Curves in R?: Graphs vs Level Sets

Graphs (y = f(z)): The graph of f: R — R is
{(z,y) €R* |y = f(2)}.

7

Ezample: When we say “the curve y = 22" we really mean: “The graph of the function
f(x) = 22 That is, we mean the set {(z,y) € R? | y = 2?}.

Level Sets (F(x,y) = c): The level set of I': R? — R at height c is

2
{(z,y) e R*| F(z,y) = c}.
Ezample: When we say “the curve z? + y?> = 1,” we really mean: “The level set of the

function F'(z,y) = x?+y? at height 1.” That is, we mean the set {(z,y) € R? | 22 +y? = 1}.

Note: Every graph is a level set (why?). But not every level set is a graph.
Graphs must pass the vertical line test. (Level sets may or may not.)

Surfaces in R3: Graphs vs Level Sets

Graphs (z = f(z,y)): The graph of f: R> — R is

{(z,y,2) eR’ | z = f(x,9)}.

Ezample: When we say “the surface z = 22 + y2,” we really mean: “The graph of the func-

tion f(x,y) = 2* +y*.” That is, we mean the set {(z,y,2) € R? | z = 2% + y*}.
Level Sets (F(x,y,2) = c): The level set of F': R? — R at height c is

{(z,y,2) €eR®| F(x,y,2) = c}.

Example: When we say “the surface 22 +y? + 22 = 1,” we really mean: “The level set of the
function F(z,y,z) = 2® + y? + 2% at height 1.” That is, {(x,y,2) € R® | 22 + y* + 22 = 1}.

Again: Every graph is a level set (why?). But not every level set is a graph.
Graphs must pass the vertical line test. (Level sets may or may not.)

Q: Do you see the patterns here? For example, suppose G: R" — R.

o What does the graph of G look like? (A: 7-dimensional object in R,
That is, {(z1,...,27,28) € R® | 2 = G(z1,...,27)}.)

o What do the level sets of G look like? (A: They are (generically) 6-dim
objects in R”. That is, {(z1,...,27) € R | G(x1,...,27) = c}.)



Curves in R?: Examples of Graphs

{(z,y) € R*| y = ax + b}: Line (not vertical)
{(z,y) € R*| y = aa® + bz + ¢}: Parabola

Curves in R?: Examples of Level Sets

{(z,y) € R?| az + by = c}: Line
2 2

{(x,y) c R? x— + 3;—2 = 1}: Ellipse

{(x,y) cR?| = - % = 1}: Hyperbola

{(x,y) er?| - 4L 1} Hyperbola

Surfaces in R*: Examples of Graphs

{(a: y,2) ER®| 2 = ax + by}: Plane (not containing a vertical line)
s 2 P g .
(z,y,2) € R =St a Elliptic Paraboloid
(2,y,2) ER*| 2 = _x_2 vl Elliptic Paraboloid
) y7 - a2 b2 : p
2 0
{ (z,y,2) €eR?| 2 = 513_2 — %} Hyperbolic Paraboloid (“saddle”)
a
2 2
{ (z,y,2) ER?| 2 = _x_2 + :ZQ }: Hyperbolic Paraboloid (“saddle”)
a

Surfaces in R*: Examples of Level Sets

{(x,y,z) c R? ax—l—by—i—cz:d}: Plane

2 2 2
{(x,y, z) € R? x_ + 22 + Z— = 1}: Ellipsoid
x2 2 22
{(:L‘, y,2) €R? o] + i 1}: Hyperboloid of 1 Sheet
St oyt 2 | .
(x,y,2) €R o 1 ¢: Hyperboloid of 2 Sheets



Two Model Examples
Example 1A (Elliptic Paraboloid): Consider f: R? — R given by

flzy) =2+ ¢~

The level sets of f are curves in R?. Level sets are {(z,y) € R?| 22+ y* = c}.
The graph of f is a surface in R3. Graph is {(z,y,2) € R? ‘ z =2+ y?}.

Notice that (0,0,0) is a local minimum of f.
Note that 5£(0,0) = 3£(0,0) = 0. Also, 9°1(0,0) > 0 and gé(o 0) > 0.
Sketch the level sets of f and the graph of f:

Example 1B (Elliptic Paraboloid): Consider f: R? — R given by

f(xvy) = -z’ — y2-

The level sets of f are curves in R%. Level sets are { (z,y) € R? | —2?—y? = c}.
The graph of f is a surface in R®. Graph is {(z,y,2) € R®| z = —a? — y*}.

