose Q is a purely n-unrectifiable subset of RnCk with Q D [1jD1Qj ,
Hn(Qj ) <1 8j . ThenHn(p(Q)) D 0 for � -almost all p 2 O(nCk; n). Here � is Haar
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measure for O(nC k; n), the orthogonal projections of RnCk onto n-dimensional subspaces
of RnCk .

For the proof of this theorem see [Fed69] or [Ros84].

3.6 Remark: Of course only the purely n-unrectifiable subsets could possibly have the
null projection property described in 3.5, by virtue of Lemma 3.3 above.

Notice that, by combining 3.2 and 3.6, we get the following Rectifiability Theorem, which
is of fundamental importance in understanding the structure of subsets of RnCk :

3.7 Theorem (Rectifiability Theorem for sets.) If A is an arbitrary subset of RnCk

which can be written as a countable union [1jD1Aj with Hn(Aj ) < 1 8j , and if every
subset B � A with positive Hn-measure has the property that Hn(p(B)) > 0 for a set of
p 2 O(nC k; n) with � -measure> 0, then A is countably n-rectifiable.

4 Sets of Locally Finite Perimeter

An important class of countably n-rectifiable sets comes from the sets of locally finite
perimeter in RnC1. (Or Cacciopoli sets—see De Giorgi [DG61], Giusti [Giu84].) First
we need some definitions.

If U � RnC1 is open and if E is an LnC1-measurable subset of RnC1, we say that E has
locally finite perimeter in U if the indicator function �E of E is in BVloc(U ). (See �2 of
Ch.2.)

Thus E has locally finite perimeter in U if there is a Radon measure �E (D
ˇ̌
D�E

ˇ̌
in

the notation of �2 of Ch.2) on U and a Borel measurable function � D (�1; : : : ; �nC1)

with j�j D 1 �E -a.e. in U , such that

4:1

∫
E\U

divg dLnC1 D �
∫
U
g � � d�E

for each g D (g1; : : : ; gnC1) with gj 2 C 1c (U ), j D 1; : : : ; n C 1. Notice that if E
is open and @E \ U is an n-dimensional embedded C 1 submanifold of RnC1, then the
divergence theorem tells us that 4.1 holds with �E D Hn (@E \ U ) and with � D the
inward pointing unit normal to @E. Thus in general we interpret �E as a “generalized
boundary measure” and � as a “generalized inward unit normal”. It turns out (see 4.4
below) that in fact this interpretation is quite generally correct in a rather precise (and
concrete) sense.

We now want to define the reduced boundary @�E of a set E of finite perimeter by

4:2 @�E D
{
x 2 U W lim

�#0

R
B�(x)

� d�E

�E (B�(x))
exists and has length 1

}
:
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We henceforth use the notation

4:3 �E (x) D lim
�#0

R
B�(x)

� d�E

�E (B�(x))
; x 2 @�E:

By virtue of the Lebesgue Theorem 4.10 of Ch.1 we have �E D � �E -a.e. in U , hence
�E (U n @�E) D 0 and �E D �E @�E. We in fact claim much more:

4.4 Theorem (De Giorgi). Suppose E has locally finite perimeter in U . Then

�E D Hn @�E;

@�E is countably n-rectifiable, and at each point x 2 @�E the approximate tangent space
Tx@

�E of @�E exists (in accordance with Definition 1.4) and is given by

(�) Tx@
�E D

{
y 2 R

nC1
W y � �E (x) D 0

}
;

where �E is as in 4.3 (so that
ˇ̌
�E (x)

ˇ̌
D 1 by the definiton 4.2). Furthermore �E (x) is the

“inward pointing unit normal for E” in the sense that

(��) Ex;� �
{
��1(y � x) W y 2 E

}
!
{
y 2 R

nC1
W y � �E (x) > 0

}
in the L1loc(RnC1) sense for each x 2 @�E.

Proof: Take any y 2 @�E. For convenience of notation we suppose that y D 0 and
�(0) D (0; : : : ; 0; 1). Then we have

(1) lim
�#0

∫
B�(0)

�nC1 d�E

�E (B�(0))
D 1:

Since �nC1 � j�nC1j � 1 we have also lim�#0

∫
B� (0)

j�nC1jd�E

�E (B�(0))
D 1 and hence

(2) lim
�#0

∫
B�(0)
j�i j d�E

�E (B�(0))
D 0; i D 1; : : : ; n;

because j�i j �
q
1 � �2nC1 �

p
2
p
1 � j�nC1j. Further if � 2 C 10 (U ) has support in

B�(0) � U , then by 4.1∫
U
�nC1� d�E D �

∫
U

�
EDnC1� dLnC1(3)

�

∫
E
jD�j dLnC1:

Now replace � by a decreasing sequence
{
�k
}
converging pointwise to the characteristic

function of B�(0) and satisfying

(4) lim
k!1

∫
E

ˇ̌
D�k

ˇ̌
D

d

d�
LnC1(E \ B�(0)):
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(Notice that this can be done whenever the right side exists, which is L1-a.e. �, because
L1(E \ B�(0)) is an increasing function of �.) Then (3) gives

(5)
∫
B�(0)

�nC1 d�E �
d

d�
LnC1(E \ B�(0))

for L1-a.e. � 2 (0; �0), �0 D dist(0; @U ). Then by (1) we have, for suitable �1 2 (0; �0),

�E (B�(0)) � 2
d

d�
LnC1(E \ B�(0)) D 2Hn(E \ @B�(0))(6)

� 2(nC 1)!nC1�
n

for L1-a.e. � 2 (0; �1).

Then by the Compactness Theorem 2.6 of Ch.2, it follows that we can select a sequence
�k # 0 so that ��0;�k (E ) !

�
F in L1loc(RnC1), where F is a set of locally finite perimeter

in RnC1. Hence in particular for any non-negative � 2 C 10 (RnC1)

(7) lim
k!1

∫
�0;�k (E )

Di� dLnC1 D
∫
F
Di� dLnC1:

Now write �k(x) D �(��1k x) and change variable x ! �kx; then

(8)
∫
�0;�k (E )

Di� dLnC1 D ��nk
∫
E
Di�k dLnC1 � ���nk

∫
U
�k�i d�E

(by 4.1), so that
R
�0;�k (E )Di� dL

nC1
! 0 by (2) for i D 1; : : : ; n. Thus (7) gives

∫
F
Di� dLnC1 D 0 8� 2 C 10 (R

nC1); i D 1; : : : ; n;

and it follows that F D Rn �H for some L1-measurable subset H of R.

On the other hand by 4.1 with g D �kenC1 and by (1) we have, for k sufficiently large
and � � 0,

0 � ��nk

∫
U
�k�nC1 d�E D

∫
�0;�k (E )

DnC1�

!

∫
F
DnC1� �

∫
Rn

(∫
H

@�

@xnC1
(x 0; xnC1) dxnC1

)
dx 0

as k !1, so that �H is non-decreasing on R, hence

(9) F D
{
x 2 R

nC1
W xnC1 < �

}
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for some �. We have next to show that � D 0. To check this we use the Sobolev inequality
(see e.g. [GT01]) to deduce that, if � � 0, spt � � U and � < dist(spt �; @U ), then

(
∫
U
(�'� � �E )

nC1
n dLnC1)

n
nC1

� C

∫
U

ˇ̌
D(�'� � �E )

ˇ̌
dLnC1

� C (
∫
U
�
ˇ̌
D('� � �E )

ˇ̌
dLnC1 C

∫
U
'� � �E jD�j dLnC1):

By 2.5 of Ch.2 it follows that

(
∫
E
�
nC1
n dLnC1)

n
nC1 � C (

∫
U
� d�E C

∫
E
jD�j dLnC1);

and replacing � by as sequence �k as in (4), we get for a.e. � 2 (0; �1)

(LnC1(E \ B�(0)))
n
nC1 � C (�E (B�(0))C

d

d�
LnC1(E \ B�(0)));

which by (6) gives

(LnC1(E \ B�(0)))
n
nC1 � C

d

d�
LnC1(E \ B�(0)) a.e. � 2 (0; �1):

1 � C
d

d�
LnC1(E \ B�(0))1=(nC1) a.e. � 2 (0; �1):

Integration (using the fact that LnC1(E \ B�(0))1=(nC1) is an increasing function of �
and hence

R �
0

d
d�

LnC1(E \B� (0))1=(nC1) d� � LnC1(E \B�(0))1=(nC1) ) then implies

(10) LnC1(E \ B�(0)) � C�nC1

for all sufficiently small �. Repeating the same argument with U n E in place of E, we
also deduce

(11) LnC1(B�(0) nE) � C�nC1

for all sufficiently small �. (10) and (11) evidently tell us that � D 0 in (9).

The argument above guarantees ��0;�(E ) !
�{x2RnC1WxnC1<0} as � # 0. Then by 4.1, (1)

and (3) we have

��0;�(E ) ! �{x2RnC1WxnC1<0} D Hn {x 2 R
nC1
W xnC1 D 0} as � # 0:

Of course (since we can reduce to that above case y D 0 and �E (y) D enC1 via an
orthogonal transformation) this implies in general that

(12) ��y;�(E ) ! �{x2RnC1W(x�y)��E (y)<0} D Hn {x 2 R
nC1
W (x � y) � �E (y) D 0}
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as � # 0 for each y 2 @�E. In particular

(13) (!n�
n)�1�E (B�(y))! 18y 2 @�E;

and by the comparison theorem 4.6 (with �E in place of �) we have

Hn @�E � �E in U;

so in particular Hn @�E is absolutely continuous with respect to �E and @�E is Hn-
measurable with locally finite Hn-measure in U . Now in view of (12) we can repeat
exactly the argument of the proof of 1.6 “(” with �E in place of the measure � D
Hn (M \ BR(0)) used in that proof, in order to prove that there are Lipschitz maps
Fj W Rn ! RnC1 with �(@�E n ([jFj (Rn))) D 0, hence in particular @�E is countably
n-rectifiable.

Next let A � @�E be arbitrary and for each i D 1; 2; : : : let Ai be the set of y 2 A with
�E (B�(y)) � 2!n�n for all � < 1=i . Then A D [1iD1Ai by (13), and, by definition of
Hn
ı with ı D 1=i , we can choose a family Ci1; Ci2; : : :with Ai � [jCij , diamCij < 1=i

and Cij \Ai ¤ ∅ for each j , and
P
j !n(diamCij =2)n � Hn

1=i (Ai )C 1=i . Then, with
yij 2 Cij \ Ai and �ij D diamCij , we have

�(Ai ) �
P
j�(B�ij (yij )) � 2

nC1Hn
1=i (A)C 2

nC1=i:

Hence letting i !1 we have � � 2nC1Hn @�E in U , so in particular � is absolutely
continuous with respect to Hn @�E.

Since @�E is countably n-rectifiable we can write it as the disjoint union [1jD0Mj , where
Hn (M0) D 0, Mj � Nj , Nj being n-dimensional embedded C 1 submanifolds of RnC1

for j � 1. Then by (13) and theUpperDensity Theoremwe have lim�#0
�(B�(x))

Hn(B�(x)\Nj )
D

1, Hn-a.e. x 2 Mj and hence by the Radon Nikodym Theorem 4.18 of Ch.1 we have
� D Hn @�E as required. �
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Chapter 3 Problems

3.1 Suppose a; b 2 R, a < b, and  W [a; b] ! Rn is absolutely continuous. The length
L of  is defined as usual by L D

R b
a
j 0(t)j dt . Ife W [0;L]! Rn is defined bye(�) D

(t(�)), where t(�) D sup{t 2 [a; b] W
R t
a
j
0

(x)j dx � �} for � 2 [0;L], prove (i)e is
Lipschitz with Lipe � 1, ( ii) je 0(s)j D 1 for a.e. s 2 (0;L), ( iii)e([0;L]) D ([a; b]).
3.2 If C � R2 is the purely 1-unrectifiable subset constructed in Example 3.5 of Ch. 3,
prove that C � [0; 1] has positive H2-measure and is purely 2-unrectifiable.

3.3 (i) If v1; : : : ; vnC` is a basis for RnC` and if L is an n-dimensional subspace of RnC`,
prove that there exist 1 � j1 < j2 < � � � < jn � n C ` such that the orthogonal
projection pvj1 ;:::;vjn of RnC` onto span{vj1 ; : : : ; vjn} has the property that pvj1 ;:::;vjn jL
is an isomorphism of L onto span{vj1 ; : : : ; vjn}.
Hint: You can of course assume without loss of generality that L D Rn � {0}. Observe

rankpvj1 ;:::;vjn jR
n � {0} D rankpvj1 ;:::;vjn ı pRn�{0}

D rankpRn�{0} ı pvj1 ;:::;vjn
D rankpRn�{0}j span{vj1 ; : : : ; vjn}:

(ii) Using (i), check the claim made in Remark3.4 of Ch.3 of the text.

3.4 Justify the claim made in Remark 1.5(3) of Ch. 3 of the text, that if M is Hn-
measurable withHn(M \K) <1 for each compact K and if x 2 RnC` is such that the
approximate tangent space TxM exists, then

lim
�#0

��nHn(M \X1=2((TxM )?; x) \ B�(x)) D 0:

3.5 If M is an n-dimensional C 1 submanifold of RnC`, if x 2 M , and if TxM is the
tangent space ofM at x, prove that TxM is also the approximate tangent space ofM at
x; i.e.

lim
�#0

Z
�x;�M

f dHn
D

Z
TxM

f dHn

for every f 2 C 0c (RnC`).
Hint: Suppose without loss of generality that TxM D Rn � {0} and x D 0, and use a local graphical
representation forM near 0 as discussed in Remark 4.4 of Ch. 2 of the text.
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Let U � RnCk be open andM � U a countably n-rectifiable, Hn-measurable subset of
RnCk , and let � be a positive Hn-measurable function on M with

R
M\K

� dHn < 1

for each compact K � U . Corresponding to such a pair (M; �) we define the rectifiable
n-varifold v(M; �) to be simply the equivalence class of all pairs (M̃ ; �̃), where M̃ � U
is countably n-rectifiable withHn

(
(M n M̃ )[ (M̃ nM )

)
D 0 and where �̃ D � Hn-a.e.

on M \ M̃ .1 V D v(M; �) is referred to as a rectifiable n-varifold in U , and � is called
the multiplicity function of v(M; �). v(M; �) is called an integer multiplicity rectifiable
varifold if this multiplicity function is positive integer-valued Hn-a.e.

In this chapter and in Ch.5 we develop the theory of n-rectifiable varifolds in U as in-
troduced above, particularly concentrating on stationary (see �2 below) rectifiable n-
varifolds, which generalize the notion of classical minimal submanifolds of RnCk dis-
cussed in �5 of Ch.2. Since we now consider rectifiable M (which are not necessarily
smooth—indeed only have approximate tangent planesHn-a.e.), it no longer makes much
sense to take a C 1 vector field X with support in a compact subset ofM , which was the
natural approach adopted in Ch.2 when M was a C 2 submanifold. So instead in this

1We shall see later, in Ch. 8, that this is essentially equivalent to Allard’s ( [All72]) notion of n-dimensional
rectifiable varifold.
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chapter we work with C 1 (or sometimes just Lipschitz) vector functionsX W U ! RnCk

with support ofX a compact subset ofU , but still making deformations ofM with initial
velocity given by X .

The key section is �3, in which we obtain the monotonicity formula; much of the sub-
sequent theory is based on this and closely related formulae.

1 Basic Definitions and Properties

Associated to a rectifiable n-varifold V D v(M; �) in the open set U � RnCk (as de-
scribed in the above introduction) there is a Radon measure � (called the weight measure
of V ) on U defined by

1:1 �V D Hn �;

where we adopt the convention that � � 0 on U nM . Thus for an Hn-measurable set
A � U ,

�V (A) D
∫
A\M

� dHn;

the mass (or weight) of the varifold V , M(V ), is defined by

1:2 M(V ) D �V (U ) D
∫
M
� dHn:

1.3 Definition: We define the tangent space TxV of V D v(M; �) to be the approximate
tangent space of M (as defined in the statement of 1.9 of Ch.3) whenever this exists;
notice that this is independent of the choice of representative (M; �) for the equivalence
class v(M; �).

We also define

1:4 sptV D spt�V ;

which is the (relatively closed) set of points y 2 U such that �V (B�(y)) > 0 for each
� > 0, or, equivalently, U n Y where Y is the union of all open subsets W of U with
�V (W ) D 0.

For anyHn-measurable subset A � RnCk , v A is the rectifiable n-varifold in U defined
by

1:5 V A D v(M \ A; � jA):

Given a sequence Vk D v(Mk ; �k) of rectifiable n-varifolds in U , we say that Vk ! V

provided �Vk ! �V in the usual sense of Radon measures in U . (Notice that this is not
varifold convergence in the sense of Ch.8.)
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Next we want to discuss the notion of mapping a rectifiable n-varifold relative to a Lip-
schitz map. Suppose V D v(M; �), M � U , U open in RnCk , W open in RnCk and
suppose f W sptV \ U ! W is proper2, Lipschitz and 1:1. Then we define the image
varifold f#V by

1:6 f#V D v(f (M ); � ı f �1):

Since K compact) f �1(K) compact and f (M ) \ K D f (M \ f �1(K)), the area
formula 4.20 of Ch.2 gives

1:7

∫
f (M )\K

� ı f �1 dHn
D

∫
M\f �1(K)

JMf � dHn;

so in particular � ıf �1 is locallyHn-integrable inW , and therefore 1.6 does indeed define
a rectifiable n-varifold in W . More generally if f satisfies the conditions above, except
that f is not necessarily 1:1, then we define f#V by

f#V D v(f (M ); �̃);

where �̃ is defined on f (M ) by
P
x2f �1(y)\M �(x) (D

R
f �1(y)\M � dH0). Notice that

�̃ is locallyHn-integrable inW by virtue of the area formula (see �2 of Ch.3), and in fact

1:8 M(f#V ) D
∫
f (M )

�̃ dHn
�

∫
M
JMf � dHn;

where JM
f

is the Jacobian of f relative toM as defined in �2 of Ch.3. Thus, assuming
m � n, we define

1:9 JMf (x) D
q
detJ (x):

where J (x) is the matrix with D�`f (x) � D�mf (x) in the `-th row and m-th column
(�1; : : : ; �n any orthonormal basis for TxM ).

2 First Variation

We continue to assume that V D v(M; �) is is a rectifiable n-varifold in U , U open in
RnCk , and we assume ' W (�"; ") � U ! RnCk (where " > 0) is a C 1 map such that

2:1

{
'(0; x) D x for each x 2 U , and 9 compact K � U with

'(t; x) D x for all (t; x) 2 (�"; ") � U ;

2i.e. f �1(K)\ sptV is compact wheneverK is a compact subset ofW
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and such that the velocity @'(t; x)=@t is alsoC 1. Then the initial velocityX D @'(t; x)=@t jtD0
is a C 1 vector field with compact support in U . Of course given any C 1 vector field X
with compact support in U , we can construct a function ' as in 2.1, with initial velocity
X , simply taking '(t; x) D x C tX(x) and " > 0 sufficiently small.

According to 1.8,

M('t # (V K)) D
∫
M\K

JM't � dHn;

and we can compute the first variation d
dt
M('t #(V K))

ˇ̌̌
tD0

exactly as in �3 of Ch.2.
We thus deduce

2:2
d

dt
M('t #(V K))

ˇ̌̌̌
tD0

D

∫
M

divM X d�V ;

where Xjx D @
@t
'(t; x)

ˇ̌̌
tD0

is the initial velocity vector for the family {'t} and where
divM X is as in �4 of Ch.2:

2:3 divM X D
PnCk
jD1r

M
j Xj (D

PnCk
jD1 ej � (r

MXj )):

(rMXj as in �2 of Ch.3)

We say that V is stationary in U if the first variation vanishes in U . That is, by 2.2, the
definition is as follows:

2.4 Definition: V D v(M; �) is stationary in U if d
dt
M('t #(V K))

ˇ̌̌
tD0
D 0 for

every family {'t} as in 2.1; of course by 2.2 this is equivalent to the requirementR
divM X d�V D 0 for any C 1 vector field X on U having compact support in U .

More generally let N be an (n C `)-dimensional C 2 embedded submanifold of RnCk

(` � k ), letM � N beHn-measurable and let � > 0 onM be such that
R
M\K

� Hn <1

for each compact K � N . We call such V D v(M; �) a rectifiable varifold in N .

Observe that each local representation for N provides a homeomorphism between an
open subset of Euclidean space RnC` and an open subset ofN , so for each y 2 N there is
�y > 0 such that B�y (y)\N is a compact subset ofN . Hence the set U D [y2N MB�y (y)
is open in RnCk and has the property that ifK � U is compact thenK \N is a compact
subset of N . Thus V D v(M; �) can in fact also be viewed as a rectifiable varifold in the
open set U � RnCk and spt�V � N .

Now let ' W ("; ") �N ! N (where " > 0) be a C 1 map such that

2:5

{
'0(x) D x 8x 2 N; 9 compact K � N with

'(t; x) D x 8(t; x) 2 (�"; ") � (N nK);
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and such that the initial velocity X(x) D @'(t; x)=@t jtD0 is C 1; note that X will of
course automatically have the property that X(x) 2 TxN for each x 2 N (so X is a
tangent vector field on N ), because, for fixed x 2 N , '(t; x); t 2 (�"; "), is a C 1 curve
in N which passes through x at time t D 0.

The quantity d
dt
M('t #(V K))

ˇ̌̌
tD0

with ' as in 2.5 is called the first variation of V in
N , and of course we still have the identity 2.2.

2.6 Definition: V is stationary inN if d
dt
M('t #(V K))

ˇ̌̌
tD0
D 0 for every ' as in 2.5,

where 't (x) D '(t; x).

As already mentioned in the discussion preceding 5.10 of Ch.2, for each C 1 vector field
X on N with Xjx 2 TxN 8x 2 N , there is always ' as in 2.5 with initial velocity
@
@t
't (x)jtD0 D Xjx for each x in x. Thus, by V D v(M; �) is stationary in N that

V D v(M; �) is stationary in N if and only if∫
M

divM X d�V D 0

for each C 1 vector field X on N with {x 2 N W X(x) ¤ 0} contained in a compact
subset of N and X tangent to N at each point of N ; that is, Xjx 2 TxN 8x 2 N . On
the other hand, by exactly the computation of 5.11 of Ch.2 (which did not depend on
smoothness of M ), we can start with any C 1 vector field X on N and compute (as in
5.11 of Ch.2) that

divM X D divM XT �
Pn
iD1H

N
M �X

at all points x 2 M whereM has an approximate tangent space TxM , where XT is C 1

with compact support in N and tangent to N at each point of N and, as in 5.12 of Ch.2,

2:7 HN
M (x) D

Pn
iD1B

N
x (�i ; �i );

with BN the second fundamental form of N and �1; : : : ; �n any orthonormal basis for
TxM . Thus in fact we conclude that V is stationary in N ”

2:8

∫
M

divM X d�V D �

∫
M
X �HN

M d�V for each C 1 map X W N ! R
nCk

with {x 2 N W X(x) ¤ 0} contained in a compact subset of N .

3 Monotonicity Formulae in the Stationary Case

In this section we assume thatU is open inRnCk , V D v(M; �) is stationary inU , which
means Definition 2.4 holds, i.e.

3:1

∫
M

divM X d�V D 0
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wheneverX is a C 1 vector field on U with compact support in U . We proceed to extract
important information from this identity by taking specific choices of the vector function
X D (X1; : : : ; XnCk). In fact we begin by choosing Xx D (r)(x � �), where � 2 U is
fixed, r D jx � �j, and  W R! [0; 1] is a C 1(R) function with

 0(t) � 0 8t; (t) D 1 for t � �; (t) D 0 for t � R;

where R > � > 0 and BR(�) � U .

For any f 2 C 1(U ) and any x 2 M such that TxM exists (see 1.6, 1.9 of Ch.3) we
have (by 2.1 of Ch.3) rMf (x) D

PnCk
j;`D1 e

j`D`f (x)ej , whereD`f denotes the partial
derivative @f

@x`
of f taken inU and where (ej`) is the matrix of the orthogonal projection

of RnCk onto TxM , viewed as a map RnCk ! RnCk . Thus, writing rMj D ej � r
M (as

in �2), with the above choice of X we deduce

divM X D
PnCk
jD1r

M
j Xj D3.2
(r)

PnCk
jD1 e

jj
C r 0(r)

PnCk
j;kD1e

jk (xj��j )
r

(xk��k )
r

:

Since (ej`) represents orthogonal projection onto TxM we have
PnCk
jD1 e

jj D n and

PnCk
j;kD1e

jk (xj��j )
r

(xk��k )
r
D
ˇ̌
pTxV (

x��
r
)
ˇ̌2

and, writing � D �V , the formula 3.1 thus yields

3:3 n

∫
(r) d�C

∫
r 0(r)jrM r j2 d� D 0:

A useful variant of this procedure is obtained by more generally taking any non-negative
C 1 functions h W U ! R and  W R! R with support of h(x)(r) a compact subset of
U ; then using the computations above and keeping track of the additional terms involving
derivatives of h, we see that in place of 3.3 we get

3:4 n

∫
(r)h d�C

∫
r 0(r)jrM r j2h d� D �

∫
(r)(x � �) � rMh d�:

For the moment we work with the identity 3.3 (which is 3.4 with h D 1). Take " 2 (0; 1)

and a C 1 function ' W R ! [0; 1] such that '(t) � 1 for t � 1, '(t) D 0 for t � 1C "
and ' 0(t) � 0 for all t . Then we take (r) D '(r=�) in the above identity, provided
(1C ")� < R. Since

r 0(r) D r��1' 0(r=�) D �� @
@�

[
'(r=�)

]
;

this gives

3:5 n

∫
M
'(r=�) d� � � d

d�

∫
M
jr
M r j2'(r=�) d� D 0; � < R=(1C ");
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provided BR(�) � U and (1C ")� 2 (0;R], which we subsequently assume.

On the other hand pTxV v D v � p(TxV )?v for v 2 RnCk , so
ˇ̌
pTxV (

x��
r
)
ˇ̌2
D 1 �ˇ̌

D?r
ˇ̌2, whereD?r denote the orthogonal projection of r�1(x��) D Dr D (D1r; : : : ;DnCkr)

(which is a vector of length D 1) onto (TxV )?, so 3.5 can be written

nI (�) � �I 0(�) D ��
∫
M

@
@�
['(r=�)]jD?r j2 d�; � < R=(1C ");

where
I (�) D

∫
M
'(r=�) d�:

Thus, multiplying by ��n�1 and rearranging, we have

d
d�
(��nI (�)) D

∫
M
��n @

@�
['(r=�)]jD?r j2 d�:

Since (1C ")�nr�n @
@�

[
'(r=�)

]
� ��n @

@�

[
'(r=�)

]
� r�n @

@�

[
'(r=�)

]
, this gives

3:6 (1C ")�nJ 0(�) � d
d�
(��nI (�)) � J 0(�); J (�) D

∫
M
r�njD?r j2'(r=�) d�V :

By integration in 3.6 over the interval [�; �] we thus get∫
M
(1C ")�nr�n('(r=�) � '(r=�))jD?r j2 d�V � �

�nI (�) � ��nI (�)3.7

�

∫
M
r�n('(r=�) � '(r=�))jD?r j2 d�V :

Now we let " # 0. Then ' decreases to the indicator function of the interval (�1; 1]
and hence '(r=�) decreasing pointwise to the indicator function of the closed unit ball,
so we obtain

3:8
�V (B�(�))

!n�n
�
�V (B� (�))

!n�n
D !�1n

∫
B�(�)nB� (�)

ˇ̌
D?r

ˇ̌2
rn

d�V ; 0 < � � � < R;

provided BR(�) � U .

3.8 is the fundamental monotonicity identity. In particular 3.8 tells us that the ratio

3:9 (!n�
n)�1�(B�(�)) is increasing in �; 0 < � < R;

and hence the density

3:10 ‚n(�V ; �) D lim
�#0

�V (B�(�))

!n�n
exists and is real for every � 2 U;
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and by letting � # 0 in 3.8 we also have

3:11 (!n�
n)�1�V (B�(�)) �‚

n(�V ; �) D !
�1
n

∫
B�(�)

ˇ̌
D?r

ˇ̌2
rn

d�V ; 0 < � < R;

and in particular
R
B�(�)

ˇ̌
D?r

ˇ̌2
rn

d�V <1. We also claim the upper semi-continuity

3:12 ‚n(�V ; �) � lim supx!�‚
n(�V ; x); � 2 U:

To check this take and � > 0 and " 2 (0; 1) with B�(�) � U and any sequence �j ! �.
Then B(1�")�(�j ) � B�(�) for all sufficiently large j , and hence using the monotonic-
ity 3.9 we have

(1 � ")n‚n(�V ; �j ) � (!n�
n)�1�V (B(1�")�(�j )) � (!n�

n)�1�V (B�(�))

for all sufficiently large j , and hence

(1 � ")n lim sup
j!1

‚n(�V ; �j ) � (!n�
n)�1�V (B�(�)):

Letting " # 0we then have lim supj!1‚
n(�V ; �j ) � (!n�n)�1�V (B�(�)), and finally,

by letting � # 0, we obtain 3.12 as claimed.

Since V D v(M; �) and ‚n(�V ; x) D �(x) for Hn-a.e. x 2 M (by Remark 1.8 of Ch.
3), 3.12 enables us to choose “canonical representatives” MV ; ‚V for V , so that V D
v(MV ; ‚V ), where

3:13 MV D {x 2 U W ‚n(�V ; x) > 0} and ‚V (x) D ‚n(�V ; x)8x 2 U:

Since ‚V is then upper semi-continuous in U by 3.12 we then have

3:14 {x 2MV W ‚V (x) � ˛} is relatively closed in U for each ˛ > 0

and in particularMV itself is relatively closed in U (and in fact equal to sptV \U ) in case
there exists ˛ > 0 with �(x) � ˛ forHn-a.e. x 2M (and then of course ‚V (x) � ˛ for
every x 2MV by 3.12).

We now want to generalize this discussion to a context which includes varifolds which
are stationary in an (nC k)-dimensional C 2 embedded submanifold N � RP (for some
P > n C k ) rather than in RnCk, as discussed in �2 above. We in fact introduce the
concept of generalized mean curvature vector for the varifold V D v(M; �) as follows:

3.15 Definition: Let V D v(M; �) be a rectifiable varifold in the open set U � RnCk .
Then we say that V has generalized mean curvature vector H in U if

(�)
∫
M

divM X d�V D �

∫
M
X �H d�V 8X 2 C

1
c (U;R

nCk);
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where H 2 L1loc(�V ) in U . Thus V is stationary in U if and only if it has generalized
mean curvature zero.

Notice also V is stationary in N , where N is a C 2 (nC k)-dimensional embedded sub-
manifold of RnC`, if and only if V has generalized mean curvature HN

M in U , with HN
M

as in 2.7 of the previous section.

We want to show that the above monotonicity discussion generalizes to the case when
V D v(M; �) has when we assume suitable bounds on generalized mean curvature H .
For this purpose, first proceed on the left side of 3.15 (�) exactly as in the case H D 0

with the same choiceX D h(r)(x��) (h non-negative C 1 ), thus giving, in place of 3.4,
the general identity

3:16

∫ (
n(r)C r 0(r)jrM r j2

)
h d�V D �

∫
(x � �) � (hH CrMh)(r) d�V ;

Replacing (r) by '(r=�) (as in the argument leading to 3.5), then we obtain

3:17 n

∫
h'(r=�) d�V � �

d

d�

∫
hjrM r j2'(r=�) d�V D Eh(�);

with Eh(�) D ��n�1
R(
hH CrMh

)
� (x � �)'(r=�) d�V .

Now suppose BR(�) � U and that there is constant ƒ such that

3:18 R supBR(�)jH j � ƒ onM:

Then, by the identity 3.17 with h D 1, writing jrM r j2 D 1 � jD?r j2 we obtain

3:19 (1C ")�nJ 0(�) � d
d�
(��nI (�))CE1(�) � J

0(�);

where I; J are as in 3.6 and where the extra term E1 is equal to ��n
R
U
��1(x � �) �

H '(r=�) d�V . Thus, since '(r=�) D 0 for r > (1C ")�,

�(1C ")R�1ƒ��nI (�) � E1(�) � (1C ")R�1ƒ��nI (�);

and hence E1(�) D E(�)��nI (�), with E(�) 2 [�(1 C ")R�1ƒ; (1 C ")R�1ƒ] for
each � 2 (0;R). Thus, after multiplying 3.19 by the integrating factor eF (�), where
F (�) D

R �
0
E(t) dt 2 [�(1C ")ƒ�=R; (1C ")ƒ�=R], we obtain (analogously to 3.6)

(1C ")�ne�(1C")ƒJ 0(�) � d
d�
(eF (�)��nI (�)) � e(1C")ƒJ 0(�);

where J (�) D
R
M
r�njD?r j2'(r=�) d�. Then integrating from � to � as in the case

H D 0 and then letting " # 0 as we did before, we obtain (analogous to 3.8)

eF (�)�V (B�(�))

!n�n
� eF (�)�V (B� (�))

!n�n
D !�1n G(�; �)

∫
B�(�)nB� (�)

r�njD?r j2 d�V ;
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with G(�; �) 2 [e�ƒ; eƒ]. Thus we have proved the following:

3.20 Theorem. IfU is open in RnCk , ifBR(�) � U and V has generalized mean curvature
vectorH in U with jH j � ƒ, then

eF (�)�V (B�(�))

!n�n
� eF (�)�V (B� (�))

!n�n
D !�1n G(�; �)

∫
B�(�)nB� (�)

r�njD?r j2 d�V ;

for all 0 < � � � < R, where F (�) 2 [�ƒ�
R
; ƒ�
R
] and G(�; �) 2 [e�ƒ; eƒ] for all

0 < � � � < R.

3.21 Remark. Since jF (�)j � ƒ�=R in the above theorem, we again conclude that
‚n(�V ; �) exists for all � 2 U and is an upper semi-continuous function on U by merely
notational modifications to the previous argument for H D 0.

We conclude this section with some variants of the above computations which will be
important in our later discussion of local conical approximation and elsewhere.

Let BR(�) � U and V D v(M; �) have generalized mean curvature H 2 L1(�V ) on
MBR(�). We let 0 < � < � � R and we observe that if we let " # 0 in 3.17, then we
obtain, in the distribution sense,

�
d

d�

∫
B�(�)

hjrM r j2 d�V D3.22

n

∫
B�(�)

h d�V C

∫
B�(�)

(hH CrMh) � (x � �) d�V :

We also observe that the Co-area Formula 2.9 of Ch.3 with f (x) D jx � �j(D r) (in
which case JM

f
D jrM r j) and withM \ B�(�) in place ofM implies

3:23

∫
B�(�)

gjrM r j d�V D

∫ �
0

∫
@Bt (�)

g d�dt

for any non-negativeHn-measurable function g, where d� D �dHn�1, so the left side is
an absolutely continuous function of � and

3:24
d

d�

∫
B�(�)

gjrM r j d�V D

∫
@B�(�)

g d�;

for L1-a.e. � 2 (0;R). Hence, taking g D hjrM r j, 3.22 implies

3:25

∫
@B�(�)

rhjrM r j d� D n

∫
B�(�)

h d�V C

∫
B�(�)

(
hH CrMh

)
� (x � �) d�V

for L1-a.e. � 2 (0;R).
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If we now subtract the inequality 3.25 with � < � in place of � from the same inequality
3.25, then we get∫

@B�(�)
rhjrM r j d� �

∫
@B� (�)

rhjrM r j d�3.26

D n

∫
B�(�)nB� (�)

h d�V C

∫
B�(�)nB� (�)

(
hH CrMh

)
� (x � �) d�V ;

and then by replacing h by r�nh and observing that (x��) �rM r�n D �nr�njrM r j2 D
�nr�n C nr�njD?r j2, we obtain∫

@B�(�)
r1�nhjrM r j d� �

∫
@B� (�)

r1�nhjrM r j d� � n

∫
B�(�)nB� (�)

r�njD?r j2h d�V3.27

D

∫
B�(�)nB� (�)

r�n(hH CrMh) � (x � �) d�V :

Now we take h W RnCk n {�}! [0; 1] to be a homogeneous degree zero C 1 function of
the variable x � � and let b � 1 be such that

3:28 jDh(x � �)j � br�1:

Observe that then (x � �) �Dh D 0, and so (x � �) � rMh D (x � �) � pTxM (Dh) D

pTxM (x � �) �Dh D ((x � �) � p(TxM )?(x � �)) �Dh D �p(TxM )?(x � �) �Dh D

�rD?r �Dh, so in fact

3:29
ˇ̌
(x � �) � rMh

ˇ̌
� b jD?r j;

with b as in 3.28. Then, since r D � on @B�(�), 3.27 impliesˇ̌̌
�1�n

∫
@B�(�)
hjrM r j d� � �1�n

∫
@B� (�)
hjrM r j d� � n

∫
B�(�)nB� (�)

r�njD?r j2h d�V

ˇ̌̌
3.30

�

∫
B�(�)nB� (�)

(
r1�njH j C br�njD?r j

)
d�V :

4 Monotonicity Formulae for Lp Mean Curvature

Here we continue to assume that V D v(M; �) is a rectifiable varifold in U (U open in
RnCk ) with generalized mean curvature vectorH in U , but now we assumeH is merely
in Lp function rather than L1 as in the previous section.

We begin with the inequalities 3.19, but nowwe assume only anLp condition with p > n
instead of a bound on H . Specifically we assume

4:1 p > n and
(
Rp�n

∫
BR(�)

jH jp d�V

)1=p
� ƒ;
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whereƒ � 0. Observe that then by using Hölder’s inequality we have (since '(r=�) D 0
for r < (1C ")�)ˇ̌
��n

∫
U
��1(x � �) �H '(r=�) d�V

ˇ̌
� (1C ")��nkHkLp(�V BR(�))(I (�))

1�1=p

D (1C ")R�1(�=R)�n=p
(
Rp�n

∫
BR(�)

jH jp d�V
)1=p

(��nI (�))1�1=p

� (1C ")ƒR�1(�=R)�n=p
(
1
p
C ��nI (�)

)
; � < R=(1C ");

where at the last step we used a1�1=p � 1
p
Ca, valid for a � 0, as one checks by observing

that the function f (a) D a1�1=p � ( 1
p
C

p�1
p
a); a � 0, attains a maximum value of

zero at a D 1. Thus 3.19 implies

4:2 (1C ")�nJ 0(�) � d
d�

(
��nI (�)

)
C F0(�)

(
1
p
C ��nI (�)

)
� J 0(�);

where (as in 3.6 ) J (�) D
R
M
r�njD?r j2'(r=�) d�V and

jF0(�)j � (1C ")ƒR�1(�=R)�n=p:

Observe that then F (�) D
R �
0
F0(t) dt satisfies

jF (�)j � (1C ")ƒ�(�=R)1�n=p � (1C ")ƒ�; � D p=(p � n);

so, after multiplying in 4.2 by the integrating factor eF (�), we obtain

(1C ")�ne�(1C")�ƒJ 0(�) � d
d�

(
eF (�)��nI (�)C 1

p
eF (�)

)
� e(1C")�ƒJ 0(�):

Hence, after integrating over the interval [�; �] and letting " # 0,

(
eF (�)�V (B�(�))

!n�n
C

1
p
(eF (�)

� 1)
)
�
(
eF (�)�V (B� (�))

!n�n
C

1
p
(eF (�)

� 1)
)

4.3

D G(�; �)
∫
B�(�)nB� (�)

r�njD?r j2 d�V

with

4:4 e��ƒ � G(�; �) � e�ƒ; jF (�)j � ƒ�(�=R)1�n=p; � D p=(p � n);

for all 0 < � < � < R, provided BR(�) � U . In particular

4:5 eF (�)�V (B�(�))

!n�n
C

1
p
(eF (�)

� 1) is increasing in �, 0 < � � R;
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Since eF (�) ! 1 as � # 0, 4.3, 4.4 and 4.5 enable us to argue precisely as in �3, to conclude
that ‚n(�V ; �) D lim�#0(!n�

n)�1�V (B� (�)) exists 8� 2 U and(
eF (�)�V (B�(�))

!n�n
C

1
p
(eF (�)

� 1)
)
�‚n(�V ; �)4.6

D G(�)
∫
B�(�)

r�njD?r j2 d�V ;

with F (�); G(�) as in 4.4, so in particular
R
B�(�)

r�njD?r j2 d�V < 1. Also, again
following the argument of �3,

4:7 ‚n(�V ; �) is an upper semi-continuous function of � 2 U ,

and, as in 3.13, V D v(M; �) has a “canonical representative” (MV ; ‚V ):

4:8 V D v(MV ; ‚V ); ‚V (x) D ‚
n(�V ; x); MV D {x 2 U W ‚n(�V ; x) > 0}:

4.9 Remarks: (1) In the case of H 2 Lploc(�V ) with p > n, if � � 1 �V -a.e. in U ,
then, by upper semi-continuity, ‚n(�V ; x) � 1 at each point of spt�V \ U , and hence
in this case the canonical representative MV in 4.8 is just the closed set sptV , because
MV D {x 2 U W ‚V (x) > 0} D {x 2 U W ‚V (x) � 1} D spt�V .

(2) Notice that as p !1, 4.3, 4.4 yield 3.20.

(3) If� > 0 and ��n�V (B�(�)) � � , then 4.3 gives bounds of the form�(B� (�)) � ˇ�n

for 0 < � � R, with ˇ D ˇ(ƒ;�). It follows that

∫
B�(�)nB� (�)

jx � �j�˛ d� �

{
nˇ(n � ˛)�1(�n�˛ � �n�˛); 0 < ˛ < n

ˇ log(�=�); ˛ D n:

for any 0 < � < � < R. This is proved by using the following general fact with f (x) D
jx � �j�1, t0 D ��1, and with n � ˛ in place of ˛.

4.10 Lemma. If X is an abstract space, � is a measure on X with �(X) < 1, f � 0, f
�-measurable, and At D {x 2 X W f (x) > t}, then∫ 1

t0

t˛�1�(At ) dt D ˛
�1

∫
At0

(f ˛ � t˛0 ) d�; 0 < ˛ < n∫ 1
t0

t�1�(At ) dt D
∫
At0

log(f=t0) d�

for each t0 � 0.

Proof: Since
R1
t0
t˛�1�(At ) dt D

R1
t0

R
At0

t˛�1�At (x) d�(x) dt , this is proved simply
by applying Fubini’s theorem on the product space At0 �

[
t0;1). �
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5 Local Conical Approximation

Here we want to derive an important theorem concerning conical approximation of V
near an arbitrary point of sptV , assuming V D v(M; �) has generalized mean curvature
in Lp with p > n.

5.1 Theorem (Conical Approximation.) Suppose ƒ > 0, p > n, � 2 (0; 1
4
], ı 2 [0; 1

16
],

andV D v(M; �) has generalizedmean curvatureH in a neighborhood ofB1(0) and satisfies
the hypotheses

0 2 spt�V ; ‚n(�V ; 0) � �;

!�1n �V (B1(0)) � ‚
n(�V ; 0)C ı;

(∫
B1(0)
jH jp d�V

)1=p
� ı:

Then
�V
(
B
(1�ı

1
4 )�

(�)
)

!n�n
� C�(ı; �) �

�V
(
B��(��)

)
!n(��)n

�

�V
(
B
(1Cı

1
4 )�

(�)
)

!n�n
C C�(ı; �)

for all � 2 MB1(0) n B2�(0) (� does not need to be in spt�V ), all � 2 [�; 1], and all � with
� � � � min{j�j � �; (1C ı 14 )�1(1 � j�j)}, where C D C (n; p; �) and where

�(ı; �) D ��nı C ı
1
4 j log�j:

5.2 Remarks: (1) In the special case when H D 0 and !�1n �V ( MB1(0)) D ‚n(�V ; 0)

(which implies (!n�n)�1�V ( MB�(0)) D ‚n(�V ; 0)8 � > 0 by monotonicity 3.9) we
can apply the above with ı D 0 and with arbitrarily small �, so we can let � # 0 in the
conclusion to infer that‚n(�V ; ��) D ‚n(�V ; �) for all � 2 (0; 1]. Thus, by 4.8, in this
case V B1(0) is a cone: (�0;�#V ) B1(0) D V B1(0)8� 2 (0; 1).

(2) If V D v(M; �) is any rectifiable n-varifold with generalizedmean curvatureH 2 Lp ,
p > n, and if � 2 spt�V , then, for � 2 (0; 1), ��;�#V has 0 in its support and generalized
mean curvature with Lp -norm! 0 in B1(0) as � # 0 and also !�1n ���;�#V (B1(0)) �

‚(���;�#V ; 0) D (!n�n)�1�V (B� (�))�‚n(�V ; �)! 0 as � # 0, so the above theorem
is applicable to ��;�#V with arbitrarily small ı by taking � > 0 small enough.

Indeed if ‚n(�V ; �) � 1 on spt�V , the Allard compactness theorem (which will be
proved in Theorem 5.8 of Ch.8) guarantees that for each sequence �j # 0 there is a sub-
sequence �j 0 with ���;�j 0#V ! �T for some rectifiable n-varifold T which is stationary
in RnCk and has multiplicity � 1 on sptT . Of course by construction this T satisfies the
hypotheses on the theorem with ı D 0 and � 2 (0; 1

2
] arbitrary, so T is a cone by the

first remark above. Such a T is called a tangent cone of V at �. It is still an open (and
important) question as to whether T is unique (i.e. whether or not T is independent
of the choice of the sequence �j and the subsequence �j 0 ). Tangent cones will be more
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systematically discussed in �5 of Ch.8.

Proof of 5.1: We can assume ı > 0 and obtain ı D 0 as a limit. In view of the stated
hypotheses we can apply 4.6 (with ƒ D ı) to give

(1)
∫
B1(0)

r�njD?r j2 d�V � Cı; C D C (n; p; �):

Let h W RnCk n {0}! [0; 1] be a homogeneous degree zero C 1 function RnCk n {0}!
[0; 1] with

(2) jDh(x)j � b=r

(as in 3.28 with � D 0), where for the moment b � 1 is arbitrary.

