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1 Lie derivative of a differential form

Let A be a smooth vector field defined on a domain U ⊂ Rn (more generally we can assume

that U is any n-dimensional manifold). Given a function f : U → R we can define the

directional derivative LAf of f along A:

LAf = lim
s→0

f(x+ tX)− f(x)

t
. (1.1)

The directional derivative has many other notation: DA(f), ∂f
∂A
, df(A), . . . .

Let us denote by At : U → U , t ∈ R, the phase flow of the vector field A. 1 Let us observe

that the directional derivative can be also defined by the formula

LAf =
d

ds
f ◦ As

∣∣∣
s=0

. (1.2)

It turns out that formula (1.2) can be generalized to define an analog of directional derivatives

for differential forms and vector fields, which is the Lie derivative.

Let ω be a differential k-form. We define the Lie derivative LAω of ω along A as

LAω =
d

ds
(As)∗ω

∣∣∣
s=0

. (1.3)

1 Note that that the phase flow is not necessarily globally defined, and may mot be defined for all t.

However all our considerations in this section will be local, and according to the existence and uniqueness

theorem for ODE, the flow is always locally defined. Hence, to simplify the notation, we will not be making

this distinction between the local and global.
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Note that for if ω is a 0-form, i.e. a function f , then (As)∗f = f ◦As, and hence, in this case

definitions (1.2) and (1.3) coincide, and hence for functions the Lie derivative is the same as

the directional derivative.

Proposition 1.1. The following identities hold

1. LA(ω1 ∧ ω2 = (LAω1) ∧ ω2 + ω1 ∧ LAω2.

2. LA(dω) = d(LAω).

Proof.

1. LA(ω1 ∧ ω2) =
d

ds
(As)∗(ω1 ∧ ω2)

∣∣∣
s=0

=
d

ds

(
(As)∗ω1 ∧ (As)∗ω2

)∣∣∣
s=0

=
d

ds

(
(As)∗ω1

)∣∣∣
s=0
∧ ω2 + ω1 ∧

d

ds

(
(As)∗ω2

)∣∣∣
s=0

= (LAω1) ∧ ω2 + ω1 ∧ LAω2.

2. LA(dω) =
d

ds

(
(As)∗dω

)∣∣∣
s=0

=
d

ds

(
d(As)∗ω

)∣∣∣
s=0

= d
( d
ds

(As)∗ω
∣∣∣
s=0

)
= LA(dω).

�

The following formula of Eli Cartan provides an effective way for computing Lie derivative

of differential form.

Theorem 1.2. Let A be a vector field and ω a differential k-form. Then

LAω = d(A ω) + A dω. (1.4)

Proof. Suppose first that ω = f is a 0-form. Then LAf = df(A) = A df , which is equivalent

to formula (1.4), because in this case the first term in the formula is equal to 0. Then, using

Proposition 1.12) we get

LAdf = dLAf = d(df(A)) = d(A df),

which is again equivalent to (1.4) because in this case ddf = 0. Next we note that if the

formula (1.1) holds for ω1 and ω2 then it holds also for ω1 ∧ ω2. Indeed, denothe the degree
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of forms ω1, ω2 by d1, d2. Then we have

(?) LA(ω1 ∧ ω2) = (LAω1) ∧ ω2 + ω1 ∧ LAω2

= (A dω1 + d(A ω1)) ∧ ω2 + ω1 ∧ (A dω2 + d(A ω2))

= (A dω1) ∧ ω2 + ω1 ∧ (A dω2) + d(A ω1) ∧ ω2 + ω1 ∧ d(A ω2)

On the other hand

(??) A d(ω1 ∧ ω2) + d(A (ω1 ∧ ω2))

= A (dω1 ∧ ω2 + (−1)d1ω1 ∧ dω2) + d((A ω1) ∧ ω2 + (−1)d1ω1 ∧ (A ω2))

= (A dω1) ∧ ω2 + (−1)d1+1dω1 ∧ (A ω2) + (−1)d1(A ω1) ∧ dω2 + ω1 ∧ (A dω2)

+ d(A ω1) ∧ ω2 + (−1)d1+1A ω1 ∧ dω2 + (−1)d1dω1 ∧ (A ω2) + ω1 ∧ (d(A ω2))

= (A dω1) ∧ ω2 + ω1 ∧ (A dω2) + d(A ω1) ∧ ω2 + ω1 ∧ d(A ω2) .