Notice that (0,0,0) is a local maximum of f.

Note that 2£(0,0) = 2£(0,0) = 0. Also, 24(0,0) < 0 and 2£(0,0) < 0.

Sketch the level sets of f and the graph of f:

Example 2 (Hyperbolic Paraboloid): Consider f: R? — R given by

f(x,y) =2’ _y2-

The level sets of f are curves in R?. Level sets are { (z,y) € R? ‘ 2 —y? = c}.
The graph of f is a surface in R®. Graph is {(z,y,2) € R®| 2 = 2? — y?}.

Notice that (0,0,0) is a saddle point of the graph of f.

Note that 6f(0 0) = 8f(O 0) = 0. Also, gé(() 0) >0 Whlle (O 0) < 0.

Sketch the level sets of f and the graph of f:




Introduction: Derivatives of Functions R" — R™

Def: Let F': R" — R™ be a function, say

F(xy,...,xy) = (Fi(xy, . yxn), oo Fp(x, o0 x)).

Its derivative at the point (z1,...,x,) is the linear transformation
DF(xy,...,z,): R" — R™ whose (m X n) matrix is
orn .. 9R
o0x o,
DF(xl,...,mn>: E E
oF, ... 0Fy
0x1 ox,

Note: The columns are the partial derivatives with respect to x1, then to
Ty, etc. The rows are the gradients of the component functions F*!, F?, etc.

| I

DF(xl’...,[L'n): g—f—‘l e (‘?TF —

~VF,

Example: Let F': R? — R? be the function

F(:va) - (x + 2y, sin(x), 6y) - (Fl(xay)7F2(xay)7FS(ajﬂy))'

Its derivative at (z,y) is a linear transformation DF(z,y): R> — R3. The
matrix of the linear transformation DF'(z,y) is:

or,  OF

Ox alg 1 2

DF(z,y) = |92 22| = |cos(z) 0
ory ot 0 €
or Oy

Notice that (for instance) DF'(1,1) is a linear transformation, as is DF'(2, 3),
etc. That is, each DF(x,y) is a linear transformation R? — R3,

Goals: We will:
o Interpret the derivative of F' as the “best linear approximation to F.”
o State a Chain Rule for multivariable derivatives.



Introduction: Gradient of Functions R" — R

Def: Let f: R" — R be a function.
Recall: The derivative of f: R” — R at the point x = (x1,...,x,) is the

1 X n matrix
0 0
Do) = [ - &

The gradient of f: R" — R at the point x = (x1,...,x,) is the vector

ox1? Y O0xp,

Vf(x) = [8—f ﬂ]

The directional derivative of f: R" — R at the point x = (x1,...,2,)
in the direction v € R” is the dot product of the vectors V f(x) and v:

Dyf(x) = V[f(x)-v.

We will give geometric interpretations of these concepts later in the course.

Introduction: Hessian of Functions R" — R

Theorem: Let f: R” — R be a function whose second partial derivatives
are all continuous. Then:

o’f Of
81@8xj__'6xj8x[

In brief: “Second partials commute.”

Def: Let f: R" — R be a function.
The Hessian of f: R" — R at the point x = (x1,...,x,) is the n x n
matrix

2f .. 9
0r? 0x10x,
Hfx)=1] : :
o*f ... &f
0z, 011 0x?

The directional second derivative of f: R” — R at the point x =
(1,...,x,) in the direction v € R" is

v Hf(x)v.

Again, we will give geometric interpretations of these concepts later on.



Linear Approximation: Single-Variable Calculus

Review: In single-variable calc, we look at functions f: R — R. We write
y = f(x), and at a point (a, f(a)) write:

Ay =~ dy.
Here, Ay = f(x) — f(a), while dy = f'(a)Ax = f'(a)(x — a). So:
f(@) = fa) = f'(a)(z — a).

Therefore:

f(@) = fla) + f(a)(z — a).

The right-hand side f(a) + f'(a)(z — a) can be interpreted as follows:
o It is the best linear approximation to f(z) at z = a.
o It is the 1st Taylor polynomial to f(x) at x = a.
o The line y = f(a) + f'(a)(xz — a) is the tangent line at (a, f(a)).

Linear Approximation: Multivariable Calculus

Now consider functions f: R" — R™. At a point (a,f(a)), we have exactly

the same thing:
f(x) — f(a) = Df(a)(x — a).

