
Curves in R2: Graphs vs Level Sets

Graphs (y = f(x)): The graph of f : R→ R is

{(x, y) ∈ R2 | y = f(x)}.

Example: When we say “the curve y = x2,” we really mean: “The graph of the function
f(x) = x2.” That is, we mean the set {(x, y) ∈ R2 | y = x2}.

Level Sets (F (x, y) = c): The level set of F : R2 → R at height c is

{(x, y) ∈ R2 | F (x, y) = c}.

Example: When we say “the curve x2 + y2 = 1,” we really mean: “The level set of the
function F (x, y) = x2 +y2 at height 1.” That is, we mean the set {(x, y) ∈ R2 | x2 +y2 = 1}.

Note: Every graph is a level set (why?). But not every level set is a graph.
Graphs must pass the vertical line test. (Level sets may or may not.)

Surfaces in R3: Graphs vs Level Sets

Graphs (z = f(x, y)): The graph of f : R2 → R is

{(x, y, z) ∈ R3 | z = f(x, y)}.

Example: When we say “the surface z = x2 + y2,” we really mean: “The graph of the func-
tion f(x, y) = x2 + y2.” That is, we mean the set {(x, y, z) ∈ R3 | z = x2 + y2}.

Level Sets (F (x, y, z) = c): The level set of F : R3 → R at height c is

{(x, y, z) ∈ R3 | F (x, y, z) = c}.

Example: When we say “the surface x2 + y2 + z2 = 1,” we really mean: “The level set of the
function F (x, y, z) = x2 + y2 + z2 at height 1.” That is, {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Again: Every graph is a level set (why?). But not every level set is a graph.
Graphs must pass the vertical line test. (Level sets may or may not.)

Q: Do you see the patterns here? For example, suppose G : R7 → R.
◦ What does the graph of G look like? (A: 7-dimensional object in R8.

That is, {(x1, . . . , x7, x8) ∈ R8 | x8 = G(x1, . . . , x7)}.)
◦ What do the level sets of G look like? (A: They are (generically) 6-dim

objects in R7. That is, {(x1, . . . , x7) ∈ R7 | G(x1, . . . , x7) = c}.)



Curves in R2: Examples of Graphs

{(x, y) ∈ R2
∣∣ y = ax+ b}: Line (not vertical)

{(x, y) ∈ R2
∣∣ y = ax2 + bx+ c}: Parabola

Curves in R2: Examples of Level Sets

{(x, y) ∈ R2
∣∣ ax+ by = c}: Line{

(x, y) ∈ R2
∣∣∣ x2

a2 +
y2

b2
= 1

}
: Ellipse{

(x, y) ∈ R2
∣∣∣ x2

a2 −
y2

b2
= 1

}
: Hyperbola{

(x, y) ∈ R2
∣∣∣ − x2

a2 +
y2

b2
= 1

}
: Hyperbola

Surfaces in R3: Examples of Graphs{
(x, y, z) ∈ R3

∣∣∣ z = ax+ by
}

: Plane (not containing a vertical line){
(x, y, z) ∈ R3

∣∣∣ z =
x2

a2 +
y2

b2

}
: Elliptic Paraboloid{

(x, y, z) ∈ R3
∣∣∣ z = −x

2

a2 −
y2

b2

}
: Elliptic Paraboloid{

(x, y, z) ∈ R3
∣∣∣ z =

x2

a2 −
y2

b2

}
: Hyperbolic Paraboloid (“saddle”){

(x, y, z) ∈ R3
∣∣∣ z = −x

2

a2 +
y2

b2

}
: Hyperbolic Paraboloid (“saddle”)

Surfaces in R3: Examples of Level Sets{
(x, y, z) ∈ R3

∣∣∣ ax+ by + cz = d
}

: Plane{
(x, y, z) ∈ R3

∣∣∣ x2

a2 +
y2

b2
+
z2

c2
= 1

}
: Ellipsoid{

(x, y, z) ∈ R3
∣∣∣ x2

a2 +
y2

b2
− z2

c2
= 1

}
: Hyperboloid of 1 Sheet{

(x, y, z) ∈ R3
∣∣∣ x2

a2 −
y2

b2
− z2

c2
= 1

}
: Hyperboloid of 2 Sheets



Two Model Examples

Example 1A (Elliptic Paraboloid): Consider f : R2 → R given by

f(x, y) = x2 + y2.

