Math 210C. Weyl group computations

1. Introduction

In $\S 2$ of the handout on Weyl groups and character lattices, for $n \geq 2$ it is shown that for $G=\mathrm{U}(n) \subset \mathrm{GL}_{n}(\mathbf{C})$ and $T=\left(S^{1}\right)^{n}$ the diagonal maximal torus (denoted $\Delta(n)$ in the course text), we have $N_{G}(T)=T \rtimes S_{n}$ using the symmetric group S_{n} in its guise as $n \times n$ permutation matrices. (The course text denotes this symmetric group as $S(n)$.)

The case of $\mathrm{SU}(n)$ and its diagonal maximal torus $T^{\prime}=T \cap \mathrm{SU}(n)$ (denoted as $S \Delta(n)$ in the course text) was also worked out there, and its Weyl group is also S_{n}. This case is more subtle than in the case of $\mathrm{U}(n)$ since we showed that the Weyl group of $\mathrm{SU}(n)$ does not lift isomorphically to a subgroup of the corresponding torus normalizer inside $\mathrm{SU}(n)$.

Remark 1.1. Consider the inclusion $T^{\prime} \hookrightarrow T$ between respective diagonal maximal tori of $\mathrm{SU}(n)$ and $\mathrm{U}(n)$. Since $T=T^{\prime} \cdot Z$ for the central diagonally embedded circle $Z=S^{1}$ in $\mathrm{U}(n)$, we have $N_{\mathrm{SU}(n)}\left(T^{\prime}\right) \subset N_{\mathrm{U}(n)}(T)$ and thus get an injection $W\left(\mathrm{SU}(n), T^{\prime}\right) \hookrightarrow W(\mathrm{U}(n), T)$ that is an equality for size reasons. During our later study of root systems we will explain this equality of Weyl groups for $\mathrm{U}(n)$ and $\mathrm{SU}(n)$ in a broader setting.

For each of the additional classical compact groups $\operatorname{SO}(n)(n \geq 3)$ and $\operatorname{Sp}(n)(n \geq 1)$, we found an explicit self-centralizing and hence maximal torus in HW3 Exercise 4; the maximal torus found in this way for $\mathrm{SO}(2 m)$ is also a maximal torus in $\mathrm{SO}(2 m+1)$. The aim of this handout is to work out the Weyl group in these additional cases.

The course text explains this material, in 3.3-3.8 in Chapter IV. Our presentation is different in some minor aspects, but the underlying technique is the same: just as the method of determination of the Weyl groups for $\mathrm{U}(n)$ and $\mathrm{SU}(n)$ in the earlier handout rested on a consideration of eigenspace decompositions relative to the action of the maximal torus on a "standard" C-linear representation of the ambient compact connected Lie group, we shall do the same for the special orthogonal and symplectic cases with appropriate "standard" representations over \mathbf{C}.

2. Odd special orthogonal groups

Let's begin with $G=\mathrm{SO}(2 m+1) \subset \mathrm{GL}_{2 m+1}(\mathbf{R})$ with $m \geq 1$. In this case, a maximal torus $T=\left(S^{1}\right)^{m}$ was found in HW3 Exercise 4: it consists of a string of 2×2 rotation matrices $r_{2 \pi \theta_{1}}, \ldots, r_{2 \pi \theta_{n}}$ laid out along the diagonal of a $(2 m+1) \times(2 m+1)$ matrix, with the lower-right entry equal to 1 and $\theta_{j} \in \mathbf{R} / \mathbf{Z}$. In other words, a typical $t \in T$ can be written as

$$
t=\left(\begin{array}{ccccc}
r_{2 \pi \theta_{1}} & 0 & \ldots & 0 & 0 \\
0 & r_{2 \pi \theta_{2}} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & 0 & 0 \\
0 & 0 & \ldots & r_{2 \pi \theta_{m}} & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

(This torus is denoted as $T(m)$ in the course text.)

View \mathbf{C}^{n} as the complexification of the standard representation of $\mathrm{SO}(n)$, so the decomposition of the rotation matrix r_{θ} into its diagonal form over \mathbf{C} implies that the action of T on $\mathbf{C}^{2 m+1}$ has as its eigencharacters

$$
\left\{\chi_{1}, \chi_{-1}, \ldots, \chi_{m}, \chi_{-m}, 1\right\}
$$

where $\chi_{ \pm j}(t)=e^{ \pm 2 \pi i \theta_{j}}$. More specifically, any $t \in T$ acts on each plane $P_{j}=\mathbf{R} e_{2 j-1} \oplus \mathbf{R} e_{2 j}$ via a rotation $r_{\theta_{j}}$, so t acts on $\left(P_{j}\right)_{\mathbf{C}}$ with eigenvalues $\chi_{ \pm j}(t)$ (with multiplicity).

