
Outline of Galois Theory Development

1. Field extension F ↪→ E as vector space over F . |E : F | equals dimension as vector space. If F ↪→
K ↪→ E then |E : F | = |E : K||K : F |.

2. Element a ∈ E is algebraic over F if and only if |F (a) : F | is finite. Minimum polynomial f(X) ∈ F [X]
for algebraic a ∈ E. f(X) is irreducible, F (a) = F [a] ∼= F [X]/(f(X)), |F [a] : F | = deg f(X), a basis
is {1, a, a2, . . . , ad−1}, where d = deg f(X). The set of elements a ∈ E which are algebraic over F is a
subfield of E.

3. Existence of Splitting Fields for a polynomial or family of polynomials F ⊂ F [X]. Existence of
Algebraic Closure. Characterizations of Algebraic Closure: A field E is algebraically closed if every
non-constant polynomial in E[X] factors as a product of linear polynomials. (Equivalently, every non-
constant polynomial in E[X] has a root in E.) A field E is an algebraic closure of a subfield F if E is
algebraic over F and every non-constant polynomial in F [X] factors as a product of linear polynomials
in E[X]. Such an E is algebraically closed.

4. Uniqueness of Splitting Fields.
MAIN LEMMA: h : F → L′ extends to h′ : F [a]→ L′ if and only if hf(X) has roots in L′, where f(X)
is the minimum polynomial for a over F and hf(X) is the image of f(X) under the map F [X]→ L′[X]
induced by h. The number of distinct extensions of h, h′ : F [a] → L′, equals the number of distinct
roots of hf(X) in L′, and h′ is determined by the value h′(a) = a′, where a′ is a root of hf(X) in L′.
CONSEQUENCE: If F ↪→ L is a splitting field of F ⊂ F [X], h : F → F ′ a field homomorphism, and
F ′ ↪→ L′ an extension which contains a splitting field of hF ⊂ F ′[X], then h extends to h′ : L → L′.
In particular, any two splitting fields of F are isomorphic over F .

5. COROLLARY OF MAIN LEMMA: If |E : F | is finite, the number of distinct extensions h′ : E → L
of h : F → L is always less than or equal to |E : F |.

6. Normal (Algebraic) Extensions F ↪→ E. Three characterizations:

(i) E is a splitting field of a family of polynomials over F .
(ii) If h : E → F̂ is any embedding into the algebraic closure of F with h = id on F , then h(E) = E.

(WLOG, F ⊂ E ⊂ F̂ .)
(iii) If an irreducible polynomial g(X) ∈ F [X] has a root in E then g(X) factors into a product of

linear factors in E[X]. That is, all roots of g(X) in F̂ are in E.

7. The derivative f ′(X) and algebraic properties. Especially gcd(f, f ′) = 1 if and only if f(X) has no
multiple roots. Consequently, if char(F ) = 0 or if F is a finite field then every irreducible polynomial
of degree d in F [X] has d distinct roots in the algebraic closure F̂ .

8. Separable (Algebraic) Extensions F ↪→ E. Three characterizations:

(i) Every element a ∈ E is the root of a polynomial with no multiple roots. That is, every element
of E is ‘separable’ over F .

(ii) E is generated over F by separable elements.
(iii) If E′ ⊂ E and |E′ : F | is finite, then |E′ : F | equals the number of distinct embeddings h′ : E′ → F̂

with h′ = id on F . (So if |E : F | is finite, then |E : F | equals the number of distinct embeddings
E → F̂ over F ).

NOTE: It follows from these considerations, especially (??), that given F ↪→ K ↪→ E, K/F and E/K
both separable implies E/F separable. Also, the set of elements in any E which are separable over F
forms a subfield of E.

9. Theorem of the Primitive Element for finite separable extensions E/F . Namely, E = F [a], for some
a ∈ E. There are many proofs. E.g., start with F [u, v], then look at elements a = u+ cv with c ∈ F .
If f(X) and g(X) are the minimal polynomials for u and v over F, choose c so that f(a − cX) and
g(X) have exactly one common root, namely v. Then gcd(f(a− cX), g(X)) ∈ F [a][X] must be X − v,
hence v is in F [a], so also u is in F [a], and F [u, v] = F [a]. (This proof works for infinite F . If F is
finite so is E, and E∗ is a cyclic multiplicative group, so E = F [a] is clear.)
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10. Define E/F to be a Galois extension if and only if E is separable AND normal over F. (This is the ’right’
definition, because the conditions separable and normal are easily understood in terms of individual
generators of E over F and the roots of their minimal polynomials.)

11. COROLLARY: A finite extension E/F is Galois if and only if |E : F | equals the number of automor-
phisms g : E → E with g = id on F . (The proof just combines characterization (??) of Normal with
characterization (??) of Separable.)

