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Penrose redux

In his book Shadows of the Mind: A search for the missing science of con-
sciousness [SM below], Roger Penrose has turned in another bravura perfor-
mance, the kind we have come to expect ever since The Emperor’s New Mind
[ENM ] appeared. In the service of advancing his deep convictions and daring
conjectures about the nature of human thought and consciousness, Penrose
has once more drawn a wide swath through such topics as logic, computa-
tion, artificial intelligence, quantum physics and the neuro-physiology of the
brain, and has produced along the way many gems of exposition of difficult
mathematical and scientific ideas, without condescension, yet which should
be broadly appealing.1 While the aims and a number of the topics in SM are
the same as in ENM , the focus now is much more on the two axes that Pen-
rose grinds in earnest. Namely, in the first part of SM he argues anew and
at great length against computational models of the mind and more specifi-
cally against any account of mathematical thought in computational terms.
Then in the second part, he argues that there must be a scientific account of
consciousness but that will require a (still to be found) non-computational
extension or modification of present-day quantum physics.

1Take, as just one example, the vivid mini-“history” in SM , pp. 249–256, of the origins
of probability theory and complex numbers in the work of the 16th century mathematician
and physician, Gerolamo Cardano — as a prelude to an explanation of Schrödingerian
quantum mechanics.
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I am only competent to say something substantive about the first part
of the new effort, resting as it does to a considerable extent on a version of
Gödel’s (first) incompleteness theorem. Penrose had advanced that previ-
ously in ENM , but the line of argument was much criticized, as it had been
in the past when advanced by others (e.g. J.R. Newman and E. Nagel, and
J.R. Lucas)2. So now Penrose has gone to great lengths in SM to lay out
his Gödelian argument and to try to defend it against all possible objections.
I must say that even though I think Gödel’s incompleteness theorems are
among the most important of modern mathematical logic and raise funda-
mental questions about the nature of mathematical thought, and even though
I am personally convinced of the extreme implausibility of a computational
model of the mind, Penrose’s Gödelian argument does nothing for me per-
sonally to bolster that point of view, and I suspect the same will be true in
general of similarly inclined readers. On the other hand, I’m sure that those
whose sympathies lie in the opposite direction will find reasons to dismiss
the Gödelian argument quickly on one ground or another without wading
through its painful elaboration. If I’m right, this is largely a wasted effort –
diligent as it is. Nevertheless, it’s there, and I feel obliged to address at least
parts of it, especially its more technical aspects.

While I have disavowed competence concerning Part II of SM, I can’t help
registering my impression that the effort there is entirely quixotic. What
Penrose aims to do is substitute one “nothing but” theory for another: in
place of “the conscious mind is nothing but the manifestation of sub-atomic
physics”. Can we really ever expect a completely reductive theory of one sort
or another of human cognition? Surely, no one theory will serve to “explain”
the myriad aspects of this phenomenon. As with any other scientific study of
human beings – inside and out – such an enterprise will continue to need to
bring to bear psychology, psycho-physics, physiology (neuro- and otherwise),
biochemistry, molecular biology, physics (macro- and micro-) and lots of stuff
in between (including computational models of all kinds). In my opinion
Penrose’s “missing science of consciousness” is a mirage.

2For earlier critical discussion, cf. the collection Anderson (1964). For criticism in
various of the peer commentaries on ENM (with responses by Penrose), cf. Behavioral and
Brain Sciences v. 13 #4 (1990), 643–705, and v. 16 # 3 (1993), 611–622.
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The logical facts

While Penrose’s formulation of Gödel’s theorem is by itself unexceptionable,
his subsequent discussion of it – especially in relation to Gödel’s won formu-
lation and various of it generalizations – is unfortunately marred by a number
of errors. I assume here some familiarity with mathematical logic and the
relevant material from Kleene (1952); the reader who does not have that
familiarity should skim the following before proceeding to the next section
of this review. Unless otherwise indicated, pagination or section references
(e.g. ’2.5’) are to SM.