Let t 2 [�; 1], � 2 [�; 1), and apply 3.30 with t; � t; 0 in place of �; �; � respectively. This
givesˇ̌̌

t1�n
∫
@Bt (0)
hjrM r j d� � (t�)1�n

∫
@B� t (0)
hjrM r j d� � n

∫
Bt (0)nB� t (0)

r�njD?r j2h d�V

ˇ̌̌
(3)

�

∫
Bt (0)nB� t (0)

r�n(rhjH j C bjD?r j) d�V �
∫
B1(0)nB�2 (0)

r�n(rhjH j C bjD?r j) d�V :

Take any t 2 [j�j��; j�jC�] (i.e. any t such that @Bt (0)\B�(�) ¤ ∅), and observe that
we can select the homogeneous degree zeroC 1 function h W RnCkn{0}! [0; 1] (depend-
ing on t ) such that h is identically 1 on @Bt (0)\B�(�), h D 0 on @Bt (0) n B

(1Cı
1
4 )�

(�)

and jDh(x)j � 2=(rı 14 �), so (2) holds with b D 2=(ı 14 �). Thus (3) implies

�1�n
∫
@B� t (0)\B��(��)

jr
M r j d� �

∫
@Bt (0)\B(1Cı1=4)�

(�)
jr
M r j d�(4)

C tn�1
∫
B1(0)nB�2 (0)

r�n
(
r jH j C 2��1ı�1=4jD?r j

)
d�V :

Similarly, considering t with @Bt (0) \ B
(1�ı

1
4 )�

(�) ¤ ∅ and choosing another homo-

geneous degree zero C 1 function h W RnCk n {0}! [0; 1] such that h is identically 1 on
@Bt (0) \ B

(1�ı
1
4 )�

(�), h D 0 on @Bt (0) n B�(�) and again jDh(x)j � 2=(rı
1
4 �), we

obtain∫
@Bt (0)\B(1�ı1=4)�

(�)
jr
M r j d� � �1�n

∫
@B� t (0)\B��(��)

jr
M r j d�(5)

Cntn�1
∫
B1(0)
r�njD?r j2 d�V C t

n�1

∫
B1(0)nB�2 (0)

r�n
(
r jH j C 2��1ı�

1
4 jD?r j

)
d�V :
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Observe that the term involving H on the right of (4) and (5) can be estimated by the
Hölder inequality and the fact that kHkLp(�V B1(0)) � ı:

(6)
∫
B1(0)nB�2 (0)

r1�njH j d�V � kr
1�n
k
L

p
p�1 (�V B1(0)nB�2

(0))
kHkLp(�V B1(0)) � Cı;

where C D C (n; p; �), and where we used 4.9(3) with ˛ D (n � 1)p=(p � 1)(< n).

Also to handle the term
R
B1(0)nB�2 (0)

2r�n��1ı�
1
4 jD?r j d�V on the right of (4) and (5)

we use the Cauchy inequality a � 1
2
"C 1

2
a2=" with " D ı 14 , so∫

B1(0)nB�2 (0)
2r�n��1ı�1=4jD?r j d�V(7)

� ı
1
4

∫
B1(0)nB�2 (0)

r�n d�V C ı
� 34

∫
B1(0)

r�njD?r j2 d�V � Cı
1
4 j log�j;

with C D C (n; p; �), where we again used 4.9(3) and also (1).

Now we integrate in the inequality (4) with respect to t over the interval [j�j��; j�jC�]
(which is integration over [j��j � ��; j��j C ��] with respect to � t ), and use the bounds
(6), (7) together with the Coarea Formula 3.24. This gives∫

B��(��)
jrM r j2 d�V

!n(��)n
�

∫
B
(1Cı1=4)�

(�)
jrM r j2 d�V

!n�n
C Cı

1
4 j log�j; C D C (n; p; �):

Hence (since jrM r j2 D 1� jD?r j2 ), after another application of (1), noting that r � �
in B��(��), so (��)�n

R
B��(��)

jD?r j2 d�V � �
�n
R
B1(0)

r�njD?r j2 d�V ,

�V (B��(��))

!n(��)n
�

�V (B
(1Cı

1
4 )�

(�))

!n�n
C C (ı

1
4 j log�j C ı��n); C D C (n; p; �):

Similarly, integrating with respect to t over [j�j � (1 � ı
1
4 )�; j�j C (1 � ı

1
4 )�] in the

inequality (5), and again using the bounds (6), (7) and (1), we obtain

�V (B
(1�ı

1
4 )�

(�))

!n�n
�
�V (B��(��))

!n(��)n
C C (ı

1
4 j log�j C ı��n): �

6 Poincaré and Sobolev Inequalities

In this section3 we continue to assume that V D v(M; �) has generalized mean curvature
H in U , and we again write � for �V . We shall also assume � � 1 �-a.e. x 2 U , so that

3Note: The results of this section are not needed in the sequel
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(by the comments in 4.9) ‚n(�; x) � 1 everywhere in spt� \ U if H 2 Lploc(�) for
some p > n.

We start with the identity 3.17, which since jrM r j2 D 1�jD?r j2, can be written in the
form

@

@�

(
��nĨ (�)

)
D ��n

@

@�

∫ ˇ̌
(Dr)?

ˇ̌2
h'(r=�) d�6.1

C ��n�1
∫
(x � �) �

[
r
MhCHh

]
'(r=�) d�

where now Ĩ (�) D
R
'(r=�)h d�.

Thus
@

@�

[
��nĨ (�)

]
� ��n�1

∫
(x � �) � (rMhCHh) '(r=�) d�:

We can estimate the right-side R here in two ways: if
ˇ̌
H
ˇ̌
� � we have

6:2 R � ���n�1
∫
r
ˇ̌
r
Mh

ˇ̌
'(r=�) d� � (��)��nĨ (�):

Alternatively, without any assumption on H we can clearly estimate

6:3 R � ���n�1
∫
r(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) '(r=�) d�:

If we use 6.2 in 6.1 and integrate (making use of 4.10) we obtain (after letting ' increase
to the indicator function of (�1; 1) as before)

6:4
1

!n�n

∫
B� (�)

h d� � eƒ�(
1

!n�n

∫
B�(�)

h d�C
1

n!n

∫
B�(�)

ˇ̌
rMh

ˇ̌
jx � �jn�1

d�);

provided B�(�) � U and 0 < � < �.

If instead we use 6.3 then we similarly get

1

!n�n

∫
B� (�)

h d� �
1

!n�n

∫
B�(�)

h d�C
1

!n

∫ �

�
��n�1

∫
B� (�)

r(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) d�d�:

and hence (by 4.10 again)

6:5
1

!n�n

∫
B� (�)

h d� �
1

!n�n

∫
B�(�)

h d�C
1

n!n

∫
B�(�)

(
ˇ̌
rMh

ˇ̌
C h

ˇ̌
H
ˇ̌
)

jx � �jn�1
d�

provided B�(�) � U and 0 < � < �.

If we let � # 0 in 6.4 then we get (since ‚(�; �) � 1 for � 2 spt�)

h(�) � eƒ�(
1

!n�n

∫
B�(�)

h d�C
1

n!n

∫
B�(�)

ˇ̌
rMh

ˇ̌
jx � �jn�1

); � 2 spt�; B�(�) � U:
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We now state our Poincaré-type inequality.

6.6 Theorem. Suppose h 2 C 1(U ), h � 0, B2�(�) � U , jH j � ƒ, � � 1 �-a.e. in U and

�
{
x 2 B�(�) W h(x) > 0

}
� (1 � ˛)!n�

n; eƒ� � 1C ˛

for some ˛ 2 (0; 1). Suppose also that

(�) �(B2�(�)) � ��
n; � > 0:

Then there are constants ˇ D ˇ(n; ˛; �) 2 (0; 1=2) and c D c(n; ˛; �) > 0 such that∫
Bˇ�(�)

h d� � c�

∫
B�(�)

ˇ̌
r
Mh

ˇ̌
d�:

Proof: To begin we take ˇ to be an arbitrary parameter in (0; 1
2
) and apply 6.5 with

� 2 Bˇ�(�) \ spt� in place of �. This gives

h(�) � eƒ(1�ˇ )�(
1

!n((1 � ˇ)�)n

∫
B(1�ˇ)�(�)

h d�C
1

n!n

∫
B(1�ˇ)�(�)

ˇ̌
rMh

ˇ̌
jx � �jn�1

d�)(1)

� eƒ�(
1

!n((1 � ˇ)�)n

∫
B�(�)

h d�C
1

n!n

∫
B�(�)

ˇ̌
rMh

ˇ̌
jx � �jn�1

d�):

Now let  be a fixed C 1 non-decreasing function on R with (t) D 0 for t � 0 and
(t) � 1 everywhere, and apply (1) with (h � t) in place of h, where t � 0 is fixed.
Then by (1)

(h(�) � t) �
1C ˛

n!n

∫
B�(�)

! 0(h � t)
ˇ̌
rMh

ˇ̌
jx � �jn�1

d�C (1 � ˛2)(1 � ˇ)�n:

Selecting ˇ small enough so that (1 � ˇ)�n(1 � ˛2) � 1 � ˛2=2, we thus get

(2)
˛2

2
�
1C ˛

n!n

∫
B�(�)

 0(h � t)
ˇ̌
rMh

ˇ̌
jx � �jn�1

d�

for any � 2 Bˇ�(�)\ spt� such that (h(�)� t) � 1. Now let " > 0 and choose  such
that (t) � 1 for t � 1C ". Then (2) implies

1 � C

∫
B�(�)

 0(h � t)
ˇ̌
rMh

ˇ̌
jx � �jn�1

d�; � 2 Bˇ�(�) \ AtC";

where A� D {y 2 spt� W h(y) > �}. Integrating over A�C" \Bˇ�(�) we thus get (after
interchanging the order of integration on the right)

�(AtC" \ Bˇ�(�)) � C
∫
B�(�)
 0(h(x) � t)

ˇ̌
r
Mh(x)

ˇ̌(∫
Bˇ�(�)

1

jx � �jn�1
d�(�)

)
d�(x)

� C��

∫
B�(�)

 0(h � t)
ˇ̌
r
Mh

ˇ̌
d�
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by hypothesis 6.6(�) and Remark 4.9(3). Since  0(h(x) � t) D � @
@t
(h(x) � t) we can

now integrate over t 2 (0;1) to obtain (from 4.10) that∫
A"\Bˇ�(�)

(h � ") � C��
∫
B�(�)

ˇ̌
r
Mh

ˇ̌
d�:

Letting " # 0, we have the required inequality. �

Remark: If we drop the assumption that � � 1, then the above argument still yields∫
{xW�(x)�1}\Bˇ�(�)

h d� � C�

∫
B�(�)

ˇ̌
r
Mh

ˇ̌
d�:

We can also prove a Sobolev inequality as follows.

6.7 Theorem. Suppose h 2 C 10 (U ), h � 0, and � � 1 �-a.e. in U . Then

(�)
(∫

h
n
n�1 d�

) n�1
n

� C

∫ (ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌)
d�; c D c(n):

Note: C does not depend on k.

In the proof we shall need the following simple calculus lemma.

6.8 Lemma. Suppose f , g are bounded and increasing on (0;1) and

1 � ��nf (�) � ��nf (�)C
∫�
0
��ng(�) d�; 0 < � < � <1:

then 9 � with 0 < � < �0 D 2(f (1))1=n (f (1) D lim�"1 f (�)) such that

(�) f (5�) �
1

2
5n�0 g(�):

Proof of Lemma: Suppose (�) is false for each � 2 (0; �0). Then

1 � sup
0<�<�0

��nf (�) � ��n0 f (�0)C
2:5�n

�0

∫�0
0
��nf (5�) d�

D ��n0 f (�0)C
2

5�0

∫5�0
0
��nf (�) d�

D ��n0 f (�0)C
2

5�0

(∫�0
0
��nf (�) d�C

∫5�0
�0

��nf (�) d�
)

� ��n0 f (1)C
2

5
sup

0<�<�0

��nf (�)C
2

5(n � 1)
��n0 f (1):

Thus
1

2
�
1

2
sup

0<�<�0

��nf (�) < 2��n0 f (1) D 2�n;
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which is a contradiction since n � 2. �

Continuation of the proof of 6.7: First note that because h has compact support in U ,
the formula 6.5 is actually valid here for all 0 < � < � < 1. Hence we can apply the
above lemma with the choices

f (�) D !�1n

∫
B�(�)

h d�;

g(�) D !�1n

∫
B�(�)

(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) d�;

provided that � 2 spt� and h(�) � 1.

Thus for each � 2
{
x 2 spt� W h(x) � 1

}
we have � < 2(!�1n

R
M
h d�)1=n such that

(1)
∫
B5�(�)

h d� � 5n(!�1n

∫
M
h d�)1=n

∫
B�(�)

(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) d�:

Using the covering Lemma (3.4 of Ch.1) we can select disjoint balls B�1(�1), B�2(�2),
: : :, �1 2

{
� 2 spt� W h(�) � 1

}
such that

{
� 2M W h(�) � 1

}
� [1jD1B5�j (�j ). Then

applying (1) and summing over j we have∫{
x2spt�Wh(x)�1

}h d� � 5n(!�1n ∫
M
h d�)1=n

∫
M
(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) d�:

Next let  be a non-decreasingC 1(R) function such that (t) � 1 for t > " and (t) � 0
for t < 0, and use this with (h � t), t � 0, in place of h. This gives

�(MtC") � 5
n!n(�(Mt ))

1=n

∫
M
( 0(h � t)

ˇ̌
r
Mh

ˇ̌
C (h � t)

ˇ̌
H
ˇ̌
) d�;

where
M˛ D

{
x 2M W h(x) > ˛

}
; ˛ � 0:

Multiplying this inequality by (tC") 1
n�1 and using the trivial inequality (tC") 1

n�1�(Mt ) �∫
Mt

(hC ")
1
n�1 d� on the right, we then get

(t C ")
1
n�1�(MtC") �

5n!�1=nn (
∫
M
(hC ")

n
n�1 d�)

1
n (�

d

dt

∫
M
(� � t)

ˇ̌
r
Mh

ˇ̌
C

∫
Mt

ˇ̌
H
ˇ̌
d�):

Now integrate of t 2 (0;1) and use 4.10. This then gives∫
M"

(h
n
n�1 � "

n
n�1 ) d� � 5nC1!�1=nn (

∫
M
(hC ")

n
n�1 )

1
n

∫
M
(
ˇ̌
r
Mh

ˇ̌
C h

ˇ̌
H
ˇ̌
) d�:

The theorem (with C D 5nC1!�1=nn ) now follows by letting " # 0. �

6.9 Remark: Note that the inequality of 6.7 is valid without any boundedness hypothesis
on H : it suffices that H is merely in L1loc(�).
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7 Miscellaneous Additional Consequences

Here V D v(M; �) is a rectifiable n-varifold in RnCk with generalized mean curvature
H in U , U � RnCk open, as in Definition 3.15 of the present chapter. We first derive a
preliminary property for V in case H is bounded.

7.1 Lemma. Suppose U D RnCk n BR(�) and V U has L1loc(�V ) generalized mean
curvatureH in U with n�1

ˇ̌
H (x) � (x � �)

ˇ̌
< 1 �V -a.e. in U , and suppose also that sptV

is compact. Then
sptV � BR(�):

(i.e. V U D 0.)

Proof: Since sptV is compact it is easily checked that the identity (see �3)

n

∫
(r) d�V C

∫
r 0(r)(1 �

ˇ̌
D?r

ˇ̌2
) d�V D �

∫
H (x) � (x � �)(r) d�V (x)

(where r D jx � �j) actually holds for any non-negative increasing C 1(R) function 
with (t) D 0 for t � R C ". (" > 0 arbitrary.) We see this as in �3, by substituting
X(x) D  (x)(r)(x � �), where  2 C 1c (RnCk) with  � 1 in a neighborhood of
sptV . Since 1�jD?r j2 � 0 and jH �(x��)j < n�V -a.e., we thus deduce

R
(r) d�V D 0

for any such  . Since we may select  so that (t) > 0 for t > RC ", we thus conclude
sptV (� spt�V ) � BRC"(�). Because " > 0 was arbitrary, this proves the lemma.

7.2 Theorem (Convex hull property for stationary varifolds.) Suppose K � RnCk is
compact, let U D RnCk n K, and V D v(M; �) is a stationary rectifiable n-varifold in U
with sptV is bounded. Then

sptV � convex hull ofK:

Proof: The convex hull of K can be written as the intersection of all balls BR(�) with
K � BR(�). Hence the result follows immediately from 7.1. �

Next we want to discuss local Hausdorff distance sense convergence of the support of
a sequence of stationary rectifiable varifolds or more generally a sequence of rectifiable
varifolds with mean curvature in Lp for p > n.

We first recall the definition of local Hausdorff distance sense convergence.

7.3 Definition: If F;F1; F2; : : : are subsets of the open set U then we say Fj converges
to F locally in the Hausdorff distance sense in U if for each compact K � U and each
ı > 0 we have j0 D j0(ı;K) such that{

Fj \K � {x 2 U W dist(x; F ) < ı}
F \K � {x 2 U W dist(x; Fj ) < ı}



124 Chapter 4: Rectifiable n-Varifolds

for all j � j0.

7.4 Theorem (Distance Sense Cvce. of Supports.) Letp > n and letVj D v(Mj ; �j ); j D
1; 2; : : :, be rectifiable varifolds inU with generalizedmean curvature vectorHj 2 L

p

loc(�Vj )

in U with‚n(�Vj ; x) � 1 for all x 2 spt�Vj and

sup
j

�Vj (K) <1; sup kHj kLp(�Vj K) <1

for each compactK � U .

Then there is a Borel regular measure � on U and a subsequence Vj` with �Vj` ! � and
spt�Vj` converging to spt� in the Hausdorff distance sense 7.3.

7.5 Remark: We will show in Chapter 8 (in the Allard compactness theorem) that the
limiting measure� in the above statement is in fact the weight measure�V of a rectifiable
varifold V D v(M; �) with � � 1 �V -a.e. and with generalized mean curvature H 2
L
p

loc(�V ).

Proof of Theorem 7.5: First note that the existence of a subsequence �Vj` converging
to a limiting measure � is a consequence of the general convergence theorem 5.15, and
indeed the inclusionK\spt� � {x 2 U W dist(x; spt�Vj` ) < ı} for all sufficiently large
` is a general property of convergent sequences of measures, and easily checked using the
definition of spt�Vj` and spt�.

So only the inclusion K \ spt�Vj` � {x 2 U W dist(x; spt�) < ı} for all sufficiently
large ` needs to be checked. Supposing the contrary, we would have compactK � U and
ı > 0 and ´` 2 K\ spt�Vjq` with dist(´`; spt�) � ı and q` � `. SinceK is compact ´`
has a subsequence (still denoted ´` ) which converges to ´ 2 K with dist(´; spt�) � ı. By
convergence of �Vjq` to �we have lim sup`!1 �Vjq` (Bı=2(´)) � �(B3ı=4(´)) D 0, i.e.
lim`!1 �Vjq`

(Bı=2(´)) D 0. But Bı=2(´)) � Bı=4(´`) for sufficiently large `, hence,
by the monotonicity 4.5, �Vjq` (Bı=2(´)) � �Vjq` (Bı=4(´`)) � C for a fixed positive
constant C because ´` 2 spt�Vq` . �

We note the following corollary of the above Theorem:

7.6 Corollary. Suppose � � 1 �-a.e. in U , H 2 Lploc(�) in U for some p > n. If the
approximate tangent spaceTxV (see �1) exists at a given point x 2 U , thenTxV is a “classical”
tangent plane for spt�V in the sense that �x;�(spt�V ) converges, as � # 0, locally in the
Hausdorff distance sense in RnCk to the subspace TxV .

Chapter 4 Problems

4.1 LetM be a smooth n-dimensional minimal surface in RnC` withM nM D ∅, 0 2M
and lim�!1(!n�n)�1Hn(M \B�(0)) D 1. Prove thatM is an n-dimensional subspace
of RnC`.
Hint: Monotonicity identity.

4.2 Suppose M is a bounded, Hn-measurable, countably n-rectifiable subset of RnC`

with Hn(M \ K) < 1 for each compact K � RnC` and with M stationary in RnC`

(i.e.
R
M

divM X dHn
D 0 for each C 1 vector field X on RnC` with compact support

in RnC` ). Prove Hn(M ) D 0 (so in particular there are no smooth compact minimal
surfaces without boundary in RnC` ).
Hint: Use monotonicity.

4.3 LetU be open in RnC`, let V D v(M; �) be a rectifiable n-varifold which is stationary
in U , let �V be the weight measure (i.e. d�V D �dHn M ), and assume � � 1 �V -a.e.

(i) Prove V D v(S;‚), where S D spt�V (closed), and‚(x) D ‚n(�V ; x); x 2 S (i.e.
prove that �V ((S nM ) [ (M n S)) D 0 and ‚ D � �V -a.e. onM \ S ).

(Recall that by definition spt�V D {x 2 U W �V (B� (x) \ U ) > 0 8 � > 0}.)

( ii) If B�(y) � U and (!n�n)�1�V (B�(y)) < 1, prove that y … S .

4.4 If U; V; S are as in 4.3 above, if x 2 U , q 2 {1; 2; : : :}, and if V has multiplicity
q approximate tangent space at x (i.e. there is an n-dimensional subspace L � RnC`

such that
R
�x;�S

f � ı ��1
x;�
dHn

! q
R
L
f dHn as � # 0 8f 2 C 0c (U ) ), prove that

�x;�S ! L locally in the Hausdorff distance sense.
Note: �x;�S ! L locally in the Hausdorff distance sense means that for each R > 0, " > 0 there is ı > 0
with �x;�S \ BR(0) � {x W dist(x;L) < "} and L \ BR(0) � {x W dist(x; �x;�S) < "} for all
0 < � < ı .
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Here we discuss Allard’s ( [All72]) regularity theorem, which says roughly that if the
generalized mean curvature of a rectifiable n-varifold V D v(M; �) is in Lploc(�V ) in U ,
p > n, if � � 1 �V -a.e. in u, if � 2 sptV \ U , and if !�1n ��n�V (B�(�)) is sufficiently
close to 1 for some sufficiently small1 �, then V is regular near � in the sense that sptV is
a C 1;1�n=p n-dimensional embedded submanifold near �.

A key idea of the proof is to show that V is well-approximated by the graph of a harmonic
function near �. We begin in the first section with a motivating discussion, where we
consider smooth minimal surfaces with small C 1 norm, and discuss the fact that in such
a classical setting harmonic functions do indeed give a very good approximation.

The rest of the chapter to devoted to Allard’s theorem, beginning in �2 with a discussion
of the fact that a stationary n-dimensional rectifiable varifold V in a ball BR(�) � RnCk

which has mass density ratio (!nRn)�1�V (BR(�)) close to 1 has nice affine approxima-
tion properties near every point in the support, and can be very well approximated by a
Lipschitz graph with small Lipschitz constant. We in fact do this under the assumption
that the generalized mean curvature has small Lp norm with p > n.

In �4 we show that the harmonic approximation lemma of �3 can be applied to the

1Depending on kHkLp (�V )
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Lipschitz approximation of �2, leading to the “tilt-excess decay” theorem, which is the
main step in the proof of the Allard theorem.

The idea of approximating by harmonic functions (in roughly the sense used here) goes
back to De Giorgi [DG61] who proved a special case of the above theorem (when k D 1
and when V corresponds to the reduced boundary of a set of least perimeter—see the pre-
vious discussion in �4 of Ch.3 and the discussion in �5 below). Almgren used analogous
approximations in his work [Alm68] for arbitrary k � 1. Reifenberg [Rei60, Rei64] used
approximation by harmonic functions in a rather different way in his work on regularity
of minimal surfaces.

1 Harmonic Approximation in the Smooth Case

Suppose M is an n-dimensional C 2 embedded submanifold of RnCk . We say that M
is a minimal submanifold if its mean curvature vector H is identically zero. From the
discussion inCh.2we have seen that this is exactly equivalent to the volumeHn(M ) being
stationary with respect to compactly supported perturbations of the identity. Thus, in
the notation of �6 of Ch.2, M is minimal if and only if d

dt
Hn('t (M ))jtD0 D 0. We

showed that this in turn is equivalent to the first variation identity
R
M

divM X dHn
D 0.

In the present smooth case we can use the local graphical representations discussed in
Remark 4.2(3) of Ch.2. Thus, modulo an orthogonal transformation of RnCk we can
locally writeM as a graph of a C 2 function with values in Rk over a domain in Rn. Thus
for each � 2M we can assume there are open setsW � RnCk and a ball B�(�) � Rn and
a C 2 map u W B�(�)! Rk such that u(�) D �, Du(�) D 0 and graphu(D {(x; u(x)) W
x 2 MB�(�)}) D M \ W . Then stationarity of M implies in particular that the area
functional

A(u) D

Z
B�(�)

Ju dHn

must be stationary with respect to compactly supported perturbations of u in B�(�),
where Ju is the Jacobian of the graph map x 2 B�(�) 7! (x; u(x)) 2 graphu DM \W .
Thus Ju D

p
detJ , where J (x) is the n � n matrix (Di (x; u(x)) �Dj (x; u(x))); i.e.,

the n � n matrix with entry (ei ;Diu(x)) � (ej ;Dju(x)) D ıij C Diu(x) � Dju(x) in
the i -th row and j -th column. Thus

A(u) D
∫
B�(�)

q
det(ıij CDiu �Dju) dLn

and for jDuj < "0 (for suitably small "0 D "0(n; k) 2 (0; 1)) we can use a Taylor series
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expansion to give

1:1 A(u) D
∫
B�(�)

(
1C 1

2
jDuj2 C F (Du)

)
dLn;

where F D F (P ) is a real analytic map of n � k matrices P D (pij )iD1;:::;n; jD1;:::;k
with jP j < "0 such that

1:2 jF (P )j � C jP j4; jDpijF (P )j � C jP j3; jP j � 1;

where C is a fixed constant depending only on n; k.

SinceA(u) is stationary with respect to compactly supported perturbations of uwe have

d
dt
A(uC t�)jtD0 D 0; � D (�1; : : : ; �k) 2 C

1
0 (B�(�);R

k);

where C 10 (B�(�);R
k) denotes the C 1 maps � W B�(�)! Rk with � D 0 on @B�(�).

In view of 1.1, if jDuj < "0 this takes the form

1:3

∫
B�(�)

Pn
iD1Diu �Di� dL

n
D

∫
B�(�)

Pn
iD1

Pk
jD1Aij (Du)Di�j );

for all � 2 C 10 (B�(�);R
k), where Aij (P ) D DpijF (P ), so jAij (P )j � C jP j3. Inte-

grating by parts, we get

�u D
Pn
i;jD1aij (Du)DiDju; aij (Du) D O(jDuj2):

It is therefore reasonable, so long as jDuj is small, to expect that u is well approximated
by a harmonic function. Indeed let us check this rigorously: Assume jDuj < "0 ("0 as
above), and let v be the harmonic function on the ball B�(�) with v D u on @B�(�)—it
is standard that such a harmonic function v exists and it is C 1 onB�(�) and C1( MB�(�)).
Multiplying the equation �v D 0 by � and integrating by parts over the ball B�(�), we
obtain

1:4

∫
B�(�)

Pn
iD1Div �Di� dL

n
D 0; � 2 C 10 (B�(�)):

Taking the difference between 1.3 and 1.4, we see then that∫
B�(�)

Pn
iD1Di (u�v)�Di� dL

n
D

∫
B�(�)

Pn
iD1

Pk
jD1Aij (Du)Di�j ; � 2 C

1
0 (B�(�);R):

In this identity we take � D u � v, so that∫
B�(�)

jD(u � v)j2 dLn D
∫
B�(�)

Pn
iD1

Pk
jD1Aij (Du)Di (uj � vj );
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and using the Cauchy-Schwarz inequality ab � 1
2
a2C 1

2
b2 on the right side we get finally∫

B�(�)
jD(u � v)j2 dLn � 1

2

∫
B�(�)

P
i;j (Aij (Du))

2
C

1
2

∫
jD(u � v)j2;

so ∫
B�(�)

jD(u � v)j2 dLn �
∫
B�(�)

P
i;j (Aij (Du))

2:

That is, since j
P
ij (Aij (P ))2j � C jP j6 for jP j < "0, we obtain

1:5

∫
B�(�)

jD(u � v)j2 dLn � C
∫
B�(�)

jDuj6:

This shows that indeed v is a very good approximation of u for jDuj small: For example
if supB�(�) jDuj D " < "0, then 1.5 shows∫

B�(�)
jD(u � v)j2 dLn � C"4

∫
B�(�)

jDuj2 dLn;

where (as in 1.2) C is a fixed constant depending only on n; k, so that
R
B�(�)

jD(u� v)j2

is much smaller than
R
B�(�)

jDuj2 for " small.

So there is good motivation to think that harmonic approximation could be relevant in
the study of the regularity of stationary rectifiable varifolds; indeed, as mentioned in the
introduction to this chapter, we will show that such approximations are appropriate even
in the more general context of rectifiable varifolds with generalized mean curvature in
Lp , p > n.

2 Preliminaries, Lipschitz Approximation

In this section U is an open subset of RnCk , V D v(M; �) is a rectifiable n-varifold with
generalized mean curvature H in U (as in Definition 3.15 of Ch.4).

A key quantitywhichwill appear in the computations to follow is the tilt excessE(�; �; T )
of V over a ball B� (�) � U relative to a given n-dimensional subspace T � RnCk ; this
is defined by

2:1 E(�; �; T ) D ��n
∫
B� (�)

jpTxM � pT j
2 d�V (x):2

Notice that this could be roughly described as “the mean square deviation of TxM away
from T in B� (�).”

2
ˇ̌
pTxM �p

ˇ̌2 denotes the inner product norm trace (pTx �p)2; this differs from kpTxM �pk2 by at
most a constant factor depending on nC k—see Remark 2.2 below.
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2.2 Remark (Operator norm v. inner product norm): In the above definition 2.1 of
tilt excess we use the inner product norm for pTx � pT , but we could equivalently use
the operator norm: If L W RP ! RQ is linear with matrix ` D (`ji ) (so that L(x) DPQ
jD1

PP
iD1 `

j
i x
iej ) then the operator norm is kLk D sup

jxjD1 jL(x)j, whereas the in-

ner product norm is jLj D
qP

i;j (`
j
i )
2. Observe jL(x)j2 D xT `T `x and `T ` is a sym-

metric positive semi-definite P �P matrix with non-negative eigenvalues 0 � �1 � �2 �
� � � � �P and jLj2 D trace `T ` D

PP
jD1 �j , while kLk2 D �P D max{�1; : : : ; �P }, so

P�1jLj2 � kLk2 � jLj2:

In particular (n C k)�1
R
Br (�)

jpTxM � pRn�{0}j
2 �

R
B� (�)

kpTxM � pRn�{0}k
2 �R

B� (�)
jpTxM �pRn�{0}j

2—i.e.
R
B� (�)

kpTxM �pRn�{0}k
2 and

R
B� (�)

jpTxM �pRn�{0}j
2

differ by at most fixed factor depending on nC k.

If T D Rn � {0} then, in terms of the (nC k)� (nC k) matrices (eij ) and ("ij ) for the
orthogonal projections pTxM and pT respectively,

ˇ̌
pTxM �pRn�{0}

ˇ̌2 is justPi;j (e
ij �

"ij )2 D
P
i;j ((e

ij )2 C ("ij )2 � 2eij "ij ) D 2(n �
Pn
jD1 e

jj ) D 2
PnCk
jDnC1 e

jj D

2
Pk
jD1 jr

MxnCj j2, where we used the facts that (eij )2 D (eij ) and trace(eij ) D n.
Thus

2:3 1
2

ˇ̌
pTxM � pT

ˇ̌2
D
PnCk
jDnC1e

jj
D
Pk
jD1jr

MxnCj j2;

so, still assuming T D Rn � {0},

2:4 E(�; �; T ) D 2��n
∫
B� (�)

Pk
jD1

ˇ̌
r
MxnCj

ˇ̌2
d�V

(rM D gradient operator onM as defined in �2 of Ch.3).

We begin with the following lemma relating tilt-excess and L2 distance from the relevant
affine plane.

2.5 Lemma. Suppose B�(y) � U . Then for any n-dimensional subspace T � RnCk and
any  2 (0; 1) we have

��n
∫
B�(y)

jpTxM � pT j
2 d�V (x)

� C��n
∫
B�(y)

(dist(x; � C T )
�

)2
d�C C�2�n

∫
B�(y)

jH j2 d�V ;

where C D C (n; ).

Proof of 2.5: It evidently suffices to prove the result with y D 0 and T D Rn�{0}. The
proof simply involves making a suitable choice of X in the first variation formula of 3.15
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(�) of Ch.4. In fact we take

X D �2(x)x 0; x 0 D (0; xnC1; : : : ; xnCk)

for x D (x1; : : : ; xnCk) 2 U , where � 2 C 1c (U ) with � � 0 will be chosen below.

By the definition of divM (see �2 of Ch.3) we have

divM x 0 D
PnCk
iDnC1e

i i ; �-a.e. x 2M;

where (eij ) is the matrix of the projection pTxM (relative to the standard orthonormal
basis for RnCk ), and where, here and subsequently, we write � D �V . Thus by the
definition 3.15 of Ch.4 of H we have

(1)
∫
��2 d� D

∫ (
�2�

PnCk
iDnC1

PnCk
jD1x

ieijDj � � �
2x 0 �H

)
d�;

with

(2) � D
PnCk
iDnC1e

i i
D

1
2

PnCk
i;jD1(e

ij
� "ij )2 D 1

2
jpTxM � pRn�{0}j

2;

by 2.3, where ("ij ) D matrix of pRn�{0}. Also observe that "ij D 0 if i > n, so (1) can
be written

(3)
∫
��2 d� D

∫ (
�2�

PnCk
iDnC1

PnCk
jD1x

i (eij � "ij )Dj � � �
2(0; x 0) �H

)
d�;

so ∫
��2 d� �

∫ (
2
p
2� jx 0jjr�j� C jx 0j

ˇ̌
H
ˇ̌
�2
)
d�:

Hence (using ab � 1
2
a2 C 1

2
b2 )∫

��2 d� � 16

∫ (
jx 0j2jr�j2 C jx 0j

ˇ̌
H
ˇ̌
�2
)
d�:

The lemma now follows by choosing � � 1 in B�(0), � � 0 outside B�(0) and jr�j �
2=((1�)�), and then noting that jx 0j

ˇ̌
H
ˇ̌
D (��1jx 0j)(

ˇ̌
H
ˇ̌
�) � 1

2
��2jx 0j2C 1

2
(jH j �)2.

�

For the remainder of this section we continue to assume that V D v(M; �) has general-
ized mean curvature H and now we additionally assume, with ı 2 (0; 1

4
] a constant to

be specified below and � D �V D Hn � , the following:

2:6

 1 � � �-a.e.; 0 2 sptV; B�(0) � U

!�1n ��n�(B�(0)) � 1C ı;
(
�p�n

∫
B�(0)

jH jp d�
)1=p

� ı:
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Notice that then by 3.13 of Ch.4we then have the “canonical representative” (spt�V ; ‚n(�v; �))
for V , so we can, and we shall, assume �(y) D ‚n(�V ; y) for all y 2 B1(0), and
‚n(�; x) is an upper semi-continuous function of x by 4.7 of Ch.4, so

2:7 �(x) D ‚n(�; x) � 1 at every point x 2 spt� \ MB�(0).

Also, by the monotonicity 4.5 of Ch.4 we have, subject to 2.6, that y 2 sptV \B2ı�(0)
and � 2 (0; (1 � 2ı)�] ) 1 � Cı � (!n�n)�1�(B� (y)) � (1 C Cı)(!n(1 �

2ı)n�n)�1�(B(1�2ı)�(y)) � 1C Cı, because B(1�2ı)�(y) � B�(0). Thus for ı � ı0,
with ı0 D ı0(n; k; p) sufficiently small, we have

2:8 1
2
� 1�Cı �

�(B� (y))

!n�n
� 1CCı � 2; � 2 (0; (1�2ı)�]; y 2 spt�\B2ı�(0);

where C D C (n; k; p). In particular, letting � # 0, we have

2:9 �(y) � 1C Cı; y 2 spt� \ B2ı�(0):

Also, by the monotonicity identity 4.3 of Ch.4, we have, assuming 2.6,

2:10

∫
B(1�2ı)�(y)

jx � yj�n
ˇ̌( x � y
jx � yj

)? ˇ̌2
d� � Cı; y 2 spt� \ B2ı�(0);

with C D C (n; k; p).

We now establish a lemma which guarantees local affine approximations of the support
at all points of spt�V in the ball B2ı�(0) and at all radii � � 4ı�.

2.11 Lemma (Affine Approximation Lemma.) If ı 2 (0; 1
16
] and 2.6 holds, then, for each

y 2 spt�V \ B2ı�(0) and each � 2 (0; 4ı�],

(�) sup
x2spt�V \B� (y)

dist
(
x; y C T (y; �)

)
� Cı

1
2nC2 �; C D C (n; k; p):

Proof: Take any fixed � 2 (0; 4ı�] and y 2 sptV \B2ı�(0), and suppose for convenience
of notation (by changing scale and translating the origin) that � D 1 and y D 0, so now,
since ı � 1

16
and hence (1 � 6ı)�=(4ı�) > 2, 2.8 in this rescaled setting ensures that

(1) 1
2
�
�(B� (y))

!n�n
� 2; 8 � 2 (0; 2]; y 2 spt� \ B1(0);

where, here and subsequently, � D �V . Also, 2.10 now guarantees

(2)
∫
B2(y)

ˇ̌
p(TxM )?(x � y)

ˇ̌2
d� �

∫
B2(y)

ˇ̌
p(TxM )?(x � y)

ˇ̌2
jx � yj�n�2 d� � Cı

for y 2 sptV \ B1(0). Next take ˛ 2 (0; 1) (to be chosen shortly, but for the moment
arbitrary). Recall the general principle that if K is compact and � > 0 then any maximal
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pairwise disjoint collection B�=2(yj ) of closed balls with yj 2 K will automatically have
the property thatK � [jB�(yj ). Using this with � D ı˛ we have pairwise disjoint balls
Bı˛=2(y1); : : : ; Bı˛=2(yN ) with yj 2 spt� \ B1(0) such that
(3) spt� \ B1(0) � [NjD1Bı˛ (yj ):

Notice that then, by (1),

(4) !n2
�n�1ı˛n � �(Bı˛=2(yj )); j D 1; : : : ; N;

and hence, using (1) with � D 2,

!n2
�n�1Nı˛n �

PN
jD1�(Bı˛=2(yj )) D �([

N
jD1Bı˛=2(yj )) � �(B2(0)) � 2

nC1!n:

Thus N � 4nC1ı�˛n, and so, by using (2) with y D yj and noting that B2(yj ) � B1(0)
for each j , we have∫

B1(0)

PN
jD1

ˇ̌
pTxM?(x � yj )

ˇ̌2
d� � CNı D Cı1�˛n:

Thus for any given k � 1 we have

(5)
PN
jD1

ˇ̌
pTxM?(x � yj )

ˇ̌2
� Ckı1�˛n;

except possibly for a set of x 2 B1(0) \ spt� of �-measure � 1=k. Since �(Bı˛ (0)) �
C�1ı˛n by 2.8, we can select k D Cı�˛n, thus ensuring that (5) holds for some x0 2
spt� \ Bı˛ (0). So we have shown there is x0 2 spt� \ Bı˛ (0) with

(6)
PN
jD1

ˇ̌
p(Tx0M )?(x0 � yj )

ˇ̌2
� Cı1�2˛n;

and hence ˇ̌
p(Tx0M )?(yj � x0)

ˇ̌
� Cı

1
2�˛n; j D 1; : : : ; N:

Since
ˇ̌
x0
ˇ̌
< ı˛ , we then have

(7)
ˇ̌
p(Tx0M )?yj

ˇ̌
� C (ı

1
2�˛n C ı˛); j D 1; : : : ; N:

Then, selecting ˛ such that 1
2
� ˛n D ˛ (i.e. ˛ D 1

2nC2
), we have shown that all the

points y1; : : : ; yN are in the Cı1=(2nC2) neighborhood of the subspace T0 D Tx0M , and
hence by (3) we have

dist(y; T0) � Cı1=(2nC2) 8y 2 spt� \ B1(0);

so the inequality (�) is proved with T D T0 D Tx0M . �

2.12 Remark: Note that if y 2 B2ı(0) and � 2 (0; 4ı] we can use the Hölder inequality
and �(B� (y)) � 2!n�n (by 2.6) to estimate

�2�n
∫
B� (y)

ˇ̌
H
ˇ̌2
d� � C

(
�p�n

∫
B� (y)

ˇ̌
H
ˇ̌p
d�
)2=p

;
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and then choose T D T (y; �) (notation as in 2.11) in the conclusion of 2.5 to give

��n
∫
B� (y)

jpTxM � pT j
2 d�(x)(‡)

� C sup
x2spt�V \B� (y)

(dist(x; y C T )
�

)2
C C

(
�p�n

∫
B� (y)

ˇ̌
H
ˇ̌p
d�
)2=p

� Cı
1
nC1

with C D C (n; k; p; ).

An important corollary of the above Lemma 2.11 is the following Lipschitz Approxi-
mation Theorem, which provides a key step in proving the Allard theorem. We assume
in this (without loss of generality since we can rescale and rotate coordinates) that the
hypotheses 2.6 hold with � D 1 and that the subspace T (0; 4ı), which, according to
Lemma 2.11 with � D 1, provides the affine approximation for spt�V in the ball B4ı(0),
is just Rn � {0}. Thus we assume

(��) T (0; 4ı) D R
n
� {0}:

2.13 Lemma (Lipschitz Approximation Theorem.) Let L 2 (0; 1] be given. There is
ˇ D ˇ(n; k; p) 2 (0; 1

16
] such that if 0 < ı � (ˇL)2nC2, if � D 1, if 2.6 holds, and if (��)

above holds, then there is a Lipschitz f W Bn
ı
(0)! Rk with

Lipf � L; sup jf j � Cı
1

2nC2

ı�n
(
�V (Bı(0) \ (spt�V n graphf ))CHn(Bı(0) \ (graphf n spt�V ))

)
� CL�2ı�n

∫
B3ı(0)

ˇ̌
pTxM � pRn�{0}

ˇ̌2
d�V � CL

�2ı
1
nC1 ; C D C (n; k; p):

Proof: Let ˇ 2 (0; 1
2
] be for the moment arbitrary, but which we will choose eventually

to depend only on n; k; p. Assume 2.6 holds, where for the moment ı 2 (0; 1
16
] is also

arbitrary and let T0 D T (0; 4ı), so T0 D Rn � {0} in accordance with (��) above.
Throughout the proof C denotes any constant depending only on n; k; p, and we let
� D �V .

Let

G D
{
y 2 spt� \ B2ı(0) W sup

�2(0;ı ]

��n
∫
B� (y)

jpTxM � pT0 j
2 d� � ˇ2L2

}
:

Thus y 2 spt� \ B2ı(0) nG ) 9 � 2 (0; ı] with

(1) ˇ2L2�n <

∫
B� (y)

jpTxM � pT0 j
2 d�:

By the five-times covering lemmawe can pick pairwise disjoint ballsB�j (yj ) such that (1)
holds with � D �j 2 (0; ˇ] and y D yj 2 spt� \ B2ı(0) nG, and such that

spt� \ B2ı(0) nG � [jB5�j (yj ):
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Thus using (1) with � D �j ; y D yj and summing over j we obtain

ˇ2L2�(B2ı(0) nG) � ˇ2L2
P
j�(B5�j (yj )) � Cˇ

2L2
P
j�

n
j

� C

∫
[jB�j (yj )

jpTxM � pT0 j
2 d� � C

∫
B3ı(0)

jpTxM � pT0 j
2 d�:

Thus

(2) �(B2ı(0) nG) � Cˇ�2L�2
∫
B3ı(0)

jpTxM � pT0 j
2 d�:

We now claim that G is contained in the graph of a Lipschitz function. To check this, let
y1; y2 be distinct points of G and let � D jy1 � y2j, so � � 4ı. Observe that

��n
∫
B�=4(y1)

jpTxM � pT0 j
2
� 4nˇ2L2; (because y1 2 G ),

��n
∫
B�=4(y1)

jpTxM � pT (y1;�)j
2
� Cı

1
nC1 � Cˇ2L2 (by 2.12 (�)).

Since jpT0 � pT (y1;�)j
2 � 2jpTxM � pT0 j

2 C 2jpTxM � pT (y1;�)j
2 and �(B�=4(y1)) �

1
2
!n(�=4)n by 2.8, we now have

(3) jpT0 � pT (y1;�)j � CˇL;

and so

jpT?
0
(y1 � y2)j D

ˇ̌(
pT (y1;�)?

C (pT?
0
� pT (y1;�)?

)
)
(y1 � y2)

ˇ̌
(4)

� dist
(
y2; y1 C T (y1; �)

)
C
ˇ̌
pT0 � pT (y1;�)

ˇ̌
� � CˇL�;

where at the last step we again used the Affine Approximation Lemma 2.11. Thus

jQ(y2 � y1)j � CˇLjy1 � y2j � CˇL(jQ(y1 � y2)j C jP (y1 � y2)j);

where P;Q is denote the projections of y D (y1; : : : ; ynCk) onto its first n and last k
coordinates respectively. Assuming Cˇ � 1

2
we then have

jQ(y1) �Q(y2)j � CˇLjP (y1) � P (y2)j:

In view of the arbitrariness of y1; y2 2 G this says that G is contained in the graph of a
Lipschitz function f W G \ Bı(0) ! Rk with Lipschitz constant � CˇL, provided we
eventually choose ˇ D ˇ(n; k; p) to satisfy the above restriction Cˇ � 1

2
. Also, by 2.11,

sup jf j � C ı
1

2nC2 ı, so, by the Lipschitz Extension Theorem 1.2 of Ch.2, f extends to
give a Lipschitz f̃ W Rn ! Rk (henceforth denoted f ) with

(5) G \ B2ı(0) � graphf; with Lipf � CˇL and sup
Rn
jf j � Cˇı

1
2nC2 ı:

Thus we get Lipf � L as required by choosing ˇ D ˇ(n; k; p) such that Cˇ � 1. Also,
by (2), with F D graphf we have

(6) ı�n�(B2ı(0) n F ) � CL�2ı�n
∫
B3ı(0)

ˇ̌
pTxM � pT0

ˇ̌2
d� � CL�2ı

1
nC1 :
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It thus remains only to prove

(7) Hn(Bı(0) \ F n spt�) � CL�2
∫
B3ı(0)

jpTxM � pT0 j
2 d�:

To check this, take any � 2 Bı(0) \ F n spt� and let

� D 3
2
dist(�; spt�) (� 3

2
ı because 0 2 spt� and � 2 Bı(0)):

So MB2�=3(�) \ spt� D ∅ and B2�=3(�) \ spt� ¤ ∅, and the monotonicity identity 4.3
of Ch.4 implies

��n�(B� (�)) D �
�n�(B� (�)) � (�=2)�n�(B�=2(�))(8)

� C

∫
B� (�)nB�=2(�)

jx � �j�n
ˇ̌
p(TxM )?