That is:
f(x) ~ f(a) + Df(a)(x — a). (%)

Note: The object Df(a) is a matriz, while (x — a) is a wvector. That is,
Df(a)(x — a) is matrix-vector multiplication.

Example: Let f: R? — R. Let’s write x = (21, 72) and a = (a1, az). Then
(*) reads:

f($1,332) ~ f(al,a2) (ah%) ac‘?_gi(ah@)} [xl - al]

of
+ [ﬁxl To — a9
0 0
= f(a1,az) + a—xl(@l, az)(r1 — ar) + 8—52(611, az) (w2 — az).



Review: Taylor Polynomials in Single-Variable Calculus

Review: In single-variable calculus, we look at functions f: R — R.
At a point a € R, the linear approximation (1st-deg Taylor polynomial)
to f is:
f(@) = f(a) + f'(a)(z — a).

More accurate is the quadratic approximation (2nd-deg Taylor polynomial)

() = J(a) + @) — o) + 50" (@) & — @)

We would like to have similar ideas for multivariable functions.

Linear Approximation: 1st-Deg Taylor Polynomials

Let f: R” — R™. The linear approximation of f at the point a € R"
is:
f(x) ~ f(a) + Df(a)(x — a). (1)
Note that Df(a) is a matriz, while (x — a) is a vector. That is, Df(a)(x — a)
is matrix-vector multiplication.
Note that (1) is the best linear approximation to f(x) for points x near a.
It is the 1st-degree Taylor polynomial to f(x) at a.

Quadratic Approximation: 2nd-Deg Taylor Polynomials

Let f: R" — R. The quadratic approximation of f at the point a € R”
1s:

1
f(x) ~ f(a) + Df(a)(x —a) + 5;(x —a) Hf(a)(x — a). (2)
Note that (x — a)? is a row vector, while (x — a) is a column vector, while
H f(a) is a matrix. So, 5;(x —a)' H f(a)(x — a) is of the form v’ Av.
Note that (2) is the best quadratic approximation to f(x) for points x

near a. It is the 2nd-degree Taylor polynomial to f(x) at a.

Example: Let f: R* — R be f(x,y) = 23sin(y). For (z,y) near a = (2,Z):

few) = 254D s [ 2 4 g o2 y- g a1
2 ) L 2

r—2] 1 (12 0] [z —2]

= 8 + [12 0] L/_%} +5le—2 y—3] [0 _8} y— 1]




Tangent Lines/Planes to Graphs

Fact: Suppose a curve in R? is given as a graph y = f(z). The equation of
the tangent line at (a, f(a)) is:

y = f(a) + f(a)(z - a).

Okay, you knew this from single-variable calculus. How does the multivari-
able case work? Well:

Fact: Suppose a surface in R? is given as a graph z = f(z,y). The equation
of the tangent plane at (a, b, f(a,b)) is:

z= f(a,b) + %(a,b)(w —a)+ g—‘;(a,b)(y —b).

Notice the similarity between this and the linear approximation to f at (a,b).

Tangent Lines/Planes to Level Sets

Def: For a function F': R" — R, its gradient is the vector in R" given by:
oF OF OF

VF=|—, —, ..., :
0x1 019 ox,,
Theorem: Consider a level set F(z1,...,x,) = c of a function F': R" — R.
If (ay,...,a,) is a point on the level set, then VF(aq,...,a,) is normal to

the level set.

Corollary 1: Suppose a curve in R? is given as a level curve F(z,y) = c.
The equation of the tangent line at a point (xg, yo) on the level curve is:

oF oF
8_x(x0’ Yo)(x — xo) + 6_y(x0’ Y0)(y — yo) = 0.

Corollary 2: Suppose a surface in R is given as a level surface F(z,y, z) = c.
The equation of the tangent plane at a point (xg, yo, 20) on the level surface
is:

oF oF oF

%(1’07 Yo, 20) (T — o) + 6—y($07 Y0, 20) (Y — o) + E('x(ﬁ Yo, 20)(2 — 2z0) = 0.

Q: Do you see why Cor 1 and Cor 2 follow from the Theorem?



Composition and Matrix Multiplication

Recall: Let f: X — Y and g: Y — Z be functions. Their composition is
the function go f: X — Z defined by

(go f)(z) = g(f(x)).

Observations:
(1) For this to make sense, we must have: co-domain(f) = domain(g).
(2) Composition is not generally commutative: that is, fog and go f are
usually different.
(3) Composition is always associative: (hog)o f=ho(go f).