Penrose’s form of Gödel’s incompleteness theorem is stated in terms of
Turing machine computations as follows (pp. 74–75):

Theorem 1. Suppose A is a Turing machine which is such that whenever
A halts on an input (q, n) then Cq(n) does not halt. Then for some k, Ck(k)
does not halt, yet A does not halt on (k, k). In other words, if the halting of
A is a sufficient condition for the non-halting of Turing machines then it is
not a necessary condition for that; still more briefly: soundness of A implies
incompleteness of A.

The proof of Theorem 1 is just a variant of the standard diagonal argument,
originating with Turing in 1937, that the halting problem for Turing machines
is not effectively decidable. As a form, though, of Gödel’s incompleteness the-
orem, it is very close to Kleene’s generalized form of that result, established
in 1943 and exposited in Kleene (1952) p. 302 as Theorem XIII. That make
use of a very general notion of formal system F, the main condition for which
is that the set of “provable formulas” is effectively enumerable. Suppose in
particular that F contains effectively given “formulas” φ(q,n) which are sup-
posed to “express” the predicate P (q, n) which holds just in case Cq(n) does
not halt. F is said to be sound or correct for P if whenever F proves φ(q,n)
then P (q, n) holds, and it is said to be complete for P if the converse is true.
In slightly weakened form, Kleene’s theorem (loc. cit.) is then as follows:

Theorem 2. If F is a formal system (in the general sense) which is sound
for the predicate P then it is not complete for it. In particular, there is a k
such that Ck(k) does not halt though F does not prove φ(k,k).

Assuming Church’s Thesis, Theorem 2 follows Theorem 1, since every re-
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cursively enumerable set of pairs (q, n) is the same as the set of inputs on
which Turing machine halts. Conversely, to obtain Theorem 1 from Theo-
rem 2, simple take the “formula” φ(q,n) to be the pair (q, n) and the set of
“provable formulas” of F to be the set of pairs on which A halts.

We must now examine the relationship of these results with the usual
formulation of Gödel’s incompleteness theorems. Here we deal with for-
mal systems in the logical sense, i.e. systems F whose formulas are built
up from basic arithmetical (and possibly other) relations by means of the
propositional connectives (such as ¬,∧,∨,→) and quantifiers (such as ∀, ∃)
and whose provable formulas are obtained from a given set of axioms (both
logical and non-logical) by closing under certain rules of inference. More-
over, F is assumed to be effectively given, i.e. the set of axioms of F and
its rules of inference are supposed to be effectively decidable, so that its
set of provable formulas is effectively enumerable. Finally, F is supposed to
be “sufficiently strong”, i.e. contain a modicum F0 of elementary number
theory (or arithmetic). Over the years, the statement of Gödel’s incomplete-
ness theorems has been steadily strengthened by a steady weakening of what
is assumed for F0. In 1931, Gödel had taken it to be a version of simple
type theory over a number-theoretical base, but he soon weakened that to
a form of the first-order system of Peano Arithmetic PA. Subsequently, for
Gödel’s first incompleteness theorem, this was further weakened considerably
by R.M. Robinson’s fragment Q of arithmetic, and for the second incomplete-
ness theorem to the subsystem Σ1-IA of PA based on induction applied only
to Σ1 formulas. For details, cf. Gödel’s 1931 and related papers in the origi-
nal and in translation, with an introductory note by Kleene, in Gödel (1986),
pp. 126 ff, and the expositions in Kleene (1952), pp. 204–213 and Smorynski
(1977). For simplicity, we assume throughout the following that F0 is PA,
and that F is an (effectively given) formal system in the logical sense which
contains PA.

As Penrose notes, the class of Π1 formulas is of special significance in
connection with the Gödel theorems. These are ones of the form ∀xR(x),
where R expresses an effectively decidable (= recursive) property of the nat-
ural numbers and the intended range of ‘x’ is the set of natural numbers.
Dual to this class is the class Σ1 of formulas of the form ∃xS(x) where S
is effectively decidable; in classical logic, these are equivalent to negations
¬∀x¬S(x) of Π1 formulas. We may consider similarly Π1 and Σ1 formulas
with free variables such as ∀yR(x, y) and ∃yS(x, y) with decidable R, S, resp.
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The following examples are particularly relevant to the Gödel theorems: (i)
We have a decidable relation ProofF(x, y) which express that y is (the Gödel
number of) a proof in F of the formula (with number) x; then (ii) the Σ1