Comparing the computation in (?) and (??) we conclude that

LA(ω1 ∧ ω2) = A d(ω1 ∧ ω2) + d(A (ω1 ∧ ω2)).

By induction we can prove a similar formulas for an exterior product of any number of forms.

Finally we observe that any differential k-form ω can be written in coordinates as∑
1≤i1<···<ik≤n

fi1...ik(x)dxi1 ∧ · · · ∧ dxik , i.e. ω is a sum of exterior products of functions (0-

forms) and exact 1-forms, and hence Cartan’s formula follows. �

Proposition 1.3. We have

LAω = 0 ⇐⇒ (As)∗ ω = ω for all s ∈ R.

Proof. If (As)∗ ω ≡ ω then LAω = d
ds

(As)∗ω
∣∣∣
s=0

= 0. To prove the converse we note that

d

ds
(As)∗ω

∣∣∣
s=s0

= lim
t→0

(As0+t)∗ω − (As0)∗ω

t
= (As0)∗

(
lim
t→0

(At)∗ω − ω
t

)
= (As0)∗ (LAω) ,

and hence if Laω = 0 then (As)∗ ω = ω. �
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2 Action of diffeomorphisms on vector fields

Let U ⊂ Rn be a domain in Rn and f : U → V be a diffeomorphism of U onto another

domain V ⊂ Rn. We define the push-forward operator f∗ : Vect(U) → Vect(V ) which maps

vector fields on U to vector fields on V by the formula:

f∗(A)(f(x)) = dfx(A(x)), A ∈ Vect(U), x ∈ U. (2.1)

Equivalently,

f∗(A)(y) = dff−1(y)

(
A(f−1(y)

)
, y ∈ V.

Suppose we are given a coordinate system (x1, . . . , xn) in U . Then

f∗

(
∂

∂xj

)
=

∂f

∂xj
, j = 1, . . . , n,

or more precisely

f∗

(
∂

∂xj

)
(y) =

∂f

∂xj

(
f−1(y)

)
, y ∈ V.

One can also define the pull-back operator f ∗ : Vect(V ) → Vect(U) by the formula

f ∗ = (f−1)
∗
. In other words, the pull-back is the push-forward by the inverse diffeomorphism.

More explicitly, we can write

f ∗(B)(x) = d
(
f−1
)

(f(x))(B(f(x)) = (dfx)
−1 (B(f(x)), B ∈ Vect(V ), x ∈ U. (2.2)

Let us point out that why for differential form the pull-back operator f ∗ is defined for an

arbitrary smooth map f , for the case of vector fields both operators, f∗ and f ∗ are defined

only for diffeomorphisms.

3 Lie bracket of vector fields

Let A,B ∈ Vect(U) be two vector fields on a domain U ⊂ Rn. As it was shown in 52H, there

is a vector field C ∈ Vect(V ), called the Lie bracket of the vector fields A and B and denoted
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by C = [A,B], which is characterized by the following property: for any smooth function

φ : U → R one has

LCφ = (LALB − LBLA)φ.

A surprising fact here is that though the right-hand side of this equation seems to be the

second order differential operator, the left-hand side is the first order operator, so the second

derivatives on the right side cancel each other.

Recall that the bracket [A,B] has the following properties

• Lie bracket is a bilinear operation;

• [A,B] = −[B,A] (skew-symmetricity);

• [[A,B]C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity);

• If A =
n∑
1

aj
∂
∂xj

and B =
n∑
1

bj
∂
∂xj

then

[A,B] =
n∑
i=1

(
n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂

∂xi
. (3.1)

In this section we will give a new interpretation of the Lie bracket [A,B].

We define the Lie derivative LAB of the vector field B along the vector field A in a similar

way as we defined in Section 1 the Lie derivative of a differential form. Namely,

LAB =
d (As)∗B

ds

∣∣∣
s=0

. (3.2)

More explicitly,

LAB(x) = lim
s→0

dAs(x) (A−s) (B(As(x))−B(x)

s
.

Similarly, to Proposition 1.3 we have

Proposition 3.1.