The level sets of f are curves in R2. Level sets are {(x, y) ∈ R2
∣∣ x2 +y2 = c}.

The graph of f is a surface in R3. Graph is {(x, y, z) ∈ R3
∣∣ z = x2 + y2}.

Notice that (0, 0, 0) is a local minimum of f .

Note that ∂f
∂x(0, 0) = ∂f

∂y (0, 0) = 0. Also, ∂2f
∂x2 (0, 0) > 0 and ∂2f

∂y2 (0, 0) > 0.
Sketch the level sets of f and the graph of f :

Example 1B (Elliptic Paraboloid): Consider f : R2 → R given by

f(x, y) = −x2 − y2.

The level sets of f are curves in R2. Level sets are {(x, y) ∈ R2
∣∣−x2−y2 = c}.

The graph of f is a surface in R3. Graph is {(x, y, z) ∈ R3
∣∣ z = −x2 − y2}.

Notice that (0, 0, 0) is a local maximum of f .

Note that ∂f
∂x(0, 0) = ∂f

∂y (0, 0) = 0. Also, ∂2f
∂x2 (0, 0) < 0 and ∂2f

∂y2 (0, 0) < 0.
Sketch the level sets of f and the graph of f :

Example 2 (Hyperbolic Paraboloid): Consider f : R2 → R given by

f(x, y) = x2 − y2.

The level sets of f are curves in R2. Level sets are {(x, y) ∈ R2
∣∣ x2−y2 = c}.

The graph of f is a surface in R3. Graph is {(x, y, z) ∈ R3
∣∣ z = x2 − y2}.

Notice that (0, 0, 0) is a saddle point of the graph of f .

Note that ∂f
∂x(0, 0) = ∂f

∂y (0, 0) = 0. Also, ∂2f
∂x2 (0, 0) > 0 while ∂2f

∂y2 (0, 0) < 0.
Sketch the level sets of f and the graph of f :



Introduction: Derivatives of Functions Rn → Rm

Def: Let F : Rn → Rm be a function, say

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)).

Its derivative at the point (x1, . . . , xn) is the linear transformation
DF (x1, . . . , xn) : Rn → Rm whose (m× n) matrix is

DF (x1, . . . , xn) =


∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fm

∂x1
· · · ∂Fm

∂xn

.
Note: The columns are the partial derivatives with respect to x1, then to
x2, etc. The rows are the gradients of the component functions F 1, F 2, etc.

DF (x1, . . . , xn) =

 ∂F
∂x1
· · · ∂F

∂xn

 =

 ∇F1
...
∇Fm

.

Example: Let F : R2 → R3 be the function

F (x, y) = (x+ 2y, sin(x), ey) = (F1(x, y), F2(x, y), F3(x, y)).

Its derivative at (x, y) is a linear transformation DF (x, y) : R2 → R3. The
matrix of the linear transformation DF (x, y) is:

DF (x, y) =


∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y
∂F3

∂x
∂F3

∂y

 =

 1 2
cos(x) 0

0 ey

.
Notice that (for instance) DF (1, 1) is a linear transformation, as is DF (2, 3),
etc. That is, each DF (x, y) is a linear transformation R2 → R3.

Goals: We will:
◦ Interpret the derivative of F as the “best linear approximation to F .”
◦ State a Chain Rule for multivariable derivatives.



Introduction: Gradient of Functions Rn → R
Def: Let f : Rn → R be a function.

Recall: The derivative of f : Rn → R at the point x = (x1, . . . , xn) is the
1× n matrix

Df(x) =
[
∂f
∂x1
· · · ∂f

∂xn

]
.

The gradient of f : Rn → R at the point x = (x1, . . . , xn) is the vector

∇f(x) =
[
∂f
∂x1
, . . . , ∂f

∂xn

]
.

The directional derivative of f : Rn → R at the point x = (x1, . . . , xn)
in the direction v ∈ Rn is the dot product of the vectors ∇f(x) and v:

Dvf(x) = ∇f(x) · v.