12. Define the Galois Group Gal(E/F ) to be the group of automorphisms g : E → E which fix all elements
of F . For finite Galois extensions, |Gal(E/F )| = |E : F |, by item 11.

13. If f(X) is a separable, irreducible polynomial of degree n, then the Galois group of its splitting field is
a transitive subgroup of the symmetric group Sn of all permutations of the roots of f(X). The order
of the group is divisible by n.

14. Define the Fundamental Correspondences

{H ≤ G} ↔ {intermediate fields L of E/F},

where G = Gal(E/F ). H 7→ EH , the subfield of E fixed by all elements of H. L 7→ Gal(E/L), the
subgroup of G fixing all elements of L.

15. State and prove the Fundamental Theorem for Finite Galois Extensions.

The direction L 7→ Gal(E/L) = H 7→ EH = L is ‘easy’, and just uses the definitions and the fact from
12 that |Gal(E/L)| = |E : L|. The direction H 7→ EH = L 7→ Gal(E/L) = H requires more. The
sticking point is why is |E : EH | ≤ |H|? But if E = L[a] then the product

∏
(X − ha), h ∈ H, is a

polynomial with coefficients in EH = L which has a as a root and has degree |H|. So |L[a] : L| ≤ |H|.
By the Theorem of the Primitive Element, the assumption E = L[a] is justified here. If g : E → E
is an automorphism over F and L ⊂ E is an intermediate field, corresponding to subgroup H ⊂ G,
then it is a trivial ‘group action’ fact that the subgroup of G corresponding to the field gL ⊂ E is the
conjugate subgroup gHg−1 of H. So H is normal in G if and only if L is normal over F . In this case,
Gal(L/F ) = G/H follows easily, since there is a map G→ Gal(L/F ), which is onto and has kernel H.

16. Two miscellaneous results:

(i) An algebraic extension F ↪→ E is primitive, that is, E = F [a], if and only if there are only finitely
many intermediate fields L, with F ⊂ L ⊂ E.

(ii) If H is a finite group of automorphisms of a field E and EH is the fixed field, then the extension
E/EH is finite, normal, separable, and |E : EH | = |H|.

(Result (??) is closely related to the trickier part of the Fundamental Theorem in 15. In that situa-
tion though, one knew E/EH was finite, normal, separable, because one started with a finite Galois
extension E/F . But, here, all this must be proved.)

17. Two results about composite extensions:

(i) If K/F is a finite Galois extension and L/F is any extension, then KL is Galois over L with
Gal(KL/L) = Gal(K/K ∩ L) ⊂ Gal(K/F ).

(ii) If K/F and L/F are two finite Galois extensions then KL/F is Galois and

Gal(KL/F ) ⊂ Gal(K/F )×Gal(L/F ),

specifically, the subgroup {(u, v) | u : K → K and v : L→ L with u = v on K ∩ L}.
(In part (??), interpret KL and K ∩ L as subfields of L̂, the algebraic closure of L. Specifically, L̂
contains a unique isomorphic copy of K, since K is the splitting field of some polynomial in F [X]. In
part (??), interpret both K and L as subfields of F̂ .)
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18. Artin’s proof that C = R[i] is algebraically closed. First, every element of C has square roots, so C
has no quadratic extensions. Suppose E/C is some finite algebraic extension, which WLOG can be
assumed normal over R. If |E : R| is divisble by an odd prime, the fixed field of a Sylow 2-subgroup of
Gal(E/R) would have odd degree over R. Any element of this field would have minimal polynomial over
R of odd degree. But every odd degree polynomial over R has a root in R, hence can’t be irreducible.
Thus, |E : C| = 2n, for some n. But then if n > 0, Gal(E/C) would contain a normal subgroup of
index 2, corresponding to a proper quadratic extension of C.

19. EXAMPLE: Roots of Unity.

The roots of Xn−1 = 0 that lie in a field extension E of F form a multiplicative subgroup of E, hence
form a cyclic group. If char(F ) = p does not divide n, there are n roots in the splitting field. Thus, the
Galois group is a subgroup of Aut(Z/nZ), hence is abelian of order dividing φ(n) = |(Z/nZ)∗|. The
splitting field is generated over F by any primitive nth root of 1, say z, and a Galois automorphism is
determined by the image of z, which is some power zj with (n, j) = 1. The automorphism must fix F ,
so perhaps only a proper subgroup of such j in (Z/nZ)∗ give Galois group elements. In Z[X], there
is a factorization Xn − 1 =

∏
d Fd(X), where d runs over all divisors of n, and the Fd(X) are defined

inductively. The roots of Fn(X) are precisely the primitive nth roots of 1, so degFn(X) = φ(n). It is
proved that all Fn(X) are irreducible in Q[X], hence the splitting field of Xn − 1 over Q has degree
φ(n) and Galois group Aut(Z/nZ) = (Z/nZ)∗. (If n = mpi, with (m, p) = 1, p = char(F ), then
Xn − 1 = (Xm − 1)q, q = pi, so the splitting fields of Xn − 1 and Xm − 1 coincide.)