LAB = 0 ⇐⇒ (As)∗B ≡ B for all s ∈ R.
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Proof. We have

d (As)∗B

ds

∣∣∣
s=s0

= lim
s→0

(As+s0)
∗
B − (As0)∗B

s

= lim
s→0

(As0)∗
(

(As)∗B −B
s

)
= (As0)∗

(
lim
s→0

(As)∗B −B
s

)
= (As0)∗ (LAB) .

Hence, if LAB = 0 then d(As)∗B
ds

for all s and hence (As)∗B = (A0)
∗
B = B. The converse is

obvious. �

Theorem 3.2. For any two vector fields A,B ∈ Vect(U)

LAB = [A,B].

Proof. Note that As(x) = x+ sA(x) + o(s). Hence, we can write

dyA
−s = Id− sdyA+ o(s),

where we view here A as a map Rn → Rn. Furthermore, plugging y = As(x) we get

dAs(x)A
−s = Id− sdxA+ o(s),

because s(dyA − dxA) = o(s). We also have B(As(x)) = B(x + sA(x) + o(x)) = B(x) +

sdxB(A(x)) + o(s). Thus, ignoring terms o(s)-terms we get

LAB = lim
s→0

1

s

(
dAs(x)

(
A−s

)
(B(As(x)))−B(x)

)
= lim

s→0

1

s
((Id− sdxA)) (B(x) + sdxB(A(x)))−B(x))

= lim
s→0

1

s
(B(x)− sdxA(B) + sdxB(A)−B(x)) = dxB(A)− dxA(B).

But the right-hand-side expression written in coordinates has the form

dxB(A)− dxA(B) =
n∑
i=1

(
n∑
j=1

aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂

∂xi

which coincides with the expression (3.1) for the Lie bracket. �
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Exercise 3.3. Prove that for any smooth function φ one has

L[A,B]φ =
∂2(φ ◦ As ◦Bt)

∂s∂t
.

4 First integrals

Suppose we are given a differential equation

ẋ = A(x), (4.1)

where A is a vector field on the domain U ⊂ Rn A function φ : U → R is called a first

integral, or simply an integral of equation (4.1) if it is constant on solutions of this equation,

or equivalently on integral curves of the vector field A.

Clearly, a necessary and sufficient condition for φ to be an integral is to satisfy the

equation LAφ = 0. Here LAφ denotes the directional derivative of φ along A.

If φ is an integral of (3.2) then the solutions are contained in the level sets of the function

φ, and hence, this allows us to reduce the order of equation by 1. If (3.2) has two integrals

φ1, φ2, then the solutions lie inn the intersection of level sets {φ1 = c1} and {φ2 = c2},

c1, c2 ∈ R. Hence, if these level sets transverse to each other (which means that the differential

dφ1 and dφ2 are linearly independent at every point of the intersection), then the solutions

lie in {φ1 = c1} ∩ {φ2 = c2}, which allows to further reduce the order of the system. If the

order is reduced to 1 then the equation can be explicitly integrated in quadratures. Such

systems are called completely intregrable.

Some important examples of integrals which come from Mechanics are discussed in the

next section.

5 Hamiltonian vector fields

Consider the vector space R2n with coordinates (p1, . . . , pn, q1, . . . , qn) and a closed differential

2-form ω =
n∑
1

dpi ∧ dqi. We will wrote p = (p1, . . . , pn) and q = q1, . . . , qn). Given a function
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H : R2n → R we will denote

∂H

∂q
:=

(
∂H

∂q1
, . . . ,

∂H

∂qn

)
,
∂H

∂p
:=

(
∂H

∂p1

, . . . ,
∂H

∂pn

)
.

Note that this form is non-degenerate, i.e. its matrix is non-degenerate at every point. There-

fore, the map J : Vect(R2n → Ω1(R2n) given by the formula X 7→ X ω is an isomorphism

between the space Vect(R2n of vector fields and the space Ω1(R2n) of differential 1-forms

on Rn. In coordinates the map J associates with a vector field (P1, . . . , Pn, Q1, . . . , Qn) the

differential form
n∑
1

Qidpi − Pidqi.

Lemma 5.1. Given a vector field A on R2n the differential 1-form J(A) = A ω is closed if

and only if LAω = 0.