We will give geometric interpretations of these concepts later in the course.

Introduction: Hessian of Functions Rn → R
Theorem: Let f : Rn → R be a function whose second partial derivatives
are all continuous. Then:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

In brief: “Second partials commute.”

Def: Let f : Rn → R be a function.
The Hessian of f : Rn → R at the point x = (x1, . . . , xn) is the n × n

matrix

Hf(x) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

.
The directional second derivative of f : Rn → R at the point x =

(x1, . . . , xn) in the direction v ∈ Rn is

vT Hf(x) v.

Again, we will give geometric interpretations of these concepts later on.



Linear Approximation: Single-Variable Calculus

Review: In single-variable calc, we look at functions f : R → R. We write
y = f(x), and at a point (a, f(a)) write:

∆y ≈ dy.

Here, ∆y = f(x)− f(a), while dy = f ′(a)∆x = f ′(a)(x− a). So:

f(x)− f(a) ≈ f ′(a)(x− a).

Therefore:
f(x) ≈ f(a) + f ′(a)(x− a).

The right-hand side f(a) + f ′(a)(x− a) can be interpreted as follows:
◦ It is the best linear approximation to f(x) at x = a.
◦ It is the 1st Taylor polynomial to f(x) at x = a.
◦ The line y = f(a) + f ′(a)(x− a) is the tangent line at (a, f(a)).

Linear Approximation: Multivariable Calculus

Now consider functions f : Rn → Rm. At a point (a, f(a)), we have exactly
the same thing:

f(x)− f(a) ≈ Df(a)(x− a).

That is:
f(x) ≈ f(a) +Df(a)(x− a). (∗)

Note: The object Df(a) is a matrix, while (x − a) is a vector. That is,
Df(a)(x− a) is matrix-vector multiplication.

Example: Let f : R2 → R. Let’s write x = (x1, x2) and a = (a1, a2). Then
(∗) reads:

f(x1, x2) ≈ f(a1, a2) +
[
∂f
∂x1

(a1, a2)
∂f
∂x2

(a1, a2)
] [x1 − a1

x2 − a2

]
= f(a1, a2) +

∂f

∂x1
(a1, a2)(x1 − a1) +

∂f

∂x2
(a1, a2)(x2 − a2).



Review: Taylor Polynomials in Single-Variable Calculus

Review: In single-variable calculus, we look at functions f : R→ R.
At a point a ∈ R, the linear approximation (1st-deg Taylor polynomial)

to f is:
f(x) ≈ f(a) + f ′(a)(x− a).

More accurate is the quadratic approximation (2nd-deg Taylor polynomial)

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2.

We would like to have similar ideas for multivariable functions.

Linear Approximation: 1st-Deg Taylor Polynomials

Let f : Rn → Rm. The linear approximation of f at the point a ∈ Rn

is:
f(x) ≈ f(a) +Df(a)(x− a). (1)

Note that Df(a) is a matrix, while (x− a) is a vector. That is, Df(a)(x− a)
is matrix-vector multiplication.

Note that (1) is the best linear approximation to f(x) for points x near a.
It is the 1st-degree Taylor polynomial to f(x) at a.

Quadratic Approximation: 2nd-Deg Taylor Polynomials

Let f : Rn → R. The quadratic approximation of f at the point a ∈ Rn

is:

f(x) ≈ f(a) +Df(a)(x− a) +
1

2!
(x− a)THf(a)(x− a). (2)

Note that (x − a)T is a row vector, while (x − a) is a column vector, while
Hf(a) is a matrix. So, 1

2!(x− a)THf(a)(x− a) is of the form vTAv.
Note that (2) is the best quadratic approximation to f(x) for points x

near a. It is the 2nd-degree Taylor polynomial to f(x) at a.

Example: Let f : R2 → R be f(x, y) = x3 sin(y). For (x, y) near a = (2, π2 ):

f(x, y) ≈ f(2, π2 ) +Df(2, π2 )

[
x− 2
y − π

2

]
+

1

2!

[
x− 2 y − π

2

]
Hf(2, π2 )

[
x− 2
y − π

2

]
= 8 +

[
12 0

] [x− 2
y − π

2

]
+

1

2

[
x− 2 y − π

2

] [12 0
0 −8

] [
x− 2
y − π

2

]
= 8 + 12(x− 2) + 6(x− 2)2 − 4(y − π

2 )2.