These T-eigencharacters are pairwise distinct with 1-dimensional eigenspaces in $\mathbf{C}^{2 m+1}$, so any $n \in N_{G}(T)$ must have action on $\mathbf{C}^{2 m+1}$ that permutes these eigenlines in accordance with its permutation effect on the eigencharacters in $\mathrm{X}(T)$. In particular, n preserves the eigenspace $\left(\mathbf{C}^{2 m+1}\right)^{T}$ for the trivial chracters, and this eigenspace is the basis line $\mathbf{C} e_{2 m+1}$.

Since the action of G on $\mathbf{C}^{2 m+1}$ is defined over \mathbf{R}, if n acting on T (hence on $\mathrm{X}(T)$) carries χ_{k} to $\chi_{k^{\prime}}$ then by compatibility with the componentwise complex conjugation on $\mathbf{C}^{2 m+1}$ we see that n acting on T (hence on $\mathrm{X}(T)$) carries the complex conjugate $\bar{\chi}_{k}=\chi_{-k}$ to $\bar{\chi}_{k^{\prime}}=\chi_{-k^{\prime}}$. Keeping track of the $\chi_{k^{\prime}}$-eigenline via the index $k \in\{ \pm 1, \ldots, \pm m\}$, the effect of $W(G, T)$ on the set of eigenlines defines a homomorphism f from $W(G, T)$ into the group $\Sigma(m)$ of permutations σ of $\{ \pm 1, \cdots \pm m\}$ that permute the numbers $\pm j$ in pairs; equivalently, $\sigma(-k)=-\sigma(k)$ for all k. (The course text denotes $\Sigma(m)$ as $G(m)$.)

The permutation within each of the m pairs of indices $\{j,-j\}$ constitutes a $\mathbf{Z} / 2 \mathbf{Z}$, and the permutation induced by σ on the set of m such pairs is an element of S_{m}, so we see that $\Sigma(m)=(\mathbf{Z} / 2 \mathbf{Z})^{m} \rtimes S_{m}$ with the standard semi-direct product structure.

Proposition 2.1. The map

$$
f: W(G, T) \rightarrow \Sigma(m)=(\mathbf{Z} / 2 \mathbf{Z})^{m} \rtimes S_{m}
$$

is an isomorphism.
For injectivity, note that any $g \in N_{G}(T) \subset \mathrm{GL}_{2 m+1}(\mathbf{C})$ representing a class in the kernel has effect on $\mathbf{C}^{2 m+1}$ preserving every (1-dimensional) eigenspace of T and so must be diagonal over C (not just diagonalizable) with entries in S^{1} by compactness. Membership in $G=$ $\mathrm{SO}(2 m+1) \subset \mathrm{GL}_{2 m+1}(\mathbf{R})$ forces the diagonal entries of g to be ± 1. Such g with $\operatorname{det}(g)=1$ visibly belongs to $\mathrm{SO}(2 m+1)=G$ and hence lies in $Z_{G}(T)=T$, so the injectivity of $W(G, T) \rightarrow \Sigma(m)$ is establshed.

To prove surjectivity, first note that a permutation among the m planes P_{j} is obtained from a $2 m \times 2 m$ matrix that is an $m \times m$ "permutation matrix" in copies of the 2×2 identity matrix. This $2 m \times 2 m$ matrix has determinant 1 since each transposition $(i j) \in S_{m}$ acts by swapping the planes P_{i} and P_{j} via a direct sum of two copies of $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Thus, by expanding this to a determinant- 1 action on $\mathbf{R}^{2 m+1}$ via action by the trivial action on $\mathbf{R} e_{2 m+1}$ gives an element of $G=\mathrm{SO}(2 m+1)$ that lies in $N_{G}(T)$ and represents any desired element of $S_{m} \subset \Sigma(m)$. Likewise, since the eigenlines for $\chi_{ \pm j}$ in $\left(P_{j}\right)_{\mathbf{C}}$ are the lines $\mathbf{C}\left(e_{2 j-1}+i e_{2 j}\right)$ and $\mathbf{C}\left(e_{2 j-1}-i e_{2 j}\right)=\mathbf{C}\left(e_{2 j}+i e_{2 j-1}\right)$ that are swapped upon swapping $e_{2 j-1}$ and $e_{2 j}$ without a sign intervention, we get an element of $N_{G}(T)$ representing any $\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \in(\mathbf{Z} / 2 \mathbf{Z})^{m} \subset \Sigma(m)$ by using the action of $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)^{\epsilon_{j}} \in \mathrm{O}(2)$ on the plane P_{j} for each j and using the action by $(-1)^{\sum \epsilon_{j}}$ on $\mathbf{R} e_{2 m+1}$ to ensure an overall sign of 1 . This completes our determination of the Weyl group of $\mathrm{SO}(n)$ for odd n.