Proof. Indeed, according to Cartan’s formula (1.4) we have LAω = d(A ω) = dJ(A) because

ω is closed. �

Given a function H : R2n → R we denote by XH the vector field −J−1(dH). Vector fields

obtained by this construction are called Hamiltonian.

To find a coordinate expression for XH we write XH =
n∑
1

ai
∂
∂pi

+ bi
∂
∂qi

. Then

XH ω =

(
n∑
1

ai
∂

∂pi
+ bi

∂

∂qi

)
n∑
1

dpi ∧ dqi =
n∑
1

−bidpi + aidqi.

Hence, the equation

XH ω = −dH = −
n∑
1

∂H

d
pi +

∂H

∂qi
dqi

implies ai = −∂H
∂qi
, bi = ∂H

∂pi
, i = 1, . . . , n. Thus,

XH =
n∑
1

−∂H
∂qi

∂

∂pi
+
∂H

∂pi

∂

∂qi
.

In a shorter form, omitting indices we will write

XH = −∂H
∂q

∂

∂p
+
∂H

∂p

∂

∂q
.
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Thus the system of differential equations corresponding to the vector field XH has the form

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

(5.1)

These equations play an important role in Mechanics, and called Hamilton canonical equa-

tions. They describe the phase flow of a mechanical system. Here the coordinates q =

(q1, . . . , qn) determine a position of the system, or a point in the configuration space of

the mechanical system. The coordinates p = (p1, . . . , pn) are called momenta and can be

viewed as vectors of the cotangent bundle to the configuration space. The function H is the

full energy of the system expressed through coordinates and momenta.

Lemma 5.2. The function H is a first integral of the equation (5.1), i.e. LXH
H = 0.

Proof.

LXH
H = dH(XH) = −∂H

∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0.

�

Example 5.3. Consider Newton equations

q̈i = −∂U
∂qi

, i = 1, . . . , n,

or in shorter notation

q̈ = −∂U
∂q

= −∇U.

Reducing it to a system of first order equation we get

ṗ = −∂U
∂q

(5.2)

q̇ = p. (5.3)

Consider the full energy H(p, q) =
n∑
1

p2i
2

+ U(q) = 1
2
p2 + U(q). Then ∂H

∂q
= ∂U

∂q
and ∂H

∂p
= p,

and hence equation (5.2) takes the form (5.1) with this Hamiltonian function H. Lemma 5.2

is the law of conservation law of energy.
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Lemma 5.4. Let XH be a Hamiltonian vector field and Xs
H , the phase flow it generates.

Then (Xs
H)∗ ω = ω for all s ∈ R. In other words, the flow of a Hamiltonian vector field

preserves the form ω.

Proof. It is sufficient to prove that LXH
ω = 0. Using Theorem 1.2 we get

LXH
ω = d(XH ω) +XH dω.

But ω is closed, and hence dω = 0, while XH ω = dH. Thus, LXH
ω = ddH = 0. �

6 Canonical transformations

The equations (5.1) are called canonical because they are invariant with respect to a large

group of transformation of the phase space. Let us call a diffeomorphism f : R2n → R2n

a symplectomorphism (or alternatively a canonical transformation) if it preserves the form

ω. Then it preserves also the form of the equations (5.1). Indeed, suppose f(p, q) = (p̃, q̃).

Then f ∗(ω) = f ∗(dp ∧ dq) = dp̃ ∧ dq̃ = ω = dp ∧ dq. Thus if we express the function H(p, q)

through the coordinates p̃, q̃, H(p, q) = H̃(p̃, q̃) then the equation (5.1) will take the same

form in coordinates (p̃, q̃):

˙̃p = −∂H̃
∂q̃

˙̃q =
∂H̃

∂p̃
.

(6.1)

The following proposition provides an important class of canonical transformations,

Proposition 6.1. Consider any diffeomorphism f : U → V between two domains U, V ⊂

R2n. Let Df be the Jacobi matrix of the map U . Then the map

(p, q) 7→
(
(Df)−1)T p, f(q))

is a symplectomorphism f̂ of the domain Û = {p ∈ Rn, q ∈ U} to the domain V̂ = {p ∈

Rn, q ∈ V }. Here
(
(Df)−1)T is the matrix transpose to inverse of the Jacobi matrix Df .
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In other words, any change of q-coordinates extends to a canonical change of the (p, q)-

coordinates.