Tangent Lines/Planes to Graphs

Fact: Suppose a curve in R2 is given as a graph y = f(x). The equation of
the tangent line at (a, f(a)) is:

y = f(a) + f ′(a)(x− a).

Okay, you knew this from single-variable calculus. How does the multivari-
able case work? Well:

Fact: Suppose a surface in R3 is given as a graph z = f(x, y). The equation
of the tangent plane at (a, b, f(a, b)) is:

z = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b).

Notice the similarity between this and the linear approximation to f at (a, b).

Tangent Lines/Planes to Level Sets

Def: For a function F : Rn → R, its gradient is the vector in Rn given by:

∇F =

[
∂F

∂x1
,
∂F

∂x2
, . . . ,

∂F

∂xn

]
.

Theorem: Consider a level set F (x1, . . . , xn) = c of a function F : Rn → R.
If (a1, . . . , an) is a point on the level set, then ∇F (a1, . . . , an) is normal to
the level set.

Corollary 1: Suppose a curve in R2 is given as a level curve F (x, y) = c.
The equation of the tangent line at a point (x0, y0) on the level curve is:

∂F

∂x
(x0, y0)(x− x0) +

∂F

∂y
(x0, y0)(y − y0) = 0.

Corollary 2: Suppose a surface in R3 is given as a level surface F (x, y, z) = c.
The equation of the tangent plane at a point (x0, y0, z0) on the level surface
is:

∂F

∂x
(x0, y0, z0)(x− x0) +

∂F

∂y
(x0, y0, z0)(y − y0) +

∂F

∂z
(x0, y0, z0)(z − z0) = 0.

Q: Do you see why Cor 1 and Cor 2 follow from the Theorem?



Composition and Matrix Multiplication

Recall: Let f : X → Y and g : Y → Z be functions. Their composition is
the function g ◦ f : X → Z defined by

(g ◦ f)(x) = g(f(x)).

Observations:
(1) For this to make sense, we must have: co-domain(f) = domain(g).
(2) Composition is not generally commutative: that is, f ◦ g and g ◦ f are

usually different.
(3) Composition is always associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).

Fact: If T : Rk → Rn and S : Rn → Rm are both linear transformations, then
S ◦ T is also a linear transformation.

Question: How can we describe the matrix of the linear transformation S◦T
in terms of the matrices of S and T?

Fact: Let T : Rn → Rn and S : Rn → Rm be linear transformations with
matrices B and A, respectively. Then the matrix of S ◦T is the product AB.

We can multiply an m × n matrix A by an n × k matrix B. The result,
AB, will be an m× k matrix:

(m× n)(n× k)→ (m× k).

Notice that n appears twice here to “cancel out.” That is, we need the number
of rows of A to equal the number of columns of B – otherwise, the product
AB makes no sense.

Example 1: Let A be a (3× 2)-matrix, and let B be a (2× 4)-matrix. The
product AB is then a (3× 4)-matrix.

Example 2: Let A be a (2× 3)-matrix, and let B be a (4× 2)-matrix. Then
AB is not defined. (But the product BA is defined: it is a (4× 3)-matrix.)



Chain Rule

Chain Rule (Matrix Form): Let f : Rn → Rm and g : Rm → Rp be any
differentiable functions. Then

D(g ◦ f)(x) = Dg(f(x)) ·Df(x).

Here, the product on the right-hand side is a product of matrices.

Many texts describe the chain rule in the following more classical form.
While there is a “classical” form in the general case of functions g : Rm → Rp,
we will keep things simple and only state the case of functions g : Rm → R
with codomain R.

Chain Rule (Classical Form): Let g = g(x1, . . . , xm) and suppose each
x1, . . . , xm is a function of the variables t1, . . . , tn. Then:

∂g

∂t1
=

∂g

∂x1

∂x1

∂t1
+

∂g

∂x2

∂x2

∂t1
+ · · ·+ ∂g

∂xm

∂xm
∂t1

,

...