Fact: If T: R¥ — R" and S: R® — R™ are both linear transformations, then
S o T is also a linear transformation.

Question: How can we describe the matrix of the linear transformation SoT'
in terms of the matrices of S and T'7

Fact: Let T: R" — R" and S: R" — R" be linear transformations with
matrices B and A, respectively. Then the matrix of SoT is the product AB.

We can multiply an m x n matrix A by an n X k matrix B. The result,
AB, will be an m x k matrix:

(mxn)(nxk)— (mxk).

Notice that n appears twice here to “cancel out.” That is, we need the number
of rows of A to equal the number of columns of B — otherwise, the product
AB makes no sense.

Example 1: Let A be a (3 x 2)-matrix, and let B be a (2 x 4)-matrix. The
product AB is then a (3 x 4)-matrix.

Example 2: Let A be a (2 x 3)-matrix, and let B be a (4 x 2)-matrix. Then
AB is not defined. (But the product BA is defined: it is a (4 x 3)-matrix.)



Chain Rule

Chain Rule (Matrix Form): Let f: R® — R” and g: R™ — R? be any
differentiable functions. Then

Di(g o f)(x) = Dg(f(x)) - DE(x).
Here, the product on the right-hand side is a product of matrices.
Many texts describe the chain rule in the following more classical form.

While there is a “classical” form in the general case of functions g: R” — RP,
we will keep things simple and only state the case of functions g: R — R

with codomain R.

Chain Rule (Classical Form): Let g = g(z1,...,x,,) and suppose each

x1,...,Ty is a function of the variables tq,...,t,. Then:
dg  Og Ox N 0g 0xs dg Oz,
6t1 - 8ZE1 8t1 6:102 8t1 31‘m (9751 ’
dg  dg Ox N 0g Oxsy n 0g Oz,
8tn B 8x1 8tn 85132 0t1 aLUm (%n .

Example 1: Let z = g(u,v), where v = h(z,y) and v = k(z,y). Then the
chain rule reads:

0: oz 0z
or  Oudxr Oviz
9: _0:0u 020
oy Oudy Ovdy

and

Example 2: Let z = g(u,v,w), where u = h(t), v = k(t), w = £(t). Then
the chain rule reads:

0: _0:0u 0:00 00w

ot OJudt OJvdot Ow Ot
Since u, v, w are functions of just a single variable ¢, we can also write this

formula as:
0z dw

0z _ Ozdu  Dzdv  0zdw
ot  Oudt Ovdt Owdt’



For Clarification: The Two Forms of the Chain Rule

Q: How exactly are the two forms of the chain rule the same?
A: If we completely expand the matrix form, writing out everything in compo-
nents, we end up with the classical form. The following examples may clarify.

Example 1: Suppose z = g(u,v), where u = h(z,y) and v = k(z,y).
This setup means we essentially have two functions:

g:R? >R and f: R? - R?
g(u,v) = =z f(x,y) = (W, y), k(z,y)) = (u,v).
The matrix form of the Chain Rule reads:
D(go f)(x,y) = Dg(f(x,y)) - Df(z,y)

Oh  0Oh

Agof)  O(gof) | _ [@ @} oz a%
ox Jy ou’ v ok g_
Yy

ox
0z 0:] _ [og0h | D90k  Dg0h | 990k
Oox’ Oy| — |Ouolx ov oz’ Oudy v dy

Setting components equal to each other, we conclude that
0: _ 0y0h  0g0k
Or Oudxr Ovox

0z ag% 89%

dy ~ dudy  dwdy
This is exactly the classical form of the Chain Rule. []

and

Example 2: Suppose z = g(u, v, w), where u = h(t), v = k(t), w = £(t).
This setup means we essentially have two functions:

g:R* =R and f:R—R?
g(u,v,w) = z f(@t) = (h(t),k(t),L(t) = (u,v,w).
The matrix form of the Chain Rule reads:

D(go [)(t) = Dg(f(t)) - Df(t

[c‘%gof)] —[22, 92 90
ot ou’ Ov’ Ow

YYIRI|T

9: _ogon _ogak | agor
ot Oudt Ovot Owdt

Again, we recovered the classical form of the Chain Rule. [



Inverses: Abstract Theory

Def: A function f: X — Y is invertible if there is a function f~': Y — X
satisfying:

f(f(x)) =2, forallz € X, and
F(F ) =y, forallyey.

In such a case, f~! is called an inverse function for f.