(
x��
jx��j

)ˇ̌2
d�C Cı

� C��n�2
∫
B� (�)

ˇ̌
p(TxM )?

(
x � �

)ˇ̌2
d�C Cı:

Now spt� \ B2�=3(�) ¤ ∅ so 2.8 implies

(9) �(B� (�)) � 3
�n�1!n�

n;

and also Cı � C (ˇL)2nC2 � Cˇ2nC2, hence, for small enough ˇ D ˇ(n; k; p), (8)
gives

�n � C

∫
B� (�)

ˇ̌
p(TxM )?(

x��
�

)
ˇ̌2
d�(10)

� C
(∫
B� (�)

ˇ̌
pT?

0
( x��
�

)
ˇ̌2
d�C

∫
B� (�)

jpTxM � pT0 j
2 d�

)
for some � 2 (0; 3

2
ı]. On the other hand if � 2 [ı; 3

2
ı] then, by 2.12 (�) with � D 4ı,

 D 3
4
and y D 0, and by affine approximation 2.11 with � D 4ı and y D 0, the above

inequality gives �n � Cı
1

2nC2 �n � CˇL�n � Cˇ�n, which is impossible assuming
Cˇ � 1

2
. Thus in fact, assuming we do so choose ˇ D ˇ(n; k; p), (10) must hold for

some � 2 (0; ı] rather than � 2 (0; 3
2
ı]. Also∫

B� (�)

ˇ̌
pT?

0
( x��
�

)
ˇ̌2
d�C

∫
B� (�)

jpTxM � pT0 j
2 d�(11)

�

∫
B� (�)\F

ˇ̌
pT?

0
( x��
�

)
ˇ̌2
d�C C�(B� (�) n F )C

∫
B� (�)

jpTxM � pT0 j
2 d�:

Since
ˇ̌
pT?

0
( x�y
�

)
ˇ̌
� Cˇ for x; y 2 F \ B� (�) (because Lipf � CˇL � Cˇ), and

�(B� (�)) � 2!n�n by 2.8, the inequalities (10) and (11) imply

�n � C
(
ˇ�n C �(B� (�) n F )C

∫
B� (�)

jpTxM � pT0 j
2 d�

)
:

With ˇ chosen appropriately (depending only on n; k; p), we can arrange that Cˇ � 1
2
,
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and hence we have proved

(12) �n � C
(
�(B� (�) n F )C

∫
B� (�)

ˇ̌
pTxM � pT0

ˇ̌2
d�
)

for some � 2 (0; ı].

Now observe that the collection of such balls B� (�) by definition cover all of Bı(0) \
F n spt�, so by the 5-times covering lemma we can find a pairwise disjoint collection
B�j (�j ) of such balls with

(13) �nj � C
(
�(B�j (�j ) n F )C

∫
B�j (�j )

jpTxM � pT0 j
2 d�

)
for each j and Bı(0)\F n spt� � [jB5�j (�j ). F is the graph of the Lipschitz function
f with Lipf � 1, so we of course have Hn(B5�j (�j ) \ F ) � C�nj for each j with
C D C (n), hence by (13)

Hn(Bı(0) \ F n spt�) � Hn(F \ ([jB5�j (�j ))) �
P
jH

n(F \ B5�j (�j ))

(14)

� C
P
j�

n
j � C

P
j

(
�(B�j (�j ) n F )C

R
B�j (�j )

jpTxM � pT0 j
2 d�

)
� C

(
�([jB�j (�j ) n F )C

R
[jB�j (�j )

jpTxM � pT0 j
2 d�

)
by disjointness of {B�j (�j )}

� C
(
�(B2ı(0) n F )C

R
B2ı(0)

jpTxM � pT0 j
2 d�

)
;

and �(B2ı(0) n F ) � CL�2
R
B3ı(0)

jpTxM � pT0 j
2 d� by (6), so (7) is established and

the proof is complete. �

2.14 Corollary. There is a choice of ˇ D ˇ(n; k; p) 2 (0; 1
4
] such that if the notation and

assumptions are as in Lemma 2.13 and if

sup
�2(0;ı ]

��n
∫
B� (y)

ˇ̌
pTxM � pT0

ˇ̌2
d� � ˇ2L2

for every y 2 spt� \ B2ı(0), then

spt� \ Bı(0) D graphf \ Bı(0)

for some Lipschitz map f W Rn ! Rk with Lipf � L, sup jf j � Cı
1

2nC2 .

Proof: The hypotheses ensure that the setG in the above proof is all of spt�V \B2ı(0),
and if � 2 Bı(0) \ graphf n spt�V then the inequality (12) in the above proof gives
�n � C

R
B� (�)

jpTxM � pT0 j
2 d�V � Cˇ2�n for some � 2 (0; ı], which is evidently

impossible for ˇ D ˇ(n; k; p) sufficiently small. �
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3 Approximation by Harmonic Functions

The main result we shall need is given in the following lemma, which is an almost trivial
consequence of Rellich’s theorem:

3.1 Lemma (Harmonic Approximation Lemma.) Given any " > 0 there is a constant
ı D ı(n; ") > 0 such that if f 2 W 1;2(B), B � MB1(0) D open unit ball in Rn, satisfies∫

B
jrf j2 � 1;

ˇ̌̌∫
B
rf � r� dLn

ˇ̌̌
� ı sup jr�j

for every � 2 C1c (B), then there is a harmonic function u on B such that
∫
B
jruj2 � 1 and∫

B
(u � f )2 � ":

Proof: Suppose the lemma is false. Then we can find " > 0 and a sequence
{
fk
}
2

W 1;2(B) such that

(1)
ˇ̌̌∫
B
rfk � r� dLn

ˇ̌̌
� k�1 sup jr�j

for each � 2 C1c (B), and ∫
B

ˇ̌
rfk

ˇ̌2
� 1;

but so that

(2)
∫
B

(
fk � u

)2
> "

whenever u is a harmonic function on B with
R
B
jruj2 � 1. Let �k D !�1n

R
B
fk dLn.

Then by the Poincaré inequality (see e.g. [GT01]) we haveR
B

ˇ̌
fk � �k

ˇ̌2
� C

∫
B

ˇ̌
rfk

ˇ̌2
� C;

and hence, by Rellich’s theorem (see [GT01]), we have a subsequence
{
k 0
}
� {k} such

that fk 0 � �k 0 ! w with respect to the L2(B) norm and rfk 0 * rw weakly in L2,
where w 2 W 1;2(B) with

R
B
jrwj2 � 1. By the weak convergence of rfk 0 to rw and

by (1) we evidently have∫
B
rw � r� dLn D lim

∫
B
rfk � r� dLn D 0

for each � 2 C1c (B). Thus w is harmonic in B and
R
B

ˇ̌
fk 0 � w � �k 0

ˇ̌2
! 0. Since

w C �k 0 is harmonic, this contradicts (2). �
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We also recall the following standard estimates for harmonic functions (which follow
directly from the mean-value property—see e.g. [GT01]): If u is harmonic on B �
B� (0), then

3:2 sup
B�=2(0)

�q
ˇ̌
Dqu

ˇ̌
� C��n=2kukL2(B)

for each integer q � 0, where C D C (q; n). Indeed applying this with Du in place of u
we get

3:3 sup
B�=2(0)

�q�1
ˇ̌
Dqu

ˇ̌
� CkrukL2(B)

for q � 1. Using 3.2, 3.3 and an order 2 Taylor polynomial expansion for u, we see that
if ` is the affine approximation to u given by `(x) D u(0)C x � ru(0) then

3:4


j`(0)j D ju(0)j � C��n=2kukL2(B); jr`j D jru(0)j � C�

�n=2
krukL2(B)

sup
B��(0)

ju � `j � (��)2 sup
B��

jD2uj � (��)2j sup
B�=2

jD2uj � C�2�1�n=2krukL2(B)

for � 2 (0; 1
4
], where C D C (n) is independent of �.

3.5 Remark: We note particular that the first two inequalities above can be applied to
the approximating harmonic function u of Lemma 3.1, thus giving

ju(0)j � CkukL2(B) � C (ku � f kL2(B) C kf kL2(B)) � C (
p
"C kf kL2(B));

jru(0)j � CkrukL2(B) � C

for the harmonic approximating function of Lemma 3.1.

4 The Tilt-Excess Decay Lemma

In this section we continue to assume V has generalized mean curvature H in U (as in
Definition 3.15 of Ch.4), and we write � for �V .

We are now ready to discuss the following Tilt-excess Decay Theorem, which is the main
result concerning tilt-excess needed for the regularity theorem of the next section. In this
theorem the tilt excess E(�; �; T ) is as defined in 2.1, and we also use the notation

E�(�; �; T ) D max
{
E(�; �; T ); ı�1

(
�p�n

∫
B� (�)

ˇ̌
H
ˇ̌p
d�
)2=p}

;

where ı is as in 2.6.
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4.1 Theorem (Tilt-excess Decay Theorem.) There are constants � D �(n; k; p), ı0 D
ı0(n; k; p) 2 (0; 1

16
] such that if ı 2 (0; ı0] and if hypotheses 2.6 hold, if � 2 (0; ı�],

� 2 spt�V \ Bı�(0), and if T is any n-dimensional subspace of RnCk , then

E�(�; ��; S) � �
2(1�n=p)E�(�; �; T )

for some n-dimensional subspace S � RnCk .

4.2 Remark: Notice that any such S automatically satisfies

(�)
ˇ̌
pS � pT

ˇ̌2
� C��nE�(�; �; T ):

Indeed we trivially have

(��)�n
∫
B�� (�)

ˇ̌
pTxM � pT

ˇ̌2
d� � ��nE(�; �; T );

while by 4.1 we have

(��)�n
∫
B�� (�)

ˇ̌
pTxM � pS

ˇ̌2
d� � E�(�; �; T );

and hence, since
ˇ̌
pS �pT

ˇ̌2
� 2

ˇ̌
pTxM �pT

ˇ̌2
C 2

ˇ̌
pTxM �pS

ˇ̌2, (�) follows by adding
these inequalities and using the fact that �(B�� (�)) � 1

2
(!n��)n (by 2.8).

Proof of 4.1: Throughout the proof, C D C (n; k; p). We can suppose (via translation
and rotation of coordinates) that

(1) � D 0; T D R
n
� {0}:

Let T0 D T (0; 2�) (notation as in Lemma 2.11). By Remark 2.12 (�), T0 satisfies

(2) E(0; �; T0) � Cı
1
nC1 ;

and hence we can assume that T also satisfies

(3) E(0; �; T ) � Cı
1
nC1 ;

because otherwise we just prove the lemma with T0 in place of T and this then trivially
implies the lemma for the original T . Since jpT � pT0 j2 � 2jpT � pTxM j2 C 2jpTxM �
pT0 j

2 we see from (2) and (3) that

jpT � pT0 j � Cı
1

2nC2
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and hence, since supx2spt�\B� (0) dist(x; T0) � Cı
1

2nC2 � by Lemma 2.11, we must also

have supx2spt�\B� (0) dist(x; T ) � Cı
1

2nC2 � . Since T D Rn � {0}, this ensures

(4) sup
B� (0)\spt�

Pk
jD1jx

nCj
j � Cı

1
2nC2 �:

By the Lipschitz Approximation Lemma 2.13, with L D 1 and with �=3 in place of ı�,
there is a Lipschitz function f W Bn

�=3
(0)! Rk with

(5)

{
Lipf � 1; sup jf j � Cı

1
2nC2 �

�(spt� \ B�=3(0) n F )CHn(F \ B�=3(0) n spt�) � CE0�n;

where, here and subsequently,
F D graphf;

and E0 D E�(0; �; T ), i.e.

E0 D max
{
��n

∫
B� (0)

ˇ̌
pTxM � pT

ˇ̌2
d�; ı�1(�p�n

∫
B� (0)

ˇ̌
H
ˇ̌p
d�)2=p

}
:

Let us agree that Cı
1

2nC2 �
1
4
, C D C (n; k; p) as in (4), in which case (4) implies

(6) spt� \ B� (0) \ (Bn�=4(0) � R
k) � Bn�=4(0) � B

k
�=4(0) �

MB�=3(0):

Our aim now is to prove that each component of the Lipschitz function f is well-
approximated by a harmonic function. Preparatory to this, note that the defining identity
for H (see 3.15 of Ch.4), with X D �enCj , implies∫

M
r
M
nCj � d� D �

∫
enCj �H� d�; � 2 C 10 ( MB�=3(0));

j D 1; : : : ; k, where rMnCj D enCj � r
M D pTxM (enCj ) � rM D (rMxnCj ) � rM

(rM D gradient operator forM as in �2 of Ch.3). Thus we can write

(7)
∫
M
(rMxnCj ) � rM � d� D �

∫
M
enCj �H� d�:

Since xnCj D f̃ j (x) onM \F (where f̃ j is defined on RnCk by f̃ j (x1; : : : ; xnCk) D
f j (x1; : : : ; xn) for x D (x1; : : : ; xnCk) 2 RnCk ), we have by the definition of rM (see
�2 of Ch.3) that

(8) r
MxnCj D rM f̃ j (x) �-a.e. x 2M \ F:

Hence by (7) can be written∫
M\F

r
M f̃ j � rM � d� D �

∫
MnF
r
MxnCj � rM � d� �

∫
M
enCj �H� d�;
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and hence by (5), together with the fact that (by 2.6)∫
B� (�)

ˇ̌
H
ˇ̌
d� � (

∫
B� (�)

ˇ̌
H
ˇ̌p
d�)1=p(�(B� (�)))

1�1=p
� Cı

1
2E

1
2

0 �
n�1;

we obtainˇ̌
��n

∫
M\F

(rM f̃ j ) � rM � d�
ˇ̌
� C (��1 sup j�jı

1
2E

1
2

0 C sup jr�jE0)(9)

� C sup jr�j(ı
1
2E

1
2

0 CE0);

for any smooth � with spt � � MB�=3(0).

Furthermore by (8) and 2.4 we evidently have

(10) ��n
∫
M\F\B�=3(0)

ˇ̌
r
M f̃ j

ˇ̌2
d� � 2E0:

Now suppose that � is an arbitrary C 1c ( MBn�=3(0)) function, and let �̃(x1; : : : ; xnCk)
D �(x1; : : : ; xn), so spt �̃ D spt � � Rk � MBn

�=3
(0) � Rk . By (6) there is a function

�̂ 2 C 1c ( MB�=3(0)) which agrees with �̃ in a neighborhood of spt�\ spt �̃, and hence it is
legitimate to use �̃ in place of � in the above discussion. Also,

r
M f̃ j � rM �̃ D

Pn
i;`D1e

i`Di f̃
jD`�̃ D rf̃

j
� r �̃ �

Pn
i;`(ıi` � e

i`)D`f̃
jDm�̃;(11)

where (ei`)i;`D1;:::;nCk is the matrix of pTxM , and the maximum eigenvalue of
(
(ıi` �

ei`)i;`D1;:::;n
)
is � trace

(
(ıi` � e

i`)i;`D1;:::;n
)
, so, by Cauchy’s inequality and 2.3,ˇ̌Pn

i;`D1(ıi` � e
i`)ri f̃

j
r �̃
ˇ̌
� (n �

Pn
iD1e

i i )jri f̃
j
jjri �̃j

D (
PnCk
iDnC1e

i i )jri f̃
j
jjri �̃j D

1
2
jpTxM � pT j

2
jri f̃

j
jjri �̃j:

So, since jrf̃ j j � 1, (11) gives

(12)
ˇ̌
r
M f̃ j � rM �̃ � rf̃ j � r �̃

ˇ̌
�

1
2
jpT � pTxM j

2 sup jr �̃j:

Thus (9) and (12) imply

(13)
ˇ̌̌
��n

∫
M\F

rf̃ j � r �̃ d�
ˇ̌̌
� C

(
ı
1
2E

1
2

0 CE0
)
sup jr�j:

Also since (12) is valid with � D f j , we conclude from (10) that

(14) ��n
∫
M\F\B�=3(0)

ˇ̌
rf̃ j

ˇ̌2
d� � CE0:

From 2.9, (5), (13), (14) and the area formula ?? of Ch.2 we then have

(15)

ˇ̌
��n

∫
Bn
�=4

(0)
rf j � r� � ıG JG dLn

ˇ̌
� Cı

1
2E

1
2

0 sup
ˇ̌
r�
ˇ̌
;

��n
∫
Bn
�=4

(0)
jrf j j2 � ıG JG dLn � CE0;
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whereG W Rn ! RnCk is the graphmap defined by x 2 Bn
�=3

(0) 7! G(x) D (x; f (x)) 2

F � RnCk , x 2 Bn
�=3

(0), and where JG is the Jacobian of G defined, as in �3 of Ch.2,
by

JG(x) D
q
det(DiG(x) �DjG(x)) D

q
det(ıij CDif (x) �Djf (x)):

Then 1 � JG � 1C C jrf j2 on Bn� (0) and 1 � � � 1C Cı (by 2.8), so we concludeˇ̌
��n

∫
Bn� (0)

rf j � r� dLn
ˇ̌
� C (ı

1
2E

1
2

0 C ı�
�n

∫
Bn
�=2

(0)

ˇ̌
rf j

ˇ̌
dLn) sup jr�j(16)

� Cı
1
2E

1=2
0 sup jr�j

by (15), because by (15) (and the fact that � � 1, JF � 1) we have

(17) ��n
∫
Bn
�=4

(0)

ˇ̌
rf j

ˇ̌2
dLn � CE0:

Now (16), (17) and the Harmonic Approximation 3.1 (with (CE0)�1=2f j in place of
f ) we know that for any given " 2 (0; 1) there is ı0 D ı0(n) such that, if the hypotheses
of 3.1 hold with ı � ı0, there are harmonic functions u1; : : : ; uk on B�=4(0) such that

(18) ��n
∫
Bn
�=4

(0)

ˇ̌
Du

ˇ̌2
dLn � CE0; ��n�2

∫
Bn
�=4

(0)

ˇ̌
f � u

ˇ̌2
dLn � "E0;

By (5) and Remark 3.5

(19) ��1ju(0)j � C ("1=2E1=20 C ı
1

2nC2 ) � Cı
1

2nC2 ; jru(0)j � CE1=20 :

Now, defining �(x) D (�1(x); : : : ; �k(x)) with �j (x) D uj (0)C x � ruj (0) for j D
1; : : : ; k, and again using 3.4 with � 2 (0; 1

4
), we have also

(��)�n�2
∫
Bn�� (0)

ˇ̌
f � �

ˇ̌2
dLn � 2(��)�n�2

∫
B�� (0)

(jf � uj2 C ju � �j2) dLn(20)

� 2��n�2"E0 C 2!n�
�2��2supB�� (0)ju � �j

2

� 2��n�2"E0 C C�
2��n

∫
Bn� (0)

ˇ̌
Du

ˇ̌2
dLn

� 2��n�2"E0 C C�
2E0;

where at the last step we used (18). Now let S be the n-dimensional subspace graph(��
�(0)), let � D (0; �(0)), and observe that dist(x; � C S) � jf (x 0) � �(x 0)j for any
x D (x 0; f (x 0)) 2 B�� (�) \ F , so (20) implies

(��)�n�2
∫
B�� (�)\F

dist(x � �; S)2 dHn
� C��n�2"E0 C C�

2E0:

�5 of Chapter 5: Main Regularity Theorem 145

Then by (5), (4), and (19), keeping in mind �(�) � 1C Cı � 2 in B� (0),

(��)�n�2
∫
B�� (�)

dist(x � �; S)2 d� � C��n�2("C ı
1
nC1 )E0 C C�

2E0;

and then by Remark 2.12 (�) we have

(21) E(�; ��=2; S) � C��n�2("C ı
1
nC1 )E0 C C (�2 C ı)E0:

Now (19) implies j� j � Cı
1

2nC2 � , hence

(22) Cı
1

2nC2 < �=4) B��=4(0) � B��=2(�)

(for ı small enough depending on n; k; p and �), and then (21) gives

(23) E(0; ��=4; S) � C��n�2("C ı
1
nC1 )E0 C C (�2 C ı)E0:

The proof is now completed as follows:

WithC D C (n; k; p) as in (23), first select � D �(n; k; p) so thatC�2 � 1
4
(�=4)2(1�n=p),

and then choose " D "(n; k; p) so that C��n�2" � 1
4
(�=4)2(1�n=p), and finally choose

ı � ı0(n; k; p) with ı0 small enough so that B��=4(0) � B��=2(�) as in (22) and so that
the above harmonic approximation is valid with the choice of " made above, and also so
that C��n�2ı

1
nC1 �

1
4
(�=4)2(1�n=p). Then (23) implies

E(0; �̃�; S) � �̃2(1�n=p)E0;

where �̃ D �=4. Since

((�̃�)p�n
∫
B�̃� (0)

jH jp d�)1=p � �̃1�n=p(�p�n
∫
B� (0)

jH jp d�)1=p

by virtue of the inclusion B�̃� (0) � B� (0), we thus conclude that

E�(0; �̃�; S) � �̃
2(1�n=p)E�(0; �; T ):

This completes the proof of 4.1 (with �̃ in place of �). �

5 Main Regularity Theorem

We recall the hypotheses of �2 on V (which is a rectifiable varifold V D v(M; �) with
generalized mean curvature H in the open set U � RnCk ):

5:1

 � � 1 �-a.e.; 0 2 sptV; B�(0) � U

!�1n ��n�(B�(0)) � 1C ı; (�p�n
∫
B�(0)

jH jp d�)1=p � ı:
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Then we have the following:

5.2 Theorem (Allard Regularity Theorem.) If p > n is arbitrary, then there are  D
(n; k; p); ı0 D ı0(n; k; p) 2 (0; 1

16
] such that if ı 2 (0; ı0] and if the hypotheses 5.1

hold, then there is an orthogonal transformation Q of RnCk and a u D (u1; : : : ; uk) 2

C 1;1�n=p(Bn�(0)IR
k) withDu(0) D 0, sptV \ B�(0) D Q(graphu) \ B�(0), and

��1 sup juj C sup jDujC

�1�n=p sup
x;y2Bn�(0); x¤y

jx � yj�(1�n=p)jDu(x) �Du(y)j � Cı
1

2nC2 ;

where C D C (n; k; p) > 0 and  D (n; k; p) 2 (0; 1).

5.3 Remark: At the conclusion of this section we shall prove a slight improvement on
the above theorem, in that for every  2 (0; 1) there is ı0 D ı0(; n; k; p) 2 (0; 1

16
] such

that the hypotheses 5.1 with some ı � ı0 imply the conclusion of the above theorem.

In the proof of 5.2, we shall need the following corollary of the Affine Approximation
Lemma 2.11, which shows that if T0 D T (0; 4ı) (notation as in 2.11), and if 5.1 holds
then the tilt excess is � Cı

1
nC1 on every ball centered at 0 with radius < �.

5.4 Lemma. There is ı0 D ı0(n; k; p) 2 (0; 1
16
] such that if ı 2 (0; ı0], if 2.6 holds, and

if, with the notation of Lemma 2.11, T0 D T (0; 4ı�), then, for each � 2 (0; 1),

��n
∫
B��(0)

jpTxM � pT0 j
2 d�V � Cı

1
nC1 ; C D C (�; n; k; p):

Proof: Let t 2 [ı; 1). The inequality 3.30 of Ch.4 with � D t 2 (0; 1), � D ıt and with
h(x) D jpT?

0
(x=jxj)j2 implies that

∫
@Bt (0)

hjrM r j d�V � ı
1�n

∫
@Bıt (0)

hjrM r j d�V C n

∫
B1(0)

r�njD?r j2 d�V

C C

∫
B1(0)nBı2 (0)

(r�njD?r j C r1�nhjH j) d�V :

By the Cauchy inequality ab � 1
2
a2 C 1

2
b2 we have jD?r j � ı 12 C ı�1=2jD?r j2, and

since
R
B1(0)nBı2 (0)

r�n d�V � C j log ıj by Remark 4.9 of Ch.4, we then get

∫
@Bt (0)

hjrM r j d�V � ı
1�n

∫
@Bıt (0)

hjrM r j d�V(1)

C Cı�1=2
∫
B1(0)

r�njD?r j2 d�V C Cı
1
2 j log ıj C

∫
B1(0)
r1�nhjH j d�V :
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Also, by theHölder inequality andRemark 4.9 of Ch.4,
R
B1
r1�nhjH j d�V � CkHkLp(�V B1(0)) �

Cı, so in fact (1) gives

(2)
∫
@Bt (0)

hjrM r j d�V � ı
1�n

∫
@Bıt (0)

hjrM r j d�V C Cı
1
2 j log ıj:

Now by integrating over t 2 (ı; 1) and using the coarea identity 3.24 of Ch.4 we get∫
B1(0)nBı(0)

hjrM r j2 d�V � ı
�n

∫
Bı(0)nBı2 (0)

hjrM r j2 d�V C Cı
1
2 j log ıj;

so ∫
B1(0)

hjrM r j2 d�V � (1C ı�n)
∫
Bı(0)

hjrM r j2 d�V C Cı
1
2 j log ıj:

Since jrM r j2 D 1 � jD?r j2, by 2.10 this gives

(3)
∫
B1(0)

h d�V � (1C ı�n)
∫
Bı(0)

h d�V C Cı
1
2 j log ıj C Cı;

and h(x) D jpT?
0
(x=jxj)j2 � Cı

1
nC1 for x 2 spt�V \Bı(0) by the Affine Approxima-

tion Lemma 2.11 (because T0 D T (0; 4ı)), so (3) gives

(4)
∫
B1(0)
jpT?

0
(x)j2 d�V � Cı

1
nC1 :

The proof is now completed by using 2.12 (�) with T D T0. �

Proof of 5.2: The proof is based on the Tilt-excess Decay 4.1 of the previous section.
Throughout the proof C D C (n; k; p) > 0.

Take � 2 Bı�=2(0) \ sptV and � 2 (0; ı�=2] and let S0 be an arbitrary n-dimensional
subspace of RnCk . By the Tilt-excess Decay Theorem 4.1 we then know that there are
ı0 D ı0(n; k; p), � D �(n; k; p) so that if ı � ı0 then 5.1 implies

E�(�; ��; S1) � �
2(1�n=p)E�(�; �; S0)

for suitable S1. Notice that this can be repeated; by induction we prove that if � 2
sptV \ Bı�=2(0), then, with �0 D ı�=2, there is a sequence S1; S2; : : : of n-dimensional
subspaces such that

(1) E�(�; �
j�0; Sj ) � �

2(1�n=p)E�(�; �
j�1�=2; Sj�1) � �

2(1�n=p)jE�(�; �0; S0)

for each j � 1.

Let T0 D T (0; 2�0); then 2.11 tells us that E(0; �0; T0) � Cı
1
nC1 and hence, with the

same C , E(�; �0=2; T0) � 2nCı
1
nC1 for each � 2 spt� \ B�0=2(0), so then the above,

always taking S0 D T0 (for each � 2 B�0=2(0) \ spt�) implies

(2) E�(�; �
j�0; Sj ) � �

2(1�n=p)E�(�; �
j�1�0=2; Sj�1) � �

2(1�n=p)jE0;
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where, here and subsequently, E0 D E�(0; �0; T0). Notice in particular that this gives
(Cf. 4.2)

(3)
ˇ̌
pSj � pSj�1

ˇ̌2
� CE�(�; �

j�1�0; Sj�1) � C�
2(1�n=p)jE�(�; �0; S0):

for each j � 1.

By summation from j C 1 to `, (3) gives

(4)
ˇ̌
pS` � pSj

ˇ̌2
� C�2(1�n=p)jE0

for ` � j � 0. (4) evidently implies that there is S(�)(D lim`!1 S`) such that

(5)
ˇ̌
pS(�) � pSj

ˇ̌2
� C�2(1�n=p)jE0; j D 0; 1; 2; : : : :

In particular (setting j D 0)

(6)
ˇ̌
pS(�) � pT0

ˇ̌2
� CE0:

Now if � 2 (0; �0=2] is arbitrary we can choose j � 0 such that �j�0=2 < � �

�j�1�0=2. (1) and (5) imply

(7) E�(�; �; S(�)) � C (�=�0)
2(1�n=p)E0; C D C (n; k; p);

for each � 2 B�0=2(0) \ sptV and each 0 < � � �0=2. Notice also that, by (6) and (7),

(8) E�(�; �; T0) � CE0 � Cı
1

2nC2 ; 0 < � � �0=2:

Supposing without loss of generality that T0 D Rn�{0}, we then see, by Corollary 2.14
and (8), if L0 2 (0; 1

4
] is given, and if ı � ı0L2nC20 for suitable ı0 D ı0(n; k; p), then

(9) sptV \ B�0=4(0) D graphf \ B�0=4(0);

where f is a Lipschitz function Bn
�0=2

(0)! Rk with Lipf � L0.

With such an f , let F D graphf and � D (� 0; f (� 0)) 2 F , and note that, in view of (9),
(7) implies

lim
�#0

��n
∫
B� (�)\F

jpTxF � pS(�)j
2 dHn

D 0

forHn-a.e. � 2 F \B�0=2(0), and at all such points � it evidently follows that S(�) is the
approximate tangent space of F ; i.e. S(�) D pT�F , so (7) can be equivalently written

(10) ��n
∫
B� (�)\F

jpTxF � pT�F j
2 dHn

� C (�=�0)
2(1�n=p)E0
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for all 0 < � � �0=2. Now the orthogonal projection pT�F of RnCk onto the sub-
space T�F is given by pT�F (v) D

Pn
jD1(�j � v)�j , where �j is an orthonormal basis

for T�F , and by the Gram-Schmidt orthogonalization process, starting with the basis
(ej ;Djf (� 0)); j D 1; : : : ; n, for T�F , where (� 0; f (� 0)) D �, shows that pT�F has
matrix P� of the form

P� D

(
In�n Df (� 0)

(Df (� 0))t Ok�k

)
C F(Df (� 0));

where F(p) is a real analytic function of p D (pij )iD1;:::;n;jD1;:::;k 2 Rnk with F(0) D

0, DpF(0) D 0 and hence jF(p1) � F(p2)j � C (n; k)(jp1j C jp2j)jp1 � p2j for
jp1j; jp2j � 1. Evidently then (provided we choose L0 small enough, depending only on
n; k ) we have

jDf (x 0) �Df (� 0)j2 � jpTxF � pT�F j
2
� 3jDf (x 0) �Df (� 0)j2

and so (10) implies

(11) ��n
∫
Bn� (� 0)

ˇ̌
Df (x) �Df (�)

ˇ̌2
dLn(x) � C (�=�0)

2(1�n=p)E0;

for all 0 < � < �0=4. For �-a.e. x1; x2 2 sptV \ B�0=8(0) we can use (11) with
� D jx1�x2j and with � D x1; x2. Since jDf (x1)�Df (x2)j2 � 2jDf (x)�Df (x1)j2C
2jDf (x)�Df (x2)j2 for x 2 Bn� (x1)\Bn� (x2) � Bn�=2((x1Cx2)=2) we then conclude

ˇ̌
Df (x1) �Df (x2)

ˇ̌
� C (jx1 � x2j=�0)

1�n=pE
1=2
0

for Ln-a.e. x1; x2 2 Bn�0=4(0). Of course it follows that then f 2 C 1;1�n=p and this
holds for every x1; x2 2 Bn�0=4(0). Thus, choosing suitable ı D ı(n; k; p) to satisfy the
smallness restrictions imposed in the above argument, the theorem is established with
u D f and  D ı=4. �

As an application of The Conical Approximation Theorem 5.1 of Ch.4 we establish the
following corollary of the regularity theorem (Theorem 5.2), guaranteeing that the con-
clusion of the regularity theorem holds for any  2 (0; 1) (rather than for small enough
 D (n; k; p)), provided the hypotheses 5.1 hold with ı sufficiently small depending
on  :

5.5 Corollary. For each  2 (0; 1) there is ı0 D ı0(n; k; p; ) 2 (0; 1) such that the
hypotheses 5.1with p > n and ı � ı0 imply the existence of a linear isometry q of RnCk and
a functionu D (u1; : : : ; uk) 2 C 1;1�n=p(Bn�(0)IR

k)withDu(0) D 0, sptV \B�(0) D
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q(graphu) \ B�(0), and

��1 sup juj C sup jDujC

�1�n=p sup
x;y2Bn�(0); x¤y

jx � yj�(1�n=p)jDu(x) �Du(y)j � Cı
1

2nC2;

where C D C (n; k; p; ).

Proof: Let � 2 (0; 1
4
] and assume 5.1, where without loss of generality we can assume

� D 1. Then the monotonicity inequalities 2.8 guarantee that the hypotheses of Theo-
rem 5.1 of Ch.4 are satisfied for any � 2 @B1�� (0) with Cı in place of ı and C inde-
pendent of �. Furthermore for � � ı=2 sufficiently small we have (again by 2.8) that
(!n�n)�1�(B� (��)) � 1CCı. So Theorem 5.1 of Ch.4 with � D ı and � D � implies
that

(!n�
n)�1�(B� (�)) � 1C Cı

1=4;

which means that for sufficiently small ı D ı(n; k; p) > 0 and � 2 spt�, we can apply
Theorem 5.2 to give spt� \ Bı(�) D q(graphu) \ Bı(�). In view of the arbitrariness
of � this evidently gives the stated conclusion. �

6 Some Initial Applications of the Allard Theorem

The Allard Theorem of �5 is fundamental in the study of the regularity and compactness
properties of rectifiable varifolds (including also smooth submanifolds) with prescribed
(generalized) mean curvature, in particular in the study of stationary varifolds. Here
we discuss some initial applications. First we have the following corollary of the Allard
theorem 5.2.

6.1 Theorem. If V D v(M; �), of dimension n, has generalized mean curvature H (as
in 3.15 of Ch.4) in an open set U � RnCk and ifH is locally in Lp(�V ) for some p > n,
if � � 1�V -a.e. in U and if � 2 U with ‚n(�V ; �) D 1, then there is � > 0 and an
orthogonalQ and of RnCk such that

(�) Q ı �(spt�V ) \ MB�(0) D graphu; � W x 7! x � �;

whereu W W ! Rk ,W open inRn, is aC 1;1�n=p(W;Rk) functionwithu(0) D 0, jDu(0)j D
0.

In case � is positive integer-valued �V -a.e. in U and H D hj spt�V , where h is a C q;˛

function in U for some q 2 {0; 1; 2; : : :} and some ˛ 2 (0; 1), then, for sufficiently small
� > 0, the above u is automatically C qC2;˛(W ) and‚n(�V ; x) � 1 on spt�V \ MB�(�).
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Finally, if � is positive integer-valued �V -a.e. in U , if N � U is an (n C `)-dimensional
C qC2;˛ embedded submanifold of RnCk (where ` � k) with � 2 N , if V is stationary in
N as in 2.8 of Ch.4 (so that V has generalized mean curvature H D HM in N as in 3.15
of Ch.4), then again (�) holds for sufficiently small � > 0, with u 2 C qC2;˛(W ) and
‚n(�V ; x) � 1 in spt�V MB�(�).

Proof: Since lim�#0(�
p�n

R
B�(�)

jH jp d�V )1=p D 0 and lim�#0(!n�
n)�1�V (B�(�)) D

1, we can choose � > 0 such that the hypotheses of Theorem 5.2 hold, so, after applying
the appropriate translation and orthogonal transformation, the required u exists with

(1) graphu D sptV \ B� (0)

with � D �,  as in Theorem 5.2. Since � is integer valued and < 2 a.e., we have � D 1
Hn-a.e. on graphu; but graphu is a C 1 embedded submanifold so then ‚n(�V ; x) D 1

at every point of graphu.

Let "0 2 (0; 1). Since Du(0) D 0, by choosing a smaller � if necessary we can assume
that jDuj � "0 on B� (0) and so the analysis we made in �1 of the present chapter is
applicable and tells us that u satisfies a system of equations of the form 1.3; i.e.

(2) �ui D
Pn
jD1Dj (Aij (Du))C hi ; i D 1; : : : ; k;

withAij (P ) areC1 functions of the variableP D (p`m)`D1;:::;n;mD1;:::;k with jAij (P )j �

C jP j2 and jDPAij (P )j � C jP j, where C D C (n). Then by the Schauder theory for
elliptic equations we see that hi 2 C q;˛( MB� (0)) implies that u 2 C qC2;˛( MB� (0)) as
claimed.

Finally, assume V is stationary in N . Then we can apply Theorem 5.2 for each p > n

so for each ˛ 2 (0; 1) we have � such that (1) holds with u 2 C 1;˛( MB� (0)). Then
(ei ;Diu(x)); i D 1; : : : ; n, is a C 0;˛ basis for T(x;u(x))F , F D graphu, x 2 MB� (0).
By the Gram-Schmidt orthogonalization theorem we then have functions Fj (Du), j D
1; : : : ; n, such thatFj (P ) is a smooth function ofP D (pij )iD1;:::;n;jD1;:::;k andF1(Du(x)); : : : ; Fn(Du(x))
is an orthonormal basis for T(x;u(x))F for each x 2 MB� (0). Then, by 2.8 of Ch.4, F has
generalized mean curvature at (x; u(x)) equal to

Pn
jD1Bu(x)(Fj (Du(x)); Fj (Du(x))).

Thus, in this case (1) can be written

(3) �ui D
Pn
jD1Dj (Aij (Du))C

Pn
jD1enCi � B (x;u(x))(Fj (Du(x)); Fj (Du(x)))

for i D 1; : : : ; k, and again standard elliptic theory implies u 2 C qC2;˛( MB� (0)). �

6.2 Definition: If V D v(M; �) is an n-dimensional rectifiable varifold, we say that a
point � 2 sptV is a regular point of V if there is a � > 0 such that MB�(�) \ sptV is an
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n-dimensional C 1 embedded submanifold of RnCk . Then we let

regV D {� 2 sptV W � is a regular point of V }
singV D sptV n regV:

Notice that then by definition regV, singV are respectively relatively open in sptV and
relatively closed in U .

6.3 Corollary. If V D v(M; �), of dimension n, has generalized mean curvature H in
an open set U � RnCk , if H is locally in Lp(�V ) for some p > n, and if � is positive
integer-valued �V -a.e. in sptV , then regV is a relatively open dense set in sptV ; i.e. singV
is nowhere dense in sptV , and sptV is the closure, taken in U , of regV .

6.4 Remark: It is an open question whether on not singV has Hn-measure zero under
the general conditions of the above corollary, even if we assume H D 0; such results
(and much more) are true in the special case when V is the varifold associated with a
minimizing current, as discussed below in Ch.7.

Proof of 6.3: Take any ball B�(�) � U and let

N D min
{
j 2 {1; 2; : : :} W ‚n(�V ; x) D j for some x 2 MB�(�)

}
.

Then Ṽ D v(M;N�1�) MB�(�) has density ‚n(�Ṽ ; x) � 1 everywhere in spt Ṽ \
MB�(�) and ‚n(�Ṽ ; x0) D 1 at some point of x0 2 MB�(�). Such a point x0 is in reg Ṽ (D
regV \ MB�(�)) by Theorem 6.1, so we have shown regV \ MB�(�) ¤ ∅. �

The Allard theorem will play a key role later (in Ch.7) in establishing the regularity
theory for solutions of the Plateau problem in arbitrary dimensions.
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Chapter 5 Problems

5.1 Let  W [0; 1] ! R2 be defined by (r) D r
(
cos((log(2=r))˛); sin((log(2=r))˛)

)
for r 2 (0; 1] and (0) D (0; 0), where ˛ 2 (0; 1

2
). Prove

(i) j 0(r)j � 2 and hence H1(([0; 1])) � 2.

( ii) If � D ([0; 1]) [ (�)([0; 1]), prove that the approximate tangent space T0� does
not exist, but that � has the strong affine approximation property at 0, meaning that for
each � 2 (0; 1] there is a 1-dimensional subspace T� of R2 with ��1 dist

(
T� \B� (0); �\

B� (0)
)
! 0 as � # 0.

Here dist means as usual Hausdorff distance d (A;B) D inf of all numbers � > 0 such that A is contained in
the �-nhd. of B and B is contained in the �-nhd. of A.

5.2 With � as in 5.1 above, calculate p(Tx�)?(x) for x 2 � n {0}, and check thatR
�
r�3jp(Tx�)?(x)j

2 dH1 <1.
Note: 5.1, 5.2 suggest that finiteness of the term

R
� r
�3jp(Tx�)? (x)j

2 dH1 (which is one of the key terms
appearing in the monotonicity identity) does not in itself guarantee any especially strong asymptotic properties
of � on approach to 0.

5.3 Let F (p) D
p
det(ıij C pi � pj ), where p D (p˛i )iD1;:::;n;˛D1;:::;` 2 Rn` and pi D

(p1i ; : : : ; p
`
i ) 2 R`.

( i) Prove that there is " D "(n; `) > 0 such that F (p) is a convex function of p for
jpj � ".

( ii) Suppose u W MBn� (0) ! R` is Lipschitz with Lipu � " and let A(u) D Hn(graphu).
Prove that in fact A(u) D

R
MBn� (0)

F (Du) dLn, and, if v W MBn� (0) ! R` is also Lipschitz
with Lip v � ", A(u) � A(v) �

R
MB�(0)

P
i;˛ A

˛
i (Du)Di (u

˛ � v˛), where A˛i (p) D
@F (p)=@p˛i .
Hint: Let f (t) D A(uC t(v � u)); t 2 [0; 1], and use the 2nd order Taylor expansion f (1) D f (0)C
f 0(0)C

R 1
0 (1� t)f

00(t)dt together with (i).

5.4 u as in 5.2(ii) is said to be a weak solution of the minimal surface system (MSS)
if it is a weak solution of the Euler-Lagrange system for the functional A(u); that is
d
ds
j
sD0

A(uC s�) D 0 for each Lipschitz � with compact support in MBn� (0).

( i) Prove that this is exactly the requirement that
P
i;˛

R
MBn� (0)

A˛i (Du)Di�
˛ dLn D 0 for

for each Lipschitz � with compact support in MBn� (0).

( ii) Prove using 5.3(ii) that if u is a Lipschitz weak solution of the MSS as in (i) with
Lipu � ", then A(u) � A(v) for every Lipschitz v W MBn� (0) ! R` which is such that
v � u has compact support in MBn� (0) and Lip v � ".

( iii) If u is as in (ii) except that now Lipu � "=2, prove that G D graphu (viewed
as a multiplicity 1 rectifiable varifold in MBn� (0) � R` ) is stationary; i.e., prove that if



't (x) D x C tXjx for x 2 MBn� (0) � R` with X D (X1; : : : ; XnC`) C 1 with compact
support in MBn� (0) � R`, then d

dt
j
tD0

Hn('t (G)) D 0.
Hint: Show that, for small enough t , 't (G) is again the graph of a Lipschitz function ut with Liput < ",
and then use (ii).

Note: Having proved (iii), we can immediately apply theAllard regularity theorem to deduce thatu isC1;˛( MB(1��)�(0))
for any ˛; � 2 (0; 1) provided " D "(˛; n; `; �) is small enough.
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1 Preliminaries: Vectors, Co-vectors, and Forms

e1; : : : ; ep denote the standard orthonormal basis for RP . We letƒ1(RP ) denote the dual
space ofRP ; thusƒ1(RP ) is the space of linear functionals! W RP ! R. dx1; : : : ; dxP 2
ƒ1(RP ) will denote the basis for ƒ1(RP ) dual to the standard basis e1; : : : ; eP of RP .
Thus for v D (v1; : : : ; vP ) 2 RP we have

dxj (v) D vj ; j D 1; : : : ; P:

For n � 2,ƒn(RP ) denotes the space of alternating n-linear functions onRP�� � ��RP (n
factors). Thus! 2 ƒn(RP )means!(v1; : : : ; vn) is linear in each vj and!(v1; : : : vi ; : : : ; vj ; : : : ; vn) D
�!(v1; : : : vj ; : : : ; vi ; : : : ; vn) for each i ¤ j . If !1; : : : ; !n 2 ƒ1(RP ) we define
!1 ^ !2 ^ � � � ^ !n 2 ƒ

n(RP ) by

!1 ^ !2 ^ � � � ^ !n(v1; : : : ; vn) D1.1 P
� sgn � !�(1)(v1)!�(2)(v2) � � �!�(n)(vn) (D det(!i (vj )));
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where the sum is over all permutations � of {1; : : : ; n} and where sgn � is the sign of the
permutation � W {1; : : : ; n}! {1; : : : ; n}.
Given v1; : : : ; vn 2 RP , we can write vi D

PP
jiD1

v
ji
i eji for each i D 1; : : : ; n, so for

any ! 2 ƒn(RP ) we have, by the n-linearity of !,

!(v1; : : : ; vn) D
PP
j1;:::;jnD1

v
j1
1 � � � v

jn
n !(ej1 ; : : : ; ejn);

and because ! is alternating this sum can be restricted to distinct j1; : : : ; jn. Then

!(v1; : : : ; vn) D
P
˛D(j1;:::;jn)2In;P

P
�2Pn

v
j�(1)
1 � � � v

j�(n)
n !(ej�(1) ; : : : ; ej�(n));

where

1:2 In;P D
{
(j1; : : : ; jn) 2 Z

n
C W 1 � j1 < � � � < jn � P

}
;

and where Pn denotes the set of permutations � of {1; : : : ; n}. Since ! is alternating we
evidently have !(ej�(1) ; : : : ; ej�(n)) D sgn(�)!(ej1 ; : : : ; ejn), so

!(v1; : : : ; vn) D
P
˛D(j1;:::;jn)2In;P

P
�2Pn

sgn(�)v
j�(1)
1 � � � v

j�(n)
n !(ej1 ; : : : ; ejn):

But, according to the definition 1.1,
P
�2Pn

sgn(�)v
j�(1)
1 � � � v

j�(n)
n D dx˛(v1; : : : ; vn),

where we use the notation

1:3 dx˛ D dxj1 ^ � � � ^ dxjn ; ˛ D (j1; : : : ; jn):

So we have proved that any ! 2 ƒn(RP ) can be written

1:4 ! D
P
˛2In;P

!˛dx
˛;

where !˛ D !(ej1 ; : : : ; ejn) for each ˛ D (j1; : : : ; jn) 2 In;P .

Thus {dx˛ W ˛ 2 In;P } are a basis for ƒn(RP ) and dimension ƒn(RP ) D (P
n
).