∂g

∂tn
=

∂g

∂x1

∂x1

∂tn
+

∂g

∂x2

∂x2

∂t1
+ · · ·+ ∂g

∂xm

∂xm
∂tn

.

Example 1: Let z = g(u, v), where u = h(x, y) and v = k(x, y). Then the
chain rule reads:

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
and

∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
.

Example 2: Let z = g(u, v, w), where u = h(t), v = k(t), w = `(t). Then
the chain rule reads:

∂z

∂t
=
∂z

∂u

∂u

∂t
+
∂z

∂v

∂v

∂t
+
∂z

∂w

∂w

∂t
.

Since u, v, w are functions of just a single variable t, we can also write this
formula as:

∂z

∂t
=
∂z

∂u

du

dt
+
∂z

∂v

dv

dt
+
∂z

∂w

dw

dt
.



For Clarification: The Two Forms of the Chain Rule

Q: How exactly are the two forms of the chain rule the same?
A: If we completely expand the matrix form, writing out everything in compo-
nents, we end up with the classical form. The following examples may clarify.

Example 1: Suppose z = g(u, v), where u = h(x, y) and v = k(x, y).
This setup means we essentially have two functions:

g : R2 → R and f : R2 → R2

g(u, v) = z f(x, y) = (h(x, y), k(x, y)) = (u, v).

The matrix form of the Chain Rule reads:

D(g ◦ f)(x, y) = Dg(f(x, y)) ·Df(x, y)[
∂(g◦f)
∂x , ∂(g◦f)

∂y

]
=
[
∂g
∂u ,

∂g
∂v

] [∂h
∂x

∂h
∂y

∂k
∂x

∂k
∂y

]
[
∂z
∂x ,

∂z
∂y

]
=
[
∂g
∂u

∂h
∂x + ∂g

∂v
∂k
∂x ,

∂g
∂u

∂h
∂y + ∂g

∂v
∂k
∂y

]
Setting components equal to each other, we conclude that

∂z

∂x
=
∂g

∂u

∂h

∂x
+
∂g

∂v

∂k

∂x
and

∂z

∂y
=
∂g

∂u

∂h

∂y
+
∂g

∂v

∂k

∂y
.

This is exactly the classical form of the Chain Rule. �

Example 2: Suppose z = g(u, v, w), where u = h(t), v = k(t), w = `(t).
This setup means we essentially have two functions:

g : R3 → R and f : R→ R3

g(u, v, w) = z f(t) = (h(t), k(t), `(t)) = (u, v, w).

The matrix form of the Chain Rule reads:

D(g ◦ f)(t) = Dg(f(t)) ·Df(t)[
∂(g◦f)
∂t

]
=
[
∂g
∂u ,

∂g
∂v ,

∂g
∂w

] ∂h∂t∂k
∂t
∂`
∂t


∂z

∂t
=
∂g

∂u

∂h

∂t
+
∂g

∂v

∂k

∂t
+
∂g

∂w

∂`

∂t
.

Again, we recovered the classical form of the Chain Rule. �



Inverses: Abstract Theory

Def: A function f : X → Y is invertible if there is a function f−1 : Y → X
satisfying:

f−1(f(x)) = x, for all x ∈ X, and

f(f−1(y)) = y, for all y ∈ Y.

In such a case, f−1 is called an inverse function for f .

In other words, the function f−1 “undoes” the function f . For example,
an inverse function of f : R → R, f(x) = x3 is f−1 : R → R, f−1(x) = 3

√
x.

An inverse of g : R→ (0,∞), g(x) = 2x is g−1 : (0,∞)→ R, g−1(x) = log2(x).

Whenever a new concept is defined, a mathematician asks two questions:

(1) Uniqueness: Are inverses unique? That is, must a function f have at
most one inverse f−1, or is it possible for f to have several different inverses?

Answer: Yes.

Prop 16.1: If f : X → Y is invertible (that is, f has an inverse), then the
inverse function f−1 is unique (that is, there is only one inverse function).

(2) Existence: Do inverses always exist? That is, does every function f
have an inverse function f−1?

Answer: No. Some functions have inverses, but others don’t.

New question: Which functions have inverses?

Prop 16.3: A function f : X → Y is invertible if and only if f is both “one-
to-one” and “onto.”