formula ProvF(x) := ∃y ProofF(x, y) expresses that the formula (with num-
ber) x is provable in F, while the Π1 formula ∀y¬ProofF(x, y) expresses that
x is not provable in F; in particular, (iii) if c is the number of the formula
0 = 1, the Π1 formula Con(F):= ∀y¬ProofF(c, y) expresses that F is con-
sistent. Next, (following Kleene), we have (iv) a decidable relation T (z, x, y)
which expresses that y is (the number of) a terminating computation at input
x on the Turing machine CZ ; so (v) the Σ1 formula ∃yT (z, x, y) expresses
that CZ(x) halts, and (vi) the Π1 formula ∀y¬T (z, x, y) expresses that CZ(x)
does not halt; in particular, (viii) for each k, the Π1 sentence ∀y¬(k,k, y)
expresses that Ck(k) does not halt.

The system F is said to be sound for a class S of sentences if whenever F
proves φ with φ in S then φ is true in the structure N of natural numbers; F
is said to be complete for the sentences in S if the converse holds. F is said
to be ω-consistent if there is no formula φ(x) such that F proves ¬φ(n) for
each natural number n, and yet F proves ∃xφ(x). It is said to be 1-consistent
if this condition holds for decidable φ. It is obvious that if F is ω-consistent
then it is 1-consistent, and that in turn implies that it is consistent, since an
inconsistent system proves all formulas. Under our general assumption that
F is sufficiently strong (i.e. contains PA as a subsystem), we have:

Lemma 3.
(i) F is complete for Σ1 sentences.
(ii) F is 1-consistent if and only if F is sound for Σ1 sentences.
(iii) F is consistent if and only if F is sound for Π1 sentences.

The idea for the proof of (ii) is that if F is 1-consistent and proves ∃xS(x)
where S is decidable then there must exist an n such that S(n) holds, since
otherwise we could prove ¬S(n) for each n. The converse is immediate by
definition. The idea for the proof of (iii) is that if F is consistent and proves
∀xR(x) with R decidable, then for each n, F proves R(n), hence R(n) must
be true, for otherwise ¬R(n) would be provable in F as a special case of (i).

The result (iii) of Lemma 3 is a fundamental observation due to Hilbert,
since it shows that any success of his consistency program for a system F
would establish the correctness of F for the “real” (i.e. Π1) sentences.
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For his completeness results, Gödel constructed a Π1 sentence G(F) equiv-
alent (in PA) to ∀y¬ProofF(g, y), where g is the Gödel number of G(F). Thus
G(F) provably expresses of itself (via its Gödel number) that is is not provable
in F.

Theorem 4. (Gödel’s 1st incompleteness theorem).
(i) If F is consistent then G(F) is not provable in F.
(ii) If F is ω-consistent then ¬G(F) is not provable in F.

Now the hypothesis in (i) is equivalent by Lemma 3 to the soundness of F
for Π1 sentences, and since under this hypothesis the sentence ∀y¬ProofF(g, y)
is true and hence G(F) is true, we conclude from the first part of the 1st in-
completeness theorem that:

Corollary 5. If F is sound for Π1 sentences then F is not complete for them.

In this form, the first part of Gödel’s 1st incompleteness theorem is of
the same character as Theorem 1 (Turing-Penrose) as well as Theorem 2
(Kleene). Note that the hypothesis of the second part of Theorem 4 can be
replace immediately by the assumption that F is 1-consistent. For if ¬G(F)
is provable in F then so also is ∃yProofF(g, y). But that sentence is false
by the first part of the theorem. Note also that if ¬G(F) is added to F as
an axiom, and F is consistent, the resulting system is still consistent (by the
first part of Theorem 4) but not 1-consistent, hence not ω-consistent.

In 1937, Rosser constructed a Π1 sentence R(F) which is such that if F
is consistent neither R(F) nor ¬R(F) is provable in F. However, R(F) is less
useful than G(F), as the following shows:

Theorem 6. (Gödel’s 2nd incompleteness theorem).
(i) PA proves Con(F)↔ G(F).
(ii) Hence, if F is consistent then F does not prove Con(F), i.e. F does not
prove its own consistency.