For ! D
P
˛2I`;P

!˛dx
˛ 2 ƒ`(RP ), � D

P
ˇ2Im;P

�ˇdx
ˇ 2 ƒm(RP ) we can define

1:5 ! ^ � D
X

˛2I`;P ;ˇ2Im;P

!˛�ˇ dx
˛
^ dxˇ 2 ƒ`Cm(R

P ):

This is consistent with 1.1, and for !;!1; !2 2 ƒ`(RP ); � 2 ƒm(RP ); � 2 ƒp(RP ) we
have

(c1!1 C c2!2) ^ � D c1!1 ^ �C c2!2 ^ �

(! ^ �) ^ � D ! ^ (� ^ �)

! ^ � D (�1)`m� ^ !:
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If V is a subspace of RP of dim D ` with basis v1; : : : ; v` then ƒn(V ) denotes the
subspace ofƒn(RP )with basis {v�ı1^� � �^v

�
in
W (i1; : : : ; in) 2 In;`}, where v�j 2 ƒ

1(RP )

is the element dual to vj , so that, for v 2 RP , v� 2 ƒ1(RP ) is defined by

1:6 v�(w) D v � w; w 2 R
P :

Analogous to the definition ofƒn(RP ), we could similarly defineƒn(ƒ1(RP )) for n �
2 as the space of alternating n-linear functions on ƒ1(RP ). In which case, after making
the identification (dxj )� ' ej , we have the spaceƒn(RP ) ' ƒn(ƒ1(RP )) of n-vectors

w D
P
˛2In;P

w˛e˛;

where w˛ 2 R and e˛ D ej1 ^ � � � ^ ejn for ˛ D (j1; : : : ; jn) 2 In;P , and

v1 ^ � � � ^ vn D
PP
j1;:::;jnD1

v1j1v2j2 � � � vnjnej1 ^ � � � ^ ejn

D
P

(`1;:::;`n)2In;P
det(vi j̀ )e`1 ^ � � � ^ e`n

for any v1; : : : ; vn 2 RP .

If V is a subspace of RP of dim D ` with basis v1; : : : ; v` then ƒn(V ) is the subspace of
ƒn(RP ) spanned by {vi1 ^ � � � ^ vin W (i1; : : : ; in) 2 In;`}.

! 2 ƒn(RP ) (respectivelyw 2 ƒn(RP )) is called simple if it can be expressed!1^� � �^!n
with !j 2 ƒ1(RP ) (respectively w1 ^ � � � ^ wn with wj 2 RP ).

We assume ƒn(RP ), ƒn(RP ) are equipped with the inner products naturally induced
from RP (making {e˛}˛2In;P , {dx

˛}˛2In;P orthonormal bases). Thus

1:7 (
P
˛2In;P

!˛dx
˛) � (

P
˛2In;P

�˛dx
˛) D

P
˛2In;P

!˛ �˛

and

1:8 (
P
˛2In;P

u˛e˛) � (
P
˛2In;P

w˛ e˛) D
P
˛2In;P

u˛ w˛

The dual pairing between ! 2 ƒn(RP ) and w 2 ƒn(RP ) will be denoted 〈!;w〉; thus

1:9
〈P

˛2In;P
!˛dx

˛;
P
˛2In;P

w˛e˛
〉
D
P
˛2In;P

!˛w
˛:

Given ` W RP ! RQ linear, the “pull-back” `# W ƒn(RQ)! ƒn(RP ) is defined by

1:10 `#!(v1; : : : ; vn) D !(`(v1); : : : ; `(vn)); v1; : : : ; vn 2 R
Q;

and then the “push-forward” `# W ƒn(RP ) ! ƒn(RQ) is defined by duality according
to the requirement

1:11
〈
`#!;w

〉
D
〈
!; `#w

〉
; ! 2 ƒn(R

Q); w 2 ƒn(R
P );
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where 〈 ; 〉 is the dual pairing as in 1.9. More explicitly, `#; `# are then characterized as
the unique linear mapsƒn(RQ)! ƒn(RP ) andƒn(RP )! ƒn(RQ) respectively such
that for !1; : : : ; !n 2 ƒ1(RQ) and v1; : : : ; vn 2 RP

1:12

{
`#(!1 ^ � � � ^ !n) D(`

#!1) ^ � � � ^ (`#!n) D (!1 ı `) ^ � � � ^ (!n ı `)

`# (v1 ^ � � � ^ vn) D(`# v1) ^ � � � ^ (`# vn) D `(v1) ^ � � � ^ `(vn):

For open U � RP , En(U ) D C1(U;ƒn(RP )) and the elements ! 2 En(U ) are called
smooth n-forms on U . Thus ! 2 En(U ) means ! D

P
˛2In;P

!˛dx
˛ where !˛ 2

C1(U ).

The value of !(x) D
P
˛2In;P

!˛(x)dx˛ at a point x 2 U will also at times be denoted
!jx .

The exterior derivative En(U )! EnC1(U ) is defined as usual by

1:13 d! D
PP
jD1

P
˛2In;P

@a˛

@xj
dxj ^ dx˛

if ! D
P
˛2In;P

a˛dx
˛ . By direct computation (using @2a˛

@xi@xj
D

@2a˛
@xj @xi

and dxi^dxj D
�dxj ^ dxi ) one checks that

1:14 d2! D 0 8! 2 En(U ):

Given ! D
P
˛2In;Q

!˛(y)dy˛ 2 En(V ), V � RQ open, and a smooth map f W U !
V , we define the “pulled back” form f #! 2 En(U ) by

1:15 f #! D
P
˛D(i1;:::;in)2In;Q

!˛ ı f df
i1 ^ � � � ^ df in ;

where df j is
PP
iD1

@f j

@xi
dxi , j D 1; : : : ;Q. Equivalently this says

f #!jx D (dfx)
#(!jf (x));

where the right side is defined as in 1.10 with ` D dfx .

Notice that the exterior derivative commutes with the pulling back:

1:16 df #
D f #d:

We let Dn(U ) denote the set of ! D
P
˛2In;P

!˛dx
˛ 2 En(U ) such that each !˛

has compact support. We topologize Dn(U ) with the usual locally convex topology,
characterized by the assertion that !k D

P
˛2In;P

!k˛dx
˛ ! ! D

P
˛2In;P

!˛dx
˛

if there is a fixed compact K � U such that spt!k˛ � K 8˛ 2 In;P , k � 1, and if
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limDˇ!k˛ D Dˇ!˛ uniformly in K 8˛ 2 In;P and every multi-index ˇ. For any
! 2 Dn(U ), we define

1:17 j!j D sup
x2U

q
!(x) � !(x)

If f W U ! V is smooth (U , V open in RP , RQ respectively) and if f is proper (i.e.
f �1(K) is a compact subset of U whenever K is a compact subset of V ) then f #! 2

Dn(U ) whenever ! 2 Dn(V ).

2 General Currents

Throughout this section U is an open subset of RP .

2.1 Definition: An n-dimensional current (briefly called an n-current) in U is a continu-
ous linear functional onDn(U ). The set of such n-currents (i.e. the dual space ofDn(U ))
will be denoted Dn(U ).

Note that in case n D 0 the n-currents in U are just the Schwartz distributions on U .
More importantly though, the n-currents, n � 1, can be interpreted as a generalization
of the n-dimensional oriented submanifolds M having locally finite Hn-measure in U .
Indeed given such an M � U with orientation � (thus �(x) is continuous on M with
�(x) D ˙�1 ^ � � � ^ �n 8x 2 M , where �1; : : : ; �n is an orthonormal basis for TxM )1,
there is a corresponding n-current [[M ]] 2 Dn(U ) defined by

2:2 [[M ]](!) D
∫
M

〈
!(x); �(x)

〉
dHn(x); ! 2 Dn(U );

where 〈 ; 〉 denotes the dual pairing for ƒn(RP ), ƒn(RP ) as in 1.9. (That is, the n-
current [[M ]] is obtained by integration of n-forms overM in the usual sense of differential
geometry: [[M ]](!) D

R
M
! in the usual notation of differential geometry.) In the special

case then M D U (i.e. k D 0 and M is just the open set U equipped with the standard
orientation e1 ^ � � � ^ en ) we have, for ! D adx1 ^ � � � ^ dxn 2 Dn(U ),

2:3 [[U ]](!) D
∫
U
a(x) dLn(x):

Motivated by the classical Stokes’ theorem (
R
M
d! D

R
@M
! ifM is a compact smooth

manifold with smooth boundary) we are led (by 2.2) to quite generally define the bound-
ary @T of an n-current T 2 Dn(U ) by

2:4 @T (!) D T (d!); ! 2 Dn(U )

1Thus �(x) 2 ƒn(TxM ); notice this differs from the usual convention of differential geometry where we
would take �(x) 2 ƒn(TxM ).
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(and @T D 0 if n D 0); thus @T 2 Dn�1(U ) if T 2 Dn(U ), where to handle the case
n D 0 we make the notational agreement that D�1(U ) D {0}.
Notice that @2T D 0 by 1.14.

Again motivated by the special example T D [[M ]] as in 2.2 we define the mass of T ,
M(T ), for T 2 Dn(U ) by

2:5 M(T ) D sup
j!j�1;!2Dn(U )

T (!)

(so that M(T ) D Hn(M ) in case T D [[M ]] as in 2.2). More generally for any open
W � U we define

2.6 MW (T ) D sup
j!j�1;!2Dn(U );spt!�W

T (!)

2.7 Remark: We here adopt the definition of M(T ) using the inner product norm j!j,
but notice that there is some flexibility in this; we would still get the “correct” value
Hn(M ) for the caseT D [[M ]] if wewere tomake the definitionM(T ) D sup

k!(x)k�1!2Dn(U ) T (!),
where k!(x)k denotes the comass norm of ! at x; thus

k!k D sup
�2ƒn(RP ); j�jD1; � simple

〈!; �〉:

Indeed in general this works (for T D [[M ]]) provided only that k k is a norm forƒn(RP )

with the properties:

〈!; �〉 � k!k j�j whenever � 2 ƒn(R
P ) is simple(a)

For each fixed simple � 2 ƒn(R
P ); equality holds in (a) for some ! ¤ 0:(b)

Evidently the inner product norm and the comass norm are two such norms, but the co-
mass norm is the smallest possible norm forƒn(RP ) having these properties, which gives
maximality of the corresponding definition of M(T ). The reader is warned that M(T )

is usually defined in terms of the comass norm—this makes no significant difference to
later discussion here but of course there will be contexts in which the difference becomes
significant.

Suppose now T 2 Dn(U ) satisfiesMW (T ) <1 for every openW �� U and let Cn(U )

denote the set of continuous n-forms with compact support in U ; thus ! 2 Cn(U )means
! D

P
˛2In;P

a˛dx
˛ , where a˛ are continuous functions with compact support in U .

Given such a continuous ! we can find a sequence !j D
P
˛2In;P

aj˛dx
˛ 2 Dn(U )with

aj˛ converging to a˛ uniformly on U and with all aj˛ having compact support in a fixed
W �� U . Then of course jT (!j )�T (!k)j D jT (!j �!k)j �MW (T )j!j �!kj ! 0 as
j; k !1, so T (!j ) is a Cauchy sequence on R and hence converges to some real number
which we denote T (!). Evidently T (!) is independent of the particular approximating
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sequence !j and also, so defined, T is a bounded linear map {! 2 Cn(U ) W spt! �
K} ! R for each compact K � U . But then the Riesz Representation Theorem 5.14
of Ch.1 is applicable and we deduce that there is a Radon measure �T on U and an
Hn-measurable function ET W U ! ƒn(RP ) such that j ET j D 1 �T -a.e. and

2:8 T (!) D
∫
U
〈!; ET 〉 d�T ; ! 2 Cn(U );

and hence

2:9 T (!) D
∫
U

〈
!; ET

〉
d�T ; ! 2 Dn(U ):

2:10 �T (W ) DMW (T ) (D sup
!2Dn(U ); k!k�1; spt!�W

T (!))

for any open W with W a compact subset of U . In particular

�T (U ) DM(T ):

Notice that for such a T we can define, for any �T -measurable subset A of U (and in
particular for any Borel set A � U ), a new current T A 2 Dn(U ) by

2:11 (T A)(!) D
∫
A

〈
!; ET

〉
d�T :

More generally, if ' is any locally �T -integrable function on U then we can define
T ' 2 Dn(U ) by

2:12 (T ')(!) D
∫ 〈
!; �

〉
' d�T :

Given T 2 Dn(U ) we define the support, sptT , of T to be the relatively closed subset of
U defined by

2:13 sptT D U n [W

where the union is over all open setsW �� U such that T (!) D 0whenever! 2 Dn(U )

with spt! � W . Notice that if MW (T ) < 1 for each W �� U and if �T is the
corresponding total variation measure (as in 2.9, 2.10) then

2:14 sptT D spt�T

where spt�T is the support of �T in the usual sense of Radon measures in U .

Given a sequence {Tq} � Dn(U ), we write Tq * T in U (T 2 Dn(U )) if {Tq} con-
verges weakly to T in the usual sense of distributions:

2:15 Tq * T ” limTq(!) D T (!) 8! 2 Dn(U ):



162 Chapter 6: Currents

Notice that mass is trivially lower semi-continuous with respect to weak convergence: if
Tq * T in U then

2:16 MW (T ) � lim inf
q!1

MW (Tq) 8 open W � U:

We also observe that if supqMW (Tq) < 1 for each open W �� U then, by the dis-
cussion preceding 2.8, Tq extends uniquely to a linear functional T q on Cn(U ) such that
jT q(!)j � MW (Tq)j!j for each ! 2 Cn(U ) with spt! � W . The weak convergence
Tq * T is thus equivalent to weak� convergence with respect to continuous forms with
compact support (i.e. T q(!)! T (!) for all continuous n-forms ! on U with compact
support), and hence by applying the standard Banach-Alaoglu theorem [Roy88] (in the
Banach spaces Mn(W ) D {T 2 Dn(W ) WMW (T ) <1}, W �� U ) we deduce

2.17 Lemma. If {Tq} � Dn(U ) and supq�1MW (Tq) <1 for each openW �� U , then
there is a subsequence {Tq 0} and a T 2 Dn(U ) such that∫

U

〈
!; ET q 0

〉
d�Tq 0 !

∫
U

〈
!; ET

〉
d�T

for each continuous n-form ! with compact support in U .

The following terminology will be used frequently:

2.18 Terminology: Given T1 2 Dn(U1), T2 2 Dn(U2) and an open W � U1 \ U2,
we say T1 D T2 in W if T1(!) D T2(!) whenever ! is a smooth n-form in RnCk with
spt! � W .

Next we want to describe the cartesian product of currents T1 2 Ds(U1), T2 2 Dt (U2),
U1 � RP1 , U2 � RP2 open. We are motivated by the case when T1 D [[M1]] and T2 D
[[M2]] (Cf. 2.2) whereM1,M2 are oriented submanifolds of dimension s, t respectively.
We want to define T1�T2 2 DsCt (U1�U2) in such a way that for this special case (when
Tj D [[Mj ]]) we get [[M1]]�[[M2]] D [[M1�M2]]. SinceM1�M2 has the natural orienting
(s C t)-vector p#(�) ^ q#(�), where � and � are the orienting s-vector and t -vector for
M1;M2 respectively, and where p(x) D (x; 0); x 2 RP1 , and q(y) D (0; y); y 2 RP2 ,
we are thus led to the following definition:

2.19 Definition: If ! 2 DsCt (U1 � U2) is written in the form

! D
P

(˛;ˇ )2Is 0;P1�It 0;P2 ; s
0Ct 0DsCt a˛ˇ (x; y) dx

˛
^ dyˇ

then we define

S � T (!) D T (
P
ˇ2It;P2

S(
P
˛2Is;P1

a˛ˇ (x; y)dx
˛)dyˇ );
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which makes sense because if spt! D K then K � P (K) � Q(K), where P denotes
the projection (x; y) 7! x of U1 � U2 ! U1 and Q denotes the projection (x; y) 7! y

of U1 � U2 ! U2, and one can check that S(
P
˛2Is;P1

!˛ˇ (x; y)dx
˛) is a C1c (U2)

function of y with support inQ(K).

Notice in particular this gives, for !1 2 Ds 0(U1), !2 2 Dt 0(U2) with s 0C t 0 D sC t and
with P;Q as above,

2:20 S � T ((P #!1) ^ (Q#!2)) D

{
S(!1)T (!2) if (s 0; t 0) D (s; t)

0 if (s 0; t 0) ¤ (s; t):

One readily checks, using Definition 2.19 and the definition of @ (in 2.4), that

2:21 @(S � T ) D (@S) � T C (�1)sS � @T:

Notice this is valid also in case r or s D 0 if we interpret the appropriate terms as zero;
e.g.

2:22 @(S � T ) D S � @T if s D 0.

Also (Cf. 4.5 of Ch.2), by 2.19 and 2.20,

2:23 MW1�W2(S � T ) DMW1(S)MW2(T )

for any open W1 �� U1, W2 �� U2, so if MW (S);MW (T ) <1 for each open W ��
U then alsoMW (S �T ) <1 for each openW �� U �V . Also in this case one checks
directly from the definition 2.19 that

2:24
����!
S � T D p# ES ^ q# ET ; �S�T D �S � �T ;

where p(x) D (x; 0) and q(y) D (0; y), and where �S ��T is the product Borel regular
measure characterized by the property∫

U�V
f (x; y) d�S � �T D

∫
V

(∫
U
f (x; y) d�S (x)

)
d�T (y); f 2 C

0
c (U � V ):

An important special case of 2.21 occurs when we take T 2 Dn(U ), U � RP , and we let
[[(0; 1)]] be the 1-current 2 D1(R) defined as in 2.4 withM D (0; 1) � R ((0; 1) having
its usual orientation), so

�����!
[[(0; 1)]] D 1; �[[(0;1)]] D L1 (0; 1)

and 2.24 says

2:25
���������!
[[(0; 1)]] � T D e1 ^ q# ET ; �S�T D L1 � �T :
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Also, 2.21 gives

@([[(0; 1)]] � T ) D ({1} � {0}) � T � [[(0; 1)]] � @T2.26

D {1} � T � {0} � T � [[(0; 1)]] � @T:

Here and subsequently {p}, for a point p 2 U , means the 0-current 2 D0(U ) defined
by

{p}(!) D !(p); ! 2 D0(U ) (D C1c (U )):

Observe that then
��!
{p} D 1 and �{p} D ı{p};

where ı{p} is the point mass at p (i.e.
R
U
f dı{p} D f (p) for f 2 C 0(U )), and then

2.24 says

2:27
������!
{p} � T D q# ET ; �{p}�T D ı{p} � �T :

Thus if ! D
P
˛2Is;P ;ˇ2It;Q; sCtDn

!˛ˇ (x; y)dx
˛dyˇ 2 Dn(U � V ) with U � RP and

V � RQ open, and if T 2 Dn(V ), then

2:28 ({p} � T )(!) D T (
P
ˇ2In;Q

!0;ˇ (p; y)dy
ˇ ):

Next we want to discuss the notion of “pushing forward” a current T via a smooth map
f W U ! V , U � RP , V � RQ open. The main restriction needed is that f j sptT is
proper; that is f �1(K)\ sptT is a compact subset of U wheneverK is a compact subset
of V . Assuming this, we can define

2:29 f#T (!) D T (�f
#!) 8! 2 Dn(V );

where � is any function 2 C1c (U ) such that � is identically equal to 1 in a neighborhood
of the compact set sptT \ sptf #!. The right side here certainly is defined because �f #!

has compact support in U (independent of any properness requirements on f ) and also
the definition is independent of the particular choice of �—if �̃ is another such choice
then T (�f #!) � T (e�f #!) D T

(
(� �e�)f #!

)
D 0 because (� �e�)f #! has compact

support and is identically zero in a neighborhood of sptT .

2.30 Remarks: (1) Notice that if MW (T ) < 1 for each W �� U , so that T has a
representation as in 2.9, then, with f as in 2.29, f#T is given explicitly by

f#T (!) D
∫
U
〈f #!; ET 〉 d�T

D

∫
U

〈
(dfx)

#(!jf (x)); ET (x)
〉
d�T (x)

D

∫
U

〈
!jf (x); (dfx)#( ET (x))

〉
d�T (x):
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Thus ifMW (T ) <18W �� U we can make sense of f#T in case f is merely C 1 with
f j sptT proper; note also that in this case

MW (f#T ) � C sup
x2f �1W\sptT

kdfxk
nMf �1W (T ); 8W �� V;

with C D (P
n
)
1=2

(with C D 1 if ET (x) is simple for �T -a.e. x ).

(2) If T 2 Dn(U )with locally finite mass inU , if f W U ! V isC 1 with f j sptT proper,
and if F is a closed subset of V , then, using the notation of 2.11 and 2.12,

(f#T ) F D f#(T f �1F ):

One checks this by observing that there is a decreasing sequence gj of C1(U ) functions
with gj (x)! �F (x) for every x 2 U , so, using 2.9, ((f#T ) F )(!) D lim((f#T ) gj )(!) D

lim(f#T )(gj!) D limT (gj ıf f #!) D lim(f#(T gj ıf ))(!) D (f#(T f �1F ))(!),
! 2 Dn(V ).

(3) If T D [[M ]] as in 2.2, the above remark tells us that if f jM \ U is proper, then

f#T (!) D
∫
M

〈
!jf (x); dfx#�(x)

〉
dHn(x);

where � is the orientation for M . Notice that this makes sense if f is only Lipschitz
(by virtue of Rademacher’s Theorem 1.4 of Ch.2). If f is 1:1 and if Jf is the Jacobian
of f as in ?? of Ch.2, then the area formula evidently tells us that (since dfx#�(x) D
Jf (x)�(f (x)), where � is the orientation for f (MC), MC D {x 2 M W Jf (x) > 0},
induced by f )

f#T (!) D
∫
f (MC)

〈
!(y); �(y)

〉
dHn(y):

(Which confirms that our definition of f#T is “correct.”)

Notice that the operations of pushing forward and taking boundaries commute:

2:31 @f#T D f#@T; T 2 Dn(U );

because, with � as in 2.29, @f#T (!) D f#T (d!) D T (�f #d!) D T (�df #!) D T (d (�f #!)) D

@T (�f #!) D f#@T , where we used 1.16.

We can now derive the important homotopy formula for currents as follows:

If f; g W U ! V are C1 (V � RQ open) and h W [0; 1] � U ! V is C1 with h(0; x) �
f (x), h(1; x) � g(x), if T 2 Dn(U ), and if hj[0; 1]� sptT is proper, then, by 2.25, 2.26
and 2.27,

@h#([[(0; 1)]] � T ) D h#@([[(0; 1)]] � T )

D h#({1} � T � {0} � T � [[(0; 1)]] � @T )

D g#T � f#T � h#([[(0; 1)]] � @T ):
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Thus, subject to the conditions stated above, we obtain the homotopy formula

2:32 g#T � f#T D @h#([[(0; 1)]] � T )C h#([[(0; 1)]] � @T ):

Notice that an important case of the above is given by

2:33 h(t; x) D tg(x)C (1 � t)f (x) D f (x)C t(g(x) � f (x))

(i.e. h is an “affine homotopy” from f to g). In this case we note that if hj sptT is a
proper map into V then W �� V ) spt([[(0; 1)]] � T ) \ h�1(W ) �� [0; 1] � U and
hence sptT \ P (h�1(W )) �� U , where P is the projection (t; x) 7! x. Then by the
integral representation 2.9 and Remark 2.30(1) above we have, for any open W �� V ,

2:34 MW (h#[[(0; 1)]] � T ) � C sup
x2sptT\Wh

jf � gj � sup
x2sptT\Wh

(jdfxj C jdgxj)
nMWh(T );

where Wh D Q(h�1(W )), with Q W (t; x) 7! x. Indeed by 2.25 and 2.30(1) we have,
for any ! 2 Dn(V ),

h#([[(0; 1)]] � T )(!) D
∫ 1

0

∫
U

〈
!jh(t;x); dh(t;x)#(e1 ^ q# ET (x))

〉
d�T (x)dt

D

∫ 1

0

∫
U

〈
!jh(t;x); (g(x) � f (x))

^ (tdgx C (1 � t)dfx)# ET (x)
〉
d�T (x)dt;

and 2.34 follows immediately.

We now give a couple of important applications of the above homotopy formula.

2.35 Lemma: If T 2 Dn(U ), MW (T ), MW (@T ) <18W �� U and if f; g W U ! V

are C 1 with f D g on sptT , and if h is as in 2.33 with h(sptT ) � V and hj sptT proper,
then f#T D g#T . (Note that f#T , g#T are well-defined by 2.30(1).)

Proof: By the homotopy formula 2.32 we have, with h(t; x) D tg(x)C (1 � t)f (x),

g#T (!) � f#T (!) D @h#
(
[[(0; 1)]] � T

)
C h#

(
[[(0; 1)]] � @T

)
(!)

D h#
(
[[(0; 1)]] � T

)
(d!)C h#

(
[[(0; 1)]] � @T

)
(!);

so that, by 2.34, for a suitable C depending on T and !, we have

jf#T (!) � g#T (!)j � C sup
x2sptT

jf � gj D 0

since f D g on sptT . �

The homotopy formula also enables us to define f#T in case f is merely Lipschitz, pro-
vided f j sptT is proper and MW (T ), MW (@T ) < 1 8W �� U . In the following
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lemma we let f� D f �'(�), '(�)(x) D ��P'(��1x), with ' a mollifier as in �2 of Ch.
2.

2.36 Lemma. If T 2 Dn(U ),MW (T ),MW (@T ) <18W �� U , and if f W U ! V is
Lipschitz with f j sptT proper, then lim�#0 f�#T (!) exists for each ! 2 Dn(V ); f#T (!) is
defined to be this limit; then sptf#T � f (sptT ) andMW (f#T ) � (ess supf �1(W ) jDf j)

nMf �1(W )(T )

8W �� V .

Proof: If � , � are sufficiently small (depending on ! ) then the homotopy formula gives

f�#T (!) � f�#T (!) D h#([[(0; 1)]] � T )(d!)C h#([[(0; 1)]] � @T )(!)

where h W [0; 1] �U ! V is defined by h(t; x) D tf� (x)C (1� t)f� (x). Then by 2.34,
for sufficiently small � , � , we have

jf�#T (!) � f�#T (!)j � C sup
f �1(K)\sptT

jf� � f� j � (Lipf )n;

where K is a compact subset of V with spt! � interior(K). Since f� ! f uniformly
on compact subsets of U , the result now clearly follows. �

Next we want to define the notion of the cone over a given current T 2 Dn(U ). We want
to define this in such a way that if T D [[M ]] whereM is a submanifold of SP�1 � RP

then the cone over T is just [[CM ]], CM D {�x W x 2 M; 0 < � � 1}. We are thus led
generally to make the definition that the cone over T , denoted 0��T , is defined by

2:37 0��T D h#([[(0; 1)]] � T )

whenever T 2 Dn(U ), n � 1, with U star-shaped relative to 0 and sptT compact, where
h W [0; 1] � RP ! RP is defined by h(t; x) D tx. Notice that h is an affine homotopy
tg(x)C (1 � t)f (x), where g(x) D x and f (x) D 0. Thus 0��T 2 DnC1(U ) and (by
the homotopy formula)

2:38 @(0��T ) D T � 0��@T:

Notice in particular that, with R D 0��T , we have thus established that

U star-shaped relative to 0 and T 2 Dn(U ), n � 1, with sptT2.39
compact and @T D 0) 9R 2 DnC1(U ) with sptR compact and @R D T .

As a final application of the homotopy formula we have the following lemma which gives
a sufficient condition to ensure that a given current of locally finite mass is conical—i.e.
invariant under homotheties �0;�:
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2.40 Lemma. Suppose C 2 Dn(RnCk) with M MBR(0)(C ) < 1 for each R > 0, @C D 0,
and x ^ EC jx D 0 �C -a.e. Then �0;�#C D C for each � > 0.

Proof: We apply the homotopy formula 2.32 with f (x) D x and g(x) D ��1x, and
h(t; x) D tg(x)C (1 � t)f (x). Then

�0;�#C � C D @h#([[(0; 1)]] � C ):

The right side here is zero because
���������!
[[(0; 1)]] � C D e1 ^ q# EC , where q(x) D (0; x), and

hence

h#j(t;x)
���������!
[[(0; 1)]] � C j(t;x) D (1C t(��1 � 1))n(��1 � 1)x ^ EC jx D 0: �

The following Constancy Theorem is very useful:

2.41 Theorem. If U is open in Rn (i.e. P D n), if U is connected, if T 2 Dn(U ) and
@T D 0, then there is a constant c such that T D c[[U ]] (using the notation of 2.3).

Proof: Let '(�)(x) D ��n'(��1x), with ' a mollifier as in �2 of Ch.2. For any closed
ball B�(x0) � U pick �0 > 0 such that B�C�0(x0) � U and take a 2 L1(Rn) with
a D 0 on Rn n B�(x0). Then we have a� 2 C1c (U ) for � < �0, (a� D '(�) � a), and
Dˇa� D (Dˇ'(�)) � a for each multi-index ˇ, so if aj ! a in L1( MB�(x0)) with aj D 0
on Rn n MB�(x0) then aj � dx1 ^ � � � ^ dxn ! a� dx

1 ^ � � � ^ dxn in Dn(U ) for � < �0,
and hence

T (aj � dx
1
^ � � � ^ dxn)! T (a� dx

1
^ � � � ^ dxn):

Thus the functional F� W L1( MB�(x0))! R defined by

F� (a) D T (a� dx
1
^ � � � ^ dxn)

is a bounded linear functional onL1( MB�(x0)), and by the Riesz Representation Theorem
for L1( MB�(x0)) there is a bounded measurable function � (�) in MB�(x0) with F� (a) DR
MB�(x0)

a� (�) dLn for a 2 L1( MB�(x0)), and hence in particular

(1) T (a� dx
1
^ � � � ^ dxn) D

∫
a� (�) dLn; a 2 C1c ( MB�(x0)):

Now for j D 1; : : : ; n let !j � D (�1)j�1a� dx1 ^ � � � ^ dxj�1 ^ dxjC1 ^ � � � ^ dxn,
and observe that d!j � D Dj (a� )dx1^ � � �^dxn D (Dja)�dx1^ � � �^dxn, so (1) with
Dja in place of a implies

(2)
∫
Dja �

(�) dLn D T (d!j � ) D @T (!j � ) D 0; j D 1; : : : ; n:

Observe that with � 2 B�=2(x0) and the choice a(x) D '(�)(x � �) with � < �=2 this
in particular says that Dj (� (�))� (�) is zero for � 2 B�=2(x0) and for j D 1; : : : ; n, and
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hence (� (�))� is constant on B�=2(x0). Thus letting � # 0 we have that � (�) is constant
on B�=2(x0). Finally letting � # 0 in (1) we conclude there is a constant c such that
T (!) D c[[U ]](!) if ! 2 Dn(U ) with spt! � B�=2(x0). In view of the arbitrariness of
B�(x0) this completes the proof. �

2.42 Remark: Notice that if we merely have MW (@T ) < 1 for each W �� U rather
than @T D 0 then the above proof still gives a boundedmeasurable function � (�) as in (1),
but now instead of (2) we get only thatˇ̌̌∫

Dja �
(�) dLn

ˇ̌̌
� C sup jajM MB�(x0)

(@T ); a 2 C1c ( MB�(x0));

with C independent of � . We claim that � (�k ) is convergent in L1(B) for some sequence
�k # 0, B D B�(x0). Indeed by 2.7 of Ch.2, since @T has locally finite mass in U , there
are constants �k such that � (�k )��k is bounded in L1(B�(x0)), and hence T�k ��k [[B ]]
has bounded mass in MB�(x0), where T� (adx1 ^ � � � ^ dxn) D T (a�dx1 ^ � � � ^ dxn) for
a 2 C1c ( MB�(x0)). But T�k * T in MB�(x0) and hence {�k} is bounded. Thus (see �2
of Ch.2 and in particular 2.6 of Ch.2) we deduce that � (�k ) ! � in L1loc(U ) for some
sequence �k # 0, with � 2 BVloc(U ), and

(�) T (!) D
∫
a � dLn; ! D a dx1 ^ � � � ^ dxn 2 Dn( MB�(x0)):

Using the definition ofM(@T ), we easily then check thatMW (@T ) D jD� j(W ) for each
open W � U (and MW (T ) D

R
W
j� j dLn ). Indeed in the present case n D P , any

! 2 Dn�1(U ) can be written ! D
Pn
jD1(�1)

jaj dx
1^� � �^dxj�1^dxjC1^� � �^dxn

for suitable aj 2 C1c (U ), and d! D div a dx1^� � �^dxn for such ! (a D (a1; : : : ; an)).
Therefore by (�) above we have

@T (!) D T (d!) D
∫
div a � dLn

and the assertion MW (@T ) D jD� j(W ) then follows directly from the definition of
MW (@T ) and jD� j (in �2 of Ch.2).

2.43 Theorem. Suppose U is open in RP , and let T 2 Dn(U ) withMW (T ),MW (@T ) <

1 for every W �� U . Then �T is absolutely continuous with respect to Hn on U . That is
Hn(E) D 0) �T (E) D 0, hence (by the abstract Radon-Nikodym theorem 4.17) we have
�T D Hn � for some non-negative Borel measurable function � on U .

Proof of 2.43: Take any E � U with Hn(E) D 0. Since there is a Borel set B � E

with Hn(B) D 0, we can assume E is Borel. We have to show �T (E) D 0. Since
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�T (E) D supK�E;K compact �T (K) by 1.22 of Ch.1, we can (and we shall) without loss
of generality assume E is compact.

In the proof we use the notation that, for ˛ D (i1; : : : ; in) 2 In;P , p˛ denotes the
orthogonal projection of RP onto Rn given by

(x1; : : : ; xP ) 7! (xi1 ; : : : ; xin):

If ! 2 Dn(U ) then ! D
P
a2In;P

!˛dx
˛ , !˛ 2 C1c (U ), and hence

T (!) D
P
˛T (!˛dx

˛) D
P
˛(T !˛)(dx

˛)

D
P
˛(T !˛)p

#
˛ dy:

(dy D dy1 ^ � � � ^ dyn, y1; : : : ; yn the standard coordinate functions in Rn.) Thus

(1) T (!) D
P
˛p˛#(T !˛)(dy)

(which makes sense because spt(T !˛) � spt!˛ D a compact subset of U ). Now
observe that M(@(T !˛)) <1, because, for any � 2 Dn�1(U ),

@(T !˛)(�) D (T !˛)(d�)

D T (!˛d�)

D T (d (!˛�)) � T (d!˛ ^ �)

D @T (!˛�) � T (d!˛ ^ �);

so
MW (@(T !˛)) �MW (@T )j!˛j CMW (T )jd!˛j <1

as claimed.

Of course then M(@p˛ #@(T !˛)) D M(p˛ #@(T !˛)) < 1, and hence by 2.42(�)
we have a �˛ 2 L1(p˛(U )) (depending on both ˛ and !˛ ) such that

p˛#(T !˛)(�) D
R
p˛(U ) 〈�; e1 ^ � � � ^ en〉 �˛ dL

n;

and hence p˛#(T !˛) p˛(E) D 0 because Ln(p˛(E)) � Hn(E) D 0. Then

M
(
p˛#(T !˛)

)
�M(p˛#(T !˛) (R

n
n p˛(E)))(2)

DM
(
p˛#((T !˛) (R

P
n p�1˛ p˛(E)))

)
(by 2.30(2))

� CM
(
(T !˛) (R

P
n p�1˛ p˛E)

)
(by 2.30(1))

� CMW

(
T (R

P
n p�1˛ p˛E)

)
sup
W

j!˛j

for any W such that spt! � W �� U , where C D (P
n
)
1=2

. Since E � p�1˛ p˛E, we
have thus proved

M
(
p˛#(T !˛)

)
� CMW

(
T (R

P
nE)

)
sup
W

j!˛j � CMW

(
T (R

P
nE)

)
j!j:
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Using this in (1) we then have

jT (!)j � CMW

(
T (R

P
nE)

)
sup
W

j!j

for suitable C D C (P; n) and 8! 2 Dn(U ) with spt! � W , so

MW (T ) � CMW (T (R
P
nE));

which says

(3) �T (W ) � C�T (W nE):

Since E is compact, we can choose {Wq} so thatWq �� U ,WqC1 � Wq , \1qD1Wq D E;
using (3) with W D Wq then gives �T (E) D 0. �

In the following corollary, we continue to use the notation that, for ˛ D (i1; : : : ; in) 2

In;P , p˛ denotes the orthogonal projection of RP onto Rn given by

(x1; : : : ; xP ) 7! (xi1 ; : : : ; xin):

Observe that the proof of Theorem 2.43 used only the fact that Ln(p˛E) D 0 for each
˛ 2 In;P , hence we have the following corollary:

2.44 Corollary. Suppose T 2 Dn(U ) with MW (T ), MW (@T ) < 1 for every W �� U ,
and suppose E is a closed subset of U with Ln(p˛(E)) D 0 for each multi-index ˛ 2 In;P ,
1 � i1 < i2 < � � � < in � P . Then T E D 0.

2.45 Remarks: (1) The hypothesis Ln(p˛(E)) D 08˛ can be satisfied even if E has
positive Hn-measure (as example 3.4 of Ch.3 shows), but, in the case when E is Hn

� -finite, only if E is purely n-unrectifiable, as shown by 3.3 of Ch.3.

(2) Let Q be any orthogonal transformation of RP . Since T 2 Dn(U ) ) Q#T 2

Dn(QU ) and MW (T ) D MQW (Q#T ) for each W � U . So if MW (T ) < 1 for each
W �� U we have �Q#T (Q(A)) D �T (A) for each A � U , hence the above lemma
guarantees Ln(p˛(Q(E))) D 0 for each ˛ ) �T (E) D 0. On the other hand the
Rectifiability Theorem 3.7 of Ch.3 implies that if E is a Hn � -finite set which is purely
n-unrectifiable then almost all (with respect to Haar measure) orthogonal projections p
of RnCk onto an n-dimensional subspace of RnCk have Hn(p(E)) D 0. But for each
˛ 2 In;P any such orthogonal projection p can be expressed p D Q� ıep˛ ıQ for some
orthogonal transformation Q of RnCk , where ep˛(x) D (p˛(x); 0) 2 RnCk . Hence
there must be many orthogonalQ such that Ln(p˛(Q(E))) D 0 for each ˛ 2 In;P , so,
by applying Corollary 2.44 with Q#T in place of T , we conclude T E D 0 for any
purely n-unrectifiable Hn � -finite set E � U .
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3 Integer Multiplicity Rectifiable Currents

In this sectionwewant to develop the theory of integermultiplicity currents T 2 Dn(U ),
which, roughly speaking are those currents obtained by assigning (in a Hn-measurable
fashion) an orientation to the tangent spaces TxV of an integer multiplicity varifold V .
(See Ch.4 for terminology.)

These currents are precisely those called locally locally rectifiable currents by Federer and
Fleming [FF60], [Fed69].

Throughout this section n � 1, k � 1 are integers and U is an open subset of RnCk .

3.1 Definition: If T 2 Dn(U ) we say that T is an integer multiplicity rectifiable n-
current (briefly an integer multiplicity current) if it can be expressed

(�) T (!) D
∫
M

〈!(x); �(x)〉 �(x) dHn(x); ! 2 Dn(U );

whereM is an Hn-measurable countably n-rectifiable subset of U , � is a positive locally
Hn-integrable function which is integer-valued Hn-a.e., and � W M ! ƒn(RnCk) is a
Hn-measurable function such that for Hn-a.e. point x 2 M , �(x) can be expressed in
the form �1 ^ � � � ^ �n, where �1; : : : ; �n form an orthonormal basis for the approximate
tangent space TxM . (See Ch.3 and Ch.4.) Thus �(D ET ) orients the approximate tangent
spaces ofM in anHn-measurable way. The function � in 3.1 (�) is called themultiplicity
and � is called the orientation for T . If T is as in 3.1 (�) we shall often write

T D �(M; �; �):

In this case
V D v(M; �)

will be referred to as the integer multiplicity varifold associated with T . In case � D 1

Hn-a.e. onM we use the abbreviated notation

T D �(M; �); V D v(M ):

3.2 Remarks: (1) IfT1; T2 2 Dn(U ) are integermultiplicity, then so isp1T1Cp2T2; p1; p2 2
Z.

(2) If T1 D �(M1; �1; �1) 2 Dr (U ), T2 D �(M2; �2; �2) 2 Ds(W ) (W � RQ open),
then T1 � T2 2 DrCs(U �W ) is also integer multiplicity, and in fact

T1 � T2 D �(M1 �M2; �1�2; p#(�1) ^ q#(�2));

where p(x) D (x; 0) and q(y) D (0; y) and (�1�2)(x; y) D �1(x)�2(y).
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(3) If T D �(M; �; �) 2 Dn(U ) is an integer multiplicity current then

MW (T ) D
∫
M
� dHn

DMW (V ) 8 open W � U;

where V D v(M; �) is the rectifiable varifold associated with T .

Next we want to discuss pushing forward an integer multiplicity T D �(M; �; �) 2

Dn(U ) (M � U ) by a Lipschitz map f W U ! W such that f j sptT is proper. First, if f
is C 1, 1:1, f j sptT is proper,M is an embedded C 1 submanifold, � is anyHn-measurable
orientation for M , and � is any Hn-measurable positive integer valued function on M ,
then we have, by Remark 2.30(3),

f#T (!) D
∫
M
〈f #!; �〉� dHn3.3

D

∫
M

〈
(dfx)

#(!jf (x)); �jx
〉
�(x) dHn(x)

D

∫
M

〈
!jf (x); (dfx)#(�jx)

〉
�(x) dHn(x):

Now �jx D ˙�1^� � �^�n, where �1; : : : ; �n is an orthonormal basis for the tangent space
TxM , so

dfx#�jx D ˙dfx#�1 ^ � � � ^ dfx#�n3.4

D ˙D�1f (x) ^ � � � ^D�nf (x)

whichD 0 at points x 2M where JM
f

(x) D 0, because JM
f

(x) D 0, rank(dMfjx) <
n. On the other hand at points where JM

f
(x) ¤ 0 the rank is n and hence there is

� > 0 such that f jM \ MB�(x) is a diffeomorphism onto an n-dimensional embedded C 1

manifoldN , and at the image point y D f (x) we let �1; : : : ; �n be an orthonormal basis
for TyN . Then, since D�if (x) 2 TyN , we have D�if (x) D

Pn
jD1D�if � �j�j , and so

D�1f (x) ^ � � � ^D�nf (x) D det(D�if � �j )�1 ^ � � � ^ �n:

On the other hand

JMf (x) D
q
det(D�if (x) �D�j f (x)) D

q
(det(D�if (x) � �j ))2

D j det(D�if (x) � �j )j:

Thus we see that 3.4 implies, at points x 2M where JM
f

(x) ¤ 0,

3:5 dfx#�jx D J
M
f (x)�;

where � is an orienting n-vector for N (so � D ˙�1 ^ � � � ^ �n ). � is called the orientation
for N induced by f at each point x where JM

f
(x) ¤ 0.
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Now suppose f W U ! W is Lipschitz, T D �(M; �; �) 2 Dn(U ) (M � U ) is an integer
multiplicity current, and f j sptT is proper, then we can define f#T 2 Dn(W ) by

f#T (!) D
∫
M

〈
!jf (x); d

Mfx#�(x)
〉
�(x) dHn(x):

Let �0 be Hn-measurable such that, for Hn-a.e. y 2 f (M ), �0(y) D ˙�1 ^ � � � ^ �n,
where �1; : : : ; �n are an orthonormal basis for the approximate tangent space Ty(f (M )).
At Hn-a.e. point x where JM

f
(x) ¤ 0 the above discussion shows

3:6 dMfx#�(x) D �(x)�(x)J
M
f (x)�0 where �(x) D ˙1;

so by the area formula

3:7 f#T (!) D
∫
f (M )

〈
!jy ; �0(y)

〉P
x2f �1(y)\MC

�(x)�(x) dHn(y);

where MC D {x 2 M W JMf (x) > 0}. Of course since f (M ) has locally finite Hn-
measure inV we knowby the area formula

R
A
JM
f
�dHn

D
R
f (A)

P
x2f �1(y) �(x) dH

n(y),
so f �1(y) is a finite set for Hn-a.e. y 2 f (M ) and

P
x2f �1(y)\MC

�(x)�(x) 2 Z for
Hn-a.e. y 2 f (M ). By replacing �0 be��0 at all points y 2 f (M )where

P
x2f �1(y)\MC

�(x)�(x) <

0, we get a new orientation � for f (M ) (called the orientation of f (M ) induced by f )
such that

3:8 f#T (!) D
∫
f (M )

〈
!jy ; �(y)

〉
N (y) dHn(y);

where �(y) is a suitable orientation for the approximate tangent space Ty(f (M )) and
N (y) is a non-negative integer given by

3:9 N (y) D
ˇ̌P

x2f �1(y)\MC
�(x)�(x)

ˇ̌
; Hn-a.e. y 2 f (M ).

with �(x) D ˙1 according as dMfx#�(x) D ˙JMf (x)�(y). Thus for Hn-a.e. y 2
f (M ) we have

3:10 N (y) �
P
x2f �1(y)\MC

�(x); N (y) �
P
x2f �1(y)\MC

�(x) (mod 2):

Also of course

3:11 N (y) D � ı f �1(y) in case f is 1:1.

Thus we have proved

3.12 Lemma. If f W U ! W is locally Lipschitz and f j sptT is proper, with T D
�(M; �; �) 2 Dn(U ) an integer multiplicity current, then f#T is an integer multiplicity
current inW ; in fact f#T D �(f (M ); �; N ), as in 3.8, 3.9 above.
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3.13 Remark: If f W U ! W is Lipschitz and if V D v(M; �) is the varifold associated
with T D �(M; �; �), then

�f#T � �f#V

(in the sense of measures) with equality if and only if, for Hn-a.e. y 2 f (M ), the sign
�(x) in 3.6 above remains constant as x varies over f �1(y) \MC, which is the same as
saying N (y) (in 3.9) satisfies N (y) D

P
x2f �1(y)\M �(x) for Hn-a.e. y 2 f (M ). In

particular we have �f#T D �f#V in case f is 1:1.

Notice also that, by applying 3.12 to the current R D 0��T in 2.39, we have

U star-shaped from 0, T integer multiplicity in U , sptT compact, @T D 03.14
) 9 an integer multiplicity R with @R D T , sptR compact.

A fact of central importance concerning integer multiplicity currents is the following
compactness theorem, first proved by Federer and Fleming [FF60]:

3.15 Theorem. (Federer-Fleming Compactness Theorem.) İf {Tj } � Dn(U ) is a se-
quence of integer multiplicity currents with

sup
j�1

(MW (Tj )CMW (@Tj )) <1 8W �� U;

then there is an integer multiplicity T 2 Dn(U ) and a subsequence {Tj 0} such that Tj 0 * T

in U .