Despite their fundamental importance, there’s no time to talk about “one-
to-one” and “onto,” so you don’t have to learn these terms. This is sad :-(

Question: If inverse functions “undo” our original functions, can they help
us solve equations? Yes! That’s the entire point:

Prop 16.2: A function f : X → Y is invertible if and only if for every b ∈ Y ,
the equation f(x) = b has exactly one solution x ∈ X.

In this case, the solution to the equation f(x) = b is given by x = f−1(b).



Inverses of Linear Transformations

Question: Which linear transformations T : Rn → Rm are invertible? (Equiv:
Which m× n matrices A are invertible?)

Fact: If T : Rn → Rm is invertible, then m = n.
So: If an m× n matrix A is invertible, then m = n.

In other words, non-square matrices are never invertible. But square ma-
trices may or may not be invertible. Which ones are invertible? Well:

Theorem: Let A be an n× n matrix. The following are equivalent:
(i) A is invertible
(ii) N(A) = {0}
(iii) C(A) = Rn

(iv) rref(A) = In
(v) det(A) 6= 0.

To Repeat: An n× n matrix A is invertible if and only if for every b ∈ Rn,
the equation Ax = b has exactly one solution x ∈ Rn.

In this case, the solution to the equation Ax = b is given by x = A−1b.

Q: How can we find inverse matrices? This is accomplished via:

Prop 16.7: If A is an invertible matrix, then rref[A | In] = [In | A−1].

Useful Formula: Let A =
[
a b
c d

]
be a 2×2 matrix. If A is invertible (det(A) =

ad− bc 6= 0), then:

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Prop 16.8: Let f : X → Y and g : Y → Z be invertible functions. Then:
(a) f−1 is invertible and (f−1)−1 = f .
(b) g ◦ f is invertible and (g ◦ f)−1 = f−1 ◦ g−1.

Corollary: Let A,B be invertible n× n matrices. Then:
(a) A−1 is invertible and (A−1)−1 = A.
(b) AB is invertible and (AB)−1 = B−1A−1.



The Gradient: Two Interpretations

Recall: For a function F : Rn → R, its gradient is the vector in Rn given
by:

∇F =

[
∂F

∂x1
,
∂F

∂x2
, . . . ,

∂F

∂xn

]
.

There are two ways to think about the gradient. They are interrelated.

Gradient: Normal to Level Sets

Theorem: Consider a level set F (x1, . . . , xn) = c of a function F : Rn → R.
If (a1, . . . , an) is a point on the level set, then ∇F (a1, . . . , an) is normal to
the level set.

Example: If we have a level curve F (x, y) = c in R2, the gradient vector
∇F (x0, y0) is a normal vector to the level curve at the point (x0, y0).

Example: If we have a level surface F (x, y, z) = c in R3, the gradient vector
∇F (x0, y0, z0) is a normal vector to the level surface at the point (x0, y0, z0).

Normal vectors help us find tangent planes to level sets (see the handout
“Tangent Lines/Planes...”) But there’s another reason we like normal vectors.

Gradient: Direction of Steepest Ascent for Graphs

Observation: A normal vector to a level set F (x1, . . . , xn) = c in Rn is the
direction of steepest ascent for the graph z = F (x1, . . . , xn) in Rn+1.

Example (Elliptic Paraboloid): Let f : R2 → R be f(x, y) = 2x2 + 3y2.
The level sets of f are the ellipses 2x2 + 3y2 = c in R2.
The graph of f is the elliptic paraboloid z = 2x2 + 3y2 in R3.

At the point (1, 1) ∈ R2, the gradient vector ∇f(1, 1) =

[
4
6

]
is normal to

the level curve 2x2+3y2 = 5. So, if we were hiking on the surface z = 2x2+3y2

in R3 and were at the point (1, 1, f(1, 1)) = (1, 1, 5), to ascend the surface

the fastest, we would hike in the direction of

[
4
6

]
. �

Warning: Note that ∇f is normal to the level sets of f . It is not a normal
vector to the graph of f .



Directional Derivatives

Def: For a function f : Rn → R, its directional derivative at the point
x ∈ Rn in the direction v ∈ Rn is:

Dvf(x) = ∇f(x) · v.