The idea of a proof of Con(F)→ G(F) in (i) is to formalize in PA the proof of
the first part of the 1st incompleteness theorem. The converse, that G(F)→
Con(F), is trivial, since if any sentence is not provable in F then 0 = 1 is
not provable in F.
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After this extensive, but, as we shall see, necessary excursus, we can
finally return to Penrose’s SM.

pp. 74–75 (sec. 2.5). The idea of a computational procedure A being sound
is explained here by the statement that if A halts on input (q, n) then Cq(n)
does not halt. As we have seen, the conclusion is equivalent to the Π1 sentence
∀y¬T (q,n, y), and soundness of A is a special case of soundness of a formal
system for Π1 sentences. However:

pp. 90–92 (sec. 2.8). In Penrose’s account of Gödel’s incompleteness theorem,
he says (p. 91) that if a formal system is sound then “it is certainly ω -
consistent”. This is a different notion of soundness from that on pp. 74–75,
since ω-consistency is stronger than consistency, i.e. than soundness for Π1

sentences. Penrose does not explain here what is meant by this new notion
of soundness, but implicit in what he says is soundness for all (arithmetical)
sentences [cf. the discussion of p. 112 below]. At any rate, the notion of
soundness required for Penrose’s further discussion is ambiguous between
that of pp. 74–75 and that of p. 91.

Next on p. 91, Penrose introduces the notation ‘Ω(F)’ for the [formal]
assertion that the system (F) is ω-consistent. He says that “Gödel’s famous
incompleteness theorem tells us that Ω(F) is not a theorem of F... provided
that F is actually ω-consistent.” As we have seen, Gödel’s 2nd incompleteness
theorem tells us that Con(F) is not a theorem of F provided F is simply con-
sistent, a fortiori Ω(F) is not a theorem of F under the same conditions. The
hypothesis of ω-consistency of F (or its weakening, 1-consistency) is needed
only if we want also to conclude that ¬Con(F) (or equivalently, ¬G(F)) is
not a theorem of F.

Penrose further says here that he will use the notation ‘G(F)’ for the
[formal] assertion that F is consistent. He then says that Rosser’s theorem
tells us that if F is consistent then G(F) is not a theorem of F; but that is what
Gödel’s 2nd incompleteness theorem tells us, not Rosser’s. Penrose further
muddies the picture by saying that he will “not bother to draw a clear line
between consistency and ω-consistency” in most of his discussions, but that
“the version of the Gödel theorem that I [Penrose] have actually presented
in sec. 2.5 is essentially the one that asserts that if F is ω-consistent, then
it cannot be complete, being unable to assert Ω(F) as a theorem.” Instead,

7



as we have seen, what he showed in sec. 2.5 is a version of the first part
of Gödel’s incompleteness theorem, that if F is sound for Π1 sentences [⇔
consistent] then G(F) is not a theorem of F .

On p. 92, Penrose says that in order to discuss the actions of Turing
machines, F must contain the minimum operator (µ) symbol. It is true
that, in Kleene’s normal form theorem, the value of Cq(n) is of the form
U (µy.T (q, n, y)) when ∃yT (q, n, y) holds; but the statement of halting or
non-halting of Cq(n) does not require the explicit presence of µ among the
symbols of F.

p. 96. It is stated here that “...both Ω(F) and G(F) are Π1 sentences.” This
is correct for G(F) but not for Ω(F) which is, instead, a sentence in Π3

from, i.e. of the form ∀x∃y∀zR(x, y, z) with R decidable [work it out]. Even
1-consistency is a Π2 sentence, which is not equivalent to a Π1 sentence.

p. 108. Penrose says here that if F� and F�� are obtained from F by adjoining
G(F) and ¬G(F) resp. as axioms, and if F is consistent then F� and F��

are both consistent. This is correct for F�� by ordinary logic, but not for
F�. The following is a counter-example: let F be obtained from PA by
adjoining ¬G(PA) or, equivalently, ¬Con(PA) as an axiom. Thus F is PA��

in Penrose’s notation, and so F is consistent. But in this case, since F�

includes Con(F) and PA is contained in F, we have that F� proves Con(PA),
so F� is inconsistent. What is needed to insure that F� is consistent is the
assumption that F is 1-consistent (which is not the case for F=PA��); as it
happens, it can be shown that if F is 1-consistent so also is F�.

