
Math 210C. Weyl group computations

1. Introduction

In §2 of the handout on Weyl groups and character lattices, for n ≥ 2 it is shown that
for G = U(n) ⊂ GLn(C) and T = (S1)n the diagonal maximal torus (denoted ∆(n) in the
course text), we have NG(T ) = T o Sn using the symmetric group Sn in its guise as n × n
permutation matrices. (The course text denotes this symmetric group as S(n).)

The case of SU(n) and its diagonal maximal torus T ′ = T ∩ SU(n) (denoted as S∆(n) in
the course text) was also worked out there, and its Weyl group is also Sn. This case is more
subtle than in the case of U(n) since we showed that the Weyl group of SU(n) does not lift
isomorphically to a subgroup of the corresponding torus normalizer inside SU(n).

Remark 1.1. Consider the inclusion T ′ ↪→ T between respective diagonal maximal tori of
SU(n) and U(n). Since T = T ′ ·Z for the central diagonally embedded circle Z = S1 in U(n),
we have NSU(n)(T

′) ⊂ NU(n)(T ) and thus get an injection W (SU(n), T ′) ↪→ W (U(n), T ) that
is an equality for size reasons. During our later study of root systems we will explain this
equality of Weyl groups for U(n) and SU(n) in a broader setting.

For each of the additional classical compact groups SO(n) (n ≥ 3) and Sp(n) (n ≥ 1), we
found an explicit self-centralizing and hence maximal torus in HW3 Exercise 4; the maximal
torus found in this way for SO(2m) is also a maximal torus in SO(2m+ 1). The aim of this
handout is to work out the Weyl group in these additional cases.

The course text explains this material, in 3.3–3.8 in Chapter IV. Our presentation is
different in some minor aspects, but the underlying technique is the same: just as the method
of determination of the Weyl groups for U(n) and SU(n) in the earlier handout rested on a
consideration of eigenspace decompositions relative to the action of the maximal torus on a
“standard” C-linear representation of the ambient compact connected Lie group, we shall
do the same for the special orthogonal and symplectic cases with appropriate “standard”
representations over C.

2. Odd special orthogonal groups

Let’s begin with G = SO(2m + 1) ⊂ GL2m+1(R) with m ≥ 1. In this case, a maximal
torus T = (S1)m was found in HW3 Exercise 4: it consists of a string of 2 × 2 rotation
matrices r2πθ1 , . . . , r2πθn laid out along the diagonal of a (2m+1)× (2m+1) matrix, with the
lower-right entry equal to 1 and θj ∈ R/Z. In other words, a typical t ∈ T can be written as

t =


r2πθ1 0 . . . 0 0

0 r2πθ2 . . . 0 0
...

...
... 0 0

0 0 . . . r2πθm 0
0 0 . . . 0 1


(This torus is denoted as T (m) in the course text.)
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View Cn as the complexification of the standard representation of SO(n), so the decom-
position of the rotation matrix rθ into its diagonal form over C implies that the action of T
on C2m+1 has as its eigencharacters

{χ1, χ−1, . . . , χm, χ−m, 1}

where χ±j(t) = e±2πiθj . More specifically, any t ∈ T acts on each plane Pj = Re2j−1 ⊕Re2j
via a rotation rθj , so t acts on (Pj)C with eigenvalues χ±j(t) (with multiplicity).

These T -eigencharacters are pairwise distinct with 1-dimensional eigenspaces in C2m+1,
so any n ∈ NG(T ) must have action on C2m+1 that permutes these eigenlines in accordance
with its permutation effect on the eigencharacters in X(T ). In particular, n preserves the
eigenspace (C2m+1)T for the trivial chracters, and this eigenspace is the basis line Ce2m+1.