3. Even special orthogonal groups

Now suppose $G=\mathrm{SO}(2 m)$. We have a similar description of a maximal torus $T=\left(S^{1}\right)^{m}$: it is an array of m rotation matrices $r_{\theta_{j}} \in \mathrm{SO}(2)$ (without any singleton entry of 1 in the lower-right position). The exact same reasoning as in the case $n=2 m+1$ defines a homomorphism

$$
f: W(G, T) \rightarrow \Sigma(m)
$$

that is injective due to the exact same argument as in the odd special orthogonal case.
The proof of surjectivity in the case $n=2 m+1$ does not quite carry over (and in fact f will not be surjective, as is clear when $m=1$ since $\mathrm{SO}(2)$ is commutative), since we no longer have the option to act by a sign on $\mathbf{R} e_{2 m+1}$ in order to arrange for an overall determinant to be equal to 1 (rather than -1).

Inside $\Sigma(m)=(\mathbf{Z} / 2 \mathbf{Z})^{m} \rtimes S_{m}$ we have the index-2 subgroup $A(m)$ that is the kernel of the homomorphism $\delta_{m}: \Sigma(m) \rightarrow\{ \pm 1\}$ defined by

$$
\left(\left(\epsilon_{1}, \ldots, \epsilon_{m}\right), \sigma\right) \mapsto(-1)^{\sum \epsilon_{j}} .
$$

(The course text denotes this group as $S G(m)$.) Explicitly, $A(m)=H_{m} \rtimes S_{m}$ where $H_{m} \subset$ $(\mathbf{Z} / 2 \mathbf{Z})^{m}$ is the hyperplane defined by $\sum \epsilon_{j}=0$.

Note that T is a maximal torus in $\mathrm{SO}(2 m+1)$, and $N_{\mathrm{SO}(2 m)}(T) \subset N_{\mathrm{SO}(2 m+1)}(T)$ via the natural inclusion $\mathrm{GL}_{2 m}(\mathbf{R}) \hookrightarrow \mathrm{GL}_{2 m+1}(\mathbf{R})$ using the decomposition $\mathbf{R}^{2 m+1}=H \oplus \mathbf{R} e_{2 m+1}$ for the hyperplane H spanned by $e_{1}, \ldots, e_{2 m}$. Hence, we get an injection

$$
W(\mathrm{SO}(2 m), T) \hookrightarrow W(\mathrm{SO}(2 m+1), T)
$$

Projection to the lower-right matrix entry defines a character $N_{\mathrm{SO}(2 m+1)}(T) \rightarrow\{ \pm 1\}$ that encodes the sign of the action of this normalizer on the line $\mathbf{R} e_{2 m+1}$ of T-invariants. This character kills T and visibly has as its kernel exactly $N_{\mathrm{SO}(2 m)}(T)$.

Upon passing to the quotient by T, we have built a character

$$
\Sigma(m)=W(\mathrm{SO}(2 m+1), T) \rightarrow\{ \pm 1\}
$$

whose kernel is $W(\mathrm{SO}(2 m), T)$. This character on $\Sigma(m)$ is checked to coincide with δ_{m} by using the explicit representatives in $N_{\mathrm{SO}(2 m+1)}(T)$ built in our treatment of the odd special orthogonal case. Thus, we have proved:

Proposition 3.1. The injection $f: W(\mathrm{SO}(2 m), T) \rightarrow \Sigma(m)$ is an isomorphism onto $\operatorname{ker} \delta_{m}=A(m)$.