pp. 109–110. The discussion of the non-categoricity of the first-order ver-
sion of PA of Peano’s axioms vs. the categoricity of the second-order version
of those axioms is misleading since it lumps together first-order quantifica-
tion with second-order quantification. What the latter does is allow one to
quantify over properties P in the induction axiom, namely as ∀P [P (0) ∧
∀x(P (x) → P (Sx)) → ∀xP (x)]. However, Penrose is right in saying that for
this second-order axiom to guarantee categoricity we need to regard it se-
mantically, i.e. to interpret the variable ‘P ’ in ‘∀P ’ as ranging over arbitrary
subsets of the first-order domain on interpretation, and there is no effec-
tive formal system complete for this semantics (by Gödel’s incompleteness
theorem).
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p. 112. In the discussion of Q18 it is asserted that we cannot “properly
encapsulate ‘soundness’ or ‘truth’ within any formal system – as follows by
a famous theorem of Tarski”. This settles definitely the earlier ambiguity
between the notions of soundness used on pp. 74–75 and that of p. 91, i.e.
here soundness is taken as truth of all sentences (at least all arithmetical
ones); then Tarski’s theorem on the non-definability of truth certainly applies
provided the system F under consideration is consistent. Penrose goes on to
say that for restricted notions of soundness we can prove in F, or even PA,
that if F is sound then G(F) holds. In particular, he says that PA proves
Con(F)→ G(F). This is strange, because on p. 91 he said that he will use
‘G(F)’ for the formal statement that F is consistent, i.e. for ‘con(F)’: but for
that identification the implication is trivial. The implication Con(F)→ G(F)
is only of interest if one takes G(F) to be Gödel’s sentence that expresses of
itself that it is not provable in F (cf. Theorem 6(i) above). The next strange
statement on p. 112 is that one can prove that ‘F ω-consistent’ implies ‘Ω(F)’,
since on p. 91 Penrose defined Ω(F) to be the formal statement of the ω-
consistency of F; on that identification the implication is once more trivial.

p. 114. The description of my results on Turing’s ordinal logics is incorrect.
First of all, the reference given is to Feferman (1988), which contains a his-
torical exposition of Turing’s seminal work (1939) and subsequent work on
this subject (under the new name, transfinite recursive progressions of formal
systems). The appropriate reference for my own original work there should
have been Feferman (1962). It was Turing (not me) who showed in his 1939
paper that the ordinal logic obtained by iteration of adjunction of consistency
statements starting with PA and proceeding through the recursive ordinals
is complete for Π1 statement (in fact at a surprisingly low level); Turing had
hoped to improve this to completeness for Π2 sentences. In my 1962 paper I
proved that: (i) Turing’s ordinal logic is incomplete for Π2 sentences; (ii) the
same holds for progressions based on transfinite iteration of the so-called lo-
cal reflection principle; (iii) but one obtains completeness for all arithmetical
sentences in a progression based on the transfinite iteration of the so-called
global or uniform reflection principle. However, the following comments by
Penrose about the significance of Turing’s and my work are correct: “...there
is no algorithmic procedure that one can lay down beforehand which allows
one to do this systematization for all recursive ordinals once and for all”,
and that “...repeated Gödelization...does not provide us with a mechanical
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procedure for establishing the truth of Π1 sentences.”
I have not detailed all the occurrences of technical errors that Penrose

makes in connection with Gödel’s incompleteness theorems in Ch. 2, many of
which also propagate through Ch. 3. Given the weight that Penrose attaches
to his Gödelian argument, all these errors should give one pause. One has
here lots more of the “slapdash scholarship” that Martin Davis complained
about in his commentary on ENM (1993) p. 116, and they suggest that he
may stretch that scholarship perilously thin in areas distant from his own
expertise. The main question, though, is whether these errors undermine
the conclusions that Penrose wishes to draw from the Gödelian argument. I
don’t think that they do, at least not by themselves. That is, I think that the
extended case he makes from sec. 2.6 on through the end of Ch. 3 would be
unaffected if he put the logical facts right; but the merits of that case itself
are another matter.