20. EXAMPLE: nth roots.

Assume the nth roots of 1 are in F , say z, z2, . . . , zn = 1. We also assume char(F ) = 0 or (n, p) = 1,
where p = char(F ). If a ∈ F , the polynomial Xn − a has roots b, zb, . . . , z(n−1)b, hence the splitting
field is generated over F by one nth root b of a. A Galois automorphism is determined by the image
of b, which is some zjb. Thus the Galois group is a subgroup of Z/nZ, hence is cyclic.

21. EXAMPLE: Xp −X + a, where char(F ) = p, and a ∈ F .

If b is one root then all the roots are given by b, b+ 1, b+ 2, · · · , b+ (p− 1). A Galois automorphism
is determined by the image of b, which is some b+ j. Since p is prime, either all roots are in F or the
Galois group is cyclic of order p.

22. EXAMPLE: Finite fields.

For each prime p and positive integer n, there is exactly one field Fq with q = pn elements, namely, the
splitting field of Xq−X over Fp. The Galois group over the prime field Fp = Z/pZ is cyclic of order n,
generated by the Frobenius automorphism x 7→ xp. F (pd) ⊂ F (pn) if and only if d divides n. Also, any
extension E/F where both F and E are finite fields is Galois, that is, normal and separable, with cyclic
Galois group generated by some power of the Frobenius automorphism. Adjoining a single root of any
irreducible polynomial of degree n over Z/pZ gives the field Fq, where q = pn. Since the cyclic Galois
group acts transitively on the n roots, it must act as an n-cycle on these roots. A product of distinct
irreducible polynomials of degree n1, n2, . . . , nr will also have a cyclic Galois group, which is generated
by a product of disjoint nj cycles. The degree of the splitting field will be lcm(n1, n2, . . . , nr). Since
F ∗ is a finite cyclic group for any finite field F , the splitting field of Xm − 1, (m, p) = 1, is the field
Fq, q = pn, where n is least so that m divides pn − 1. The polynomial Xq −X, q = pn, is the product
of all monic irreducible polynomials of degrees d which divide n.

23. EXAMPLE: Iterated radical extensions. Suppose

F = F0 ↪→ F1 ↪→ · · · ↪→ Fm = E

is a sequence of extensions such that E is normal over F and each extension Fi ↪→ Fi+1 is one of three
types:

(i) splitting field of Xn − 1 with char = 0 or char = p and (n, p) = 1,
(ii) splitting field of Xn− a, where a ∈ Fi and the nth roots of 1 are in Fi, with char = 0 or char = p

and (n, p) = 1,
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(iii) splitting field of Xp −X + a, where a ∈ Fi and char = p.

Then Gal(E/F ) is a solvable group.

This is rather easy from The Fundamental Theorem, Examples 19, 20, 21 above, and the definition of
(finite) solvable group. But this implies the amazing result that certain polynomials f(X) ∈ F [X], e.g.
quintics with group S5, cannot have a root in any field K obtained from F by a sequence of extensions
of the above types, hence there cannot be formulas for the roots as iterated radicals. (Namely, if K
is obtained from F by a sequence of extensions of the above types, then the normal closure E of K
can also be so obtained, because at each stage the normal closure over F can be obtained by further
extensions of exactly the same type. For example if nth roots of a are adjoined at some point to a field
which is assumed inductively to be normal over F , then also adjoin successively the nth roots of all
conjugates of a to give the next normal closure. The Galois group of f(X) would then be a quotient
group of Gal(E/F ), hence solvable.)

24. EXAMPLE: There is a converse to Example 23. Suppose a separable polynomial f(X) in F [X] has a
solvable Galois group, G. Then the roots of f(X) are in a field E obtained from F by a sequence of
extensions as in Example 23. Namely, if E is the splitting field of f(X) over F and F ′ is the extension
obtained by adjoining all |G|-th roots of unity to F , let E′ = EF ′ be the composite. Then E′/F ′ is
Galois and has solvable group, say G′ ⊂ G. There is a composition series for G′ with each successive
quotient group cyclic of prime order, say pi, where pi divides |G|. Hence, either pi = p = char(F ), or
the pi-th roots of 1 are in F ′. The Fundamental Theorem produces a corresponding sequence of cyclic
Galois extensions. The desired converse to Example 23 then follows by dealing with the cyclic cases,
as in the next three paragraphs.