Here, · is the dot product of vectors. Therefore,

Dvf(x) = ‖∇f(x)‖‖v‖ cos θ, where θ = ](∇f(x),v).

Usually, we assume that v is a unit vector, meaning ‖v‖ = 1.

Example: Let f : R2 → R. Let v =

[
a
b

]
. Then:

Dvf(x, y) = ∇f(x, y) ·
[
a

b

]
=

[
∂f
∂x
∂f
∂y

]
·
[
a

b

]
= a

∂f

∂x
+ b

∂f

∂y
.

In particular, we have two important special cases:

De1
f(x, y) = ∇f(x, y) ·

[
1
0

]
=
∂f

∂x

De2
f(x, y) = ∇f(x, y) ·

[
0
1

]
=
∂f

∂y
.

Point: Partial derivatives are themselves examples of directional derivatives!

Namely, ∂f
∂x is the directional derivative of f in the e1-direction, while ∂f

∂y

is the directional derivative in the e2-direction.

Question: At a point a, in which direction v will the function f grow the
most? i.e.: At a given point a, for which unit vector v is Dvf(a) maximized?

Theorem 6.3: Fix a point a ∈ Rn.
(a) The directional derivative Dvf(a) is maximized when v points in the

same direction as ∇f(a).
(b) The directional derivative Dvf(a) is minimized when v points in the

opposite direction as ∇f(a).

In fact: The maximum and minimum values of Dvf(a) at the point a ∈ Rn

are ‖∇f(a)‖ and −‖∇f(a)‖. (Assuming we only care about unit vectors v.)



Determinants

There are two reasons why determinants are important:
(1) Algebra: Determinants tell us whether a matrix is invertible or not.
(2) Geometry: Determinants are related to area and volume.

Determinants: Algebra

Prop 17.3: An n× n matrix A is invertible ⇐⇒ det(A) 6= 0.
Moreover: if A is invertible, then

det(A−1) =
1

det(A)
.

Properties of Determinants (17.2, 17.4):
(1) (Multiplicativity) det(AB) = det(A) det(B).
(2) (Alternation) Exchanging two rows of a matrix reverses the sign of the

determinant.
(3) (Multilinearity): First:

det


a1 a2 · · · an

c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

+ det


b1 b2 · · · bn
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

 = det


a1 + b1 a2 + b2 · · · an + bn
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn


and similarly for the other rows; Second:

det


ka11 ka12 · · · ka1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 = k det


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


and similarly for the other rows. Here, k ∈ R is any scalar.

Warning! Multilinearity does not say that det(A + B) = det(A) + det(B).
It also does not say det(kA) = k det(A). But: det(kA) = kn det(A) is true.

Determinants: Geometry

Prop 17.5: Let A be any 2× 2 matrix. Then the area of the parallelogram
generated by the columns of A is |det(A)|.

Prop 17.6: Let T : R2 → R2 be a linear transformation with matrix A. Let
R be a region in R2. Then:

Area(T (R)) = |det(A)| · Area(R).



Coordinate Systems

Def: Let V be a k-dim subspace of Rn. Each basis B = {v1, . . . ,vk} deter-
mines a coordinate system on V .

That is: Every vector v ∈ V can be written uniquely as a linear combina-
tion of the basis vectors:

v = c1v1 + · · ·+ ckvk.

We then call c1, . . . , ck the coordinates of v with respect to the basis B. We
then write

[v]B =


c1
c2
...
ck

.
Note that [v]B has k components, even though v ∈ Rn.

Note: Levandosky (L21: p 145-149) explains all this very clearly, in much
more depth than this review sheet provides. The examples are also quite
good: make sure you understand all of them.

Def: Let B = {v1, . . . ,vk} be a basis for a k-dim subspace V of Rn. The
change-of-basis matrix for the basis B is:

C =

v1 v2 · · · vk

.
Every vector v ∈ V in the subspace V can be written

v = c1v1 + · · ·+ ckvk.

In other words:
v = C[v]B.

This formula tells us how to go between the standard coordinates for v and
the B-coordinates of v.

Special Case: If V = Rn and B is a basis of Rn, then the matrix C will be
invertible, and therefore:

[v]B = C−1v.