What follows from Gödel’s incompleteness

theorem?

Here I shall be less systematic in tracking Penrose. It must be emphasized
again that what his case really rests on is the first half of Gödel’s 1st in-
completeness theorem (Theorem 4(i) above)– that if a suitably strong formal
system F is consistent then the Π1 sentence G(F) is not provable in F – com-
bined with Hilbert’s observation (Lemma 3(iii) above) that F is consistent
if and only if F is sound for Π1 sentences. Finally, we have by Gödel’s 2nd
incompleteness theorem (Theorem 6 above) that G(F) is equivalent in a base
system (e.g. PA) to Con(F). The ω consistency of F and statement Ω(F) are
simply red herrings for Penrose’s argument and should be ignored. The refor-
mulation of incompleteness in terms of Turing machines in sec. 2.5 is of course
important if one is to argue that mathematical thought is not mechanical,
but it is just a reformulation as Penrose brings out: every theorem-generating
machine can be recast as a formal system and vice-versa. However, it is the
model of mathematical thought in term of formal systems that is closer to
the nature of that thought itself, i.e. to its concepts and modes of reasoning.
What is misleading in the equivalence between Turing machines and formal
systems is the way theorems are actually obtained in the working experi-
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ence of mathematicians On the algorithm model, one starts with an input
(q, n) on machine A in an effort to establish that Cq(n) does not halt, i.e.
one starts with the “statement” possibly to be established and plugs away
mechanically following the algorithm that determines A in the hopes that it
will end by “proving it”. The analogue for a formal system F would be to
start with a statement φ, possibly to be established, and mechanically gen-
erates, one after another, all proofs in F, looking to see if one of them ends
with φ. But it would be ridiculous to think that anything like such a search
through proofs takes place in the activity of working mathematicians. How
is it that they actually arrive at proof is through a marvelous combination
of heuristic reasoning, insight and inspiration (building, of course, on prior
knowledge and experience) for which there are no general rules, though some
patterns have been discerned by Pólya and others: these is no formula for
mathematical success. It is only when one finally arrives at a proof that one
can check (mechanically, in principle, but not in practice) that it does indeed
establish the theorem in question. So on the face of it, mathematical thought
as it is actually produced is not mechanical; I agree with Penrose that in this
respect, understanding is essential, and it is just this aspect of actual mathe-
matical thought that machines cannot share with us. Beyond that, his entire
drive is to nail down this conviction by showing that mathematical thought
cannot even be re-represented in mechanical terms, as a result of the Gödel
theorem. In my view, instead of increasing this conviction, this effort raises
more questions than it answers and leads one off into dead-end dialectics.
Here are some reasons.

Penrose begins by stating as the main conclusion G from the Gödel-Turing
incompleteness theorem: “Human mathematicians are not using a knowably
sound algorithm in order to ascertain mathematical truth” (p. 767). More
specifically, in terms of formal systems: if mathematicians can come to know
that a system F is sound, then F cannot be used to ascertain the truth of
the true Π1 statement G(F). Now, as we have noted, there is an ambiguity in
Penrose’s use of the notion of soundness between that for Π1 sentences and
that for all sentences. All that the Gödel incompleteness theorem requires
of F is the former, since that is equivalent to the consistency of F. But
Penrose tends to emphasize the global notion of soundness and to tie it to
his Platonistic philosophy of mathematics. The argument goes something
as follows: how could we know that F is sound if we did not understand
what F is about – its intended interpretation – and see that the axioms of F
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are all true of that interpretation and that its rules of inference all preserve
truth? It is by such means, the argument continues, that we recognize the
soundness of systems from PA all the way up to ZF set theory and beyond.
And once we recognize the soundness of a system F and accept it as part of
the principles on which we can rely, we see that G(F) is true and must accept
it too, and so by Gödel’s theorem, we are required to accept something that
goes beyond F.