Proof. Let us denote the elements of the matrix (Df)−1 by gij, i, j = 1, . . . , n. Thus,
n∑
i

gji
∂fi

∂qk
= δjk, δjk = 1 if j = k and δjk = 0 if j 6= k.

Let us compute f̂ ∗(pdq) = f̂ ∗
(

n∑
1

pidqi

)
. We have

f̂(p1, . . . , pn, q1, . . . , qn) =

(
n∑
1

gj1pj, . . . ,

n∑
1

gjnpj, f1(q), . . . , fn(q)

)
.

Hence,

f̂ ∗(pdq) = f̂ ∗

(
n∑
1

pidqi

)
=

n∑
i=1

n∑
j=1

gjipjdfi

=
n∑

i,j,k=1

gji
∂fi
∂qk

pjdqk =
n∑

j,k=1

δjkpjdqk

=
n∑
1

pkdqk = pdq.

Hence,

f̂ ∗ω = f̂ ∗dp ∧ dq = d(f̂ ∗(pdq)) = d(pdq) = dp ∧ dq = ω.

�

Corollary 6.2. . Suppose that there exists a change of coordinates q̃ = f(q) such that

in new coordinates the Hamiltonian function H is independent of the coordinate q̃1. Then

p̃1 =
n∑
1

gj1pj is a first integral of the system (5.1). Here the notation gij stands for the

elements of the matrix (Df)−1.

Proof. Let us extend the coordinate change q 7→ q̃ = f(q) to a canonical change of

coordinates (p, q) 7→ (p̃, q̃) = f̃(p, q) as in Proposition 6.1. Then the equation in the new

coordinates (p̃, q̃) also has the canonical Hamiltonian form (6.1). Then ˙̃p1 = ∂H
∂eq1 = 0 because

by assumption the Hamiltonian is independent of the coordinate q̃1. Hence p̃1 =
n∑
1

gj1pj is

constant along trajectories, i.e. it is a first integral. �
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7 Example: angular momentum

Consider a Newton equation

q̈ = −∇U(q), q ∈ R3, (7.1)

which describes the motion of a particle of mass 1 in a field with a potential energy function

U(q). Suppose there exists an axis l in R3 such that the function U(q) remains invariant with

respect to rotations around l.

The system (7.1) can be rewritten in the Hamiltonian form (5.1) with the Hamiltonian

function H = p2

2
+ U(q) =

p21
2

+
p22
2

+
p23
2

+ U(q1, q2, q3). Let us assume for simplicity that the

q3-axis coincides with the axis l.

Let us change coordinates (q1, q2, q3) to cylindrical coordinates (φ, r, z):

q1 = r cosφ, q2 = r sinφ, q3 = z.

Equivalently,

φ = arctan
q2
q1
, r =

√
q2
1 + q2

2, z = q3.

Computing the Jacobi matrix D(φ,r,z)
D(q1,q2,q3)

we get
∂φ
∂q1

∂φ
∂q2

∂φ
∂q3

∂r
∂q1

∂r
∂q2

∂r
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

 =


− q2
q21+q22

q1
q21+q22

0

q1√
q21+q22

q2√
q21+q22

0

0 0 1


Then the inverse matrix is equal to

−q2 q1√
q21+q22

0

q1
q2√
q21+q22

0

0 0 1


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2 Let us extend the coordinate change (r, φ, z) 7→ (q1, q2, q3) to a canonical coordinate change

(q1, q2, q3, p1, p2, p3) 7→ (φ, r, q3, pφ, pr, pz),

where we denoted by pr, pφ, pz momenta variables corresponding to new coordinates (r, φ, z).

In fact, we need only the coordinate pφ which is given by pφ = −p1q2 + q1p2. Thus, the

function −p1q2 + p2q1 is the first integral. It is called the angular momentum around the

q3-axis.

2Of course, in this case it would be easier to compute the Jacobi matrix of the map (φ, r, z)→ (q1, q2, q3)

and then change the coordinates in the result. However, we are following here precisely the scheme provided

by Proposition 6.1
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