We shall give the proof of this in �8. Notice that the existence of a T 2 Dn(U ) and a
subsequence {Tj 0} with Tj 0 * T is a consequence of the elementary 2.17; only the fact
that T is an integer multiplicity rectifiable current is non-trivial.

3.16 Remark: Notice that the proof of 3.15 in the codimension 1 case (when P D n) is
a direct consequence of Remark 2.42 and the Compactness Theorem for BV functions (�
2.6 of Ch.2).

In contrast to the difficulty in proving 3.15, it is quite straightforward to prove that if
Tj converges to T in the strong sense that limMW (Tj � T ) D 0 8W �� U , and if Tj
are integer multiplicity 8j , then T is integer multiplicity. Indeed we have the following
lemma.

3.17 Lemma. The set of integer multiplicity currents in Dn(U ) is complete with respect to
the topology given by the family {MW }W��U of semi-norms.

Proof: Let {TQ} be a sequence of integer multiplicity currents in Dn(U ) and {TQ} is
Cauchy with respect to the semi-norms MW , W �� U . Suppose

TQ D �(MQ; �Q; �Q)
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(�Q positive integer-valued onMQ,MQ countably n-rectifiable,Hn(MQ \W ) <1 for
each W �� U ). Then

(1) MW (TQ � TP ) �
∫
W
j�P �P � �Q�Qj dHn < "W (Q)

8P � Q, where "W (Q) # 0 as Q ! 1 and where we adopt the convention �P D 0,
�P D 0 on U nMP . In particular, since j�P j D 1 onMP , we get

(2)
∫
W
j�P � �Qj dHn < "W (Q) 8P � Q;

and hence �P converges in L1(Hn) locally in U to an integer-valued function � . Of
course (2) implies

(3) Hn(((MC nMQ) [ (MQ nMC)) \W ) � "W (Q);

whereMC D {x 2 U W �(x) > 0}. (1), (2) also imply∫
W
�P j�P � �Qj dHn

� 2"W (Q) 8P � Q;

and hence by (3) �P converges in L1(Hn) locally in U to a function � with values in
ƒn(RnCk) with j�j D 1 and � simple onMC.

Now �q(x) 2 ƒn(TxMQ), Hn-a.e. x 2 MQ, and (by (3)) TxMC D TxMQ except for
a set of measure � "W (Q) in MC \ W . It follows that �(x) 2 ƒn(TxMC) for Hn-a.e.
x 2 MC and we have shown that MW (TP � T ) ! 0, where T D �(MC; �; �) is an
integer multiplicity n-current in U . �

Finally, we shall need the following useful decomposition theorem for codimension 1 inte-
ger multiplicity currents.

3.18 Theorem. Suppose P D nC1 (i.e. U is open in RnC1) andR is an integer multiplicity
current inDnC1(U )withMW (@R) <18W �� U . Then T D @R is integer multiplicity,
and in fact we can find a decreasing sequence of LnC1-measurable sets {Uj }1jD�1 of locally
finite perimeter in U such that (in U )

R D
P1
jD1[[Uj ]] �

P0
jD�1[[Vj ]]; Vj D U n Uj ; j � 0;

T D
P1
jD�1@[[Uj ]];

�T D
P1
jD�1�@[[Uj ]];

and in particular

MW (T ) D
P1
jD�1MW (@[[Uj ]]) 8W �� U:
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3.19 Remark: Let � W C1c (U IRnC1)! Dn(U ) be defined by

�g D
PnC1
jD1 (�1)

j�1gj dx
1
^ � � � ^ dxj�1 ^ dxjC1 ^ � � � ^ dxnC1;

so that d �g D div g dx1^ � � �^dxnC1. Then for any LnC1-measurable A � U we have

@[[A]] (�g) D [[A]] (d � g)

D

∫
U

�
A div g dLnC1;

and hence by definition of jD�Aj (in �2 of Ch.2) andM(T ) (in �2 of the present chapter)
we see that

A has locally finite perimeter in U ” MW (@[[A]]) <1 8W �� U;

and in this case MW (@[[A]]) D
∫
W
jD�Aj 8W �� U

���!
@[[A]] D ��A; jD�Aj a.e. in U:

Here �A is the inward unit normal function for A (defined on the reduced boundary @�A
as in 4.4 of Ch.3).

Proof of 3.18: R must have the form

R D �(V; �; �);

where V is an LnC1-measurable subset of U and �(x) D ˙e1^� � �^enC1 for each x 2 V .
Thus letting

�̃(x) D


�(x) when x 2 V and �(x) D Ce1 ^ � � � ^ enC1
��(x) when x 2 V and �(x) D �e1 ^ � � � ^ enC1
0 when x … V;

we have

(1) R(!) D
∫
V
a�̃ dLnC1;

! D a dx1 ^ � � � ^ dxnC1 2 DnC1(U ) and (cf. 2.10)

(2) MW (R) D
∫
W
j�̃ j dLnC1; MW (T ) D

∫
W
jD�̃ j 8W �� U

(and �̃ 2 BVloc(U )).
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Define

Uj D
{
x 2 U W �̃(x) � j

}
; j 2 Z

Vj D U n Uj D
{
x 2 U W �̃(x) � �1 � j

}
; j � 0:

Then one checks directly that

�̃ D
P1
jD1

�
Uj �

P0
jD�1

�
Vj

(�A D indicator function of A, A � U ), and hence by (1)

(3) R D
P1
jD1[[Uj ]] �

P0
jD�1[[Vj ]] in U:

Since T (!) D @R(!) D R(d!), ! 2 Dn(U ), we then have

T D @R D
P1
jD1 @[[Uj ]] �

P0
jD�1 @[[Vj ]](4)

D
P1
jD�1 @[[Uj ]];

so we have the required decomposition, and it remains only to prove that each Uj has
locally finite perimeter in U and that the corresponding measures add. To check this,
take  j 2 C 1(R) with{

 j (t) D 0 for t � j � 1C ";  j (t) D 1; t � j � "

0 �  j � 1; sup
ˇ̌
 0j

ˇ̌
� 1C 3";

where " 2 (0; 1
2
). Then if a 2 C1c (U ) and g D (g1; : : : ; gnC1), gj 2 C1c (U ), with

jgj � a, we have (since �Uj D  j ı �̃ 8j ) that for anyM � N∫
U
divg

PN
jDM

�
Uj dL

nC1
D

∫
U
divg

PN
jDM j ı �̃ dL

nC1(5)

D lim
�#0

∫
U
divg

PN
jDM j ı �̃� dL

nC1

D � lim
�#0

∫
U
g � r�̃�  

0
j (�̃� ) dLnC1

� (1C 3") lim
�#0

∫
U
a
ˇ̌
r�̃�

ˇ̌
dLnC1:

On the other hand

(6)


∫
U
ajr�̃� j D sup

g2C1c (U );jgj�a

∫
U
divg �̃� dLn; and∫

U
divg �̃� dLn D

∫
U
divg� �̃ dLn D R(d!� ) D T (!� ) �M(T )j!j;
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where !� D
Pn
jD1(�1)

j�1gj �dx
1 ^ � � � ^ dxj�1 ^ dxjC1 ^ � � � ^ dxn. Thus, taking

M D N , we deduce from (5) and (6) that MW (@[[Uj ]]) � MW (T ) < 1 for each j and
each open W �� U .

By taking M D �N in (5) and defining RN D
PN
jD1[[Uj ]] �

P0
jD�N [[Vj ]] we see that

(with g as in 3.19) ˇ̌
RN (d � g)

ˇ̌
� (1C 3")

∫
U
a d�T ;

and hence, with TN D @RN ,

(7)
∫
U
a d�TN �

∫
U
a d�T 8N � 1;

a � 0, a 2 C1c (U ). On the other hand by 4.1 of Ch.3 we have

RN (d � g) D
PN
jD�N

∫
U
div g �Uj dL

nC1(8)

D �
PN
jD�N

∫
@�Uj

�j � g dHn;

where �j is the inward unit normal for Uj and @�Uj is the reduced boundary for Uj (see
�4 of Ch.3 and in particular 4.4 of Ch.3). By virtue of the fact that UjC1 � Uj we see
from 4.4 (��) of Ch.3 that �j � �k on @�Uj \ @�Uk 8j; k. Hence (8) can be written

TN (�g) D �
∫
U
� � g hN dHn;

where hN D
PN
jD�N

�
@�Uj and where � is defined on [1jD�1@

�Uj by � D �j on @�Uj .
Since j�j � 1 on [1jD�1@

�Uj this evidently gives∫
a d�TN D

∫
a hN dHn

D
PN
jD�N

∫
@�Uj

a dHn

D
PN
jD�N

∫
a d�@[[Uj ]]:

Letting N !1 we thus have (by (7))

�T �
P1
jD�1�@[[Uj ]]:

Since the reverse inequality follows directly from (4), the proof is complete. �

3.20 Corollary. Let R be integer multiplicity 2 DnC1(U ), U � RP , P � n C 1, and
suppose there is an (nC 1)-dimensional C 1 embedded submanifold N of RP with sptR �
N \ U . Suppose further that T D @R and M(T ) < 18W �� U . Then T (2 Dn(U )) is
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integer multiplicity and for each point y 2 N \U there is an openWy �� U , y 2 Wy , and
HnC1 measurable subset {Uj }1jD�1 with UjC1 � Uj � N \ U , MWy (@[[Uj ]]) < 1 8j ,
and with the following identities holding inWy :

R D
P1
jD1[[Uj ]] �

P0
jD�1[[U n Uj ]]

T D
P1
jD�1 @[[Uj ]]

�T D
P1
jD�1�@[[Uj ]]:

Proof: The proof is an easy consequence of 3.18 using local coordinate representations
for N . �

4 Slicing

We first want to define the notion of slice for integer multiplicity currents. Preparatory
to this we have the following lemma:

4.1 Lemma. If M is Hn-measurable, countably n-rectifiable, f is Lipschitz on RnCk and
MC D

{
x 2M W

ˇ̌
rMf (x)

ˇ̌
> 0
}
, then for L1-almost all t 2 R the following statements

hold:

(1) Mt � f
�1(t) \MC is countablyHn�1-rectifiable

(2) For Hn�1-a.e. x 2 Mt , TxMt and TxM both exist, TxMt is an (n � 1)-dimensional
subspace of TxM , and in fact

(�) TxM D
{
y C �rMf (x) W y 2 TxMt ; � 2 R

}
:

Furthermore for any non-negativeHn-measurable function g onM we have∫ 1
�1

(∫
Mt

g dHn�1
)
dt D

∫
M

ˇ̌
r
Mf

ˇ̌
g dHn:

Proof: In fact (1) is just a restatement of 2.10(2) of Ch.3, and (2) follows from 1.6 of Ch.
3 together with the facts that for L1-a.e. t 2 R and Hn�1-a.e. x 2Mt

r
Mf (x) 2 TxM (by definition of rMf in �2 of Ch.3)

and 〈
r
Mf (x); �

〉
D 0 8� 2 TxMt :

(This last follows for example from Definition 2.1 of Ch.3.)

The last part of the lemma is just a restatement of the appropriate version of the co-area
formula (discussed in �2 of Ch.3).
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4.2 Remark: Note that by replacing g (in 4.1 above) by g times the indicator function
of {x W f (x) < t} we get the identity∫

M\{f (x)<t}
jr
Mf jg dHn

D

∫ t

�1

∫
Ms

g dHn�1ds

so that the left side as an absolutely continuous function of t and

d

dt

∫
M\{f (x)<t}

jr
Mf jg dHn

D

∫
Mt

g dHn�1; a.e.t 2 R:

Now let T D �(M; �; �) be an integer multiplicity current in U (U open in RnCk ,
M � U ), let f be Lipschitz in U and let �C be defined Hn-a.e. inM by

�C(x) D

{
0 if rMf (x) D 0

�(x) if rMf (x) ¤ 0:

For the (L1-almost all) t 2 R such that TxM , TxMt exist forHn�1-a.e. x 2Mt and such
that 4.1 (2)(�) holds, we have

4:3 �(x)
rMf (x)ˇ̌
rMf (x)

ˇ̌ is simple 2 ƒn�1(TxMt ) � ƒn�1(TxM )

and has unit length (for Hn�1-a.e. x 2 Mt ). Here we use the notation that if v 2
ƒn(TxM ) and w 2 TxM , then v w 2 ƒn�1(TxM ) is defined by

〈v w; a〉 D 〈v;w ^ a〉 ; a 2 ƒn�1(TxM ):

Using this notation we can now define the notion of a slice of T by f ; we continue to
assume T 2 Dn(U ) is given by T D �(M; �; �) as above.

4.4 Definition: For the (L1-almost all) t 2 R since that TxM , TxMt exist and Lemma 4.1
(2)(�) holdsHn�1-a.e. x 2Mt , with the notation introduced above (and bearing in mind
4.3) we define the integer multiplicity current 〈T; f; t〉 2 Dn�1(U ) by

〈T; f; t〉 D �(Mt ; �t ; �t );

where

�t (x) D �(x)
rMf (x)ˇ̌
rMf (x)

ˇ̌ ; �t D �C ˇ̌Mt :

So defined, 〈T;f; t〉 is called the slice of T by f at t .
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4.5 Lemma. (1) For each openW � U∫ 1
�1

MW (〈T;f; t〉) dt D
∫
M\W

ˇ̌
r
Mf

ˇ̌
� dHn

� (ess sup
M\W

ˇ̌
r
Mf

ˇ̌
)MW (T ):

(2) If MW (@T ) <18W �� U , then for L1-a.e. t 2 R

〈T;f; t〉 D @ [T {f < t}] � (@T ) {f < t}:

(3) If @T is integer multiplicity in Dn�1(U ), then for L1-a.e. t 2 R

〈@T;f; t〉 D �@〈T; f; t〉:

Proof: (1) is a direct consequence of the last part of 4.1 (with g D �C ).

To prove (2) we first recall that, since M is countably n-rectifiable, we can write (see
Remark 1.3 of Ch.3)

M D [1jD0Mj ;

whereMi \Mj D ∅ 8i ¤ j ,Hn(M0) D 0, andMj � Nj j � 1, withNj an embedded
C 1 submanifold of RnCk . By virtue of this decomposition and the definition of rM (in
�2 of Ch.3) it easily follows that if h is Lipschitz on RnCk and if h(�) are the mollified
functions (as in �2 of Ch.2) then, as � # 0,

(1)

Z
W

v � rMh(�) d�T !

Z
W

v � rMh d�T

for each W �� U and each fixed bounded Hn-measurable v W U ! RnCk . (Indeed to
check this, we have merely to check that (1) holds with Nj in place of Mj and with v
vanishing on RnCk nMj ; since Nj is C 1 this follows fairly easily by approximating v by
smooth functions and using the fact that h(�) converges to h uniformly.)

Next let " > 0 and let  be the Lipschitz function on R defined by

(s) D


1; s < t � "

linear, t � " � s � t

0; s > t

and apply the above to h D  ı f . Then letting ! 2 Dn(U ) we have

@T (h(�)!) D T (d (h(�)!))

D T (dh(�) ^ !)C T (h(�)d!):

Then using the integral representations of the form 2.9 for @T we see that

(2) (@T h)(!) D lim
�#0

T (dh(�) ^ !)C (T h)(d!):
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Since �(x) orients TxM , we have〈
�(x); dh(�) ^ !

〉
D

〈
�(x); (dh(�)(x))T ^ !T

〉
D

〈
�(x); (dh(�)(x))T ^ !

〉
(where ( )T denotes the orthogonal projection of ƒq(RnCk) onto ƒq(TxM )). Thus

T (dh(�) ^ !) D
∫
M

〈
�(x); (dh(�)(x))T ^ !

〉
� dHn

D

∫
M

〈
�(x) r

Mh(�)(x); !
〉
� dHn

so that by (1)

(3) lim
�#0

T (dh(�) ^ !) D
∫
M

〈
�(x) r

Mh(x); !
〉
� dHn:

By 2.1 of Ch.3 and by the chain rule for the composition of Lipschitz functions we have

(4) r
Mh D  0(f )rMf Hn-a.e. onM

(where we set  0(f ) D 0 when f takes the “bad” values t or t � "; note that rMh(x) D
rMf (x) D 0 for Hn-a.e. in {x 2M W f (x) D c}, c any given constant).

Using (3), (4) in (2), we thus deduce

(@T h)(!) D �"�1
∫
M {t�"<f <t}

〈
� r

Mf; !
〉
� dHn

C (T h)(d!):

Finally we let " # 0 and we use 4.2 with g D �
〈
� rMfˇ̌

rMf

ˇ̌ ; !〉 in order to complete

the proof of (2); by considering a countable dense set of ! 2 Dn(U ) one can of course
show that 4.2 is applicable with g D �

〈
� rMfˇ̌

rMf

ˇ̌ ; !〉 except for a set F of t having

L1-measure zero, with F independent of !.

Finally to prove part (3) of the theorem, we first apply part (2) with @T in place of T .
Since @2T D 0, this gives

〈@T; f; t〉 D @ [(@T ) {f < t}] :

On the other hand, applying @ to each side of the original identity (for T ) of (2), we get

@ [(@T ) {f < t}] D �@〈T; f; t〉

and hence (3) is established. �
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Motivated by the above discussions we are led to define slices for an arbitrary current
2 Dn(U ) which, together with its boundary, has locally finite mass in U . Specifically,
suppose MW (T )CMW (@T ) <1 8W �� U . Then we define “slices”

4:6 〈T; f; t�〉 D @(T {f < t}) � (@T ) {f < t}

and

4:7 〈T; f; tC〉 D �@(T {f > t})C (@T ) {f > t}:

Of course 〈T; f; tC〉 D 〈T; f; t�〉 (and the common value is denoted 〈T; f; t〉) for all but
the countably many values of t such thatM(T {f D t})CM((@T ) {f D t}) > 0.
The important properties of the above slices are that if f is Lipschitz on U (and if we
continue to assume MW (T )CMW (@T ) <1 8W �� U ), then

4:8 spt 〈T; f; tC〉 � sptT \ {x W f (x) D t}

and, 8 open W � U ,

4:9


MW (〈T; f; tC〉) � ess supW jDf j lim inf

h#0
h�1MW (T {t < f < t C h})

MW (〈T; f; t�〉) � ess supW jDf j lim inf
h#0

h�1MW (T {t � h < f < t}):

Notice thatMW (T {f < t}) is increasing in t , hence is differentiable for L1-a.e. t 2 R

and
∫ b
a

d
dt
MW (T {f < t}) dt �MW (T {a < f < b}). Thus 4.9 gives

4:10

∫ �b
a

MW (〈T; f; t˙〉) dt � ess supW jDf j M(T {a < f < b})

for every open W � U .

To prove 4.8 and 4.9 we consider first the case when f is C 1 and take any smooth in-
creasing function  W R! RC and note that

@(T  ı f )(!) � ((@T )  ı f )(!) D (T  ı f )(d!) � ((@T )  ı f )(!)

4.11

D T ( ı f d!) � T (d ( ı f!))

D �T ( 0(f ) df ^ !):

Now let " > 0 be arbitrary and choose  such that

(t) D 0 for t < a; (t) D 1 for t > b; 0 �  0(t) �
1C "

b � a
for a < t < b:
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Then the left side of 4.11 converges to 〈T; f; aC〉 if we let b # a, and hence 4.8 follows
because spt  0 � [a; b]. Furthermore the right side R of 4.11 evidently satisfies

jRj � (sup
W

jDf j)(
1C "

b � a
)MW (T {a < f < b})j!j (spt! � W )

and so we also conclude the first part of 4.11 for f 2 C 1. We similarly establish the
second part for f 2 C 1. To handle general Lipschitz f we simply use f (�) in place of
f in 4.6, 4.7 and in the above proof, then let � # 0 where appropriate.

5 The Deformation Theorem

The deformation theorem, given below in 5.1 and 5.3, is a central result in the theory of
currents, and was first proved by Federer and Fleming [FF60].

The special notation for this section is as follows:

n; k 2 {1; 2; : : :},
C D [0; 1] � � � � � [0; 1] (standard unit cube in RnCk )

ZnCk D
{
´ D (´1; : : : ; ´nCk) W ´j 2 Z

}
F˛ D C \ span{ej1 ; : : : ; ejn} for ˛ D (j1; : : : ; jn) 2 In;nCk

Lj D set of all j -faces D {´C F˛ W ´ 2 ZnCk ; ˛ 2 In;nCk}
Lj D j -skeleton of the decomposition D [F 2LjF

Lj (�) D {�F W F 2 Lj }, � > 0
S˛ D span{ei1 ; : : : ; einC1} for ˛ D (i1; : : : ; inC1) 2 InC1;nCk .

p˛ denotes the orthogonal projection of RnCk onto S˛ , ˛ 2 InC1;nCk .

5.1 (Deformation Theorem, unscaled version.) Suppose T is an n-current in RnCk (i.e.
T 2 Dn(RnCk)) withM(T )CM(@T ) <1. Then we can write

T � P D @RC S

where P , R, S satisfy

P D
P
F 2LnˇF [[F ]] (ˇF 2 R);

with

M(P ) � CM(T ); M(@P ) � CM(@T )

M(R) � CM(T ); M(S) � CM(@T )
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(C D C (n; k)), and

sptP [ sptR �
{
x W dist(x; sptT ) < 2

p
nC k

}
spt @P [ sptS �

{
x W dist(x; spt @T ) < 2

p
nC k

}
:

In case T is an integer multiplicity current, then P ,R can be chosen to be integer multiplicity
currents (and the ˇF appearing in the definition ofP are integers). If in addition @T is integer
multiplicity 2, then S can be chosen to be integer multiplicity.

5.2 Remarks: (1) Note that this is slightly sharper than the corresponding theorem in
[FF60], [Fed69], because there is no term involving M(@T ) in the bound for M(P ).

(2) It follows automatically from the other conclusions of the theorem that M(@S) �

CM(@T ). Also, it follows from the inequalities M(@P ), M(S) � CM(@T ) that S D 0

and @P D 0 when @T D 0.

The following “scaled version” of 5.1 is obtained from the above by first changing scale
s ! ��1x, then applying 5.1, then changing scale back by x ! �x.

5.3 (Deformation Theorem, scaled version.) Suppose T , @T are as in 5.1, and � > 0.
Then

T � P D @RC S

where P , R, S satisfy

P D
P
F 2Lj (�)ˇF [[F ]] (ˇF 2 R)

M(P ) � CM(T ); M(@P ) � CM(@T )

M(R) � C�M(T ); M(S) � C�M(@T );

and

sptP [ sptR �
{
x W dist(x; sptT ) < 2

p
nC k �

}
spt @P [ sptS �

{
x W dist(x; spt @T ) < 2

p
nC k �

}
:

As in 5.1, in case T is integer multiplicity, so are P , R; if @T is integer multiplicity then so is
s.

The main step in the proof of the deformation theorem will involve “pushing” T onto
the n-skeleton Ln via a certain retraction map  . We first have to establish the existence
of a suitable class of retraction maps. This is done in the following lemma, in which we

2Actually if M(@T ) <1 then @T is automatically integer multiplicity if T is—see 6.3 below.
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use the notation

q D center point of C D ( 1
2
; 1
2
; : : : ; 1

2
);

Lk�1(a) D aC Lk�1 (a a given point in B1=4(q));

Lk�1(aI �) D
{
x 2 R

nCk
W dist(x;Lk�1(a)) < �

}
(� 2 (0; 1

4
)):

Note that dist(Lk�1(a); Ln) � 1
4
for any point a 2 B1=4(q).

5.4 Lemma. For every a 2 B 1
4
(q) there is a locally Lipschitz map

 W R
nCk
n Lk�1(a)! R

nCk
n Lk�1(a)

such that

 (C n Lk�1(a)) D C \ Ln;  jC \ Ln D 1 C\Ln ;

jD (x)j �
c

�
; LnCk -a.e. x 2 C n Lk�1(aI �); � 2 (0; 1

4
);

(c D c(n; k)), and such that

 (´C x) D ´C  (x); x 2 R
nCk
n Lk�1(a); ´ 2 Z

nCk :

Proof: We first construct a locally Lipschitz retraction 0 W C nLk�1(a) onto the n-faces
of C . This is done as follows:

Firstly for each j -face F of C , j � nC 1, let aF 2 F denote the orthogonal projection
of a onto F , and let  F denote the retraction of F n {aF } onto @F which takes a point
x 2 F n {aF } to the point y 2 @F such that x 2 {aF C �(y � aF ) W � 2 (0; 1]}. (Thus
 F is the “radial retraction” of F with aF as origin.) Of course  F j@F D 1@F . Notice
also that for any j -face F of C , j � nC1, the line segment aaF is contained inLk�1(a);
in fact if JF denotes the set of ` such that S` (see notation prior to 5.1) is parallel to an
(nC 1)-face of F , then (because aaF is orthogonal to F , hence orthogonal to each S`,
` 2 JF ) we have

(1) aaF � \`2JF p
�1
` (p`(a));

and this is contained in Lk�1(a), because (by definition)

(2) Lk�1(a) D [
N
`D1 [´2ZnCk (´C p

�1
` (p`(a))):

Next, for each j � nC 1, define

 (j )
W [
{
F n {aF } W F is a j -face of C

}
! [

{
G W G is a (j � 1)-face of C

}
by setting

 (j )
ˇ̌
F n {aF } D  F :



188 Chapter 6: Currents

(Notice that then  (j ) is locally Lipschitz on its domain by virtue of the fact that each
 F is the identity on @F , F any j -face of C .)

Then the composite  (nC1) ı (nC2) ı � � � ı (nCk) makes sense on C nLk�1(a) (by (1)),
so we can set

 0 D  
(nC1)

ı  (nC2)
ı � � � ı  (nCk)

ˇ̌
C n Lk�1(a):

Notice that  0 has the additional property that if

´ 2 Z
nCk and x; ´C x 2 C; then  0(´C x) D ´C  0(x):

(Indeed x, ´ C x 2 C means that either x, ´ C x are in Ln (where  0 is the identity)
or else lie in the interior of parallel j -faces F1, F2 D ´ C F1 (j � n C 1) of C with ´
orthogonal to F1 and aF2 D ´C aF1 .) It follows that we can then define a retraction  
of all of C n Lk�1(a) onto Ln by setting

 (´C x) D ´C  0(x); x 2 C n Lk�1(a); ´ 2 Z
nCk :

We now claim that

(3) sup jD j �
c

�
on R

nCk
n Lk�1(a; �); c D c(n; k):

(This will evidently complete the proof of the lemma.)

We can prove (3) by induction on k as follows. First note that (3) is evident from con-
struction in case k D 1. Hence assume k � 2 and assume (3) holds in case k � 1
replaces k in the above construction. Let x be any point of interior (C ) n Lk�1(aI �),
let y D  nCk(x) ( nCk is the radial retraction of C n {a} onto @C , and let F be any
closed (nC k � 1)-face of C which contains y.

Suppose now new coordinates are selected so that F � RnCk�1 � {0} � RnCk , and also
let L̃k�2(a) D Lk�1(a) \ RnCk�1 � {0}). By virtue of (1) we have aF 2 Lk�1(a),
hence

(4) jy � aF j � dist(y;Lk�1(a)):

Let pF be the orthogonal projection of RnCk onto RnCk�1 � {0} (� F ), so that aF D
pF (a). Evidently jpF (x) � aF j � dist(x; p�1F (pF (a))) and hence by (2) we deduce

(5) jpF (x) � aF j � dist(x;Lk�1(a)):

Furthermore by definition of y we know that y�a D jy�aj
jx�aj

(x�a) and hence, applying
pF , we have

y � aF D
jy � aj

jx � aj
pF (x � a):
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Hence since jy � aj � 3=4, we have

(6) jy � aF j �
3
4

jpF (x � a)j

jx � aj
:

Now let  ̃ be the retraction of F n L̃k�2(a) onto the n-faces of F ( ̃ defined as for  but
with (k � 1) in place of k, aF in place of a, RnCk�1 in place of RnCk and L̃k�2(a) D
Lk�2(aF ) in place of Lk�1(a)). By the inductive hypothesis, together with (4), (5), (6)
we have ˇ̌

D ̃(y)
ˇ̌
�

c

dist(y; L̃k�2(a))
; (
ˇ̌
D ̃(y)

ˇ̌
D lim sup

´!y

ˇ̌
 ̃(´) �  ̃(y)

ˇ̌
j´ � yj

)(7)

� ( 4
3
)c

1

jy � aF j

jx � aj

jpF (x � a)j

� ( 4
3
)c

jx � aj

dist(x;Lk�1(a))
;

when k D 2. For general k, we label L D Lk�2(aF ) and note that
dist(y;L)

dist(x;p�1
F

(L))
D
jy�aj
jx�aj

by similarity, and p�1F (L) � Lk�1(a). So jD ̃(y)j � cjx�aj
dist(x;Lk�1(a))

as required. Also,
by the definition of  nCk we have that

(8)
ˇ̌
D nCk(x)

ˇ̌
�

c

jx � aj
;
ˇ̌
D nCk(x)

ˇ̌
D lim sup

y!x

ˇ̌
 nCk(y) �  nCk(x)

ˇ̌
jy � xj

:

Since  (x) D  ̃ ı  nCk(x), we have by (7), (8) and the chain rule thatˇ̌
D (x)

ˇ̌
�
ˇ̌
D ̃(y)

ˇ̌ ˇ̌
D nCk(x)

ˇ̌
�

c

jx � aj

jx � aj

dist(x;Lk�1(a))

D
c

dist(x;Lk�1(a))
: �

Proof of the Deformation Theorem:

We use the subspaces S1; : : : ; SN and projections p1; : : : ; pN introduced at the beginning
of the section. Let Fj D C \ Sj (so that Fj is a closed (nC 1)-dimensional face of C ),
let xj by the central point of Fj , and for each j D 1; : : : ; N define a “good” subset
Gj � Fj \ B 1

4
(xj ) by g 2 Gj ” g 2 Fj \ B 1

4
(xj ) and

(1) M(T [´2ZnCk\Sj
p�1j (B�(g C ´))) � ˇ�

nC1M(T ) 8� 2 (0;
1

4
)

(ˇ to be chosen, Gj D Gj (ˇ)).
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We now claim that the “bad” set Bj D Fj \B 1
4
(xj )nGj in fact has LnC1-measure (taken

in Sj ) small; in fact we claim

(2) LnC1(Bj ) � 20nC1ˇ�1!nC1( 14 )
nC1 (!nC1 D LnC1(B1(0)));

which is indeed small if we choose large ˇ. To see (2), we argue as follows. For each
b 2 Bj there is (by definition) a �b 2 (0; 1

4
) such that

(3) M(T [´2ZnCk\Sj
p�1j (B�b (b C ´))) > ˇ�

nC1
b

M(T );

and by the 5-times Covering Lemma 3.4 of Ch.1 there is a pairwise disjoint subcollection
{B�`(b`)}`D1;2;::: (�` D �b` ) of the collection {B�b (b)}b2Bj such that

(4) Bj � [`B5�`(b`):

But then, setting b D b` in (3) and summing, we get

ˇ(
P
`�
nC1
`

)M(T ) �M(T ) (i.e.
P
`�
nC1
`
� ˇ�1 ),

(using the fact that
{
p�1j B�`(b` C ´)

}
` D 1; 2; : : : ´ 2 ZnCk \ Sj

is a pairwise disjoint col-

lection for fixed j ). Thus by (4) we conclude

LnC1(Bj ) � ˇ�15nC1!nC1;

which after trivial re-arrangement gives (2) as required. Thus we have

LnC1(Gj ) � (1 � 20nC1ˇ�1)!nC1(
1
4
)nC1;

and it follows that

(5) LnCk(p�1j (Gj ) \ B 1
4
(q)) � (1 �

!nC1

!nCk
20nC1ˇ�1)!nCk(

1
4
)nCk ;

where q is the center point ( 1
2
; : : : ; 1

2
) of C . (So pj (q) D xj .)

Then selecting ˇ large enough so that 20nC1!nC1Nˇ�1 < !nCk=(nCk), we see from (5)
that we can choose a point a 2 \NjD1p

�1
j (Gj )\B 1

4
(q). Next let Lk�1(a) D aCLk�1,

Lk�1(aI �) D
{
x 2 RnCk W dist(x;Lk�1(a)) < �

}
(as in the proof of 5.4) and note that

in fact
Lk�1(aI �) D [

N
jD1 [´2ZnCk\Sj

p�1j (B�(pj (a)C ´)):

Then since pj (a) 2 Gj we have (by definition of Gj )

(6) M(T Lk�1(aI �)) � Nˇ�
nC1M(T ) 8� 2 (0; 1

4
):
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Indeed let us suppose that we take ˇ such that 20nC1!nC1Nˇ�1 < !nCk=2(nCk). Then
more than half the ball B 1

4
(q) is in the set \NjD1p

�1
j (Gj ) and hence, repeating the whole

argument above with @T in place of T , we can actually select a so that, in addition to (6),
we also have

(7) M(@T Lk�1(aI �)) � Nˇ�
nC1M(@T ) 8� 2 (0; 1

4
):

Now let  be the retraction of RnCk n Lk�1(a) onto Ln given in 5.4, and let

(8) T� D T Lk�1(aI �); (@T )� D @T Lk�1(aI �);

so that by (6), (7)

(9) M(T�) � c�
nC1M(T ); M((@T )�) � c�

nC1M(@T ); 8� 2 (0; 1
4
):

Furthermore by 4.10 we know that for each � 2 (0; 1
4
) we can find �� 2 (�=2; �) such

that

(10) M(〈T; d; ��〉) �
c

�
M(T� � T�=2) � c�

nM(T );

where d is the (Lipschitz) distance function to Lk�1(a) (d (x) D dist(x;Lk�1(a)),
Lip(d ) D 1) and 〈T; d; ��〉 is the slice of T by d at ��. (Notice that we can choose
�� such that (10) holds and such that 〈T; d; ��〉 is integer multiplicity—see 4.5 and the
following discussion.)

We now want to apply the homotopy formula 2.32 to the case when h(x; t) D x C

t( (x) � x), 2 RnCk n Lk�1(aI �), � > 0. Notice that h is Lipschitz on RnCk n

Lk�1(aI �), so we can define h#,  # as in 2.36. (We shall apply h#,  # only to currents
supported away from [0; 1] � Lk�1(a) and Lk�1(a) respectively.)

Keeping this in mind we note that by 5.4, (6) and (7) we have

(11) M( #(T� � T�=2)) �
c

�n
�nC1M(T ) � c�M(T )

and

(12) M( #((@T )� � (@T )�=2)) �
c

�n�1
�nC1M(@T ) � c�M(@T ):

Similarly by the homotopy formula 2.32, together with 2.34 and (6), (7) above, we have

(13) M(h#([[(0; 1)]] � (T� � T�=2))) � c�M(T )

and

(14) M(h#([[(0; 1)]] � ((@T )� � (@T )�=2)) � c�M(@T ):
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Notice also that by (6), (10) and 2.34 we have

(15) M( # 〈T; d; ��〉) � c�M(T )

and

(16) M(h#([[(0; 1)]] � 〈T; d; ��〉)) � c�M(T ):

Next note that by iteration (11), (12) imply

(17)

{
M( #(T� � T�=2�)) � 2c�M(T )

M( #((@T )� � (@T )�=2�)) � 2c�M(@T )

for each integer � � 1, where c is as in (11), (12) (c independent of � ). Selecting � D 1
4

and using the arbitrariness of �, it follows that

(18)

{
M( #(T � T� )) � cM(T )

M( #(@T � (@T )� )) � cM(@T )

for each � 2 (0; 1) (with c independent of � ).

Now select � D �� D 2�� and ��� 2
[
2���1; 2��

]
such that (10), (15), (16) hold with ���

in place of ��; then by (15), (16), (17), (18) we have that

 #(T � T��� ); h#([[(0; 1)]] � (T � T��� ));

 #(@T � @T��� ); h#([[(0; 1)]] � @(T � T��� ))

are Cauchy sequences relative toM, andM(〈T; d; ��� 〉)CM( # 〈T; d; ��� 〉)! 0. Hence
there are currentsQ;S1 2 Dn(RnCk) and R1 2 DnC1(RnCk) such that

(19)


limM(Q �  #(T � T��� )) D 0

limM(S1 � h#([[(0; 1)]] � @(T � T��� ))) D 0

limM(R1 � h#([[(0; 1)]] � (T � T��� ))) D 0:

Furthermore by the homotopy formula and 2.34 we have for each �

T � T��� �  #(T � T��� ) D @(h#([[(0; 1)]] � (T � T��� )))(20)

� h#([[(0; 1)]] � @(T � T��� )):

Since @T��� D (@T )��� � 〈T; d; ��� 〉 (by the definition 4.6, 4.7 of slice) we thus get that

(21) T �Q D @R1 C S1:
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(Notice that Q, R1 are integer multiplicity by (19), 4.4, 4.5 and 3.17 in case T is integer
multiplicity; similarly S1 is integer multiplicity if @T is.)

Using the fact that retracts RnCknLk�1(a) ontoLn we know (by 2.34) that spt #(T �

T��� ) � Ln, and hence

(22) sptQ � Ln:

We also have (since  (´C C ) � ´C C 8´ 2 ZnCk ) that

(23)

{
sptR1 [ sptQ � {x W dist(x; sptT ) <

p
nC k}

sptS1 � {x W dist(x; spt @T ) <
p
nC k}

and, by (18), (19), we have

(24) M(Q) � cM(T ); M(R1) � cM(T ); M(S1) � cM(@T ):

Also by (18) and the semi-continuity of M under weak convergence, we have

M(@Q) � lim infM(@ #(T � T��� ))(25)

D lim infM( #@(T � T��� ))

� cM(@T ):

Now let F be a given face of Ln(i.e. F 2 Ln ) and let MF D interior of F . Assume for
the moment that F � Rn � {0} (� RnCk ), and let p be the orthogonal projection onto
Rn � {0}. By construction of  we know that p ı  D  in a neighborhood of any
point y 2 MF . We therefore have (sinceQ is given by (18)) that

(26) p#(Q MF ) D Q MF :

It then follows, by the obvious modifications of the arguments in the proof of the Con-
stancy Theorem 2.41 and in 2.42, that

(27) Q MF D

∫
MF
〈e1 ^ � � � ^ en; !(x)〉�F (x) dLn(x)

8! 2 Dn(RnCk), for some BVloc(Rn) function �F , and

(28) M(Q MF ) D
∫
MF

ˇ̌
�F
ˇ̌
dLn; M((@Q) MF ) D

∫
MF

ˇ̌
D�F

ˇ̌
:

Furthermore, since

(29) (Q MF � ˇ[[F ]])(!) D
∫
MF
(�F � ˇ) 〈e1 ^ � � � ^ en; !(x)〉 dLn(x)
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(by (27)), we have (again using the reasoning of 2.42)

(30)


M(Q MF � ˇ[[F ]]) D

∫
MF

ˇ̌
�F � ˇ

ˇ̌
dLn

M(@(Q MF � ˇ[[F ]])) D
∫

Rn

ˇ̌
D(� MF (�F � ˇ))

ˇ̌
;

where � MF D characteristic function of MF . Thus taking ˇ D ˇF such that

(31) min
{
Ln
{
x 2 MF W �F � ˇ

}
; Ln

{
x 2 MF W �F (x) � ˇ

}}
�
1

2

(which we can do because Ln( MF ) D 1; notice that we can, and we do, take ˇF 2 Z if �F
is integer-valued), we have by 2.7 and 2.9 of Ch.2, (28) and (30) that

(32)


M(Q MF � ˇ[[F ]]) � c

∫
MF

ˇ̌
D�F

ˇ̌
D cM(@Q MF )

M(@(Q MF � ˇ[[F ]])) � c
∫
MF

ˇ̌
D�F

ˇ̌
D cM(@Q MF ):

We also have by 2.45(1)

(33) Q @F D 0:

Then summing over F 2 Ln and using (32), (33) we have, with P D
P
F 2LnˇF [[F ]],

that

(34)

{
M(Q � P ) � cM(@Q)

M(@Q � @P ) � cM(@Q):

Actually by (31) we have

(35)
ˇ̌
ˇF
ˇ̌
� 2

∫
MF

ˇ̌
�F
ˇ̌
dLn;

and hence (using again the first part of (28)), since M(P ) D
P
F

ˇ̌
ˇF
ˇ̌
,

(36) M(P ) � cM(Q):

Notice that the second part of (34) gives

(37) M(@P ) � cM(@Q):

Finally we note that (21) can be written

(38) T � P D @R1 C (S1 C (Q � P )):

Setting R D R1, S D S1 C (Q � P ), the theorem now follows immediately from (23),
(24), (25) and (34), (36), (37), (38); the fact thatP;R are integer multiplicity if T is should
be evident from the remarks during the course of the above proof, as should be the fact
that S is integer multiplicity if T , @T are. �
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6 Applications of the Deformation Theorem

We here establish a couple of simple (but very important) applications of the deforma-
tion theorem, namely the isoperimetric theorem and the weak polyhedral approxima-
tion theorem. This latter theorem, when combined with the compactness 3.15, implies
the important “Boundary Rectifiability Theorem” (6.3 below), which asserts that if T
is an integer multiplicity current in Dn(U ) and if MW (@T ) < 1 8W �� U , then
@T (2 Dn�1(U )) is integer multiplicity. (Notice that in the case k D 0, this has already
been established in 3.18.)

6.1 (Isoperimetric Theorem.) Suppose T 2 Dn�1(RnCk) is integer multiplicity, n � 2,
sptT is compact and @T D 0. Then there is an integer multiplicity current R 2 Dn(RnCk)

with sptR compact, @R D T , and

M(R)
n�1
n � cM(T );

where c D c(n; k).

Proof: The case T D 0 is trivial, so assume T ¤ 0. Let P , R, S be integer multiplicity
currents as in 5.3, where for the moment � > 0 is arbitrary, and note that S D 0 because
@T D 0. Evidently (since Hn�1(F ) D �n�1 8F 2 Fn�1(�)) we have

(1) M(P ) D N (�)�n�1

for some non-negative integer N (�). But since M � cM(T ) (from 5.3) we see that
necessarily N (�) D 0 in (1) if we choose � D (2cM(T ))

1
n�1 . Then P D 0, and 5.3

gives T D @R for some integer multiplicity current R with sptR compact and M(R) �

c�M(T ) D c 0(M(T ))
1
n�1 . �

6.2 (Weak Polyhedral Approximation Theorem.) Given any integer multiplicity T 2
Dn(U ) with MW (T );MW (@T ) < 1 8W �� U , there is a sequence {Pk} of current of
the form

(�) Pk D
P
F 2Fn(�k )ˇ

(k)
R [[F ]]; (ˇ

(k)
R 2 Z); �k # 0;

such that Pk * T (and hence also @Pk * @T ) in U (in the sense of 2.15).

Proof: First consider the case U D RnCk and M(T ), M(@T ) < 1. In this case we
simply use the deformation theorem: for any sequence �k # 0, the scaled version of the
deformation theorem (with � D �k ) gives Pk as in (�) such that

(1) T � Pk D @Rk C Sk
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for some Rk , Sk such that

(2)

{
M(Rk) � c�kM(T )! 0

M(Sk) � c�kM(@T )! 0

and
M(Pk) � cM(T ); M(@Pk) � cM(@T ):

Evidently (1), (2) give Pk(!) ! Tk(!) 8! 2 Dn(RnCk), and @Pk D 0 if @T D 0, so
the theorem is proved in case U D RnCk and T , @T are of finite mass.

In the general case we take any Lipschitz function ' on RnCk such that ' > 0 in U ,
' � 0 in RnCk n U and such that {x W '(x) > �} �� U 8� > 0. For L1-a.e. � > 0, 4.5
implies that T� D T {x W '(x) > �} is such that M(@T�) < 1. Since sptT� �� U ,
we can apply the argument above to approximate T� for any such �. Taking a suitable
sequence �j # 0, the required approximation then immediately follows. �

6.3 (Boundary Rectifiability Theorem.) Suppose T is an integer multiplicity current in
Dn(U ) with M(@T ) < 1 8W �� U . Then @T (2 Dn�1(U )) is an integer multiplicity
current.

Proof: A direct consequence of 6.2 above and the Compactness 3.15 (applied with @Tj
in place of Tj ). �

6.4 Remark: The above proof used the Compactness Theorem 3.15 applied to the se-
quence @Tj rather than to Tj , so used only the special case of 3.15 when the given sequence
{Tj } has @Tj D 0 8j .

7 The Flat Metric Topology

Themain result to be proved here is the equivalence of weak convergence and “flatmetric”
3 convergence (see below for terminology) for a sequence of integer multiplicity currents
{Tj } � Dn(U ) such that supj�1(MW (Tj )CMW (@Tj )) <1 8W �� U .

We let U denote (as usual) an arbitrary open subset of RnCk ,

I D {T 2 Dn(U ) W T is integer multiplicity and MW (@T ) <1 8W �� U } :

and
IM;W D

{
T 2 I W sptT � W ; M(T )CM(@T ) �M

}
:

3Note that the word “flat” here has no physical or geometric significance, but relates rather to Whitney’s
use of the symbol [ (the “flat” symbol in musical notation) in his work. We mention this because it is often a
source of confusion.
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for anyM > 0 and open W �� U .

On I we define a family of pseudometrics {dW }W��U by

dW (T1; T2) D inf
{
MW (S)CMW (R) W T1 � T2 D @RC S; where7.1

R 2 DnC1(U ); S 2 Dn(U ) are integer multiplicity
}
:

We henceforth assume I is equipped with the topology given (in the usual way) by the
family {dW }W��U of pseudometrics. This topology is called the “flat metric topology”
for I: there is a countable base of neighborhoods at each point, and Tj ! T in this
topology if and only if dW (Tj ; T )! 0 8W �� U .

7.2 Theorem. Let T , {Tj } � Dn(U ) be integer multiplicity with

sup
j�1

(MW (Tj )CMW (@Tj )) <1 8W �� U:

Then Tj * T (in the sense of 2.15) if and only if dW (Tj ; T )! 0 for eachW �� U .

7.3 Remark: Notice that no use is made of the Compactness 3.15 in this theorem; how-
ever if we combine the compactness theorem with it, then we get the statement that
for any family of positive (finite) constants {c(W )}W��U the set {T 2 I WMW (Tj )

CMW (@Tj ) � c(W ) 8W �� U } is sequentially compact when equipped with the flat
metric topology.

Proof of 7.2: First note that the “if” part of the theorem is trivial (indeed for a given
W �� U , the statement dW (Tj ; T ) ! 0 evidently implies (Tj � T )(!) ! 0 for any
fixed ! 2 Dn(U ) with spt! � W ).

For the “only if” part of the theorem, the main difficulty is to establish the appropri-
ate “total boundedness” property; specifically we show that for any given " > 0 and
W �� W̃ �� U , we can find N D N (";W; W̃ ;M ) and integer multiplicity currents
P1; : : : ; PN 2 Dn(U ) such that

(1) IM;W �
PN
jD1B";W̃ (Pj );

where, for any P 2 I, B
";W̃

(P ) D
{
S 2 I W d

W̃
(S;P ) < "

}
. This is an easy con-

sequence of the Deformation Theorem: in fact for any � > 0, 5.3 guarantees that for
T 2 IM;W we can find integer multiplicity P , R, S such that

(2)


T � P D @RC S

P D
P
F 2Fn(�)ˇF [[F ]]; ˇF 2 Z

sptP � {x W dist(x; sptT ) < 2
p
nC k �}
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(3)


M(P ) (�

P
F 2Fn(�)jˇF j�

n) � cM(T ) � cM

sptR [ sptS � {x W dist(x; sptT ) < 2
p
nC k �}

M(R)CM(S) � c�M(T ) � c�M:

Then for � small enough to ensure 2
p
nC k� < dist(W; @W̃ ), we see from (2),(3) that

d
W̃
(T; P ) � c�M:

Hence, since there are only finitely many P1; : : : ; PN currents P as in (2) (N depends
only onM , W , n, k, �), we have (1) as required.

Next note that (by 4.5(1), (2) and an argument as in 7.7(2) of Ch.2) we can find a sub-
sequence {Tj 0} � {Tj } and a sequence {Wi}, Wi �� WiC1 �� U , [1iD1Wi D U , such
that supj 0�1M(@(Tj 0 Wi )) < 1 8i . Thus from now on we can assume without loss
of generality that W �� U and

(4) sptTj � W 8j:

Then take any W̃ such that W �� W̃ �� U and apply (1) with " D 1; 1
2
; 1
4
etc. to

extract a subsequence {Tjr }rD1;2;::: from {Tj } such that

d
W̃
(TjrC1 ; Tjr ) < 2

�r

and hence

(5) TjrC1 � Tjr D @Rr C Sr

where Rr , Sr are integer multiplicity,

sptRr [ sptSr � W̃

M(Rr )CM(Sr ) �
1

2r
:

Therefore by 3.17 we can define integer multiplicity R(`), S (`) by the M-absolutely con-
vergent series

R(`)
D
P1
rD`Rr ; S

(`)
D
P1
rD`Sr I

then
M(R(`))CM(S (`)) � 2�`C1

and (from (5))
T � Tj` D @R

(`)
C S (`):

Thus we have a subsequence {Tj`} of {Tj } such that d
W̃
(T; Tj`)! 0. Since we can thus

extract a subsequence converging relative to d
W̃

from any given subsequence of {Tj }, we
then have d

W̃
(T; Tj )! 0; since this can be repeated with W D Wi , W̃ D WiC1 8i (Wi

as above), the required result evidently follows. �
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8 The Rectifiability and Compactness Theorems

Here we prove the important Rectifiability Theorem for currents T which, together with
@T , have locally finite mass and which have the additional property that‚�n(�t ; x) > 0
for �T -a.e. x. The main tool of the proof is the Structure Theorem 3.7 of Ch.3. Having
established the Rectifiability Theorem, we show (in 8.2) that it is then straightforward to
establish the Compactness 3.15. Although this proof of the Compactness Theorem has
the advantage of being conceptually straightforward, it is rather lengthy if one takes into
account the effort needed to prove the Structure Theorem. Recently B. Solomon [Sol82]
showed that it is possible to prove the Compactness Theorem (and to develop the whole
theory of integer multiplicity currents) without use of the structure theorem.

8.1 (Rectifiability Theorem.) Suppose T 2 Dn(U ) is such thatMW (T )CMW (@T ) <1

for allW �� U , and‚�n(�T ; x) > 0 for �T -a.e. x 2 U . Then T is rectifiable; that is

T D �(M; �; �); 4

whereM is countably n-rectifiable,Hn-measurable, � is a positive locallyHn-integrable func-
tion onM , and �(x) orients the approximate tangent space TxM ofM for Hn-a.e. x 2 M
(i.e. �jx is a measurable function of x and �jx D ˙�1 ^ � � � ^ �n, where �1; : : : ; �n is an
orthonormal basis for the approximate tangent space TxM ofM , forHn-a.e. x 2M .)

Proof: First note that for any locally finite Borel regular measure � on RnCk , by The
Comparison Theorem 3.3 of Ch.1, for any d > 0 and any open W � RnCk

(1) Hd
{
x 2 W W ‚�d (�; x) > t

}
� t�1�(W ); 8t > 0:

In particular

(2) Hd
{
x 2 W W ‚�d (�; x) D1

}
D 0

for any open W �� RnCk .

Now let
M D {x 2 U W ‚�n(�T ; x) > 0}

and let Wj , j D 1; 2; : : :, be open with Wj � WjC1 �� U 8j and [jWj D U . Then
M D [1jD1Mj , whereMj D {x 2 M \Wj W ‚�n(�T ; x) > 1=j }, so we see from (1),
with � D �T and d D n, that Hn(Mj ) <1 for each j , soM is Hn � -finite.

4 The notation here is as for integer multiplicity rectifiable currents as in �3 of the present chapter. That is,
�(M;�; �)(!) D

R
M 〈�;!〉� dHn; although � is not assumed to be integer-valued here.
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Suppose P is an Hn-measurable purely unrectifiable subset ofM . Then

(3) �T (P ) D 0

by Remark 2.45(2). For any open V � P \Mj , by (1), again with � D �T and d D n,

Hn(P \Mj ) � j �T (V ):

Since infV open,V�P\Mj �T (V ) D �T (P ) by 1.22 of Ch.1, we thus conclude by (3) that

(4) Hn(P ) D 0 8purely unrectifiable P �M:

Then by Lemma 3.2 of Ch.3 we conclude M is countably n-rectifiable. Thus we have
proved that

(5) �T D �T M;

withM � U is countably n-rectifiable.

By Theorem 2.43, �T is absolutely continuous with respect to Hn and

(6) �T D Hn �;

where � is a non-negative locally Hn-integrable function on M and � D 0 on U nM .
Thus, with � D ET , the identity T (!) D

R
U
〈!; ET 〉 d�T can be written

(7) T (!) D
∫
M
〈!; �〉� dHn;

It thus remains only to prove that �(x) orients TxM for Hn-a.e. x 2 M (i.e. �(x) D
˙�1 ^ � � � ^ �n for Hn-a.e. x 2 M , where �1; : : : ; �n is any orthonormal basis for the
approximate tangent space TxM of M with respect to � (such TxM exists for Hn-a.e.
x 2M as discussed in Theorem1.9 of Ch.3).

To check that indeed �(x) orients TxM , write M D [1jD0Mj , Mj pairwise disjoint,
Hn(M0) D 0,Mj � Nj ,Nj a C 1 embedded submanifold of RnCk , j � 1. By the Upper
Density Theorem 3.8 of Ch.1, for j � 1 we have

(8) ‚�n
(
�T ((Nj [M ) nMj ); x

)
D 0; Hn-a.e. x 2Mj :

! D
P
˛2In;nCk

!˛dx
˛ 2 Dn(RnCk), and, as usual, take �x;�(y) D ��1(y � x). Then
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�x;�
#! D ��n

P
˛2In;nCk

!˛ ı �x;� dx
˛ has support in U for small enough �, and

�x;�#T (!) D T (�x;�
#!)

D

∫
M

〈
�x;�

#!; �
〉
� dHn

D

∫
Nj

〈
�x;�

#!; �
〉
� dHn

C

∫
MnMj

〈
�x;�

#!; �
〉
� dHn

�

∫
Nj nMj

〈
�x;�

#!; �
〉
� dHn

D

∫
Nj

〈
�x;�

#!; �
〉
� dHn

C "(!; x; �)

where "(!; x; �) ! 0 as � # 0 for Hn-a.e. x 2 Mj by (8). That is, after the change of
variable ´ D �x;�(y) (i.e. y D x C �´),

�x;�#T (!) D
∫
�x;�(Nj )

〈
!(´); �(x C �´)

〉
�(x C �´) dHn(´)C "(�)

Hn-a.e. x 2Mj . Since Nj is C 1, this gives

(9) lim
�#0

�x;�#T (!) D �(x)
∫
L

〈
!(´); �(x)

〉
dHn(´)

for Hn-a.e. x 2 Mj (independent of ! ), where L is the tangent space TxNj of Nj at
x. Thus (by Definition 1.7 in Ch.3 of TxM ) we have (9) with L D TxM for Hn-a.e.
x 2Mj . On the other hand, provided spt! � BR(0),

@�x;�#T (!) D �x;�#@T (!) D @T (�
#
x;�!) D

∫
B�R(x)

〈
!j�x;�(y); �x;�#

�!
@T
〉
d�@T(10)

� C j!j�1�n�@T (B�R(x))! 0 as � # 0

forHn-a.e. x 2Mj (independent of! ), because by applying (2) with d D n and � D �@T
we have

‚�n(�@T ; x) D lim sup
�#0

��n�@T (B�(x)) <1 for Hn-a.e. x 2Mj .

Thus by (9) and (10), for any sequence �` # 0,

�x;�`#T * Sx ; @Sx D 0 for Hn-a.e. x 2M ,

where Sx 2 Dn(RnCk) is defined by

(11) Sx(!) D �(x)
∫
L

〈
!(´); �(x)

〉
dHn(´);

! 2 Dn(RnCk), L D TxM . We now claim that (11), taken together with the fact
that @Sx D 0, implies that �(x) orients L (i.e. �jx D ˙�1 ^ � � � ^ �n with �1; : : : ; �n
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an orthonormal basis for L). To see this, assume (without loss of generality) that L D
Rn�{0} � RnCk and select! 2 Dn�1(RnCk) so that!(y) D yj'(y)dyi1^� � �^dyin�1 ,
where y D (y1; : : : ; ynCk), j � n C 1, {i1; : : : ; in�1} � {1; : : : ; n C k}, and ' 2
C1c (RnCk). Then since yj D 0 on Rn � {0} we deduce, from (11) and the fact that
@Sx D 0,

0 D @Sx(!) D Sx(d!) D �(x)
∫
L
'(y)

〈
dyj ^ dyi1 ^ � � � ^ dyin�1 ; �(x)

〉
dHn(y)

D �(x)
∫
L
'(y)�(x) � (ej ^ ei1 ^ � � � ^ ein�1) dH

n(y):

That is, since ' 2 C1c (RnCk) is arbitrary, we deduce that �(x) �(ej ^ei1^� � �^ein�1) D 0
whenever j � n C 1 and {i1; : : : ; in�1} � {1; : : : ; n C k}. Thus we must have (since
j�(x)j D 1), �(x) D ˙e1 ^ � � � ^ en as required. �

We can now give the proof of the Compactness Theorem 3.15. For convenience we first
re-state the theorem.

8.2 Theorem. (Federer-Fleming Compactness Theorem.) İf {Tj } � Dn(U ) is a se-
quence of integer multiplicity currents with

(�) sup
j�1

(MW (Tj )CMW (@Tj )) <1 8W �� U;

then there is an integer multiplicity T 2 Dn(U ) and a subsequence {Tj 0} such that Tj 0 * T

in U .

Proof of 8.2: First note that the theorem is trivial in case n D 0. Then assume n � 1 and,
as in inductive hypothesis, suppose the theorem is true with n�1 in place of n. TheWeak
Polyhedral Approximation Theorem 6.2 applied to Tj also gives an integer multiplicity
polyhedral weak approximation to @Tj , hence by applying the inductive hypothesis to
@Tj , we see that @Tj is an integer multiplicity current for each j D 1; 2; : : :.

Note that if B�0(�) � U , then by 4.5(1), (2) and an argument like that in 7.7(2) of Ch.
2, we know that, for L1-a.e. r 2 (0; �0], @(Tj 0 Br (�)) are integer multiplicity and 8.2
(�) holds with Tj 0 Br (�) in place of Tj for some subsequence {j 0} � {j } (depending
on r ) (which we can take to be the original sequence {j }), and, again by the inductive
hypothesis,

(1) @(T Br (�)) is an integer multiplicity current for L1-a.e. r > 0.

In particular (in view of the arbitrariness of the ballB�0(�)), we can (andwe shall) assume
without loss of generality that sptTj � BR(0) for some fixed compact R > 0, and that
U D RP .
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Also, since we are now assuming U D RP , sptTj � BR(0), we know that 0��@T �T has
zero boundary and is the weak limit of 0��@Tj � Tj ; since 0��@T is integer multiplicity
(by the inductive hypothesis) we thus see that the general case of the theorem follows
from the special case when @T D 0. We shall therefore henceforth also assume @T D 0.

Next, define (for � 2 RP fixed)

f (r) DM(T Br (�)); r > 0:

By virtue of 4.9 we have (since @T D 0)

(2) M(@(T Br (�))) � f
0(r); L1-a.e. r > 0:

(Notice that f 0(r) exists a.e. r > 0 because f (r) is increasing.) On the other hand if
‚�n(�T ; �) < �n=!n (� > 0 a given constant), then lim sup�#0

f (�)
!n�n

< �n, and hence
for each ı > 0 we can arrange

(3)
d

dr
(f 1=n(r)) � 2�

for a set of r 2 (0; ı) of positiveL1-measure. (Because 1
ı

R ı

0
d
dr
(f 1=n(r)) dr � ı�1f 1=n(ı)

� � for all sufficiently small ı > 0.)

Now by (1) and the Isoperimetric Theorem, we can find an integer multiplicity Sr 2
Dn(RP ) such that @Sr D @(T Br (�)) and

M(Sr )
n�1
n � cM(@(T Br (�)))(4)

� c�M(T Br (�))
n�1
n (by (2), (3))

for a set of r of positive L1-measure in (0; ı).5 Since ı was arbitrary we then have both
(1), (4) for a sequence of r # 0. But then (since we can repeat this for any � such that
‚�n(�T ; �) < �) if K is any compact subset of

{
x 2 RP W ‚�n(�T ; x) < �

}
, by Re-

mark 4.4(3) of Ch.1, for each given � > 0we get a pairwise disjoint familyBj D B�j (�j )
of closed balls covering �T -almost all of K, with

[jBj � {x W dist(x;K) < �}

and with

(5) M(S
(�)
j ) � c�M(T Bj )

5In case n D 1, (1), (2), (3) (for � < 1
4
) imply @(T Br (�)) D 0, hence we get, in place of (4),

M(Sr ) �M(T Br (�)) trivially by taking Sr D 0.
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for some integer multiplicity S (�)
j with

(6) @S
(�)
j D @(T Bj ):

Now because of (6) we have S (�)
j � T Bj D @({�j }��(S (�)

j � T Bj )), and hence (by
2.34, 2.37) we have for ! 2 Dn(RP )ˇ̌

(S
(�)
j � T Bj )(!)

ˇ̌
� c�M(S

(�)
j � T Bj )jd!j8.3

� c�M(T Bj )jd!j (by (5)).

Therefore we have
P
j (S

(�)
j � T Bj ) * 0 as � # 0, and since the series

P
jS

(�)
j andP

jT Bj are M-absolutely convergent (by (5) and the fact that the Bj are disjoint) we
thus have

(7) (T �
P
jT Bj )C

P
jS

(�)
j * T

as � # 0. Using (5) again, together with the lower semi-continuity of MW (W open)
under weak convergence, we then have

�T ({x W dist(x;K) < �})(8)

� �T ({x W dist(x;K) < �} nK)C c��T ({x W dist(x;K) < �}):

Choosing � such that c� � 1
2
, this gives

�T ({x W dist(x;K) < �}) � 2�T ({x W dist(x;K) < �} nK)

Letting � # 0, we get �T (K) D 0.

Thus we have shown that ‚�n(�T ; x) > 0 for �T -a.e. x 2 RP . We can therefore apply
8.1 in order to conclude that T D �(M; �; �) as in 8.1. It thus remains only to prove that
� is integer-valued. This is achieved as follows:

First note that for Ln-a.e. x 2 M we have (Cf. the argument leading to (9) in the proof
of Theorem 8.1)

(9) �x;�#T * �(x)[[TxM ]] as � # 0;

where [[Tx ]] is oriented by �(x). Assuming without loss of generality that TxM D Rn �

{0} � RP and setting d (y) D dist(y;Rn�{0}), by 4.5(1) we can find a sequence �j # 0
and a � > 0 such that the slice

〈
�x;�j #T; d; �

〉
(notation as in �4) is integer multiplicity

with

(10) MW (
〈
�x;�j #T; d; �

〉
) � c (independent of j )
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where W D MBn1 (0) � RP�n � RP . Next, we choose {j 0} � {j } and � > 0 so that
�x;�j #Tj 0 * �(x)[[TxM ]] (which is possible by (9) and the fact that Tj * T ), and so
that (10) remains valid with Tj 0 instead of T (which is justified by 4.5(1) and a selection
arguments in 7.7(2) of Ch.2). Then by 4.5(2) we haveSj � (�x;�j #Tj ) {y W d (y) < �}
is such that

(11) sup
j�1

(MW (Sj )CMW (@Sj )) <1

with W D MBn1 (0) � RP�n � RP . Now let p denote the restriction to W of the orthog-
onal projection of RP onto Rn; and let S̃j be the current in Dn(W ) obtained by setting
S̃j (!) D Sj (!̃), ! 2 Dn(W ), !̃ 2 Dn(RP ) such that !̃ D ! in W and !̃ � 0 on
RP nW . Then we have p#S̃j 2 Dn(Bn1 (0)), and hence, by 2.42 and (11) above,

p#S̃j (!) D
∫
Bn
1
(0)
a�j dLn; ! D a dx1 ^ � � � ^ dxn; a 2 C1c (R

n);

for some integer-valued BVloc(Bn1 (0)) function �j with

(12)


M MBn

1
(0)(p#S̃j ) D

∫
Bn
1
(0)
j�j j dLn

M MBn
1
(0)(@p#S̃j ) D

∫
Bn
1
(0)
jD�j j:

Then by (11), (12) we deduce
R
Bn
1
(0) jD�j jC

R
Bn
1
(0) j�j j dL

n
� c, c independent of j , and

hence by the Compactness Theorem 2.6 of Ch.2 we know �j converges strongly inL1 in
Bn1 (0) to an integer-valued BV function ��. On the other hand Sj * �(x)[[Rn � {0}]]
by (9), and hence p#S̃j * �(x)p#[[Rn � {0}]] D �(x)[[Rn]] in Bn1 (0). We thus deduce
that �� � �(x) in Bn1 (0); thus �(x) 2 Z as required. �



206

Chapter 6 Problems

6.1 Let ; t(�);e be as in Q3.1 of Ch.3 problems.

(i) If h W Rn ! Rn is continuous, prove that the change of variable formulaZ b

a

h((x)) �  0(x) dx D

Z L

0

h(e(�)) �e 0(�) d�
is valid at least when 9 " > 0 with j 0(x)j � " for a.e. x 2 [a; b].

Hint: Show in this case that � 2 [0;L] 7! t(�) 2 [a; b] is a 1:1, increasing, Lipschitz map of [0;L] onto
[a; b], and hence (by the 1-dimensional area formula) we have

R b
a f (x)dx D

RL
0 f (t(�)) t 0(�)d� for each

L1([a; b]) function f .

(ii) Prove the formula in (i) is valid without the assumption j 0(x)j � ".

Hint: To start, apply (i) to "(t) D ((t); "t) W [a; b] ! RnC1 and note that e"(�) ! e(�) on
[0;L]—because if t"(�);e"(�);L" are the analogues of t(�);e(�);L when we use " in place of  , then, as
" # 0, L" # L and t"(�) increases to some limit s(�) with length( j[a; s(�)]) D � , hence s(�) � t(�),
 j[s(�); t(�)] D const., ande"(�) D "(t"(�))! (s(�)) D (t(�)) De(�).
6.2 Using the result of 6.1(ii) above, prove that if j W [aj ; bj ] ! Rn is a sequence as in
Q2.1 of Ch.2 problems, then there is a Lipschitz  W [0; 1]! Rn and a subsequence j 0
such that Z bj 0

aj 0

〈!jj 0(x); 
0
j 0(x)〉 dx !

Z 1

0

〈!j(x);  0(x)〉 dx

for each continuous 1-form ! D
Pn
iD1 !idx

i on Rn, where 〈!; v〉 denotes the dual
pairing between 1-forms and vectors in Rn.
Note: The above is a version of the 1-dimensional case of the Federer-Fleming compactness theorem for inte-
gral currents, because

R bj 0
aj 0

〈!jj 0(x); 
0
j 0
(x)〉dx D Tj 0(!), where Tj is the 1-dimensional integer mul-

tiplicity current given by Tj D j #[[(aj ; bj )]]; by the area formula this can be represented Tj (!) DR
�j

〈!(y); �j (y)〉N (j ; y)dH1(y), where �j D j ([aj ; bj ]) and �j is a Borel measurable unit vector
function on �j which orients the approximate tangent space of �j for H1-a.e. y 2 �j .

6.3 Let V be a convex open subset of RQ, U is open in RP , f; g W U ! V are proper C1

maps, and h W [0; 1] � U ! V is the affine homotopy h(t; x) D tg(x)C (1 � t)f (x).

( i) Show that h is not proper if g(x) D �f (x) for each x 2 U .

( ii) If, in addition to the assumptions above, U is bounded and f D Nf jU; g D NgjU with
Nf ; Ng continuous on U , prove that h is proper if Nf D Ng on @U .

Hint: By definition of proper (i.e. the preimage of each compact set in V is a compact set in U ), f W U ! V

is proper if and only if the following property holds: Whenever {xk} � U with either jxk j ! 1 or
dist(xk ; @U )! 0, then either jf (xk)j ! 1 or dist(f (xk); @V )! 0.
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6.4 In lecture we proved that if T 2 Dn(U ) with M(T ) < 1;M(@T ) < 1, if f; g W
U ! V are C 1 maps such that f j sptT; gj sptT are proper, and if f j sptT D gj sptT ,
then f#T D g#T .

Give an example to show that this may fail without the condition M(@T ) <1.

Hint: Let T 2 D1(R) be defined by T (!) D a(0) for any 1-form ! D a dx1 2 D1(R).

6.5 Check the claim 2.20 of Ch.6 of the text: That by applying 2.17, 2.18, one can check
that MW1�W2(S � T ) D MW1(S)MW2(T ), assuming S; T 2 Dn(U ) have locally finite
mass in U .

6.6 SupposeR 2 Dn(Rn) (i.e. we are in the setting P D n and U D the whole Euclidean
space), and suppose R is an integer multiplicity current of finite mass.

(i) Prove that there are pairwise disjoint Lebesguemeasurable subsetsUj ; j D ˙1;˙2; : : :,
of Rn such that R D

P1
jD1 j [[Uj ]] �

P1
jD1 j [[U�j ]] and M(R) D

P1
jD1 j

(
Ln(Uj ) C

Ln(U�j )
)
.

( ii) If Vj D [1kDjUk for j D 1; 2; : : : and Wj D [
1
kD1Cj

U�k for j D 0; 1; : : : (note that
then VjC1 � Vj and Wj � Wj�1 for each j D 1; 2; : : :), prove that R D

P1
jD1[[Vj ]] �P1

jD0[[Wj ]] and M(R) D
P1
jD1(L

n(Vj )C Ln(Wj )).
Hint: If aj � 0 for each j D 1; 2; : : : and bi D

P1
jDi aj , then

P1
iD1 bi D

P1
jD1 jaj .

(iii) If Vj ; j D 1; 2; : : :, Wj ; j D 0; 1; 2; : : : are as in (ii), and if V�j D Rn n Wj for
j D 0; 1; 2; : : : (so now VjC1 � Vj for all j D 0;˙1; : : :) prove that @R D

P1
jD�1 @[[Vj ]]

(and the sum makes sense—i.e. ! 2 Dn�1(Rn) )
P1
jD�1[[Vj ]](d!) is a convergent

series).

6.7 If T 2 Dn�1(Rn) is an integer multiplicity current with sptT compact, M(T ) <1

and @T D 0, prove that the cone 0��T (defined as in � 2 of Ch.6 of the text) is also integer
multiplicity of finite mass. Hence, using the result of Q.6.6 above, prove that there is a
sequence Vj ; j D 0;˙1;˙2; : : :, of Lebesgue measurable sets with VjC1 � Vj for each j
such that T D

P1
jD�1 @[[Vj ]] and M(T ) �

P
j M(@[[Vj ]]).

Remark: Actually equality holds in the last inequality, i.e. M(T ) D
P
j M(@[[Vj ]]), but we are not quite in a

position to prove this because we skipped the discussion of sets of locally finite perimeter (� 4 of Ch.3 of the
text).

Suggestion: Take a look at a few examples of the case when T D #([0; 1]), where  is a C1 immersion of
[0; 1] into R2 with (0) D (1) (which ensures @T D 0); it is interesting to see how the sets Vj work out
in such cases, when  has a few self-intersections.
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6.8 (Degree of a mapping.) Suppose U is bounded open in Rn and f W U ! Rn is
continuous with f jU 2 C 1(U;Rn), let eU D U n f �1(f (@U )) ¤ ∅, and ef D f jeU .
Also, letW1; W2; : : : WN orW1; W2; : : : denote the connected components of Rnnf (@U )

(the latter alternative in the event there are infinitely many connected components).

(i) Prove that ef W eU ! Rn n f (@U ) is proper.

(ii) Prove ef #[[eU ]] D
P
j dj [[Wj ]], where (a) dj 2 Z for each j , and (b) dj ¤ 0) Wj �

f (U ).

( iii) Prove furthermore that (a) jdj j � H0(f �1y) for Ln-a.e. y 2 Wj , (b) jdj j is con-
gruent to H0(f �1y) mod 2 for Ln-a.e. y 2 Wj , and (c) dj D H0(f �1y) for any point
y 2 Wj such that Jf (x) > 0 for each x 2 f �1y.
Hint: ef #[[eU ]](!) D

ReU 〈df #
jx
!jf (x); e1 ^ � � � ^ en〉dLn D

ReU 〈!jf (x); dfjx#(e1 ^ � � � ^ en)〉dLn;
compute using area formula.
Note: For y 2Wj , dj is called the (topological) degree of the map f at y, denoted d (f;U; y).

6.9 (Invariance of degree under homotopy.)

(i) If U; f;Wj ; dj are as in Q.6.8, K compact � f (@U ), and V D U n f �1K ¤ ∅, then
f#[[V ]] D

P
i ci [[Ei ]], where Ei are the connected components of Rn nK, and each Ei �

some Wj with ci D dj .

( ii) If U is bounded open in Rn and h W [0; 1] � U ! Rn is continuous, if ft W U ! Rn

is C 1 for each t 2 [0; 1], with ft (x) D h(t; x) for x 2 U , prove that d (f0; U; y) D
d (f1; U; y) 8y 2 Rn n h([0; 1] � @U ).
Hint: Show d (ft ; U; y) is a continuous function of t for y 2 Rn n h([0; 1] � @U ).

6.10 Let P (´) D ´n C
Pn�1
jD0 aj´

j , where a0; : : : ; an�1 are given complex constants.
Prove, using Q.6.9 above, the “Fundamental Theorem of Algebra” that P (´) D 0 has a
root (hence n roots by the Remainder Theorem and induction on n).
Hint: View P as a map of R2 ! R2 and take U D {(x; y) W j(x; y)j < R} (i.e. {´ W j´j < R}). Let
P0(´) D ´n (as a map R2 ! R2 ) and prove (by direct computation with the aid of the area formula) that
P0 #[[U ]] D n[[U ]]. Then show problem 6.9 is applicable with homotopy h(t; x; y) D ´n C t

Pn�1
jD0 aj´

j ,
´ D xC iy, if R is large enough.

6.11 (i) (Constancy theorem on a submanifold.) Suppose M is a connected oriented n-
dimensional submanifold of RP and let U � RP be open withM � U . If T 2 Dn(U )

with sptT � M , M(T ) <1,
�!
T jx 2 ƒn(TxM ) for �T -a.e. x 2 M , and @T D 0, prove

that T D c [[M ]] for some real constant c.
Hint: Use local coordinates and the constancy theorem (proved in lecture) in Rn.

(ii) Give an example to show that the above is false without the hypothesis
�!
T jx 2

ƒn(TxM ).
Hint: ConsiderM D {0} �R � R2.
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6.12 (Degree of a map between n-dimensional manifolds.) (i) If M;N are compact ori-
ented connected C 1 submanifolds (without boundary) of RP and RQ respectively, and
if f WM ! N is C 1, prove (using 6.11(i) above) f#[[M ]] D d [[N ]] for some d 2 Z.
Note: d D d (f ) is called the degree of the map f WM ! N .

(ii) IfM;N are as in (i) and if h W [0; 1] �M ! N is continuous with ft D M ! N of
classC 1 for each t 2 [0; 1], where ft (x) D h(t; x) for x 2M , prove that d (f0) D d (f1).

6.13 Give an example to show that the Federer-Fleming compactness theorem (Theo-
rem 3.11 of Ch.6 of the text) fails without the hypothesis that supj MW (@Tj ) <1.
Hint: Modify the example in Q2.11 of Ch.2; instead of vertical cylinders use the vertical strips {(x; y; ´) 2
R3 W jx � i=N j < 1=N 2; y D j=N; ´ 2 R} with orienting 2-vector e1 ^ e3, i; j 2 {0;˙1;˙2; : : :}.
Note: Even better, deleting the ´ coordinate in the same example (so the vertical strips become line segments
with orienting 1-vector e1 ) gives a 1-dimensional sequence in R2.
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1 Basic Concepts

Suppose A is any subset of RnCk , A � U , U open in RnCk , and T 2 Dn(U ) an integer
multiplicity current.

1.1 Definition: We say that T is minimizing in A if

MW (T ) �MW (S)

whenever W �� U , @S D @T (in U ) and spt(S � T ) is a compact subset of A \W .

There are two especially important cases (in fact the only cases we are interested in here)
of this definition:

(1) when A D U

(2) when A D N with N � U an (nC k)-dimensional embedded C 2 submanifold of
RnCk (in the sense of �4 of Ch.2).

Corresponding to the current T D �(M; �; �) 2 Dn(U ) we have the integer multiplicity
varifold V D v(M; �). As one would expect, V is stationary in U if T is minimizing in
U and @T D 0:
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1.2 Lemma. Suppose T is minimizing in N , where N is an (n C k)-dimensional C 2 em-
bedded submanifold of RnCL (L � k, so N D U , an open subset of RnCk , is an important
special case) and suppose @T D 0 in N . Then V is stationary in N in the sense of 2.6 of Ch.
4, so that in particular V has locally bounded generalized mean curvature in N (in the sense
of 3.15 of Ch.4).

In fact V is minimizing in N in the sense that

(�) MW (V ) �MW ('#V );

whenever W is open in N with W �� N and ' is a C 1 diffeomorphism of N such that
'(N ) � N and '

ˇ̌
N nK D 1NnK for some compactK � W .

1.3 Remark: In view of 1.2 (together with the fact that � � 1) we can represent T D
�(M�; ��; �) where M� is a relatively closed countably n-rectifiable subset of U , and ��
is an upper semi-continuous function on M� with �� � 1 everywhere on M� (and ��
integer-valued Hn-a.e. onM� ).

Proof of 1.2: Evidently (in view of the discussion of �2 of Ch.4) the first claim in 1.2
follows from 1.2 (�) (by taking ' D 't in 1.2 (�), 't is in 2.5 of Ch.4).

To prove 1.2 (�) we first note that, for any W , ' as in the statement of the theorem,

(1) MW ('#V ) DMW ('#T )

by 3.2(3) of Ch.6. Also, since @T D 0 (in U ), we have

(2) @'#T D '#@T D 0:

Finally,

(3) spt(T � '#T ) � K � W:

By virtue of (2), (3) we are able to use the inequality of 1.1 with S D '#T . This gives 1.2
(�) as required by virtue of (1). �
We conclude this section with the following useful decomposition lemma:

1.4 Lemma. Suppose T1; T2 2 Dn(U ) are integer multiplicity and suppose T1 C T2 is
minimizing in A, A � U , and

MW (T1 C T2) DMW (T1)CMW (T2)

for eachW �� U . Then T1, T2 are both minimizing in A.

Proof: Let X 2 Dn(U ) be integer multiplicity with sptX � K, K a compact subset of
A \W , and with @X D 0. Because T1 C T2 is minimizing in A we have (by 1.1)

MW (T1 C T2 CX) �MW (T1 C T2):
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However sinceMW (T1CT2) DMW (T1)CMW (T2), andM(T1CT2CX) �MW (T1C

X)CMW (T2), this gives

MW (T1) �MW (T1 CX):

In view of the arbitrariness of X , this establishes that T1 is minimizing in A \ W (in
accordance with 1.1). Interchanging T1, T2 in the above argument, we likewise deduce
that T2 is minimizing in A \W . �

2 Existence and Compactness Results

We begin with a result which establishes the rich abundance of area minimizing currents
in Euclidean space.

2.1 Lemma. Let S 2 Dn�1(RnCk) be integer multiplicity with sptS compact and @S D 0.
Then there is an integer multiplicity current T 2 Dn(RnCk) such that sptT is compact
and M(T ) � M(R) for each integer multiplicity R 2 Dn(RnCk) with sptR compact and
@R D S .

2.2 Remarks: (1) Of course T is minimizing in RnCk in the sense of 1.1.

(2) By virtue of 1.2 and the convex hull property (Theorem 7.2 of Ch.4) we have auto-
matically that sptT � convex hull of sptS .

(3) M(T )
n�1
n � cM(S) by virtue of the Isoperimetric Inequality 6.1 of Ch.6.

Proof of 2.1: Let

IS D
{
R 2 Dn(R

nCk) W R is integer multiplicity, sptR compact, @R D S
}
:

Evidently IS ¤ ∅. (e.g. 0��S 2 IS .) Take any sequence {Rq} � IS with

(1) lim
q!1

M(Rq) D inf
R2IS

M(R);

let BR(0) by any ball in RnCk such that sptS � BR(0), and let f W RnCk ! BR(0) be
the nearest point (radial) retract of RnCk onto BR(0). Then Lipf D 1 and hence

(2) M(f#Rq) �M(Rq):

On the other hand @f#Rq D f#@Rq D f#S D S , because f
ˇ̌
BR(0) D 1BR(0) and

sptS � BR(0). Thus f#Rq � IS and by (1), (2) we have

(3) lim
q!1

M(f#Rq) D inf
R2IS

M(R):
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Now by the Compactness Theorem 3.15 of Ch.6 there is a subsequence {q 0} � {q} and
an integer multiplicity current T 2 Dn(RnCk) such that f#Rq 0 * T and (by (3) and
lower semi-continuity of mass with respect to weak convergence)

(4) M(T ) � inf
R2IS

M(R):

However sptT � BR(0) and @T D lim @f#Rq 0 D limf#@Rq 0 D S , so that T 2 IS , and
the lemma is established (by (4)). �

The proof of the following lemma is similar to that of 2.1 (and again based on 3.15 of Ch.
6), and its proof is left to the reader.

Lemma. SupposeN is an (nCk)-dimensional compact C 1 embedded submanifold in RnCk

and suppose R1 2 Dn(RnCk) is given such that @R1 D 0, sptR1 � N and

IR1 D
{
R 2 Dn(R

nCk) W R �R1 D @S for some integer multiplicity

S 2 DnC1(R
nCk) with sptS � N

}
¤ ∅:

Then there is T 2 IR1 such that

M(T ) D inf
R2IR1

M(R):

2.3 Remarks: (1) R � R1 D @S with S integer multiplicity and sptS � N means that
R, R1 represents homologous cycles in the n-th singular homology class (with integer
coefficients) of N (See [Fed69] or [FF60] for discussion.)

(2) It is quite easy to see that T is locally minimizing in N ; thus for each � 2 sptT there
is a neighborhood U of � such that T is minimizing in N \ U .

We conclude this section with the following important compactness theorem for mini-
mizing currents:

2.4 Theorem. Suppose {Tj } is a sequence of minimizing currents in U with

supj�1(MW (Tj )CMW (@Tj )) <1 for eachW �� U;

and suppose Tj * T 2 Dn(U ). Then T is minimizing in U and �Tj ! �T (in the usual
sense of Radon measures in U ).

2.5 Remarks: (1) Note that �Tj ! �T means the corresponding sequence of varifolds
converge in the measure theoretic sense of �1 of Ch.4 to the varifold associated with T .
(T is automatically integer multiplicity by 3.15 of Ch.6.)

(2) If the hypotheses are as in the theorem, except that sptTj � Nj � U and Tj is
minimizing in Nj , {Nj } a sequence of C 1 embedded (nC k)-dimensional submanifolds
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of RnCk converging in the C 1 sense toN , N � U an embedded (nCk)-dimensional C 1

submanifold of RnCk ,1 then T minimizes inN (and we still have �Tj ! �T in the sense
of Radon measures in U ). We leave this modification of 2.4 to the reader. (It is easily
checked by using suitable local representations for the Nj and by obvious modifications
of the proof of 2.4 given below.)

Proof of 2.4: LetK � U be an arbitrary compact set and choose a smooth ' W U ! [0; 1]

such that ' � 1 in some neighborhood of K, and spt' � {x 2 U W dist(x;K) < "},
where 0 < " < dist(K; @U ) is arbitrary. For 0 < � < 1, let

W� D {x 2 U W '(x) > �}:

Then

(1) K � W� �� U

for each �, 0 � � < 1.

By virtue of 7.2 of Ch.6 we know that dW (Tj ; T ) ! 0 for each W �� U , hence in
particular we have

(2) T � Tj D @Rj C Sj ; MW0(Rj )CMW0(Sj )! 0

(W0 D {x 2 U W '(x) > 0}).
By the slicing theory (and in particular by 4.5 of Ch.6) we can choose 0 < ˛ < 1 and a
subsequence {j 0} � {j } (subsequently denoted simply by {j }) such that

(3) @(Rj W˛) D (@Rj ) W˛ C Pj

where sptPj � @W˛ , Pj is integer multiplicity, and

(4) M(Pj )! 0:

We can also of course choose ˛ to be such that

(5) M(Tj @W˛) D 0 8j and M(T @W˛) D 0:

Thus, combining (2), (3), (4) we have

(6) T W˛ D Tj W˛ C @R̃j C S̃j

1Thus 9 j W U ! U ,  j
ˇ̌
Nj in a diffeomorphism onto N , and  j ! 1U locally in U with respect to

the C1 metric.
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with R̃j , S̃j integer multiplicity (R̃j D Rj W˛ , S̃j D Sj W˛ C Pj ) with

(7) M(R̃j )CM(S̃j )! 0:

Now let X 2 Dn(U ) be any integer multiplicity current with @X D 0 and sptX � K.
We want to prove

(8) MW˛ (T ) �MW˛ (T CX):

(In view of the arbitrariness of K, X this will evidently establish the fact that T is mini-
mizing in U .)

By (6), we have

MW˛ (T CX) DMW˛ (Tj CX C @R̃j C S̃j )(9)

�MW˛ (Tj CX C @R̃j ) �M(S̃j ):

Now since Tj is minimizing and @(X C @R̃j ) D 0 with spt(X C @R̃j ) � W ˛ , we have

(10) MW�(Tj CX C @R̃j ) �MW�(Tj )

for� > ˛. But by (3) we haveM(@R̃j @W˛) DM(Pj )! 0, and by (5)M(Tj @W˛) D

0, (T @W˛) D 0. Hence letting � # 0 in (10) we get

(11) MW˛ (Tj CX C @R̃j ) �MW˛ (Tj ) �M(Pj );

and therefore from (9) we obtain

(12) MW˛ (T CX) �MW˛ (Tj ) � "j ; "j # 0:

In particular, setting X D 0, we have

(13) MW˛ (T ) �MW˛ (Tj ) � "j ; "j # 0:

Using the lower semi-continuity of mass with respect to weak convergence in (12), we
then have (8) as required.

It thus remains only to prove that �Tj ! �T in the sense of Radon measures in U . First
note that by (13) we have

lim supMW˛ (Tj ) �MW˛ (T );

so that (since K � W˛ � {x W dist(x;K) < "} by construction)

lim sup�Tj (K) �M{xWdist(x;K)<"}(T ):
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Hence, letting " # 0

(14) lim sup�Tj (K) � �T (K):

(We actually only proved this for some subsequence, but we can repeat the argument for
a subsequence of any given subsequence, hence it holds for the original sequence {Tj }.)
By the lower semi-continuity of mass with respect to weak convergence we have

(15) �T (W ) � lim inf�Tj (W ) 8 open W �� U:

Since (14), (15) hold for arbitrary compact K and open W � U , it now easily follows
(by a standard approximation argument) that

R
f d�Tj !

R
f d�T for each continuous

f with compact support in U , as required. �

3 Tangent Cones and Densities

In this section we prove the basic results concerning tangent cones and densities of area
minimizing currents. All results depend on the fact that (by virtue of 1.2 the varifold
associated with a minimizing current is stationary. This enables us to bring into play the
important monotonicity results of �4 of Ch.4.

Subsequently we take N to be a smooth (at least C 2 ) (n C k)-dimensional embedded
submanifold of RnCL (L � k ), U open in RnCk and (N nN ) \ U D ∅. Notice that an
important case is when N D U (when L D k ).

3.1 Theorem. Suppose T 2 Dn(U ) is minimizing in U \ N , sptT � U \ N , and
x 2 sptT n spt @T . Then

(1) ‚n(�T ; x) exists everywhere inU and is an upper semi-continuous function of x 2 U ;

(2) For each x 2 sptT and each sequence {�j } # 0, there is a subsequence {�j 0} such
that �x;�j 0#T * C and ��x;�j 0#T ! �C in RnCk , where C 2 Dn(RnCk) is integer
multiplicity and minimizing in RnCk , �0;�#C D C 8� > 0, and ‚n(�C ; 0) D
‚n(�T ; x).

3.2 Remarks: (1) If C is as in 3.1(2) above, we say that C is a tangent cone for T at
x. If sptC is an n-dimensional subspace P . Notice that since C is integer multiplicity
and @C D 0, it then follows from 2.41 of Ch.6 that, assuming we chose an appropriate
(constant) orientation for P , C D m[[P ]] for some m 2 {1; 2; : : :}. In this case we call
C a multiplicitym tangent plane for T at x.

(2) Notice that is not clear whether or not there is an unique tangent cone for T at x;
thus it is an open question whether or not C depends on the particular sequence {�j } or
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subsequence {�j 0} use in its definition. The work of [Sim83] shows that if C is a tangent
cone of T at x such that ‚n(�C ; x) D 1 for all x 2 sptC n {0}, then C is the unique
tangent cone for T at x, and hence �x;�#T * C as � # 0. Also B. White [Whi82] has
shown in case n D 2 that C is always unique with sptC consisting of a union of 2-planes.

Proof of 3.1: By virtue of 1.2 we can apply the monotonicity formula of 4.3 of Ch.4
(with ˛ D 1) and 4.7 of Ch.4 in order to deduce that ‚n(�T ; x) exists for every x 2 U
and is an upper semi-continuous function of x in U .

Thus in particular

(1) (!nR
n)�1M MBR(0)(�x;�j #T ) D (!n�

n
jR

n)�1M MB�jR(x)(T )! ‚n(�T ; x)

for eachR > 0, and hence supj M MBR(0)(�x;�j #T ) <1 for eachR > 0, while @�x;�j #T D
0 in MBR(0) for sufficiently large j (because x … spt @T ), so we can apply the compact-
ness theorem 2.4 to give a subsequence j 0 such �x;�j 0#T * C in RnCk with C integer
multiplicity minimizing 2, so

(2) C D �(sptC; �;‚n(�C ; �));

��x;�j 0#T
! �C in RnCk , and (by Lemma 1.2) the rectifiable varifold

(3) VC D v(sptC;‚n(�C ; �))

is stationary in RnCk . In particular for any � > 0 with �C (@B�(0)) D 0 (which is true
except for at most a countable set of �) we have

(4) ��x;�j 0#T
(B�(0))! �C (B�(0));

and together with (1) gives (!n�n)�1�C (B�(0)) D ‚n(�T ; x) for each � > 0. Then by
the monotonicity formula 3.8 of Ch.4, applied to the stationary varifold VC of (3), we
haveD?r D 0 �C -a.e., where r D jxj, andD?r is orthogonal projection ofDr D r�1x
onto the normal space (Tx sptC )?. That is x 2 Tx sptC for �C -a.e. x, so in particular
x ^ EC D 0 �C -a.e. and hence we can apply Lemma 2.40 to deduce that C is a cone. �

3.3 Theorem.3 Suppose T 2 Dn(U ) is minimizing inU \N , sptT � U \N , and @T D 0
(in U ). Then

(1) ‚n(�T ; x) 2 Z for all x 2 U nE, whereHn�3C˛(E) D 0 8˛ > 0;
2See Remark 2.5; notice this establishes first thatC is minimizing only in the (nCk)-dimensional subspace

TxN � RnCk . However since orthogonal projection of RnCk onto TxN does not increase area, and since
sptC � TxN , it then follows that C is area minimizing in RnCk as claimed.

3Cf. Almgren [Alm84]
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(2) There is a set F � E (E as in (1)) with Hn�2C˛(F ) D 0 8˛ > 0 and such that for
each x 2 sptT n F there is a tangent plane (see 3.2(1) above for terminology) for T at
x.

Note: We do not claim E, R are closed.

The proof of both parts is based on the abstract dimension reducing argument ofAppendixA.
In order to apply this in the context of currents we need the observation of the following
remark.

3.4 Remark: Given an integer multiplicity current S 2 Dn(RnCk), there is an associ-
ated function 'S D ('0S ; '

1
S ; : : : ; '

N
S ) W RnCk ! RNC1, where N D (nCk

n
), such that

(writing �S (x) D ��n(�S ; x))

'0S (x) D �S (x); '
j
S (x) D �S (x)�

j
S (x); j D 1; : : : ; N;

where �jS (x) in the j -th component of the orientation ES(x) relative to the usual or-
thonormal basis ei1 ^ � � � ^ ein , 1 � i1 < i2 < � � � < in � nC k for ƒn(RnCk) (ordered
in any convenient manner). Evidently, for any x 2 RnCk ,

'S (x C �y) D '�x;�#S (y); y 2 R
nCk ;

and, given a sequence {Si} � Dn(I C RnCk) of such integer multiplicity currents, we
trivially have

'
j
Si
dHn

! '
j
S dH

n
8j 2 {1; : : : ; N } ” Si * S

and
'0Si dH

n
! '0S dH

n
” �Si ! �S

(where  i dHn
!  dHn means

R
f  i dHn

!
R
f  dHn

8f 2 Cc(RnCk)).

We shall also need the following simple lemma, the proof of which is left to the reader.