Since the action of G on C2m+1 is defined over R, if n acting on T (hence on X(T )) carries
χk to χk′ then by compatibility with the componentwise complex conjugation on C2m+1

we see that n acting on T (hence on X(T )) carries the complex conjugate χk = χ−k to
χk′ = χ−k′ . Keeping track of the χk-eigenline via the index k ∈ {±1, . . . ,±m}, the effect of
W (G, T ) on the set of eigenlines defines a homomorphism f from W (G, T ) into the group
Σ(m) of permutations σ of {±1, · · ·±m} that permute the numbers ±j in pairs; equivalently,
σ(−k) = −σ(k) for all k. (The course text denotes Σ(m) as G(m).)

The permutation within each of the m pairs of indices {j,−j} constitutes a Z/2Z, and
the permutation induced by σ on the set of m such pairs is an element of Sm, so we see that
Σ(m) = (Z/2Z)m o Sm with the standard semi-direct product structure.

Proposition 2.1. The map

f : W (G, T )→ Σ(m) = (Z/2Z)m o Sm

is an isomorphism.

For injectivity, note that any g ∈ NG(T ) ⊂ GL2m+1(C) representing a class in the kernel
has effect on C2m+1 preserving every (1-dimensional) eigenspace of T and so must be diagonal
over C (not just diagonalizable) with entries in S1 by compactness. Membership in G =
SO(2m+ 1) ⊂ GL2m+1(R) forces the diagonal entries of g to be ±1. Such g with det(g) = 1
visibly belongs to SO(2m + 1) = G and hence lies in ZG(T ) = T , so the injectivity of
W (G, T )→ Σ(m) is establshed.

To prove surjectivity, first note that a permutation among the m planes Pj is obtained
from a 2m×2m matrix that is an m×m “permutation matrix” in copies of the 2×2 identity
matrix. This 2m× 2m matrix has determinant 1 since each transposition (ij) ∈ Sm acts by
swapping the planes Pi and Pj via a direct sum of two copies of ( 0 1

1 0 ). Thus, by expanding
this to a determinant-1 action on R2m+1 via action by the trivial action on Re2m+1 gives
an element of G = SO(2m + 1) that lies in NG(T ) and represents any desired element of
Sm ⊂ Σ(m). Likewise, since the eigenlines for χ±j in (Pj)C are the lines C(e2j−1 + ie2j) and
C(e2j−1−ie2j) = C(e2j+ie2j−1) that are swapped upon swapping e2j−1 and e2j without a sign
intervention, we get an element of NG(T ) representing any (ε1, . . . , εm) ∈ (Z/2Z)m ⊂ Σ(m)
by using the action of ( 0 1

1 0 )εj ∈ O(2) on the plane Pj for each j and using the action by
(−1)

∑
εj on Re2m+1 to ensure an overall sign of 1. This completes our determination of the

Weyl group of SO(n) for odd n.
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3. Even special orthogonal groups

Now suppose G = SO(2m). We have a similar description of a maximal torus T = (S1)m:
it is an array of m rotation matrices rθj ∈ SO(2) (without any singleton entry of 1 in
the lower-right position). The exact same reasoning as in the case n = 2m + 1 defines a
homomorphism

f : W (G, T )→ Σ(m)

that is injective due to the exact same argument as in the odd special orthogonal case.
The proof of surjectivity in the case n = 2m + 1 does not quite carry over (and in fact f

will not be surjective, as is clear when m = 1 since SO(2) is commutative), since we no longer
have the option to act by a sign on Re2m+1 in order to arrange for an overall determinant
to be equal to 1 (rather than −1).

Inside Σ(m) = (Z/2Z)m o Sm we have the index-2 subgroup A(m) that is the kernel of
the homomorphism δm : Σ(m)→ {±1} defined by

((ε1, . . . , εm), σ) 7→ (−1)
∑
εj .

(The course text denotes this group as SG(m).) Explicitly, A(m) = Hm o Sm where Hm ⊂
(Z/2Z)m is the hyperplane defined by

∑
εj = 0.