«

In other words, the function f~' “undoes” the function f. For example,
an inverse function of f: R — R, f(z) =23 is f1: R - R, f~l(x) = .
An inverse of g: R — (0,00), g(z) =2%is g ': (0,00) — R, g~ (x) = log,y(x).

Whenever a new concept is defined, a mathematician asks two questions:

(1) Uniqueness: Are inverses unique? That is, must a function f have at
most one inverse f~!, or is it possible for f to have several different inverses?
Answer: Yes.

Prop 16.1: If f: X — Y is invertible (that is, f has an inverse), then the
inverse function f~1 is unique (that is, there is only one inverse function).

(2) Existence: Do inverses always exist? That is, does every function f
have an inverse function f~!?
Answer: No. Some functions have inverses, but others don’t.

New question: Which functions have inverses?

Prop 16.3: A function f: X — Y is invertible if and only if f is both “one-
to-one” and “onto.”

Despite their fundamental importance, there’s no time to talk about “one-
to-one” and “onto,” so you don’t have to learn these terms. This is sad :-(

Question: If inverse functions “undo” our original functions, can they help
us solve equations? Yes! That’s the entire point:

Prop 16.2: A function f: X — Y is invertible if and only if for every b € Y,
the equation f(x) = b has exactly one solution = € X.
In this case, the solution to the equation f(x) = b is given by z = f~1(b).



Inverses of Linear Transformations

Question: Which linear transformations 7: R” — R™ are invertible? (Equiv:
Which m x n matrices A are invertible?)

Fact: If T: R” — R™ is invertible, then m = n.
So: If an m x n matrix A is invertible, then m = n.

In other words, non-square matrices are never invertible. But square ma-
trices may or may not be invertible. Which ones are invertible? Well:

Theorem: Let A be an n x n matrix. The following are equivalent:
(i) A is invertible

(i) N(A) = {0}
(iii) C(A) =R"
(iv) rref(A) = I
(v) det(A) #

To Repeat: An n x n matrix A is invertible if and only if for every b € R",
the equation Ax = b has exactly one solution x € R".
In this case, the solution to the equation Ax = b is given by x = A~ 'b.

Q: How can we find inverse matrices? This is accomplished via:
Prop 16.7: If A is an invertible matrix, then rref[A | )| = [I,, | A71].

Useful Formula: Let 4 = [Z Z] be a 2x2 matrix. If A is invertible (det(A) =
ad — be # 0), then:
. 1 { d —b] |

ad —bc |—c a

Prop 16.8: Let f: X — Y and g: Y — Z be invertible functions. Then:
(a) f~!is invertible and (f~1)~1 = f.
(b) g o f is invertible and (go f) ™' = flog™t

Corollary: Let A, B be invertible n x n matrices. Then:
(a) A7 is invertible and (A71)~t = A.
(b) AB is invertible and (AB)™' = B~1A~1,



The Gradient: Two Interpretations

Recall: For a function F': R" — R, its gradient is the vector in R" given
by:
oF OF OF

Oxy’ Oz’ "7 Oxy |

There are two ways to think about the gradient. They are interrelated.

VF =

Gradient: Normal to Level Sets

Theorem: Consider a level set F(z1,...,x,) = c of a function F': R" — R.
If (ay,...,a,) is a point on the level set, then VF(aq,...,a,) is normal to
the level set.

Example: If we have a level curve F(z,y) = ¢ in R?, the gradient vector
V F(z9,y0) is a normal vector to the level curve at the point (zg, yo).

Example: If we have a level surface F(z,y,2) = c in R3, the gradient vector
V F(z, Yo, 20) is a normal vector to the level surface at the point (z¢, yo, 20)-

Normal vectors help us find tangent planes to level sets (see the handout
“Tangent Lines/Planes...” ) But there’s another reason we like normal vectors.

Gradient: Direction of Steepest Ascent for Graphs

Observation: A normal vector to a level set F(z1,...,2z,) = c in R" is the
direction of steepest ascent for the graph z = F(xy,...,z,) in R,

Example (Elliptic Paraboloid): Let f: R? — R be f(z,y) = 222 + 33°.
The level sets of f are the ellipses 222 4 3y? = ¢ in R2.
The graph of f is the elliptic paraboloid z = 222 + 3y in R3.

At the point (1,1) € R?, the gradient vector Vf(1,1) = [é
the level curve 222 +3y? = 5. So, if we were hiking on the surface z = 222+ 3y?
in R? and were at the point (1,1, f(1,1)) = (1,1,5), to ascend the surface

] is normal to

the fastest, we would hike in the direction of g .