4. Symplectic groups

Finally, we treat the case $G=\operatorname{Sp}(n)=\mathrm{U}(2 n) \cap \mathrm{GL}_{n}(\mathbf{H})$. Recall that G consists of precisely the matrices

$$
\left(\begin{array}{cc}
A & -\bar{B} \\
B & \bar{A}
\end{array}\right) \in \mathrm{U}(2 n),
$$

and (from Exercise 4 in HW3) a maximal torus $T=\left(S^{1}\right)^{n}$ of G is given by the set of elements

$$
\operatorname{diag}\left(z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right)
$$

for $z_{j} \in S^{1}$. (This torus is denoted as T^{n} in the course text.) Note that the "standard" representation of G on $\mathbf{C}^{2 n}$ has $T=\left(S^{1}\right)^{n}$ acting with $2 n$ distinct eigencharacters: the component projections $\chi_{j}: T \rightarrow S^{1}$ and their reciprocals $1 / \chi_{j}=\bar{\chi}_{j}$. Denoting $1 / \chi_{j}$ as χ_{-j}, the action of $N_{G}(T)$ on T via conjugation induces a permutation of this set of eigencharacters $\chi_{ \pm 1}, \ldots, \chi_{ \pm n}$.

Keeping track of these eigencharacters via their indices, we get a homomorphism from $W(G, T)=N_{G}(T) / T$ into the permutation group of $\{ \pm 1, \ldots, \pm n\}$. Recall that this permutation group contains a distinguished subgroup $\Sigma(n)$ consisting of the permutations σ satisfying $\sigma(-k)=-\sigma(k)$ for all k. We claim that $W(G, T)$ lands inside $\Sigma(n)$. This says exactly that if the action on $\mathrm{X}(T)$ by $w \in W(G, T)$ carries χ_{k} to $\chi_{k^{\prime}}$ (with $-n \leq k, k^{\prime} \leq n$) then it carries χ_{-k} to $\chi_{-k^{\prime}}$. But by definition we have $\chi_{-k}=1 / \chi_{k}$, so this is clear.
Proposition 4.1. The map $W(G, T) \rightarrow \Sigma(n)$ is an isomorphism.
This equality with the same Weyl group as for $\mathrm{SO}(2 n+1)$ is not a coincidence, but its conceptual explanation rests on a duality construction in the theory of root systems that we shall see later.
Proof. Suppose $w \in W(G, T)$ is in the kernel. Then for a representative $g \in G$ of w, the g-action on $\mathbf{C}^{2 n}$ preserves the χ_{k}-eigenline for all $-n \leq k \leq n$, so g is diagonal in $\mathrm{GL}_{2 n}(\mathbf{C})$. Thus, $g \in Z_{G}(T)=T$, so $w=1$. Using the inclusion $\mathrm{U}(n) \subset \operatorname{Sp}(n)$ via

$$
A \mapsto\left(\begin{array}{cc}
A & 0 \\
0 & \bar{A}
\end{array}\right)
$$

that carries the diagonal maximal torus T_{n} of $\mathrm{U}(n)$ isomorphically onto our chosen maximal torus T of $\operatorname{Sp}(n)$, we get an injection

$$
S_{n}=W\left(\mathrm{U}(n), T_{n}\right) \hookrightarrow W(G, T)
$$

that coincides (check!) with the natural inclusion of S_{n} into $\Sigma(n)=(\mathbf{Z} / 2 \mathbf{Z})^{n} \rtimes S_{n}$.
It remains to show that each of the standard direct factors $\mathbf{Z} / 2 \mathbf{Z}$ of $(\mathbf{Z} / 2 \mathbf{Z})^{n}$ lies in the image of $W(G, T)$ inside $\Sigma(n)$. This is a problem inside each

$$
\mathrm{SU}(2)=\mathrm{Sp}(1) \subset \mathrm{GL}\left(\mathbf{C} e_{j} \oplus \mathbf{C} e_{j+n}\right)
$$

for $1 \leq j \leq n$, using its 1-dimensional diagonal maximal torus that is one of the standard direct factors S^{1} of $T=\left(S^{1}\right)^{n}$. But we already know $W\left(\mathrm{SU}(2), S^{1}\right)=\mathbf{Z} / 2 \mathbf{Z}$, with nontrivial class represented by the unit quaternion $j \in \mathrm{SU}(2) \subset \mathbf{H}^{\times}$whose conjugation action normalizes the unit circle $S^{1} \subset \mathbf{C}^{\times}$via inversion, so we are done.