Note that T is a maximal torus in SO(2m + 1), and NSO(2m)(T ) ⊂ NSO(2m+1)(T ) via the
natural inclusion GL2m(R) ↪→ GL2m+1(R) using the decomposition R2m+1 = H ⊕ Re2m+1

for the hyperplane H spanned by e1, . . . , e2m. Hence, we get an injection

W (SO(2m), T ) ↪→ W (SO(2m+ 1), T ).

Projection to the lower-right matrix entry defines a character NSO(2m+1)(T ) � {±1} that
encodes the sign of the action of this normalizer on the line Re2m+1 of T -invariants. This
character kills T and visibly has as its kernel exactly NSO(2m)(T ).

Upon passing to the quotient by T , we have built a character

Σ(m) = W (SO(2m+ 1), T ) � {±1}

whose kernel is W (SO(2m), T ). This character on Σ(m) is checked to coincide with δm by
using the explicit representatives in NSO(2m+1)(T ) built in our treatment of the odd special
orthogonal case. Thus, we have proved:

Proposition 3.1. The injection f : W (SO(2m), T ) → Σ(m) is an isomorphism onto
ker δm = A(m).

4. Symplectic groups

Finally, we treat the case G = Sp(n) = U(2n)∩GLn(H). Recall that G consists of precisely
the matrices (

A −B
B A

)
∈ U(2n),

and (from Exercise 4 in HW3) a maximal torus T = (S1)n of G is given by the set of elements

diag(z1, . . . , zn, z1, . . . , zn)
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for zj ∈ S1. (This torus is denoted as T n in the course text.) Note that the “standard”
representation of G on C2n has T = (S1)n acting with 2n distinct eigencharacters: the
component projections χj : T → S1 and their reciprocals 1/χj = χj. Denoting 1/χj as χ−j,
the action of NG(T ) on T via conjugation induces a permutation of this set of eigencharacters
χ±1, . . . , χ±n.

Keeping track of these eigencharacters via their indices, we get a homomorphism from
W (G, T ) = NG(T )/T into the permutation group of {±1, . . . ,±n}. Recall that this per-
mutation group contains a distinguished subgroup Σ(n) consisting of the permutations σ
satisfying σ(−k) = −σ(k) for all k. We claim that W (G, T ) lands inside Σ(n). This says
exactly that if the action on X(T ) by w ∈ W (G, T ) carries χk to χk′ (with −n ≤ k, k′ ≤ n)
then it carries χ−k to χ−k′ . But by definition we have χ−k = 1/χk, so this is clear.

Proposition 4.1. The map W (G, T )→ Σ(n) is an isomorphism.

This equality with the same Weyl group as for SO(2n + 1) is not a coincidence, but its
conceptual explanation rests on a duality construction in the theory of root systems that we
shall see later.

Proof. Suppose w ∈ W (G, T ) is in the kernel. Then for a representative g ∈ G of w, the
g-action on C2n preserves the χk-eigenline for all −n ≤ k ≤ n, so g is diagonal in GL2n(C).
Thus, g ∈ ZG(T ) = T , so w = 1. Using the inclusion U(n) ⊂ Sp(n) via

A 7→
(
A 0
0 A

)
that carries the diagonal maximal torus Tn of U(n) isomorphically onto our chosen maximal
torus T of Sp(n), we get an injection

Sn = W (U(n), Tn) ↪→ W (G, T )

that coincides (check!) with the natural inclusion of Sn into Σ(n) = (Z/2Z)n o Sn.
It remains to show that each of the standard direct factors Z/2Z of (Z/2Z)n lies in the

image of W (G, T ) inside Σ(n). This is a problem inside each

SU(2) = Sp(1) ⊂ GL(Cej ⊕Cej+n)

for 1 ≤ j ≤ n, using its 1-dimensional diagonal maximal torus that is one of the standard
direct factors S1 of T = (S1)n. But we already know W (SU(2), S1) = Z/2Z, with non-
trivial class represented by the unit quaternion j ∈ SU(2) ⊂ H× whose conjugation action
normalizes the unit circle S1 ⊂ C× via inversion, so we are done. �


