
Roots of Unity

In the discussion of solution of equations by radicals there is what seems to be an asymmetry in the
two steps “adjoin roots of 1” and “adjoin roots of a”. For example, when we adjoin n

√
a we assume

the nth roots of unity have already been adjoined. But we seem to allow adjoining nth roots of 1
whenever we want, and we never use the symbol n

√
1 for a primitive root of unity. Instead we call

it some Greek letter, which looks quite different than a symbol like 3
√

2.
It turns out roots of unity are themselves expressed in terms of more standard iterated radicals.

For example, i =
√
−1 and the primitive cube roots of unity are given by the formula (−1+

√
−3)/2,

where
√
−3 can be interpreted as either of the two square roots. The primitive fifth roots of unity

are given by the iterated radical formula [−1+
√

5+
√
−10− 2

√
5]/4. There are four interpretations:√

5 has two interpretations, which must be the same both times it appears, and the outer root has
two interpretations for each interpretation of

√
5.

Here is the explanation for the fifth root of unity, say ω. Since ω4 + ω3 + ω2 + ω + 1 = 0, it
follows that α = ω+ω4 satisfies the quadratic equation α2 +α−1 = 0. So α = (−1 +

√
5)/2. Then

ωα = ω2 + 1, and this quadratic relation over Q[α] leads to the above formula for ω.
A theoretical point of view, which we will generalize below, is that since 2 is a primitive root

mod 5, the Galois group of Q[ω] over Q, which is cyclic of order 4, is generated by g(ω) = ω2.
Therefore α = ω + g2(ω) = ω + ω4 is fixed by the subgroup of the Galois group of order 2, namely
〈g2〉. This guarantees that α is quadratic over Q.

The complete story here goes back to Gauss. Let’s assume for simplicity that the characteristic
is 0. Then all roots of unity can be expressed as iterated radicals in a rather controlled manner. In
the formulas, only integers appear, along with sums, products, and nested radicals. In the language
of towers of field extensions, there is only one type of extension that occurs in the towers. Namely,
the adjunction of one root of an irreducible polynomial Xq − a, where q is prime and a belongs to
the preceding field. (The same is then true for any solvable equation, not just for the roots of unity.
That is, the iterated radical towers that eventually contain roots are constructed as a sequence of
extensions of this single basic type.) Here is at least a partial explanation, using the concepts of
Galois theory and inductive constructions.

First of all, if m and n are relatively prime, then the primitive mnth roots of unity are products
of the primitive mth roots of unity and the primitive nth roots of unity. Thus, we only need to
construct the primitive pdth roots for primes p.

The case p = 2 is the simplest. The primitive square root of 1 is −1. Then the primitive 4th
root of 1 is

√
−1, with two interpretations, obtained by multiplying by the square roots of 1, that is,

by +1 or −1. The primitive 8th roots are given by
√√
−1, with four interpretations, two inside the

outer radical, and then for each of these, two interpretations of the outer radical. Iterate, taking a
new outer square root at each stage.

What is happening here? We start with Q. We know if E is obtained from Q by adjoining
all 2dth roots of unity, then |E : Q| = 2d−1. We have described a tower of radical extensions
Q = E1 ⊂ E2 ⊂ · · · ⊂ Ed, where the extension Ei ⊂ Ei+1 splits an irreducible quadratic polynomial
X2− ai, with ai ∈ Ei, and with a primitive square root of 1 in Ei. Of course, each ai is a primitive
2ith root of unity. Inductively, the radical formulas for these roots have exactly the right number
of interpretations as distinct elements.

Now consider an odd prime p. It is quite easy to explain the pdth roots, once we have the pth
roots. Namely, suppose Q ⊂ F = F (p) is some field extension containing a primitive pth root of
1, say ω, and such that |F : Q| is divisible only by primes less than p. We also assume that in F
there is an iterated radical formula for ω with exactly p− 1 interpretations, as the various separate
occurring radicals in the formula for ω are interpreted in various allowed ways. Of course, these
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p − 1 interpretations will necessarily correspond to the powers of ω in some order, but that isn’t
the point here.

Given such an F , we construct the primitive pdth roots of 1 successively as p
√
ω, p

√
p
√
ω, etc.

That is, we build a root tower F = F1 ⊂ F2 ⊂ · · · ⊂ Fd, where the extension Fi ⊂ Fi+1 is of degree
p and splits the polynomial Xp− ai, where ai ∈ Fi is a primitive pith root of 1. These polynomials
must be irreducible at each stage, since we know the degree over Q of a primitive pdth root of
unity is pd−1(p − 1) and |F : Q| is relatively prime to p. At each stage, our new pth root has p
interpretations for each interpretation of ai, obtained by multiplying any one interpretation by the
pth roots of 1. So, the point here is, if we come up with iterated radical formulas for the primitive
pth roots of 1 inside a field F = F (p) such that |F : Q| is divisible only by primes less than p, then
we also have iterated radical formulas of a controlled type for all pdth roots of 1, and consequently
formulas for nth roots of 1 for any n.

We will construct such fields F = F (p), and iterated radical formulas for the primitive pth roots
of 1, ω ∈ F , using Galois theory and induction on p. We know Q[ω] is a cyclic Galois extension
of degree p − 1. Therefore, there is a tower of field extensions Q = K0 ⊂ K1 ⊂ · · · ⊂ Km = Q[ω],
with each successive extension cyclic of order some prime q dividing p − 1. Now, we would like
these extensions to be qth root extensions, but we need to make sure we have qth roots of unity
first. So, let Q ⊂ L be the extension obtained as the composite of the cyclotomic extensions of
Q corresponding to the qth roots of unity for the primes q that divide p − 1. It turns out that
|LQ[ω] : L| = |Q[ω] : Q| = p− 1. This follows easily from the following lemma.

Lemma 1 If ζn and ζm are primitive nth and mth roots of unity with gcd(n,m) = 1, then
Q[ζn]Q[ζm] is the cyclotomic extension generated by the primitive mnth root of unity ζnζm, of
degree φ(mn) = φ(m)φ(n) over Q. 2

Now look at the tower L = L0 ⊂ L1 ⊂ · · · ⊂ Lm, where Li = LKi.

Proposition 1 Each Li ⊂ Li+1 is a cyclic extension of degree qi = |Ki+1 : Ki| obtained by
adjoining one (hence all) qith roots of some element of Li. In particular, there is an iterated radical
formula for ω in the field Lm = LQ[ω], and |Lm : Q| is divisible only by primes less than p.

Proof The appropriate auxiliary roots of unity have been placed in L, hence in all the Li. The
successive extensions in the L-tower are cyclic Galois extensions of degree qi, because in the K-
tower the extensions are cyclic of degree qi, and the total degree from bottom to top of both towers
is the same, namely p−1. But with appropriate roots of unity in the base field, any cyclic extension
is a simple root extension. In every field extension which occurs in the construction of Lm over Q,
only primes less than p divide the degree, so |Lm : Q| is divisible only by primes less than p. �

The iterated radical formula for ω which is found in the construction of Lm here will contain
symbols, not necessarily radical formulas, for various qth roots of unity, q < p. But now an
induction applied to these roots of unity produces finally a field F (p) containing a radical formula
for ω which contains only integers and iterated radical expressions. For example, F = F (p) can
be obtained from the field Lm = LQ[ω] above by simply adjoining enough radicals to yield radical
formulas for the qth roots of unity for each prime q less than p. Note by induction we will have
|F : Q| divisible only by primes less than p.

Suppose we want to make the above inductive construction quite explicit. The key step, really, is
the step where a cyclic extension with roots of unity in the ground field is shown to be a simple root
adjunction. The rest is arithmetic, although of course it gets complicated. Now, in the abstract, this
result about cyclic extensions is not proved so constructively. Some Lagrange resolvant enters, but
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what Lagrange resolvant? Often Hilbert’s Theorem 90 is used, or linear independence of characters,
as in my Paragraph 26. But perhaps this is a disservice to students. It is not all that hard to exhibit
explicit non-zero Lagrange resolvants in the presence of primitive elements.

Here is the story for Q[ω]. In the K-tower above between Q and Q[ω], each field Ki in the
tower can rather easily be seen to be generated over Q by an element γ that is a sum of some
number of distinct powers of ω. In fact, exactly (p − 1)/d such powers, if |Ki : Q| = d. This is
easy Galois theory, exploiting the cyclic Galois group of Q[ω] over Q, generated by g(ω) = ωr,
where r is some primitive root mod p, that is, a generator of the multiplicative group (Z/pZ)∗.
One takes γ = ω + gdω + g2dω + · · · + gp−1−dω. Then gdγ = γ. Gauss called these elements
γ periods of the cyclotomic equation. So γ will certainly be a primitive element for Ki over the
immediately preceding field in the K-tower, and also γ will be a primitive element for Li = LKi

over the preceding field in the L-tower. Let ζ be an appropriate qth root of unity for this cyclic
extension step in the L-tower. The prime q will be a divisor of d. Then γ+ζg(γ)+ · · ·+ζq−1gq−1(γ)
is an appropriate Lagrange resolvant here, a non-zero element of Li whose qth power falls in the
preceding field. The key word is non-zero. One reason this Lagrange resolvant is non-zero is
precisely because all the powers {ω, ω2, . . . , ωp−1} are linearly independent over Q[ζ], by the lemma
above. The Lagrange resolvant in question is seen to be a linear combination over Q[ζ] of exactly
q(p−1)/d powers of ω, hence it is non-zero. Brute force will compute the qth power of this Lagrange
resolvant as a specific element of the preceding field in the tower.

This concludes the discussion about radical formulas for roots of unity. But here is a general
result about non-zero Lagrange resolvants, which makes the general discussion of solving equa-
tions by radicals more constructive than it appears from proofs which use linear independence of
characters or Hilbert’s Theorem 90 at the crucial point.

Proposition 2 Suppose F is a field containing primitive qth roots of unity, q prime, and suppose
F ⊂ F [γ] is a cyclic Galois extension of degree q, with Galois group generated by an automorphism
g. Then for at least one of the q − 1 primitive qth roots of 1 in F , say ζ, the Lagrange resolvant
ρ = ρ(ζ, γ) = γ + ζg(γ) + · · · + ζq−1gq−1(γ) is non-zero. Thus g(ρ) = ζ−1ρ, ρq = r ∈ F , and
F [γ] = F [ρ]. 2

I won’t give the proof here, but it is relatively simple linear algebra. A non-zero Vandermonde
determinant enters the argument at some point, but that is as hard as it gets. The significance of
the Proposition is that one has only q − 1 elements ρ to compute. Brute force arithmetic will find
the powers ρq = r ∈ F in terms of powers of ζ and elements of F obtained from the coefficients of
the minimal polynomial of γ. Note that the elements gj(γ) are the conjugates of γ, the other roots
of its minimal polynomial over F . More linear algebra then finds formulas for γ and its conjugates
in terms of elements of F obtained from the coefficients of its minimal polynomial, powers of ζ,
and powers of ρ = q

√
r.

As an illustration of this entire discussion, let’s look at the final result for the roots, γ, of a
cubic X3 + pX − q with cyclic Galois group of order 3. Here is a radical formula for 3γ, hence γ,
essentially Cardan’s formula:

3γ = α+ β =
3

√
27q
2
− 3
√
−3

√
−4p3 − 27q2

2
+

3

√
27q
2

+
3
√
−3

√
−4p3 − 27q2

2

where the two cube roots α and β are related by αβ = −3p.
Here are some features of this amazing formula, which illustrate very general points. First,

the coefficients p and q of the minimal polynomial of γ occur in the formula. Second, other, more
subtle, elements of the ground field occur, specifically the square root of the discriminant, which
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must be in the ground field since the Galois group is cyclic. Third, the primitive cube roots of unity
ζ and ζ2 occur, specifically

√
−3 = ζ − ζ2. Fourth, each of the two distinct square roots in the

formula are allowed to be interpreted in two ways, that is, the signs can be changed, but such sign
changes do not change the final expression, except for possibly switching α and β. Finally, the two
big cube roots α and β would independently have three interpretations each. But the constraint
αβ = −3p, reduces the total number of allowed interpretations of the formula to three, not nine.
The occurrence of both cube roots α and β is only an aesthetic convenience. In an iterated root
tower producing the radical formula for γ, one would stop when α is created, since then β = −3p/α
is there for the taking.

Without going through the entire derivation of the Cardan formula for the roots of a cubic,
it is relevant to point out that the cube roots α and β are exactly the Lagrange resolvants α =
γ+ ζg(γ) + ζ2g2(γ) and β = γ+ ζ2g(γ) + ζg2(γ), where g generates the cyclic Galois group. Brute
force leads to formulas for α3+β3 and α3−β3, specifically, α3+β3 = 27q and α3−β3 = 3(ζ2−ζ)

√
D,

where D is the discriminant. This immediately gives the desired formulas for α3 and β3 in the
ground field.

Finally, here is the strongest possible statement of the general phenomenon, at least in char-
acteristic 0. A polynomial with solvable Galois group has an iterated radical formula for its roots
obtainable in an iterated root tower each step of which adjoins one, hence all, roots of an irre-
ducible polynomial Xq − r, q prime, where the element r and the qth roots of unity are in the
preceding field. Every root ρ = q

√
r which is adjoined in the tower can be chosen to be a Lagrange

resolvant associated to an arbitrary primitive element of that particular extension in the tower.
An occurrence of ρ = q

√
r in the iterated radical formula is allowed all possible interpretations, q

of them, although multiple occurrences of this same ρ must be interpreted identically. The set of
distinct field elements obtained by all the different interpretations of the basic roots ρ which occur
is exactly the set of distinct roots of the polynomial.

As an example, a universal tower for an irreducible reduced cubic X3 + pX − q would be
F ⊂ F [

√
D] ⊂ F [

√
D,
√
−3] ⊂ F [

√
D,
√
−3, α], where D is the discriminant and α is as above.

(One or both of the first two extensions might be trivial, hence would not occur as separate steps
in a minimal root tower.)
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