3.5 Lemma. Suppose S is minimizing in RnCk , @S D 0, and

�x;1#S D S 8x 2 R
m
� {0} � R

nCk

for some positive integerm < n. (Recall �x;1 W y 7! y � x, y 2 RnCk .) Then

S D [[Rm]] � S0;

where @S0 D 0 and S0 is minimizing in RnCk�m.

Furthermore if S is a cone (i.e. �0;�#S D S for each � > 0), then so is S0.

Proof of 3.3(1): For each positive integer m and ˇ 2 (0; 1
2
) let

(1) Um;ˇ D {x 2 U W ‚n(�T;x) < m � ˇ} :
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Now T is minimizing in U \ N , so by the monotonicity of 4.3 of Ch.4 (which can be
applied by virtue of 1.2) we have, firstly, that Um;ˇ is open, and secondly that for each
x 2 Um;ˇ , there is some ball B2�(x) � Um;ˇ such that

(2)
�T (B� (y))

!n�n
� m �

ˇ

2
8� < �; y 2 B�(x):

We ultimately want to prove

(3) Hn�3C˛([1mD1 {x 2 Um;ˇ W m � 1C ˇ < ‚n(�T ; x) < m � ˇ}) D 0

for each sufficiently small ˛; ˇ > 0 and, in view of (2), by a rescaling and translation it
will evidently suffice to assume

(4) B2(0) D U;
�T (B� (y))

!n�n
� m � ˇ 8� < 1; y 2 B1(0);

and then prove

(5) Hn�3C˛ {x 2 B1(0) W ‚n(�T ; x) � m � 1C ˇ} D 0:

We consider the set T of weak limit points of sequences Si D �xi ;�i #T where jxi j <
1� �i , 0 < �i < 1, with lim xi 2 B1(0) and lim�i D � � 0 both existing. For any such
sequence Si we have (by (4))

(6) lim supMW (Si ) <1

for each W �� �x;�(U ) in case � > 0, an for each W �� RnCk in case � D 0.
Hence we can apply the Compactness 2.4 to conclude that each element S of T is integer
multiplicity and

(7) S minimizes in �x;�U \ �x;�N in case S D lim �xi ;�i #T

with lim xi D x and lim�i D � > 0, and

(8) S minimizes in all of R
nCk in case S D lim �xi ;�i #T

with lim xi D x and lim�i D 0. (Cf. the discussion in the proof of 3.1(2).)

For convenience we define

(9) US D

{
�x;�U in case lim�i > 0 (as in (7))

RnCk in case lim�i D 0 (as in (8))

so that S 2 Dn(US ) for each S 2 T .
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Now by definition one readily checks that

(10) �x;�#T D T ; 0 < � < 1; jxj < 1 � �;

and, by (4),

(11) ‚n(�s; y) � m � ˇ 8y 2 US ; S 2 T :

Furthermore by using the compactness theorem 2.4 together with the monotonicity 4.3
of Ch.4, one readily checks that if Si * S (Si ; S 2 T ) and if y; yi 2 B1(0) with
limyi D y, then

(12) ‚n(�S ; y) � lim sup‚n(�Si ; yi ):

It now follows from (10), (11), (12) and 2.4 that all the hypotheses of Theorem A.4 (of
Appendix A) are satisfied with

(13) F D {'S W S 2 T } (using notation of Remark 3.4)

and with sing defined by

(14) sing'S D {x 2 US W ‚n(�S ; � ) � m � 1C ˇ}

for S 2 T . We claim that in this case the additional hypothesis is satisfied with d D n�3.
Indeed suppose d � n � 2; then there is S 2 T and �y;�#S D S 8y 2 L, � > 0 with L
an (n� 2)-dimensional subspace of RnCk , L � sing'S . Since we can make a rotation of
RnCk to bring L into coincidence with Rn�2 � {0}, we assume that L D Rn�2 � {0}.
Then by 3.5 we have

(15) S D [[Rn�2]] � S0;

where S0 2 D2(RN ), N D 2C k, with S0 a 2-dimensional area minimizing cone in RN .
Then sptS0 is contained in a finite union [qiD1Pi of 2-planes, with Pi \Pj D {0} 8i ¤
j . (For a formal proof of this characterization of 2 dimensional area minimizing cones,
see for example [Whi82].) In particular, since‚n(�S ; � ) is constant on Pi n {0} (by the
Constancy 2.41 of Ch.6), we have that ‚n(�S ; y) 2 Z for every y 2 RnCk , and by (11)
it follows that ‚n(�S ; y) � m � 1 8y 2 RnCk . That is, sing'S D ∅, a contradiction,
hence we can take d D n � 3 as claimed. We have thus established (5) as required. �

Proof of 3.3(2): The proof goes similarly to 3.3(1). This time we assume (again without
loss of generality) that

(1) U D B2(0);
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and we prove that T has a tangent plane at all points of sptT \ B1(0) except for a set
F � sptT \ B1(0) with

(2) Hn�2C˛(F ) D 0 8˛ > 0:

T is as described in the proof of 3.3(1), and for any S 2 T and ˇ > 0 we let

Rˇ (S) D
{
x 2 sptS W B�(x) � US and h(sptS;L; �; x) < ˇ�
for some � > 0 and some n-dimensional subspace L of R

nCk
}
;

where US is as in the proof of 3.3(1) (so that S 2 Dn(US )), and where we define

(3) h(sptS;L; �; x) D supy2sptS\B�(x) jq(y � x)j;

with q the orthogonal projection of RnCk onto L?.

Now notice that (Cf. the proof of 3.3(1))

(4) �x;�#T D T 8 0 < � < 1; jxj < 1 � �;

and

(5) �x;�Rˇ (S) D Rˇ (�x;�#S); S 2 T :

Furthermore if Sj * S , Sj ; S 2 T , then by the monotonicity 4.3 of Ch.4 it is quite easy
to check that if y 2 Rˇ (S) and if yj 2 sptSj with yj ! y, then yj 2 Rˇ (Sj ) for all
sufficiently large j . Because of this, and because of (4), (5) above, it is now straightforward
to check that the hypotheses of A.4 hold with (again in notation of 3.4)

(6) F D {'S W S 2 T }

and

(7) sing'S D spt‚n(�S ; � ) \ US nRˇ (S):

(Notice thatRˇ (S) is completely determined by‚n(�S ; � ), and hence this makes sense.)
In this case we claim that d � n � 2. Indeed if d > n � 2 (i.e. d D n � 1) then 9S 2 T
such that

(8) �x;�#S D S 8x 2 L; � > 0; and L � sing'S

whereL is an (n�1)-dimensional subspace. Then, supposing with loss of generality that
L D Rn�1 � {0}, we have by 3.5 that

(9) S D [[Rn�1]] � S0;
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where S0 is a 1-dimensional minimizing cone in RkC1. However it is easy to check that
such a 1-dimensional minimizing cone necessarily has the form

(10) S0 D m[[`]];

where m 2 Z and ` is a 1-dimensional subspace of RkC1. Thus (9) gives that S D m[[L]]
where L is an n-dimensional subspace and hence sing'S D ∅, a contradiction, so d �
n � 2 as claimed.

We therefore conclude from A.4 that for each S 2 T

(11) Hn�2C˛(sptS nRˇ (S) \ B1(0)) D 0 8˛ > 0:

If ǰ # 0 we thus conclude in particular that

(12) Hn�2C˛(sptT n [1jD1R ǰ
(T ) \ B1(0)) D 0 8˛ > 0:

However by (1) we see that

(13) x 2 [1jD1R ǰ
(T ) ” T has a tangent plane at x;

and therefore (12) gives (2) as required. �

4 Some Regularity Results (Arbitrary Codimension)

In this section, for T 2 Dn(U ) any integer multiplicity current, we define a relatively
closed subset singT of U by

4:1 singT D sptT n regT;

where regT denotes the set of points � 2 sptT such that for some � > 0 there is a
m 2 Zn {0} and an n-dimensional oriented C 1 embedded submanifoldM of RnCk with
T D m[[M ]] in B�(�).

F.J. Almgren [Alm84] has proved the very important theorem that

Hn�2C˛(singT ) D 08˛ > 0

in case sptT � N , @T D 0 and T is minimizing in N , where N is a smooth (n C k)-
dimensional embedded submanifold of RnCL (where L � k ). The proof is very non-
trivial and requires development of a whole new range of results for minimizing currents.
We here restrict ourselves to more elementary results.

Firstly, the following theorem is an immediate consequence of The Allard Theorem 5.2
of Ch.5 and Lemma 1.2 of the present chapter.
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4.2 Theorem. Suppose T 2 Dn(U ) is integer multiplicity and minimizing in U \ N for
some embedded C 2 (nC k)-dimensional submanifoldN of RnCk , (N nN )\U D ∅, and
suppose sptT � U \N , @T D 0 (in U ). Then regT is dense in sptT .

(Note that by definition regT is relatively open in sptT .)

The following is a useful fact; however its applicability is limited by the hypothesis that
‚n(�T ; y) D 1.

4.3 Theorem. Suppose {Ti} � Dn(U ), T 2 Dn(U ) are integer multiplicity currents with
Ti minimizing in U \Ni , T minimizing in U \N ,N ,Ni embedded (nC k)-dimensional
C 2 submanifolds, and sptTi � Ni , sptT � N , @Ti D @T D 0 (in U ). Suppose also that
Ni converges to N in the C 2 sense in U , Tj * T in Dn(U ), and suppose y 2 N \ U
with ‚n(�T ; y) D 1, y D limyj , where yj is a sequence such that yj 2 sptTj 8j . Then
y 2 regT and yj 2 regTj for all sufficiently large j .

Proof: By virtue of the monotonicity formula 4.3 of Ch.4 (which is applicable by 1.2)
it is easily checked that

lim sup‚n(�Tj ; yj ) � ‚
n(�T ; y) D 1;

hence (since‚n(�Tj ; yj ) � 1 by 4.5 of Ch.4) we conclude that‚
n(�Tj ; yj )! ‚n(�T ; y) D

1. Hence by Allard’s Theorem 5.2 of Ch.5 we have y 2 regT and yj 2 regTj for all
sufficiently large j . (1.2 justifies the use of 5.2 of Ch.5.)

Next we have the following consequences of A.4 of AppendixA.

4.4 Theorem. Suppose T is as in 4.2, and in addition suppose � 2 sptT is such that
‚n(�T ; �) < 2. Then there is a � > 0 such that

Hn�2C˛(singT \ B�(�)) D 0 8˛ > 0:

Proof: Let ˛ D 2 �‚n(�T ; �) and let B�(�) be such that B2�(�) � U and

(1) (!n�
n)�1�T (B� (�)) < 2 � ˛=2

8� 2 sptT \B�(�), 0 < � < �. (Notice that such � exists by virtue of the monotonicity
4.3 of Ch.4, which can be applied by Lemma 1.2.) Assume without loss of generality that
� D 0, � D 1 and U D B2(0), and define T to be the set of weak limits S of sequences
{Si} of the form Si D �xi ;�i #T , jxi j < 1� �i , 0 < �i < 1, where lim xi and lim�i D �
are assumed to exist. Notice that

(2) lim supMW (Si ) <1
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for each W �� �x;�(U ) in case � > 0 and for each W �� RnCk in case � D 0. Hence
by the Compactness 2.4 any such S is integer multiplicity in US

(3) (US D �x;�U in case � > 0; US D R
nCk in case � D 0)

and (Cf. the proof of 3.3(2))

(4) S minimizes in �x;�U \ �x;�N in case � > 0

(5) S minimizes in R
nCk in case � D 0:

One readily checks that, by definition of T ,

(6) �y;�#T D T ; 0 < � < 1; jyj < 1 � �

Furthermore we note that (by (1))

(7) ‚n(�S ; x) D 1; �S -a.e. x 2 US ;

and by Allard’s 5.2 of Ch.5 there is ı > 0 such that

(8) singS D {x 2 US W ‚n(�S ; x) � 1C ı}; S 2 T :

Now in view of (4), (5), (6), (7), (8) and the upper semi-continuity of ‚n as in (12) in
the proof of 3.3(1), all the hypotheses of A.4 of A are satisfied with F D {'S W S 2 T }
(notation as in 3.4) and with sing'S D {x 2 US W ‚n(�S ; x) � 1C ı} (� singS by
(8)). In fact we claim that in this case we may take d D n � 2, because if d D n � 1

9S 2 T and �x;�#S D S 8x 2 L, � > 0, where L � singS is an (n � 1)-dimensional
subspace of RnCk , then (Cf. the last part of the proof of 3.3(2)) we have S D m[[Q]] for
some n-dimensional subspaceQ. Hence singS D ∅, a contradiction. �

The following theorem is often useful:

4.5 Theorem. Suppose C 2 Dn(RnCk) is minimizing in RnCk , @C D 0, and C is a cone:
�0;�#C D C 8� > 0. Suppose further that sptC � H whereH is an open 1

2
-space of RnCk

with 0 2 @H . Then sptC � @H .

4.6 Remark: The reader will see that the theorem here is actually valid with any station-
ary rectifiable varifold V in RnCk satisfying �0;�#V D V in place of C .

Proof of 4.5: Since the varifold V associated with C is stationary (by 1.2) in RnCk we
have 6.1 of Ch.4 (Since (Dr)? D 0 by virtue of the fact that C is a cone),

(1)
d

d�
(��n

∫
RnCk

h'(r=�) d�C ) D �
�n�1

∫
RnCk

x � (rCh)'(r=�) d�C
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for each � > 0, where r D jxj and ' is a non-negative C 1 function on R with compact
support, and h is an arbitrary C 1(RnCk) function. (rCh(x) denotes the orthogonal
projection of rRnCkh(x) onto the tangent space TxV of V at x.)

Now suppose without loss of generality that H D
{
x D (x1; : : : ; xnCk) W x1 > 0

}
and

select h(x) � x1. Then x � rCh D eT1 � x D e1 � x
T D re1 � r

C r , where vT denotes
orthogonal projection of v onto TxV . Thus the term on the right side of (1) can be
written �

R
RnCk

(e1 � rC r)(r'(r=�)) d�C , which in turn can be written �
R

RnCk
e1 �

rC � d�C , where  �(x) D
R1
jxj
r'(r=�) dr . (Thus  � has compact support in RnCk .)

But e1 � rC � � divV ( �e1), and hence the term on the right of (1) actually vanishes
by virtue of the fact that V is stationary. Thus (1) gives

��n
∫

RnCk
x1'(r=�) d�C D const.; 0 < � <1:

In view of the arbitrariness of ', this implies

��n
∫
B�(0)

x1 d�C � const.

However trivially we have lim�#0 �
�n
R
B�(0)

x1 d�C D 0, and hence we deduce

��n
∫
B�(0)

x1 d�C D 0 8� > 0:

Thus since x1 � 0 on sptC (� H ), we conclude sptC � @H (D {x W x1 D 0}). �

The following corollary of 4.5 follows directly by combining 4.5 and 3.1(2).

4.7 Corollary. If T is as in 4.2, if � 2 sptT , if Q is a C 1 hypersurface in RnCk such that
� 2 Q and if sptT is locally on one side ofQ near � , then all tangent conesC of T at � satisfy
sptC � T�Q \ T�N .

5 Codimension 1 Theory

We begin by looking at those integer multiplicity currents T 2 Dn(U ) with sptT �
N \ U , N an (nC 1)-dimensional oriented embedded submanifold of RnCk with (N n

N ) \ U D ∅ and such that

5:1 T D @[[E]]

(in U ), where E is an HnC1-measurable subset of N . (We know by 3.20 of Ch.6, 1.4
that all minimizing currents T 2 Dn(U ) with @T D 0 and sptT in N can be locally
decomposed into minimizing currents of this special form.)
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5.2 Remark: The fact that T has the form 5.1 and T is integer multiplicity evidently is
equivalent to the requirement that if V � U is open, and if ' is aC 2 diffeomorphism of V
onto an open subset of RnCk such that '(V \N ) D G, G open in RnC1, then '(E) has
locally finite perimeter in G. This is an easy consequence of 2.42 of Ch.6, and in fact we
see from this and 4.4 of Ch.3 that any T of the form 5.1 with MW (T ) <1 8W �� U

is automatically integer multiplicity with

(�) ‚n(T; x) D 1; �T -a.e. x 2 U:

We shall here develop the theory of minimizing currents of the form 5.1; indeed we show
this is naturally done using only the more elementary facts about currents. In particular
we shall not in this section have any need of the Compactness 3.15 of Ch.6 (instead we
use only the elementary BV Compactness Theorem 2.6 of Ch.2), nor shall we need the
Deformation Theorem and the subsequent material of Chapter 6.

The following theorem could be derived from the general Compactness 2.4, but here (as
we mentioned above) we can give a more elementary treatment. In this theorem, and
subsequently, we take U � RnCk to be open andO will denote the collection of (nC1)-
dimensional oriented embedded C 2 submanifolds N of RnCk with (N n N ) \ U D ∅,
N \ U ¤ ∅. A sequence {Nj } � O is said to converge to N 2 O in the C 2 sense in U
if there are orientation preserving C 2 embeddings  j W N \ U ! Nj with  j ! 1N\U

then �x;�N converges to TxN in the C 2 sense in W as � # 0, for each W �� RnCk .

In the following theorem p is a proper C 2 map U ! N \ U such that in some neigh-
borhood V � U of N \ U , p coincides with the nearest point projection of V onto N .
(Since the nearest point projection is C 2 in some neighborhood of N \U it is clear that
such p exists.)

5.3 (Compactness Theorem for minimizing T as in 5.1). Suppose Tj 2 Dn(U ), Tj D
@[[Ej ]] (in U ), Ej HnC1-measurable subsets of Nj \ U , Nj 2 O, Nj ! N 2 O in the C 2

sense described above, and suppose Tj is integer multiplicity and minimizing in U \Nj .

Then there is a subsequence {Tj 0} with Tj 0 * T in Dn(U ), T integer multiplicity, T D
@[[E]] (in U ), �p(Ej 0) ! �

E in L1loc(H
nC1; U ), �Tj 0 ! �T (in the usual sense of Radon

measures) in U , and T is minimizing in N \ U .

5.4 Remarks: (1) Recall (from 5.2) that the hypothesis that Tj is integer multiplicity is
automatic if we assume merely that MW (Tj ) <1 8W �� U .

(2) We make no a-priori assumptions on local boundedness of the mass of Tj (we see in
the proof that this is automatic for minimizing currents as in 5.1).

(3) Let h(x; t) D x C t(p(x) � x), x 2 U , 0 � t � 1. Using the homotopy formula
2.32 of Ch.6 (and in particular the inequality 2.34 of Ch.6) together with the fact that
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Nj ! N in the C 2 sense in U , it is straightforward to check that

Tj � T D @Rj ; Rj D h#([[(0; 1)]] � Tj )C p#[[Ej ]] � [[E]]

with
MW (Rj 0)! 0 8W �� U;

provided that�p(Ej 0) ! �
E as claimed in the theorem. Thus oncewe establish�p(Ej 0) !

�
E for some E, then we can use the argument of 2.4 (with Sj D 0) in order to conclude

(i) T is minimizing in U

(ii) �Tj 0 ! �T in U .

(Notice we have not had to use the deformation theorem here.) In the following proof
we therefore concentrate on proving �p(Ej 0) ! �

E in L1loc(H
nC1; N \ U ) for some

subsequence {j 0} and some E such that @[[E]] has locally finite mass in U . (T is then
automatically integer multiplicity by 5.2.)

Proof of 5.3: We first establish a local mass bound for the Tj inU : if � 2 N andB�0(�) �
U , then

(1) M(Tj B�(�)) �
1
2
Hn(@B�(�) \N ); L1-a.e. � 2 (0; �0):

This is proved by simple area comparison as follows:

With r(x) D jx��j, by the elementary slicing theory of 4.5(1),(2) of Ch.6 we have that,
for L1-a.e. � 2 (0; �0), the slice 〈[[Ej ]]; r; �〉 (i.e. the slice of [[Ej ]] by @B�(�)) is integer
multiplicity, and (using Tj D @[[Ej ]]),

@[[Ej \ B�(�)]] D Tj B�(�)C 〈[[Ej ]]; r; �〉:

Hence (applying @ to this identity)

@(Tj B�(�)) D �@〈[[Ej ]]; r; �〉; L1-a.e. � 2 (0; �0);

and by Definition 1.1 of minimizing

M(Tj B�(�)) �M〈[[Ej ]]; r; �〉:

Since �T̃j is also minimizing in N \ U we then have

(2) M(Tj B�(�)) � min
{
M〈[[Ej ]]; r; �〉; 〈[[Ẽj ]]; r; �〉

}
for L1-a.e. � 2 (0; �0), where Ẽj D N \ U nEj .
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Now of course [[Ẽ]]C [[Ej ]] D [[N \ U ]], so that (for a.e. � 2 (0; �0))

〈[[Ej ]]; r; �〉C 〈[[Ẽj ]]; r; �〉 D 〈N; r; �〉

and hence (2) gives (1) as required (because M(〈N; r; �〉) � Hn(N \ @B�(�)) by virtue
of the fact that jDr j D 1, hence jrN r j � 1).

Now by virtue of (1) and 5.2 we deduce from the BV Compactness 2.6 of Ch.2 that
some subsequence {�p(Ej 0)} of {�p(Ej )} converges in L1loc(H

nC1; N \U ) to �E , where
E � N is HnC1-measurable and such that @[[E]] is integer multiplicity (in U ). The
remainder of the theorem now follows as described in 5.4(3). �

5.5 (Existence of tangent cones). Suppose T D @[[E]] 2 Dn(U ) is integer multiplicity,
withE � N \U ,N 2 O, and T is minimizing inU \N . Then for each x 2 sptT and each
sequence {�j } # 0 there is a subsequence {�j 0} and an integer multiplicity C 2 Dn(RnCk)

with C minimizing in RnCk , 0 2 sptC � TxN , ‚n(�C ; 0) D ‚n(�T ; x), C D @[[F ]],
F anHnC1-measurable subset of TxN ,

(1) ��x;�j 0#T
! �C in R

nCk ; �p(�x;�j (E )) !
�
F in L1loc(H

nC1; TxN );

where p is the orthogonal projection of RnCk onto TxN , and

(2) �0;�#C D C; �0;�F D F 8� > 0:

5.6 Remark: The proof given here is independent of the general tangent cone Existence
3.1.

Proof of 5.5: As we remarked prior to 5.3, �x;�jN converges to TxN in the C 2 sense in
W for each W �� RnCk . By the Compactness 5.3 we then have a subsequence �j , such
that all the required conclusions, except possibly for 5.5(2) and the fact that 0 2 sptC ,
hold. To check that 0 2 sptC and that 5.5(2) is valid, we first note by 1.2 that the varifold
V associated with T is stationary in N \ U (and that V therefore has locally bounded
generalized mean curvature H in N \ U ). Therefore by the monotonicity formula 4.3
of Ch.4, and by 4.5 of Ch.4, we have

‚n(�V ; x) exists and is � 1:

Since ��x;�j #T ! �C , we then have ‚n(�C ; 0) D ‚n(�T ; x) � 1, so 0 2 sptC ,
and by Theorem ?? of Ch.4 we deduce that the varifold VC associated with C is a cone.
Then in particular x ^ EC (x) D 0 for �C -a.e. x 2 RnCk and hence, if we let h be the
homotopy h(t; x) D tx C (1 � t)�x, we have h#([[(0; 1)]] � C ) D 0, and then by the
homotopy formula 2.32 of Ch.6 (since @C D 0) we have �0;�#C D C as required. Finally
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since sptC has locally finite Hn-measure (indeed by 4.5 of Ch.4 sptC is the closed set{
y 2 RnCk W ‚n(�C ; y) � 1

}
), we have

[[F ]] D [[F̃ ]];

where F̃ is the (open) set
{
y 2 TxN n sptC W ‚nC1(HnC1; TxN; y) D 1

}
. Evidently

�0;�(F̃ ) D F̃ (because �0;�(sptC ) D sptC ). Hence the required result is established
with F̃ in place of F . �

5.7 Corollary.4 Suppose T is as in 5.5 and in addition suppose there is an n-dimensional
embedded submanifold † in RnCk with x 2 † � N \ U for some x 2 sptT , and suppose
sptT n† lies locally, near x, on one side of †. Then x 2 regT . (regT is as in 4.1)

Proof:l Let C D @[[F ]] (F � TxN ) be any tangent cone for T at x. By assump-
tion spt[[F ]] � H , where H is an open 1

2
-space in TxN with 0 2 @H . Then, by 4.5,

sptC � @H and hence the Constancy 2.41 of Ch.6 since C is integer multiplicity recti-
fiable, it follows that C D ˙@[[H ]]. However spt[[F ]] � H , hence C D C@[[H ]]. Then
‚n(�C ; y) � 1 for y 2 @H , and in particular ‚n(�C ; 0) (D ‚n(�T ; x)) D 1, so that
x 2 regT (by Allard’s Theorem 5.2 of Ch.5) as required.

We next want to prove the main regularity theorem for codimension 1 currents. We
continue to define singT , regT as in 4.1.

5.8 Theorem. Suppose T D @[[E]] 2 Dn(U ) is integer multiplicity, with E � N \ U ,
n 2 O, and T minimizing in N \U . Then singT D ∅ for n � 6, singT is locally finite in
U for n D 7, andHn�7C˛(singT ) D 0 8˛ > 0 in case n > 7.

Proof: We are going to use the abstract dimension reducing argument of Appendix A
(Cf. the proof of 4.4).

To begin we note that it is enough (by re-scaling, translation, and restriction) to assume
that

U D MB2(0)

and to prove that{
singT \ B1(0) D ∅ if n � 6; singT \ B1(0) discrete if n D 7;

Hn�7C˛(singT \ B1(0)) D 0 8˛ > 0 if n > 7:

Let T be the set of currents as defined in the proof of 4.45, and for each S 2 T let 'S be
the function W RnCk ! RnC1 associated with S as in 3.4. Also, let

F D {'S W S 2 T }
4Cf. Miranda [Mir67]
5We still have‚n(�S ; x)� 1 for �S -a.e. x 2 US , this time by 5.3 and 5.2 (�)
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and define
sing'S D singS:

(singS as defined in 4.1.)

By A.4 we then have either singS D ∅ for all S 2 T (and hence singT D ∅) or

dimB1(0) \ singS � d;

where d 2 [0; n � 1] is the integer such that

dimB1(0) \ singS � d for all S 2 T

and such that there is S 2 T and a d -dimensional subspace L of RnCk such that

�x;�#S D S 8x 2 L; � > 0

and

5:9 singS D L:

Supposing without loss of generality that L D Rd � {0}, we then (by 3.5) have

5:10 S D [[Rd ]] � S0

where @S0 D 0, S0 is minimizing in RnCk�1, and singS0 D {0}. (With S as in
5.10, singS0 D {0} ” 5.9.) Also, by definition of T , sptS � some (n C 1)-
dimensional subspace of RnCk , hence without loss of generality we have that S0 is an
(n � d )-dimensional minimizing cone in Rn�dC1 with singS0 D {0}. Then by the re-
sult of J. Simons (see B) we have n � d > 6; i.e. d � n � 7. Notice that this contradicts
d � 0 in case n < 7. Thus for n < 7 we must have singT D ∅ as required. If n D 7,
singT is discrete by the last part of A.4.

5.11 Corollary. If T is as in 5.8, and if T1 2 Dn(U ) is obtained by equipping a component
of regT with multiplicity 1 and with orientation of T , then @T1 D 0 (in U ) and T1 is
minimizing in U \N .

5.12 Remark: Notice that this means we can write

T D
P1
jD1Tj ;

where each Tj is obtained by equipping a componentMj of regT with multiplicity 1 and
with the orientation of T ; thenMi \Mj D ∅ 8i ¤ j , @Tj D 0, and Tj is minimizing
in U 8j . Furthermore (since �Tj (B�(x)) � c�n for B�(x) � U and x 2 sptTj by
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virtue of 1.2 and the monotonicity 4.3 of Ch.4) only finitely many Tj can have support
intersecting a given compact subset of U .

Proof of 5.11: The main point is to prove

(1) @T1 D 0 in U:

The fact that T1 is minimizing inU will then follow from 1.4 and the fact thatMW (T1)C

MW (T � T1) DMW (T ) 8W �� U .

To check (1) let ! 2 Dn�1(U ) be arbitrary and note that if � � 0 in some neighborhood
of sptT nM1

(2) T1(d (�!)) D T (d (�!)) D @T (�!) D 0:

Now corresponding to any " > 0 we construct � as follows: sinceHn�1(singT ) D 0 (by
5.8) and since singT \spt! is compact, we can find a finite cover of singT \spt! by balls{
B�j (�j )

}
jD1;:::;P

with �j 2 singT \ spt! and
PP
jD1�

n�1
j < ". For each j D 1; : : : ; P

let 'j 2 C1c (RnCk) be such that 'j � 1 on B�j (�j ), 'j D 0 on RnCk n B2�j (�j ),
and 0 � 'j � 1 everywhere, and jD'j j � 2=�j . Now choose � D

QP
jD1 'j in a

neighborhood of sptT1 and so that � � 0 in a neighborhood of sptT n sptT1. Then
d� D

PP
iD1

QP
j¤i 'j d'i on sptT1, and hence

jT (d (�!) � �d!)j � cj!j
PP
jD1�

n�1
j � c"j!j on sptT1:

The letting " # 0 in (2), and noting that �d! ! d! Hn-a.e. in sptT1 \ N \ spt! (and
using j�j � 1), we conclude T1(d!) D 0. That is @T1 D 0 in U as required. �

Finally we have the following lemma.

5.13 Lemma. If T1 D @[[E1]], T2 D @[[E2]] 2 Dn(U ), U bounded, E1; E2 � U \ N ,
N of class C 4, N 2 O, T1, T2 minimizing in U \ N , regT1, regT2 are connected, and
E1 \ V � E2 \ V for some neighborhood V of @U , then spt[[E1]] � spt[[E2]] and either
[[E1]] D [[E2]] or sptT1 \ sptT2 � singT1 \ singT2.

Proof: Since HnC1(sptTj ) D 0 (in fact sptTj has locally finite Hn-measure in U by
virtue of the fact that ‚n(�Tj ; x) � 1 8x 2 sptTj ), we may assume that E1 and E2 are
open with U \ @Ej D U \ @Ej D sptTj , j D 1; 2.

Let S1; S2 2 Dn(U ) be the currents defined by

S1 D @[[E1 \E2]]; S2 D @[[E1 [E2]]:

Using the hypothesis concerning V we have

(3) Sj (V \ U ) D Tj (V \ U ); j D 1; 2:

�5 of Chapter 7: Codimension 1 Theory 233

On the other hand we trivially have

[[E1 \E2]]C [[E1 [E2]] D [[E1]]C [[E2]];

so (applying @) we get

(4) S1 C S2 D T1 C T2:

Furthermore E1 \E2 � E1 [E2, so

MW (S1)CM(S2) DMW (S1 C S2)(5)

DMW (T1 C T2) (by (4))

�MW (T1)CMW (T2)

8W �� U . On the other hand, choosing an open V0 so that @U � V0 �� V , and using
(3) together with the fact that T1 is minimizing, we have

MW (S1) �MW (T1); W D U n V 0;

and hence (combining this with (5))

MW (S2) �MW (T2)

for W D U n V 0. Thus (using (3) with j D 2) S2 is minimizing in U . Likewise S1 is
minimizing in U .

We next want to prove that either T1 D T2 or regT1 \ regT2 D ∅. Suppose regT1 \
regT2 ¤ ∅. If the tangent spaces of regT1 and regT2 coincide at every point of their
intersection, then using suitable local coordinates (x; ´) 2 Rn � R for N near a point
� 2 regT1 \ regT2, we can write

regTj D graphuj ; j D 1; 2 ;

where Du1 D Du2 at each point where u1 D u2, and where both u1, u2 are (weak) C 1

solutions of the equation

@

@xi
(
@F

@pi
(x; u;Du)) �

@F

@´
(x; u;Du) D 0;

where F D F (x; ´; p), (x; ´; p) 2 Rn � R � Rn, is the area functional for graphs
´ D u(x) relative to the local coordinates x, ´ for N . Since N is C 4 we then deduce
(from standard quasilinear elliptic theory—see e.g. [GT01]) that u1, u2 are C 3;˛ . Now
the difference u1 � u2 of the solutions evidently satisfies an equation of the general form

Dj (aijDiu)C biDiuC cu D 0;
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where aij , bi , c are C 2;˛ . By standard unique continuation results (see e.g. [Pro60]) we
then see that Du1 D Du2 at each point where u1 D u2 is impossible if u1 � u2 changes
sign. On the other hand the Harnack inequality ( [GT01]) tells us that either u1 � u2 or
ju1 � u2j > 0 in case u1 � u2 does not change sign. Thus we deduce that either T1 D T2
or regT1 \ regT2 D ∅ or there is a point � 2 regT1 \ regT2 such that regT1 and regT2
intersect transversely at �. But then we would have Hn�1(sing @[[E1 \ E2]]) > 0, which
by virtue of 5.8 contradicts the fact (established above) that @[[E1 \ E2]] is minimizing
in U .

Thus either T1 D T2 or regT1 \ regT2 D ∅, and it follows in either case that E1 � E2.
On the other hand we then have singT1 \ regT2 D ∅ and singT2 \ regT1 D ∅ by
virtue of 5.7. Thus we conclude that E1 � E2 and sptT1 \ sptT2 � singT1 \ singT2 as
required.
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1 Basics, First Rectifiability Theorem

We letG(nCk; n) denote the collection of all n-dimensional subspaces ofRnCk , equipped
with the metric �(S; T ) D jpS � pT j D (

PnCk
i;jD1(p

ij
S � p

ij
T )

2)
1
2 where pS , pT denote

the orthogonal projections of RnCk onto S , T respectively, and pijS D ei �pS (ej ), p
ij
T D

ei �pT (ej ) are the corresponding matrices with respect to the standard orthonormal basis
e1; : : : ; enCk for RnCk .

For a subset A � RnCk we define

Gn(A) D A �G(nC k; n);

equipped with the product metric. Of course then Gn(K) is compact for each compact
K � RnCk . Gn(RnCk) is locally homeomorphic to a Euclidean space of dimension
nC k C nk.

By an n-varifold we mean simply any Radon measure V on Gn(RnCk). By an n-varifold
on U (U open in RnCk ) we mean any Radon measure V on Gn(U ). Given such an n-
varifold V on U , there corresponds a Radon measure � D �V on U (called the weight of
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V ) defined by
�(A) D V (��1(A)); A � U;

where, here and subsequently, � is the projection (x; S) 7! x of Gn(U ) onto U . The
mass M(V ) of V is defined by

M(V ) D �V (U ) (D V (Gn(U ))):

for any Borel subset A � U we use the usual terminology V Gn(A) to denote the
restriction of V to Gn(A); thus

(V Gn(A))(B) D V (B \Gn(A)); B � Gn(U ):

Given an n-rectifiable varifold v(M; �) on U (in the sense of Ch.4) there is a correspond-
ing n-varifold V (also denoted by v(M; �), or simply v(M ) in case � � 1 onM ), defined
by

V (A) D �(�(TM \ A)); A � Gn(U );

where � D Hn � and TM D {(x; TxM ) W x 2M�}, withM� the set of x 2 M such
thatM has an approximate tangent space TxM with respect to � at x in the sense of 1.7
of Ch.3. Evidently V , so defined, has weight measure �V D Hn � D �.

The question of when a general n-varifold actually corresponds to an n-rectifiable varifold
in this way is satisfactorily answered in the next theorem. Before stating this we need a
definition:

1.1 Definition: Given T 2 G(nCk; n), x 2 U , and � 2 (0;1), we say that an n-varifold
V on U has tangent space T with multiplicity � at x if

(�) lim
�#0

Vx;� D �v(T );

where the limit is in the usual sense of Radon measures on Gn(RnCk). In 1.1 (�) we use
the notation that Vx;� is the n-varifold defined by

Vx;�(A) D �
�nV ({(�y C x; S) W (y; S) 2 A} \Gn(U ))

for A � Gn(RnCk).

1.2 (First Rectifiability Theorem.) Suppose V is an n-varifold on U which has a tangent
space Tx with multiplicity �(x) 2 (0;1) for �V -a.e. x 2 U . Then V is n-rectifiable; in fact
M � {x 2 sptV W Tx and �(x) both exist} is Hn-measurable, countably n-rectifiable, � is
locallyHn-integrable onM , and V D v(M; �).

In the proof of 1.2 (and also subsequently) we shall need the following technical lemma:
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1.3 Lemma. Let V be any n-varifold onU . Then for�V -a.e. x 2 U there is a Radonmeasure
�
(x)
V on G(nC k; n) such that, for any continuous ˇ on G(nC k; n),∫

G(nCk;n)
ˇ(S) d�

(x)
V (S) D lim

�#0

R
Gn(B�(x))

ˇ(S) dV (y; S)

�V (B�(x))
:

Furthermore for any Borel set A � U ,∫
Gn(A)

ˇ(S) dV (x; S) D
∫
A

∫
G(nCk;n)

ˇ(S) d�
(x)
V (S)d�V (x)

provided ˇ � 0.

Proof: The proof is a simple consequence of the differentiation theory for Radon mea-
sures and the separability of K(X;R) (notation as in �5 of Ch.1) for compact separable
metric spaces X . Specifically, write K D K(G(n C k; n);R), KC D {ˇ 2 K W ˇ �
0}, and let ˇ1; ˇ2; : : : 2 KC be dense in KC. By the XXX Theorem 4.16 of Ch.1
we know that (since there is a Radon measure j on RnCk characterized by j (B) DR
Gn(B) ǰ (S) dV (y; S) for Borel sets B � RnCk )

(1) e(x; j ) D lim
�#0

R
Gn(B�(x)) ǰ (S) dV (y; S)

�V (B�(x))

exists for each x 2 RnCk n Zj , where Zj is a Borel set with �V (Zj ) D 0 and e(x; j ) is
a �V -measurable function of x, with

(2)
∫
A
e(x; j ) d�V (x) D

∫
Gn(A)

ǰ (S) dV (y; S)

for any Borel set A � RnCk .

Now let " > 0, ˇ 2 KC, x 2 RnCk n([1jD1Zj ), and choose ǰ such that sup jˇ� ǰ j < ".
Then for any � > 0
(3)ˇ̌̌ R

Gn(B�(x))
ˇ(S) dV (y; S)

�V (B�(x))
�

R
Gn(B�(x)) ǰ (S) dV (y; S)

�V (B�(x))

ˇ̌̌
� "

V (Gn(B�(x)))

�V (B�(x))
D ";

and hence by (1) we conclude that

(4) �̃
(x)
V (ˇ) � lim

�#

R
Gn(B�(x))

ˇ(S) dV (y; S)

�V (B�(x))

exists for all ˇ 2 KC and all x 2 RnCk n ([1jD1Zj ). Of course, since
ˇ̌
�̃
(x)
V (ˇ)

ˇ̌
�

sup jˇj 8ˇ 2 KC, by the Riesz Representation Theorem 5.14 of Ch.1 we have �̃(x)V (ˇ) D∫
G(nCk;n)

ˇ(S) d�
(x)
V (S), where �(x)V is the total variation measure associated with �̃(x)V .
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Finally the last part of the lemma follows directly from (2), (3) if we keep in mind that

e(x; j ) in (1) is exactly �̃(x)V ( ǰ )
∫
G(nCk;n)

ǰ (S) d�
(x)
V (S) �

We are now able to give the proof of 1.2.

Proof of 1.2: By definition 1.1, �V has approximate tangent space Tx with multiplicity
�(x) in the sense of 1.7 of Ch.3 for �V -a.e. x 2 U . Hence by 1.9 of Ch.3 we have that
M is Hn-measurable countably n-rectifiable, � is locally Hn-integrable onM and in fact
�V D Hn � in U (if we set � � 0 in U nM ).

Now if x 2 M is one of the �V -almost all points such that �(x)V exists, and if ˇ is a
non-negative continuous function on G(n C k; n), then we evidently have �(x)V (ˇ) D

�(x)ˇ(Tx) and hence by the second part of 1.3 we have

(1)
∫
Gn(A)

ˇ(S) dV (x; S) D
∫
M\A

ˇ(Tx) d�V (x)

for any Borel set A � U . From the arbitrariness of A and ˇ it then easily follows that

(2)
∫
Gn(U )

f (x; S) dV (x; S) D
∫
M
f (x; Tx) d�V (x)

for any non-negative f 2 Cc(Gn(U )), and hence we have shown V D v(M; �) as
required (because �V D Hn � as mentioned above). �

2 First Variation

We canmake sense of first variation for a general varifold V onU . We first need to discuss
mapping of such a general n-varifold. Suppose U , Ũ open � RnCk and f W U ! Ũ is
C 1 with f

ˇ̌
spt�V \ U proper. Then we define the image varifold f#V on Ũ by

2:1 f#V (A) D
∫
F�1(A)

JSf (x) dV (x; S); A Borel; A � Gn(Ũ );

where F W GCn (U )! Gn(Ũ ) is defined by F (x; S) D (f (x); dfx(S)) and where

JSf (x) D (det((dfx
ˇ̌
S)� ı (dfx

ˇ̌
S)))

1
2 ; (x; S) 2 Gn(U ):

GCn (U ) D {(x; S) 2 Gn(U ) W JSf (x) ¤ 0}:

(Notice that this agrees with our previous definition given in �1 of Ch.4 in case V D
v(M; �).)
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Now given any n-varifold V on U we define the first variation ıV of V , which is a linear
functional on K(U;RnCk) (notation as in �5 of Ch.1) by

2:2 ıV (X) D
d

dt
M('t#V Gn(K))

ˇ̌̌̌
tD0

;

where {'t}�1<t<1 is any 1-parameter family as in 5.8 of Ch.2 (and K compact is as in
5.8 of Ch.2). Of course we can compute ıV (X) explicitly by differentiation under the
integral in 2.1. This gives (by exactly the computations in �6 of Ch.2)

2:3 ıV (X) D
∫
Gn(U )

divS X(x) dV (x; S);

where, for any S 2 G(nC k; n),

2:4 divS X D
PnCk
iD1 r

S
i x

i
D
Pn
iD1 〈�i ;D�iX〉 ;

where �1; : : : ; �n is an orthonormal basis for S and rSi D ei � r
S , with rSf (x) D

pS (rRnCkf (x)), f 2 C
1(U ). (pS is the orthogonal projection of RnCk onto S .)

By analogy with 2.4 of Ch.4 we then say that V is stationary in U if ıV (X) D 0 8X 2

K(U;RnCk).

More generally V is said to have locally bounded first variation in U if for each W �

� U there is a constant c < 1 such that jıV (X)j � c supU jX j 8X 2 K(U;RnCk)

with spt jX j � W . Evidently, by the general Riesz Representation 5.14 of Ch.1, this
is equivalent to the requirement that there is a Radon measure kık (the total variation
measure of ıV ) on U characterized by

2:5 kıV k(W ) D sup
X2K(U;RnCk ); jX j�1; spt jX j�W

jıV (X)j (<1)

for any open W �� U . Notice that then by 5.14 of Ch.1 we can write

2:6 ıV (X) D
∫
Gn(U )

divS X(x) dV (x; S) � �
∫
U
� �X dkıV k;

where � is kıV k-measurable with j�j D 1 kıV k-a.e. in U . By XXX Theorem 4.16 of Ch.
1 we know furthermore that

2:7 D�V kıV k(x) � lim
�#0

kıV k(B�(x))

�V (B�(x))

exists �V -a.e. and that (writing H (x) D D�V kıV k(x)�(x))

2:8

∫
U
� �X dkıV k D

∫
U
H �X d�V C

∫
U
� �X d�;
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with

2:9 � D kıV k Z; Z D {x 2 U W D�V kıV k(x) D C1} : (�V (Z) D 0:)

Thus we can write

ıV (x) D
∫
Gn(U )

divS X(x) dV (x; S)2.10

D �

∫
U
H �X d�V �

∫
Z
� �X d�

for X 2 K(U;RnCk).

By analogy with the classical identity 5.7 of Ch.2 we callH the generalizedmean curvature
of V , Z the generalized boundary of V , � the generalized boundary measure of V , and �

ˇ̌
Z

the generalized unit co-normal of V .

3 Monotonicity and Consequences

In this section we assume that V is an n-varifold in U with locally bounded first variation
in U (as in 2.5).

Choose (as in 2.3 of Ch.4) X jy D h(y)(r)(x � �) where  W R ! R is C 1 and
h 2 C 1(U ) are such that h has compact support in U (as in �3 of Ch.4). Note that (by
essentially the same computation as in �3 of Ch.4)

3:1 divS X D n(r)C r 0(r)
PnCk
i;jD1e

ij
S
xi��i

r
xj��j

r
;

where (eijS ) is thematrix of the orthogonal projectionpS ofRnCk onto the n-dimensional
subspace S . Thus the first variation identity

3:2

∫
Gn(U )

divS X(x) dV (x; S) D ıV (X)

with X jx D h(x)(r)(x � �) implies the following natural generalization of the iden-
tity 3.4 of Ch.4:

3:3

∫ (
n(r)hCr 0(r)jrSr j2hC(r)(x��) �rSh

)
dV (x; S) D ıV (h(r)(x��)):

Now consider a ball B�0(�) � U and ƒ � 0 with

3:4 kıV k(B�(�)) � ƒ�V (B�(�)); 0 < � < �0:
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Subject to 3.4 we can then take h D 1 and (r) D '(r=�) (again as in �4 of Ch.4) and,
noting that

PnCk
i;jD1e

ij
S
xi��i

r
�
xj��j

r
D 1�

ˇ̌
pS?(

x��
r
)
ˇ̌2, conclude (Cf. 4.3 of Ch.4 with

˛ D 1) that eƒ���n�V (B�(�)) is increasing in �, 0 < � < �0, and, for 0 < � � � < �0,

‚n(�v; �) � e
ƒ�!�1n ��n�V (B� (�)) � e

ƒ�!�1n ��n�V (B�(�))3.5

� !�1n

∫
Gn(B�(�)nB� (�))

r�n�2
ˇ̌
pS?(x � �)

ˇ̌2
dV (x; S):

In fact if ƒ D 0 (so that V is stationary in B�0(�)) we get the precise identity

3:6 !�1n ��n�V (B�(�)) �‚
n(�v; �) D !

�1
n

∫
Gn(B�(�))

r�n�2
ˇ̌
pS?(x � �)

ˇ̌2
dV (x; S):

By a similar argument (using 3.3 with an arbitrary h 2 C 1(U ) rather than the special
choice h D 1 used above) we also deduce that the following analogue of 6.1 of Ch.4:

d

d�

(
��nĨ (�)

)
D ��n

d

d�

∫ ˇ̌
pS?(x � �)=r

ˇ̌2
'(r=�)h(y) dV (x; S)3.7

C ��n�1(ıV (X)C
∫
(x � �) � rSh(y)'(r=�) dV (y; S));

where Ĩ (�) D
R
'(r=�)h d�V and X jx D h(r)(x � �).