Two problems with this argument are that, first of all, there may be other
ways of recognizing the truth of G(F) than through a global notion of truth
for F, and secondly, the assumption of an intended interpretation for set-
theoretical formalisms is highly problematic. The first is what is achieved by
proof theory. While it is generally agreed that Hilbert’s program to establish
the consistency of stronger and stronger formal systems by purely finitary
proof-theoretical methods cannot be carried through as a result of Gödel’s
2nd incompleteness theorem, a relativized form of Hilbert’s program has been
successful by these means (cf. Feferman (1988a)). Relativized proof theory
yields verification of the consistency of a system F by reduction to the con-
sistency of another system F′, and progress is achieved thereby when one has
more compelling reasons for accepting F′ than F to begin with. In particu-
lar, various prima-facie non- constructive systems have been reduced in this
way to constructive systems, and systems of analysis based on impredicative
set-existence principles have been reduced to predicative systems. Indeed, it
has been shown that the bulk of everyday mathematics can be formalized in
such relatively weak systems, and it appears that all of scientifically applica-
ble mathematics can be formalized in a system which is proof-theoretically
reducible to PA (cf. Feferman (1993)). While mathematicians may conceive
of what they are talking about in Platonistic set-theoretical terms, these re-
sults show that such a conception is not necessary to secure confidence in the
body of mathematical practice.

Moving on to the philosophical issues raised by Platonism in set theory,
Penrose is right in identifying Gödel as one of the foremost proponents of
this position. However, I think it is fair to say that he has few adherents
among philosophers of mathematics. One of the more recent ones is Penelope
Maddy (1990), though she felt it necessary to develop a compromise form of
Platonism (between that of Gödel and Quine); even so that has met with
little support. Admittedly, every over-all philosophy of mathematics has its
difficulties, but Penrose make it seem that the Platonistic position is a mat-
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ter of common consensus, which is not the case for those who have given
these questions more than token attention. While one may well agree that
questions of truth in the natural numbers are of a determinate character,
already the assumption of a supposed definite totality of arbitrary sets of
natural numbers is highly problematic. Indeed, Gödel himself, at least for a
period in the 1930s, found this deeply troubling. In a previously unpublished
lecture (*19330 in Gödel (1995)), he said that: “The result of the preceding
discussion is that our axioms [for set theory], if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism, which cannot sat-
isfy any critical mind and which does not even produce the conviction that
they are consistent.” (op.cit. p. 50). And Gödel continued to take proof-
theoretical approaches to consistency seriously throughout his life (cf. also
*1938a in Gödel (1995) and the introductory notes to that and *19330). In-
cidentally, on p. 116 of SM, Penrose says that Paul Cohen, in the last section
of his 1966 book on the independence of AC and CH from ZF set theory
“reveals himself to be, like Gödel [and Penrose] a true Platonist for whom
matters of mathematical truth are absolute and not arbitrary.” While that
is a reasonable inference from what Cohen said there, shortly after that, at a
1967 conference, he stated: “By now it may have become obvious that I have
chosen the Formalist position [as opposed to the Platonic Realist position for
set theory” (Cohen 1971, p. 13). As far as I know, that is still his position.

Penrose reports in sec. 3.1 on what Gödel took the significance of his
incompleteness theorems to be, via a quotation which had circulated some
time back from Gödel’s unpublished Gibbs lecture of 1951. That piece is now
available in full as *1951 in Gödel (1995), with an illuminating introductory
note by George Boolos. More cautious than Penrose, Gödel there comes
to the conclusion that “either...the human mind (even within the realm of
pure mathematics) infinitely surpasses the powers of any finite machine, or
else there exist absolutely unsolvable diophantine problems.” (op.cit., p. 310).
Boolos’ discussion of this is tonic: “There is a gap between the proposition
that no finite machine meeting certain weak conditions can print a certain
formal sentence (which will depend on the machine) and the statement that
if the human mind is a finite machine, there exist truths that cannot be
established by any proof the human mind can conceive. ...it is certainly not
obvious what it means to say that the human mind, or even the mind of
some one human being is a finite machine, e.g. a Turing machine. And to
say that the mind (at least in its theorem-proving aspect), or a mind, may
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be represented by a Turing machine is to leave entirely open just how it is
so represented.” (Boolos (1995) p. 293). The same applies mutatis mutandis
to Penrose’s Gödelian argument, and with that, enough said for now.
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