Warning: Note that V f is normal to the level sets of f. It is not a normal
vector to the graph of f.



Directional Derivatives

Def: For a function f: R" — R, its directional derivative at the point
x € R" in the direction v € R" is:

D f(x) = Vi(x) .

Here, - is the dot product of vectors. Therefore,

Dy f(x) =||Vf(x)|[[v|cosf, where 6 = L(V f(x),V).

Usually, we assume that v is a unit vector, meaning ||v|| = 1.
Example: Let f: R? — R. Let v = {Z} Then:

Dyf(z,y) = Vf(z,y) - m - E:ﬂ : [Z] — a%erg—?J;.

In particular, we have two important special cases:

0

De, f(x,y) = Vf(z,y) - (1) :a_i
- a

De, f(z,y) = Vf(z,y) - (1) 26—5

Point: Partial derivatives are themselves examples of directional derivatives!

Namely, g—i is the directional derivative of f in the e;-direction, while g—i
is the directional derivative in the es-direction.

Question: At a point a, in which direction v will the function f grow the
most? i.e.: At a given point a, for which unit vector v is Dy f(a) maximized?

Theorem 6.3: Fix a point a € R".

(a) The directional derivative Dy f(a) is maximized when v points in the
same direction as V f(a).

(b) The directional derivative Dy f(a) is minimized when v points in the
opposite direction as V f(a).

In fact: The maximum and minimum values of Dy f(a) at the point a € R"
are |V f(a)|| and —||V f(a)||. (Assuming we only care about unit vectors v.)



Determinants

There are two reasons why determinants are important:
(1) Algebra: Determinants tell us whether a matrix is invertible or not.
(2) Geometry: Determinants are related to area and volume.

Determinants: Algebra

Prop 17.3: An n X n matrix A is invertible <= det(A) # 0.
Moreover: if A is invertible, then

1

 det(A)

Properties of Determinants (17.2, 17.4):
(1) (Multiplicativity) det(AB) = det(A) det(B).

(2) (Alternation) Exchanging two rows of a matrix reverses the sign of the

determinant.
(3) (Multilinearity): First:

det(A™1)

al a9 Qnp, b1 bg bn a1+bl a2+b2 an+bn

C21 C22 -+ Cop C21 C22 -+ C2p C21 C22 e Con
det| .. . U 4det| . | =det

Cnl Cn2 **° Cpn Cnl Cn2 ' Cpn Cnl Cn2 T Cnn

and similarly for the other rows; Second:

kair  kaia --- kaip air a2 - Qip

a1 Q22 -+ Qon as1 Qg2 -+ G2,
det| . ] ) ) =kdet| .

anl Ap2 -+ Qpp apl Ap2 - Qapn

and similarly for the other rows. Here, k£ € R is any scalar.

Warning! Multilinearity does not say that det(A + B) = det(A) + det(B).
It also does not say det(kA) = kdet(A). But: det(kA) = k™ det(A) is true.

Determinants: Geometry

Prop 17.5: Let A be any 2 x 2 matrix. Then the area of the parallelogram
generated by the columns of A is |det(A)].

Prop 17.6: Let T: R? — R? be a linear transformation with matrix A. Let
R be a region in R?. Then:

Area(T(R)) = |det(A)| - Area(R).



Coordinate Systems

Def: Let V be a k-dim subspace of R". Each basis B = {v,..., vy} deter-
mines a coordinate system on V.

That is: Every vector v € V can be written uniquely as a linear combina-
tion of the basis vectors:

V=0V + -+ V.

We then call ¢y, ..., ¢, the coordinates of v with respect to the basis B. We
then write L
C1
&)
]z =
Ch

Note that [v]g has k& components, even though v € R™.

Note: Levandosky (L21: p 145-149) explains all this very clearly, in much
more depth than this review sheet provides. The examples are also quite
good: make sure you understand all of them.

Def: Let B = {vy,...,vi} be a basis for a k-dim subspace V' of R". The
change-of-basis matrix for the basis B is:

C=|vi vo -+ vi|.

Every vector v € V in the subspace V can be written
V =1CV]+ -+ CLVg.
In other words:
v = C[v]s.

This formula tells us how to go between the standard coordinates for v and
the B-coordinates of v.

Special Case: If V = R" and B is a basis of R”, then the matrix C will be
invertible, and therefore:
vl = C'v.