3.8 Lemma. Suppose V has locally bounded first variation in U . Then for �V -a.e. x 2 U ,
‚n(�V ; x) exists and is real-valued; in fact ‚n(�V ; x) exists whenever there is a constant
ƒ(x) <1 such that

kıV k(B�(x)) � ƒ(x)�V (B�(x)); 0 < � <
1

2
dist(x; @U ):

(Such a constant ƒ(x) exists for �V -a.e. x 2 U by virtue of Theorem 4.16 of Ch.1.)

Furthermore‚n(�V ; x) is a �V -measurable function of x.

Proof: The first part of the lemma follows directly from the monotonicity formula 3.5.
The�V -measurability of‚n(�V ; � ) follows from the fact that�V (B�(x)) � lim supy!x �V (B�(y)),
which guarantees that�V (B�(x))=(!n�n) is Borel measurable and hence�V -measurable
for each fixed �. Since

‚n(�V ; x) D lim
�#0

(!n�
n)�1�V (B�(x))

for �V -a.e. x 2 U , we then have �V -measurability of ‚n(�V ; � ) as claimed.

3.9 Theorem. (Semi-continuity of ‚n under varifold convergence.) Suppose Vi ! V

(as Radon measures in Gn(U )) and ‚n(Vi ; y) � 1 except on a set Bi � U with �Vi (Bi \
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W )! 0 for eachW �� U , and suppose that each Vi has locally bounded first variation inU
with lim inf kıVik(W ) <1 for eachW �� U . Then kıV k(W ) � lim inf kıVik(W ) 8W �

� U and‚n(�V ; y) � 1 �V -a.e. in U .

3.10 Remarks: (1) The fact that kıV k(W ) � lim inf kıVik(W ) is a trivial consequence
of the definitions of kıV k, kıVik and the fact that Vi ! V , so we have only to prove the
last conclusion that ‚n(�V ; y) � 1 �V -a.e.

(2) The proof that ‚n(�V ; y) � 1 �V -a.e. to be given below is slightly complicated; the
reader should note that if kıV k � ƒ�V in U (i.e. if V has generalized boundary measure
� D 0 and boundedH—see 2.10 above—then the result is a very easy consequence of the
monotonicity formula 3.5.

Proof of 3.9: Set �i D �Vi , � D �V , and take anyW �� U and �0 2 (0; dist(W; @U )).
For i; j � 1, consider the set Ai;j consisting of all points y 2 W n Bi such that

(1) kıVik(B�(y)) � j�i (B�(y)); 0 < � < �0;

and let Bi;j D W n Ai;j . Then if x 2 Bi;j we have either x 2 Bi \W or

(2) �i (B� (x)) � j
�1
kıVik(B� (x)) for some � 2 (0; �0):

Let B be the collection of balls B� (x) with x 2 Bi;j , � 2 (0; �0), and with (2) holding.
By the Besicovitch Covering Lemma (�4.5 of Ch.1) there are families B1; : : : ;BN � B
with N D N (n C k), with Bi;j n Bi � [N`D1([B2B`B) and with each B` a pairwise
disjoint family. Hence if we sum in (2) over balls B 2 [N

`D1
B`, we get

�i (Bi;j ) � Nj
�1
kıVik(W̃ )C �i (Bi \W )

(W̃ D {x 2 U W dist(x;W ) < �0}), so

�i (Bi;j ) � cj
�1
C �i (Bi \W );

with c independent of i; j . In particular for each i; j � 1

(3) �(interior(\1`DiB`;j )) � lim inf
q!1

�q(interior(\1`DiB`;j )) � cj
�1;

since �q(Bq \W )! 0 as q !1.

Now let j 2 {1; 2; : : :} and consider the possibility that there is a point x 2 W such
that x 2 W n interior(\1qDiBq;j ) for each i D 1; 2; : : :. Then we could select, for each
i D 1; 2; : : :, yi 2 W n \1qDiBq;j with jyi � xj < 1=i . Thus there are sequences yi ! x

and qi !1 such that yi … Bqi ;j for each i D 1; 2; : : :. Then yi 2 Aqi ;j and hence (by
(1))

kıVqi k(B�(yi )) � j�qi (B�(yi )); 0 < � < �0;
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for all i D 1; 2; : : :. Then by the monotonicity formula 3.5 (with ƒ D j ) together with
the fact that ‚n(�qi ; yi ) � 1 we have

�qi (B�(yi )) � e
�j�!n�

n; 0 < � < �0;

so that ‚n(�; x) � 1 for such an x. Thus we have proved ‚n(�; x) � 1 for each x with
x 2 W n ([1iD1 interior(\

1
`Di
B`;j )) for some j 2 {1; 2; : : :}. That is

(4) ‚n(�; x) � 1 8x 2 W n (\1jD1 [
1
iD1 interior(\

1
`DiB`;j )):

However

�(\1jD1 [
1
iD1 interior(\

1
`DiB`;j )) � �([

1
iD1 interior(\

1
`DiB`;j )) 8j � 1(5)

D lim
i!1

�(interior(\1`DiB`;j ))

� cj�1 by (3);

so �(\1jD1 [
1
iD1 interior(\

1
`Di
B`;j )) D 0 and the theorem is established (by (4)). �

4 Constancy Theorem

4.1 (Constancy Theorem.) Suppose V is an n-varifold in U , V is stationary in U , and
U \ spt�V � M , where M is a connected n-dimensional C 2 embedded submanifold of
RnCk . Then V D �0v(M ) for some constant �0.

4.2 Remarks: (1) Notice in particular this implies (M nM ) \ U D ∅ (if V ¤ 0); this
is not a-priori obvious from the assumptions of the theorem.

(2) J. Duggan in his PhD thesis [Dug86] has extended 4.1 to the case whenM is merely
Lipschitz.

(3)The reader will see that, with onlyminormodifications to the proof to be given below,
the theorem continues to hold ifN is an embedded (nCk)-dimensional C 2 submanifold
of RnCk and if V is stationary inU \N in the sense that ıV (X) D 0 8X 2 K(U IRnCk)

withXx 2 TxN 8x 2 N , providedwe are given sptV � {(x; S) W x 2 N and S � TxN }.
(This last is equivalent to spt�V � N and p#V D V , where p W U ! U \ N coincides
with the nearest point projection onto U \N in some neighborhood of U \N .)

Proof of 4.1: We first want to argue that V D v(M; �) for some positive locally Hn-
integrable function � onM .
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To do this first take any f 2 C 2c (U ) withM � {x 2 U W f (x) D 0} and note that by
2.3

(1) ıV (f rf ) D
∫ ˇ̌
pS (rf )

ˇ̌2
dV (x; S);

because (using notation as in 2.3)

divS (f rf ) D rSf � rf C f divS rf

D
ˇ̌
pS (rf )

ˇ̌2 onM;
where we used f � 0 onM . Since ıV D 0, we conclude from (1) that

(2) pS (rf (x)) D 0 for all (x; S) 2 sptV:

Now let � 2 M be arbitrary. We can find an open W � U with � 2 W and such
that there are C 2c (U ) functions f1; : : : ; fk with M � \kjD1{x W fj (x) D 0} and with
(TxM )? being exactly the space spanned by rf1(x); : : : ;rfk(x) for each x 2M \W .
(One easily checks that such W and f1; : : : ; fk exists.) Then (2) implies that

(3) pS ((TxM )?) D 0 for all (x; S) 2 Gn(W ) \ sptV:

But (3) says exactly that S D TxM for all (x; S) 2 Gn(W ) \ sptV , so that (since � was
an arbitrary point ofM ), we have

(4)
∫
f (x; S) dV (x; S) D

∫
M\U

f (x; TxM ) d�(x); f 2 Cc(Gn(U ));

On the other hand we know from monotonicity 3.5 that �(x) � ‚n(�V ; x) exists for
all x 2 M \ U , and hence (since ‚n(Hn M;x) D 1 for each x 2 M , by smoothness
ofM ), we can use the XXX Theorem 4.16 of Ch.1 to conclude from (4) that in fact

(5)
∫
f (x; S) dV (x; S) D

∫
M\U

f (x; TxM )�(x) dHn(x); f 2 Cc(Gn(U ));

(so that V D v(M; �) as required).

It thus remains only to prove that � D const. on M \ U . Since M is C 2 we can take
X 2 K(U;RnCk) such that Xx 2 TxM 8x 2 M \ U . Then by (5) and 2.3 ıV (X) D 0

is just the statement that
∫
M\U

divX � dHn
D 0, where divX is the classical divergence

of X jM in the usual sense of differential geometry. Using local coordinates (in some
neighborhood Ũ � Rn ) this tells us that∫

Ũ

Pn
iD1

@Xi

@xi
�̃ dLn D 0 if Xi 2 C

1
c (Ũ ); i D 1; : : : ; n ;
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where �̃ is � expressed in terms of the local coordinates. In particular∫
Ũ

@�

@xi
�̃ dLn D 0 8� 2 Cc(U ); i D 1; : : : ; n

and it is then standard that �̃ D constant in Ũ . Hence (sinceM is connected) � is constant
inM . �

5 Varifold Tangents and Rectifiability Theorem

Let V be a n-varifold in U and let x be any point of U such that

5:1 ‚n(�V ; x) D �0 2 (0;1) and lim
�#0

�1�nkıV k(B�(x)) D 0:

By definition of ıV (in 2) and the Compactness Theorem 5.15 of Ch.1 for Radon mea-
sures, we can select a sequence �j # 0 such that �x;�j #V converges (in the sense of Radon
measures) to a varifold C such that

C is stationary in R
nCk

and

5:2
�C (B�(x))

!n�n
� �0 8� > 0:

Since ıC D 0 we can use 5.2 together with the monotonicity formula 3.6 to conclude

∫
Gn(B�(0))

ˇ̌
pS?(x)

ˇ̌2
jxjnC2

dC (x; S) D 0 8� > 0;

so that pS?(x) D 0 for C -a.e. (x; S) 2 Gn(RnCk), and hence pS?(x) D 0 for all
(x; S) 2 sptC by continuity of pS?(x) in (x; S). We can apply the same argument as
in the proof of Theorem 5.1 of Ch.4 with ı D 0, except that we now use 3.7 in place of
6.1 of Ch.4, so �C satisfies

5:3 ‚n(�C ; y) D ‚
n(�C ; �y) 8� > 0

Wewould like to prove the stronger result �0;�#C D C (which of course implies 5.3), but
we are only able to do this in case‚n(�C ; x) > 0 for �C -a.e. x (see 5.7 below). Whether
of not �0;�#C D C without the additional hypothesis on‚n(�C ; � ) seems to be an open
question.

5.4 Definition: Given V and x as in 5.1 we let VarTan(V; x) (“the varifold tangent of V
at x”) be the collection of all C D lim �x;�j #V obtained as described above.
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Notice that by the above discussion any C 2 VarTan(V; x) is stationary in RnCk and
satisfies 5.3.

The following rectifiability theorem for n-varifolds is a central part of the theory of n-
varifolds with locally bounded first variation.

5.5 Theorem (Rectifiability Theorem.) Suppose V has locally bounded first variation in
U and ‚n(�V ; x) > 0 for �V -a.e. x 2 U . Then V is an n-rectifiable varifold. (Thus
V D v(M; �), with M a Hn-measurable countably n-rectifiable subset of U and � a
non-negative locally Hn-integrable function on U .)

5.6 Remark: We are going to use 1.2. In fact we show that V has a tangent plane
(in the sense of 1.1) at the point x where (i) ‚n(�V ; x) > 0, ( ii) �(x)V (as in 1.3) ex-
ists, (iii) ‚n(�V ; � ) is �V -approximately continuous at x, and (iv) kıV k(B�(x)) �
ƒ(x)�V (B�(x)) for 0 < � < �0 D min{1; dist(x; @U )}. Since conditions (i)–(iv)
all hold �V -a.e. in U (notice that (iii) holds �V -a.e. by virtue of the �V -measurability of
‚n(�V ; � ) proved in 3.8), the required rectifiability of V will then follow from 1.2

Before beginning the proof of 5.5 we give the following important corollary.

5.7 Corollary. Suppose x 2 U , 5.1 holds, and lim�#0 �
�n�V ({y 2 B�(x) W ‚n(�V ; y) <

1}) D 0. If C 2 VarTan(V; x), then C is rectifiable and

�0;�#C D C 8� > 0:

Proof: From the hypothesis ��n�V ({y 2 B�(x) W ‚n(�V ; y) < 1})! 0 and the Semi-
continuity 3.9, we have‚n(�C ; y) � 1 for�C -a.e. y 2 RnCk . Hence by 5.5 we have that
C is n-rectifiable. On the other hand, since ‚n(�C ; y) D ‚n(�C ; �y) 8� > 0 (by 5.3),
we can write C D v(M; �) with �0;�(M ) D M 8� > 0 and �(�y) D �(y) 8� > 0,
y 2 RnCk . (Viz. simply set �(y) D ‚n(�C ; y) and M D {y 2 RnCk W �(y) > 0}.)
It then trivially follows that y 2 TyM whenever the approximate tangent space TyM
exists, and hence �0;�#C D C as required. �

Proof of 5.5: Let x be as in 5.6(i)-( iv) and takeC 2 VarTan(V; x). (We knowVarTan(V; x) ¤
∅ because 5.6(i), ( iv) imply 5.1.) Then C is stationary in RnCk and

(1)
�c(B�(0))

!n�n
� �0 8� > 0 (�0 D ‚

n(�V ; x)):

Also for any y 2 RnCk (using (1) and the monotonicity formula 3.5)

�C (B�(y))

!n�n
�
�C (BR(y))

!nRn
�
�C (BRCjyj(0))

!n(RC jyj)n
(1C jyj=R)n

D �0(1C jyj=R)
n
! �0 as R " 1:
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That is (again using the monotonicity formula 3.5),

(2) ‚n(�C ; y) �
�C (B�(y))

!n�n
� �0 8y 2 R

nCk ; � > 0:

Now let Vj D �x;�j #V , where �j # 0 is such that lim �x;�j #V D C and where we are
still assuming x is as in 5.6(i)–(iv).

From 5.6(iii) we have (with "(�) # 0 as � # 0)

(3) ‚n(�V ; y) � �0 � "(�); y 2 G \ B�(x);

where G � U is such that

(4) �V (B�(x) nG) � "(�)�n; � sufficiently small.

Taking � D �j we see that (3), (4) imply

(5) ‚n(�Vj ; y) � �0 � "j ; y 2 Gj \ B1(0)

with Gj such that

(6) �Vj (B1(0) nGj ) � "j ;

where "j ! 0 as j ! 1. Thus, using (5), (6) and the semi-continuity result of 3.9, we
obtain

(7) ‚n(�C ; y) � �0 for �C -a.e. y 2 R
nCk

(and hence for every y 2 spt�C by 3.6). Then by combining (2) and (7) we have

‚n(�C ; y) � �0 �
�C (B�(y))

!n�n
8y 2 spt�C ; � > 0:

Then by the monotonicity formula 3.6 (with V D C ), we have

pS?(x � y) D 0 for C -a.e. (x; S) 2 Gn(R
nCk):

Thus (using the continuity of pS?(x � y) in (x; S)) we have

(8) x � y 2 S 8y 2 spt�C and 8(x; S) 2 sptC:

In particular, choosing T such that (0; T ) 2 sptC (such T exists because 0 2 spt�C D
�(sptC )), (8) implies y 2 T 8y 2 spt�C . Thus spt�C � T , and hence C D �0v(T )

by Constancy 4.1.
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Thus we have shown that, for x 2 U such that 5.6(i), ( iii), ( iv) hold, each element
of VarTan(V; x) has the form �0v(T ), where T is an n-dimensional subspace of RnCk .
On the other hand, since we are assuming (5.6(ii)) that �(x)V exists, it follows that for
continuous ˇ on G(nC k; n)

(9) lim
�#0

∫
Gn(B�(x))

ˇ(S) dV (y; S)

�V (B�(x))
D

∫
G(nCk;n)

ˇ(S) d�
(x)
V (S):

Now let �0v(T ) be any such element of VarTan(V; x) and select�j # 0 so that lim �x;�j #V D
�0v(T ). Then in particular

lim
j!1

∫
Gn(B1(0))

ˇ(S) dVj (y; S)

�Vj (B1(0))
D ˇ(T );

and hence (9) gives

ˇ(T ) D
∫
G(nCk;n)

ˇ(S) d�
(x)
V (S);

thus showing that �0v(T ) is the unique element of VarTan(V; x). Thus

lim
�#0

�x;�#V D �0v(T );

so that T is the tangent space for V at x in the sense of 1.1. This completes the proof. �

The following compactness theorem for rectifiable varifolds is now a direct consequence
of the Rectifiability 5.5, the Semi-continuity 3.9, and the Compactness Theorem 5.15 of
Ch.1 for Radon measures, and its proof is left to the reader.

5.8 Theorem (Compactness theorem for n-varifolds.) Suppose {Vj } is a sequence of
rectifiable n-varifolds in U which are locally bounded first variation in U ,

sup
j�1

(�Vj (W )C kıVj k(W )) <1 8W �� U;

and‚n(�Vj ; x) � 1 on U n Aj , where �Vj (Aj \W )! 0 as j !1 8W �� U .

Then there is a subsequence {Vj 0} and a rectifiable varifoldV of locally bounded first variation
in U , such that Vj 0 ! V (in the sense of Radon measures on Gn(U )), ‚n(�V ; x) � 1 for
�V -a.e. x 2 U , and kıV k(W ) � lim infj!1 kıVj k(W ) for eachW �� U .

5.9 Remark: An important additional result (also due to Allard [All72]) is the Integral
Compactness Theorem, which asserts that if all the Vj in the above theorem are integer
multiplicity, then V is also integer multiplicity. (Notice that in this case the hypothesis
‚n(�Vj ; x) � 1 on U nAj is automatically satisfied with an Aj such that �Vj (Aj ) D 0.)
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Proof that V is integer multiplicity if the Vi are: Let W �� U . We first assert that
for �V -a.e. x 2 W there exists c (depending on x ) such that

(1) lim inf kıVik(B�(x)) � c�V (B�(x)); � < min{1; dist(x; @U )}:

Indeed otherwise 9 a set A � W with �V (A) > 0 such that for each j � 1 and each
x 2 A there are �x > 0, ix � 1 such that B�x (x) � W and

�V (B�x (x)) � j
�1
kıVik(B�x (x)); i � ix :

By the Besicovitch Covering Lemma (�4.5 of Ch.1) we then have

�V (Ai ) � cj
�1
kıV`k(W ); ` � i;

where Ai D {x 2 A W ix � i}. Thus

�V (Ai ) � cj
�1 lim sup

`!1

kıV`k(W );

and hence Ai " A as i " 1 we have

�V (A) � cj
�1

for some c (<1) independent of j . That is, �V (A) D 0, a contradiction, and hence (1)
holds. Since ‚n(�V ; x) exists �V -a.e. x 2 U , we in fact have from (1) that for �V -a.e.
x 2 U there is a c D c(x) such that

(2) lim inf kıVik(B�(x)) � c�n; 0 < � < min{1; dist(x; @U )}:

Now since V D v(M; �), it is also true that for �V -a.e. � 2 spt�V we have ��;�#V !
�0v(P ) as � # 0, where P D T�M and �0 D �(�). Then (because Vi ! V , and hence
��;�#Vi ! ��;�#V for each fixed � > 0), it follows that for �V -a.e. � 2 U we can select a
sequence �i # 0 such that, with Wi D ��;�i #Vi ,

(3) Wi ! �0 v(P )

and (by (2)) for each R > 0

(4) kıWik(BR(0))! 0:

We claim that �0 must be an integer for any such �; in fact for an arbitrary sequence {Wi}
of integer multiplicity varifolds in RnCk satisfying (3), (4), we claim that �0 always has
to be an integer.
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To see this, take (without loss of generality)P D Rn�{0}, let q by orthogonal projection
onto (Rn � {0})?, and note first that (3) implies

(5) pRn#(Wi Gn{x 2 R
nCk
W jq(x)j < "})! �0v(R

n)

for each fixed " > 0. However by the mapping formula for varifolds (�1 of Ch.4), we
know that (5) says

(6) v(R
n;  i )! �0 v(R

n);

where
 i (x) D

P
y2p�1

Rn�{0}(x)\{´2RnCk Wjq(´)j<"}�i (y)

(�i D multiplicity function of Wi , so that  i has values in Z [ {1}). Notice that (6)
implies in particular that

(7)
∫

Rn
f  i dLn ! �0

∫
Rn
f dLn 8f 2 C 0c (R

n):

(i.e. measure-theoretic convergence of  i to �0.)

Now we claim that there are sets Ai � B1(0) such that

(8)  i (x) � �0 C "i 8x 2 B1(0) n Ai ; Ln(Ai )! 0; "i # 0I

this will of course (when used in combination with (7)) imply that for any integer N >

�0, max{ i ; N } converges in L1(B1(0)) to �0, and, since max{ i ; N } is integer-valued,
it then follows that �0 is an integer.

On the other hand (8) evidently follows by setting W D Wi in the following lemma, so
the proof is complete. �

In this lemma, p, q denote orthogonal projection of RnCk onto Rn � {0} � RnCk and
{0} � Rk � RnCk respectively.

5.10 Lemma. For each ı 2 (0; 1), ƒ � 1, there is " D "(ı;ƒ; n) 2 (0; ı2) such that if W
is an integer multiplicity varifold in B3(0) with

(�) �W (B3(0)) � ƒ; kıW k(B3(0)) < "
2;

∫
B3(0)
kpS � pk dW (y; S) < "2

there there is a set A � Bn1 (0) such that L
n(A) < ı and, 8x 2 B1(0) n A,P

y2p�1(x)\spt�W \{´Wjq(´)j<"}‚
n(�W ; y) � (1C ı)

�W (B2(x))

!n2n
C ı:

5.11 Remark: It suffices to prove that for each fixed N there is a ı0 D ı0(N ) 2 (0; 1)

such that if ı 2 (0; ı0) then 9 " D "(n;ƒ;N; ı) 2 (0; ı2) such that 5.10 (�)implies
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the existence of A � Bn1 (0) with Ln(A) < ı and, for x 2 Bn1 (0) n A and distinct
y1; : : : ; yN 2 p

�1(x) \ spt�W \ {´ W jq(´)j < "},

(�)
PN
jD1‚

n(�W ; yj ) � (1C ı)
�W (B2(x))

!n2n
C ı:

Because this firstly implies an a-priori bound, depending only on n, k, ƒ, on the number
N of possible points yj , and hence the lemma, as originally stated, then follows. (Notice
that of course the validity of the lemma for small ı implies its validity for any larger ı.)

Proof of 5.10: By virtue of the above Remark, we need only to prove 5.11 (�). Let
� D �W , and consider the possibility that y 2 B1(0) satisfies the inequalities

ıkW k(B�(y)) � "�(B�(y)); � 2 (0; 1);(1) ∫
B�(y)

kpS � pk dW (´; S) � "�n; � 2 (0; 1):(2)

Let

A1 D {y 2 B2(0) \ sptW W (1) fails for some � 2 (0; 1)}
A2 D {y 2 B2(0) \ sptW W (2) fails for some � 2 (0; 1)}:

Evidently y 2 spt�W \ B2(0) n A1) (by the monotonicity formula 3.5)

(3)
�(B�(y))

!n�n
� e"

�(B1(y))

!n
� c; 0 < � < 1;

(c D c(ƒ; n)), while if y 2 A2 n A1 we have (using (3))

(4)
∫
B�(y)

kpS � pk dW (´; S) � "�ny � c"�(B�y (y))

for some �y 2 (0; 1). If y 2 A1 then

(5) �(B�y (y)) � "
�1
kıW k(B�y (y))

for some �y 2 (0; 1).

Since then
{
B�y (y)

}
y2A1[A2

coversA1[A2 we deduce from (4), (5) and the Besicovitch
Covering (�4.5 of Ch.1) that

�(A1 [ A2) � c"
�1(

∫
B3(0)
kpS � pk dW (a; S)C kıW k(B3(0)))(6)

� c"
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by the hypotheses on W .

Our aim now is to show 5.11 (�) whenever x 2 Bn1 (0) n p(A1 [A2). In view of (6) this
will establish the required result (with A D p(A1 [ A2)). So let x 2 Bn1 (0) n p(A1 [
A2). In view of the monotonicity formula 3.6 it evidently suffices (by translating and
changing scale by a factor of 3=2) to assume that x D 0 2 Bn1 (0) np(A1 [A2). We shall
subsequently assume this.

We first want to establish the two inequalities, that, for y 2 Bn1 (0) n p(A1 [ A2) and
� > 0,

‚n(�; y) � e"�
�(U 2�� (y))

!n�n
C c"�=�; 0 < � < 1;(7)

�(U �� (y))

!n�n
� e"�

�(U 2�� (y))

!n�n
C c"�=�; 0 < � < � � 1;(8)

where
U �� (y) D B� (y) \ {´ 2 R

nCk
W jq(´ � y)j < �}:

Indeed these two inequalities follow directly from 3.5 and 3.7. For example to establish
(7) we note first that 3.5 gives (7) directly if � � � , while if � < � then we first use 3.5 to
give‚n(�; y) � e"� �(B� (y))

!n�n
and then use 3.7 with h of the form h(´) D f (jq(´�y)j),

f (t) � 1 for t < � and f (t) � 0 for t > 2� .

Since
ˇ̌
rSf (jq(´� y)j)

ˇ̌
� f 0(jq(´� y)j)jpS � pj (Cf. the computation in ?? of Ch.4

we then deduce (by integrating in 3.7 from � to � and using (3))

�(B� (y))

!n�n
�
�(U 2�� (y))

!n�n
C c"�=�:

(8) is proved by simply integrating 3.7 from � to � (and using (3)).

Our aim now is to use (7) and (8) to establish

(9)
PN
jD1

�(U �� (yj ))

!n�n
� (1C cı2)

�(B2(0))

!n2n
C cı2

with c D c(n; k;N;ƒ), provided 2ı2� � � � 1
4
minj¤` jyj �y`j, yj 2 spt�\p�1(0)\

{´ W jq(´)j < "}, 0 … p(A1[A2). (In view of (7) this will prove the required result 5.11
(�) for suitable ı0(N ).)

We proceed by induction onN . N D 1 trivially follows from (8) by noting thatU 2�� (y1) �

B�(y1) (by definition of U 2�� (y1)) and then using the monotonicity 3.5 together with
the fact that jy1j < ". Thus assume N � 2 and that (9) has been established with any
M < N in place of N .
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Let y1; : : : ; yN be as in (9), and choose � 2 [�; 1) such that minj¤` jq(yj ) � q(y`)j
(D minj¤` jyj � y`j) D 4ı2�, and set �̃ D 2ı2� (� 2� ). Then

�(U �� (yj ))

�n
�
�(U

1
2 �̃
� (yj ))

�n

� e"�
�(U �̃� (yj ))

�n
C c" (by (8));

c D c(n; k; ı). Now since �̃ D 1
2
minj¤` jq(yj ) � q(y`)j we can select {´1; : : : ; ´Q} �

{y1; : : : ; yN } (Q � N � 1) and �̃ � c�̃ such thatb� � 3ı2� and
[
N
jD1U

�̃
� (yj ) � [

Q

`D1
Ub�
�(1Ccı2)

(´`);

where c D c(N ), and such thatb� � 1
4
mini¤j j´i � j́ j. Since cı2 < 1=2 for ı < ı0(N )

(if ı0(N ) is chosen suitably) we thenb� � 2ı2�̃ and
PN
jD1

�(U �̃� (yj ))

�n
� (1C cı2)

PQ
jD1

�(Ub�
�̃
( j́ ))

�̃n
;

where �̃ D (1C cı2)� and c D c(N ). SinceQ � N �1, the required result then follows
by induction (choosing " appropriately). �



Appendix A

A General Regularity Theorem

We here prove a useful general regularity theorem, which is essentially an abstraction
of the “dimension reducing” argument of [Fed70]. There are a number of important
applications of this general theorem in the text.

Let P � n � 2 and let F be a collection of functions ' D ('1; : : : ; 'Q) W RP ! RQ

(Q D 1 is an important case) such that each 'j is locally Hn-integrable on RP . For
' 2 F , y 2 RP and � > 0 we let 'y;� be defined by

'y;�(x) D '(y C �x); x 2 R
P :

Also, for ' 2 F and a given sequence {'k} � F we write 'k * ' if
R
'kf dHn

!R
'f dHn (in RQ ) for each given f 2 C 0c (RP ).

We subsequently make the following 3 special assumptions concerning F :

A.1 (Closure under appropriate scaling and translation): If jyj � 1 � �, 0 < � < 1,
and if ' 2 F , then 'y;� 2 F .

A.2 (Existence of homogeneous degree zero “tangent functions”): If jyj < 1, if
{�k} # 0 and if ' 2 F , then there is a subsequence {�k 0} and  2 F such that
'y;�k 0 *  and  0;� D  for each � > 0.

A.3 (“Singular set” hypotheses): We assume there is a map

sing W F ! C (D set of closed subsets of R
P )

such that:

(1) sing' D ∅ if ' 2 F is a constant multiple of the indicator function of an n-
dimensional subspace of RP ,

(2) If jyj � 1 � �, 0 < � < 1, then sing'y;� D ��1(sing' � y),
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(3) If ', 'k 2 F with 'k * ', then for each " > 0 there is a k(") such that

B1(0) \ sing'k � {x 2 R
P
W dist(sing'; x) < "} 8k � k("):

We can now state the main result of this section:

A.4 Theorem. Subject to the notation and assumptions A.1, A.2, A.3 above we have

(�) dim(B1(0) \ sing') � n � 1 8' 2 F :

(Here “dim” is Hausdorff dimension, i.e. (�) means Hn�1C˛(sing') D 0 8˛ > 0.)

In fact either sing' \ B1(0) D ∅ for every ' 2 F or else there is an integer d 2 [0; n � 1]

such that
dim sing' \ B1(0) � d 8' 2 F

and such that there is some  2 F and a d -dimensional subspace L � RP with

(��) sing D L and  y;� D  8y 2 L; � > 0:

If d D 0 then sing' \ B�(0) is finite for each ' 2 F and each � < 1.

A.5 Remark: One readily checks that ifL is an n-dimensional subspace of RP and 2 F
satisfies A.4 (��), then  is exactly a constant multiple of the indicator function of L
(hence sing D ∅ by A.3(1)); otherwise we would have P > n and  � const. ¤ 0

on some (nC 1)-dimensional half-space, thus contradicting the fact that  is locallyHn-
integrable on RP .

Proof of A.4: Assume sing' \B1(0) ¤ ∅ for some ' 2 F , and let d D sup{dimL W L
is a d -dimensional subspace of RP and there is ' 2 F with sing' ¤ ∅ and 'y;� D '

8y 2 L, � > 0}. Then by A.5 we have d � n � 1.

For a given ' 2 F and y 2 B1(0) we let T ('; y) be the set of  2 F with  0;� D
 8� > 0 and with lim'y;�k D  for some sequence �k # 0. (T ('; y) ¤ ∅ by
assumption A.2.)

Let ` � 0 and let
F` D

{
' 2 F W H`(sing' \ B1(0)) > 0

}
:

Our first task is to prove the implication

(1) ' 2 F`) 9 2 T ('; x) \ F`

for H`-a.e. x 2 sing' \ B1(0).

To see this, let H`
ı be the “size ı approximation” of H` as described in �2 of Ch.1 and

recall H`(A) > 0 ” H`
1(A) > 0, so that

F` D
{
' 2 F W H`

1(sing' \ B1(0)) > 0
}
:
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Also note that (by 3.8(2) of Ch.1), for any bounded subset A of RP ,

H`
1(A) > 0) ‚�n(H`

1 A; x) > 0 for H`-a.e. x 2 A:

Thus we see that if ' 2 F` then for H`-a.e. x 2 sing' \ B1(0) we have

‚�`(H`
1 sing'; x) > 0:

For such x we thus have a sequence �k # 0 such that

(2) lim
k!1

H`
1(sing' \ B�k (x))

�`
k

> 0;

and by assumption A.2 there is a subsequence {�k 0} such that 'x;�k 0 *  2 T ('; x). If
nowH`

1(sing ) D 0, then for any " > 0 we could find open balls
{
B�j (xj )

}
such that

sing � [jB�j (xj )

and

(3)
P
j!`�

`
j < "

(be definition of H`
1 ). Now (2) in particular implies that K � B1(0) n [jB�j (xj ) is a

compact set with positive distance from sing . Hence by assumption A.3(3) we have

sing'x;�k 0 \ B1(0) � [jB�j (xj )

for all sufficiently large k, and hence by (3)

H`
1(sing'x;�k 0 \ B1(0)) < "; k � k("):

Thus since ��1
k
(sing' � x) D sing'x;�k (by A.3(2)) we have

��`k 0H
`
1(sing' \ B�k 0 (x)) < "

for all sufficiently large k, thus a contradiction for " < limk!1 �
�`
k
H`
1(sing'\B�k (x)).

(Such " can be chosen by (2).)

We have therefore established the general implication (1). From now on take ` > d � 1
so that F` ¤ ∅ (which is automatic for ` � d by definition of d ). By (1) there is ' 2 F`

with '0;� D ' 8� > 0. Suppose also that there is a k-dimensional subspace (k � 0) S of
RP such that 'y;� D ' 8y 2 S , � > 0. (Notice of course this is no additional restriction
for ' in case k D 0.) Now if k � dC1 then, by definition of d , we can assert sing' D ∅,
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thus contradicting the fact that ' 2 F`. Therefore 0 � k � d , and if k � d � 1 (< `),
then H`(S) D 0 and in particular

(4) 9x 2 B1(0) \ sing' n S:

But by A.2 we can choose  2 T ('; x). Since  D lim'x;�j for some sequence �j # 0,
we evidently have (since 'yCx;� D 'x;� 8y 2 S , � > 0)

 y;1 D lim'yCx;�j D lim'x;�j D  8y 2 S

and
 ˇx;1 D lim'xC�j ˇx;�j D  8ˇ 2 R:

(All limits in the weak sense described at the beginning of the section.) Thus  ´;� D  
for each � > 0 and each ´ in the (k C 1)-dimensional subspace T of RP spanned by S
and x. sing ¤ ∅ (by A.3(3)), hence by induction on k we can take k D d � 1; i.e.
dimT D d , and hence sing � T by A.3(2). On the other hand if 9 x̃ 2 sing n T
then we can repeat the above argument (beginning at (4)) with T in place of S and  in
place of '. This would then give a (d C 1)-dimensional subspace T̃ and a  ̃ 2 F with
sing  ̃ � T̃ , thus contradicting the definition of d . Therefore sing' D T . Furthermore
if ` > d then the above induction works up to k D d and again therefore we would have
a contradiction. Thus dim(B1(0) \ sing') � d 8' 2 F .

Finally to prove the last claim of the theorem, we suppose that d D 0. Then we have
already established that

(5) H˛(sing' \ B1(0)) D 0 8˛ > 0; ' 2 F :

If sing' \ B�(0) is not finite, then we select x 2 B�(0) such that x D lim xk for some
sequence xk 2 sing'\B1(0)n{x}. Then letting �k D 2jxk�xjwe see from A.3(2) that
there is a subsequence {�k 0} with 'x;�k 0 *  2 T ('; x) and (xk 0�x)=jxk 0�xj ! � 2

@B1(0). Now by A.3(2), (3) we know that {�=2} \ {0} � sing and, since  0;� D  ,
this (together with A.3(2)) gives L� � sing where L� is the ray determined by 0 and
�. Then H1(sing \ B1(0)) > 0, thus contradicting (5), because  2 F . �

Appendix B

Non-existence of Stable Minimal
Hypercones, n � 6

Here we describe J. Simons [Sim68] result on non-existence in RnC1 of n-dimensional sta-
ble minimal cones (previously established in case n D 2; 3 by Fleming [Fle62] and Alm-
gren [Alm66] respectively). The proof here follows essential Schoen-Simon-Yau [SSY75],
which is a slight variant of the original proof in [Sim68].

Suppose to begin that C 2 Dn(RnC1) is a cone (�0;�#C D C ) and C is integer multi-
plicity with @C D 0. If singC � {0} and if C is minimizing in RnC1 then, writing
M D sptC n {0} and taking Mt as in �6 of Ch.2, we have d

dt
Hn(Mt )

ˇ̌
tD0
D 0 and

d2

dt2
Hn(Mt )

ˇ̌
tD0
� 0. (This is clear because in fact Hn(Mt ) takes its minimum value at

t D 0, by virtue of our assumption that C is minimizing.) Notice thatM is orientable,
with orientation induced from C , and hence in particular we can deduce from 6.5 of Ch.
2 that

B:1

∫
M
(jrM �j2 � �2jAj2) dHn

� 0

for every � 2 C 1c (M ) (notice 0 … M , so such � vanish in a neighborhood of 0). Here
A is the second fundamental form ofM and jAj is its length, as described in �4 of Ch.2
and 6.5 of Ch.2.

The main result we need is given in the following theorem.
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B.2 Theorem. Suppose 2 � n � 6 and M is an n-dimensional cone embedded in RnC1

with zero mean curvature (see �4 of Ch.2) and withM nM D {0}, and suppose thatM is
stable in the sense that B.1 holds. ThenM is a hyperplane.

As explained above, the hypotheses are in particular satisfied if M D sptC n {0}, with
C 2 Dn(RnC1) a minimizing cone with @C D 0 and singC � {0}.)

B.3 Remark: B.2 is false for n D 7; J. Simons [Sim68] was the first to point out that the
cone M D

{
(x1; : : : ; x8) 2 R8 W

P4
iD1(x

i )2 D
P8
iD5(x

i )2
}
is a stable minimal cone.

(Notice thatM is the cone over the compact manifold ( 1p
2
S3) � ( 1p

2
S3) � S7 � R8.)

The fact that the mean curvature ofM is zero is checked by direct computation. The fact
that M is actually stable is checked as follows. First, by direct computation one checks
that the second fundamental form A ofM satisfies jAj2 D 6=jxj2.

On the other hand for a stationary hypersurfaceM � RnC1 the first variation formula
?? of Ch.2 says

R
divM X dHn D 0 if spt jX j is a compact subset of M . Taking Xx D

(�2=r2)x, � 2 C1c (M ), r D jxj, and computing as in �4 of Ch.4, we get

(n � 2)
∫
M
(�2=r2) dHn

D �2

∫
M
�r�2x � rM � dHn:

Using the Schwarz inequality on the right we get

(n � 2)2

4

∫
M
(�2=r2) dHn

�

∫
M
jr
M �j2Hn:

Thus we have stability forM (in the sense of B.1) whenever A satisfies jxj2jAj2 � (n �

2)2=4.

For the example above we have n D 7 and jxj2jAj2 D 6, so that this inequality is satisfied,
and the cone over S3 � S3 is stable as claimed. (Similarly the cone over Sq � Sq is stable
for q � 3; i.e. when the dimension of the cone is � 7.)

Before giving the proof of B.2 we need to derive the identity of J. Simons for the Laplacian
of the length of the second fundamental form of a hypersurface (B.8 below).

The simple derivation here assumes the reader’s familiarity with basic Riemannian geom-
etry. (A completely elementary derivation, assuming no such background, is described
in [Giu84].)

For the moment letM be an arbitrary hypersurface in RnC1 (M not necessarily a cone,
and not necessarily having zero mean curvature).

Let �1; : : : ; �n be a locally defined family of smooth vector fields which, together with the
unit normal � ofM , define an orthonormal basis for RnC1 at all points in some region
ofM .
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The second fundamental form of M relative to the unit normal � is the tensor A D
hij �i ˝ �j , where hij D

〈
D�j �; �i

〉
. (Cf. �4 of Ch.2.) Recall (see 4.32 of Ch.2) that

B:4 hij D hj i ;

and, since the Riemann tensor of the ambient space RnC1 is zero, we have the Codazzi
equations

B:5 hij;k D hik;j ; i; j; k 2 {1; : : : ; n}:

Here hij;k denotes the covariant derivative of A with respect to �k ; that is, hij;k are such
that r�kA D hij;k�i ˝ �j .

We also have the Gauss curvature equations

B:6 Rijk` D hi`hjk � hikhj`;

where R D Rijk`�i ˝ �j ˝ �k ˝ �` is the Riemann curvature tensor ofM , and where we
use the sign convention such that Rijj i (i ¤ j ) are sectional curvatures ofM (D C1, if
M D Sn ).
From the properties of R (in fact essentially by definition of R) we also have, for any
2-tensor aij �i ˝ �j ,

aij;k` D aij;`k C aimRmj`k C amjRmi`k

(where aij;k` means aij;k;`—i.e. the covariant derivative with respect to �` of the tensor
aij;k�i ˝ �j ˝ �k ). In particular

hij;k` D hij;`k C himRmj`k C hmjRmi`kB.7

D hij;`k C him[hm`hjk � hmkhj`] � hmj [hi`hmk � hikhm`]

by B.6, where, here and subsequently, repeated indices are summed from 1 to n.

B.8 Lemma. In the notation above,

�M ( 1
2
jAj2) D

P
i;j;kh

2
ij;k � jAj

4
C hijH;ij CHhmihmjhij ;

whereH D hkk D traceA.

Proof: We first compute hij;kk :

hij;kk D hik;jk (by B.5)

D hki;jk (by B.4)

D hki;kj C hkm[hmjhik � hmkhij ]

� hmi [hkjhmk � hkkhmj ] (by B.7)

D hki;kj � (
P
m;kh

2
mk)hij C hkkhmihmj

D hkk;ij � (
P
m;kh

2
mk)hij C hkkhmihmj (by B.5)
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Now multiplying by hij we then get (since hijhij;kk D 1
2
(
P
i;jh

2
ij );kk �

P
i;j;kh

2
ij;k

)

B:9 1
2
(
P
i;jh

2
ij );kk D

P
i;j;kh

2
ij;k � (

P
i;jh

2
ij )
2
C hijH;ij CHhmihmjhij ;

which is the required identity.

We nowwant to examine carefully the term
P
i;j;kh

2
ij;k

appearing in the identity of B.8 in
caseM is a conewith vertex at 0 (i.e. �0;�M DM 8� > 0). In particularwewant to com-
pare

P
i;j;kh

2
ij;k

with jrM jAjj2 in this case. Since jrM jAjj2 D
Pn
kD1jAj

�2(hijhij;k)
2,

we look at the difference

B:10 D �
P
i;j;kh

2
ij;k �

Pn
kD1jAj

�2(hijhij;k)
2:

B.11 Lemma. IfM is a cone (not necessarilyminimal) the quantityD defined inB.10 satisfies

D(x) � 2jxj�2jA(x)j2; x 2M:

Proof: Let x 2 M and select the frame �1; : : : ; �n so that �n is radial (x=jxj) along the
ray `x through x, and so (as vectors in RnC1 ) �1; : : : ; �n are constant along `x . Then

(1) hnj D hjn D 0 on `x ; j D 1; : : : ; n;

and (since hij (�x) D ��1hij (x), � > 0)

(2) hij;n D �r
�1hij on `x :

Rearranging the expression for D, we have

D D 1
2

Pn
kD1

Pn
i;j;r;sD1jAj

�2(hrshij;k � hijhrs;k)
2;

as one easily checks by expanding the square on the right. Now sincePn
i;j;r;sD1(hrshij;k � hijhrs;k)

2
� 4

Pn�1
i; j; r D 1
s Dn

(hrshij;k � hijhrs;k)
2;

we thus have
D � 2jAj�2

Pn
kD1

Pn�1
i;j;rD1(hijhrn;k)

2:

By the Codazzi equations B.5 and (2) this gives

D � 2r�2jAj�2
Pn
kD1

Pn�1
i;j;rD1h

2
ijh

2
rk

D 2r�2jAj�2jAj4 (by (1))

D 2r�2jAj2;
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as required. �

Proof of B.2: Notice that so far we have not used the minimality ofM (i.e. we have not
usedH (D hkk) D 0). We now do setH D 0 in the above computations, thus giving (by
B.8, B.11)

(1) �M ( 1
2
jAj2)C jAj4 � 2r�2jAj2 C jrjAjj2

for the minimal cone M . (Notice that jAj is Lipschitz, and hence jrjAjj makes sense
Hn-a.e. inM .)

Our aim now is to use (1) in combination with the stability inequality B.1 to get a con-
tradiction in case 2 � n � 6.

Specifically, replace � by �jAj in B.1. This gives∫
M
�2jAj4 �

∫
M

ˇ̌
r(�jAj)

ˇ̌2(2)

D

∫
M
(jr�j2jAj2 C �2jrjAjj2)C 2

∫
M
�jAjr� � rjAj:

Now

2

∫
M
�jAjr� � rjAj D 2

∫
M
�r� � r( 1

2
jAj2)

D

∫
M
(r�2) � r( 1

2
jAj2)

D �

∫
M
�2�M ( 1

2
jAj2)

�

∫
M
(jAj5�2 � 2r�2�2jAj2 C �2jrjAjj2) by (1);

and hence (2) gives

(3) 2

∫
M
r�2�2jAj2 �

∫
M
jAj2jr�j2 8� 2 C 1c (M ):

Now we claim that (3) is valid even if � does not have compact support onM , provided
that � is locally Lipschitz and

(4)
∫
M
r�2�2jAj2 <1:

(This is proved by applying (3) with �" in place of �, where " is such that "(x) � 1

for jxj 2 ("; "�1), jr"(x)j � 3=jxj for all x, "(x) D 0 for jxj < "=2 or jxj > 2"�1,
and 0 � " � 1 everywhere, then letting " # 0 and using (4).)
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SinceM is a cone we can write

(5)
∫
M
'(x) dHn(x) D

∫ 1
0
rn�1

∫
†
'(r!) dHn�1(!)dr

for any non-negative continuous ' on M , where † D M \ Sn is a compact (n � 1)-
dimensional embedded submanifold. Since jA(x)j2 D r�2jA(x=jxj)j2, we can now use
(5) to check that � D r1C"r

1�n=2�2"
1 , r1 D max{1; r}, is a valid choice to ensure (4),

hence we may use this choice in (3). This is easily seen to give

2

∫
M
r2"r2�n�4"1 jAj2 � (n

2
� 2C ")2

∫
M\{r>1}

jAj2r2�n�2"(6)

C (1C ")2
∫
M\{r<1}

jAj2r2" <1:

For 2 � n � 6 we can choose " such that (n
2
� 2C ")2 < 2 and (1C ")2 < 2, hence (6)

gives jAj2 � 0 onM as required. �
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