25. LINEAR INDEPENDENCE OF CHARACTERS: If G is a group and h1, . . . , hn : G→ E∗ are distinct
homomorphisms from G to the multiplicative group of a field E, then {h1, . . . , hn} are linearly inde-
pendent as functions G→ E. The proof uses a little sleight of hand to reduce the length of any linear
dependence relation. Note if G = E∗, then automorphisms E → E can be interpreted as characters of
E∗.

26. EXAMPLE: E/F Galois, with cyclic group of order n, where the nth roots of 1 are in F and where
char = 0 or char = p with (n, p) = 1. Then E = F [ n

√
a], for some a ∈ F . (Let Gal(E/F ) =

{1, s, s2, . . . , sn−1} and let z ∈ F be a primitive nth root of 1. Use linear independence of the characters
{sj} of E∗ to find b ∈ E so that the element given by

r = b+ zs(b) + z2s2(b) + · · ·+ zn−1sn−1(b)

is not 0. Then zs(r) = r, so r has n distinct conjugates in E and s(rn) = rn. It follows that rn = a ∈ F
and E = F [r].)

27. EXAMPLE: E/F Galois, with cyclic group of order p = char(F ). Again let Gal(E/F ) = {1, s, . . . , sp−1}
and choose t ∈ E with t+ s(t) + ...+ sp−1(t) = Tr(t) 6= 0, which can be done since the characters are
linearly independent. Note Tr(t) ∈ F since s(Tr(t)) = Tr(t). Now set

r = − 1
Tr(t)

(s(t) + 2s2(t) + · · ·+ (p− 1)sp−1(t)).

Then s(r)− r = 1, so r has p distinct conjugates in E and s(rp − r) = (r + 1)p − (r + 1) = rp − r, so
this element is in F . Thus, r is a root of Xp −X + a, for some a ∈ F , and E = F [r].

28. Norms and Traces. Let E/F be a finite separable extension, s1, . . . , sn the distinct embeddings E → F̂ ,
the algebraic closure of F , with si = id on F . So n = |E : F |. For r ∈ E, define the norm
NE/F (r) =

∏
i si(r), and define the trace TrE/F (r) =

∑
i si(r). Here are some properties of norms and

traces:

• If Xd − a1X
d−1 + · · · + (−1)dad is the minimal polynomial for r over F then N(r) = a

n/d
d and

Tr(r) = (n/d)a1. In particular, N(r) and Tr(r) are functions E → F .
• N(rs) = N(r) N(s), Tr(r + s) = Tr(r) + Tr(s), and Tr(cr) = cTr(r) for c ∈ F .
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• Both trace and norm are transitive for a double extension F ↪→ E ↪→ K, that is, NK/F (r) =
NE/F (NK/E(r)), and similarly for the trace.
• The F -linear map E → E given by multiplication by r has trace Tr(r) and det N(r).

29. Hilbert Theorem 90. If E/F is a cyclic Galois extension with Galois group generated by s : E → E,
and if x ∈ E has norm N(x) = 1, then x = b/s(b) for some b ∈ E. If y ∈ E has trace Tr(y) = 0, then
y = c− s(c), for some c ∈ E.

(Examples are provided by x = ζn ∈ F , where n = |E : F | and by y = 1 ∈ F , where |E : F | =
p = char(F ). In these cases, a proof is given in Examples 26 and 27 above. The general proof follows
along similar lines, using linear independence of the Galois automorphisms to write down appropriate
elements b and c in E).

30. Symmetric Functions and The General Equation of Degree n. Suppose x1, . . . , xn are indeterminates,
F (x1, . . . , xn) the field of rational functions in n variables. The symmetric group Sn acts by permuting
the xi. The fixed field is F (σ1, ..., σn), where σj is the jth elementary symmetric function of the xi.
This is seen from Artin’s result ??, along with the identity

Xn − σ1X
n−1 + · · ·+ (−1)nσn = (X − x1) · · · (X − xn).

It can be shown directly that {σ1, . . . , σn} are algebraically independent over F , but this is a special
case of a general fact about “transcendence degree and transcendence bases” of (non-algebraic) field
extensions. A slightly different perspective on the above setup is to start with algebraically independent
a1, . . . , an over F , then look at the splitting field of the separable polynomial Xn − a1X

n−1 + ... +
(−1)nan. If the roots are called x1, . . . , xn, then the splitting field is F (x1, . . . , xn) and the Galois group
is Sn. In any case, one can see by this Galois theory viewpoint that any symmetric rational function
of the xi is a rational function of σ1, . . . , σn. A symmetric rational function must have symmetric
numerator and denominator when written in lowest terms, and thus symmetric polynomials with
coefficients in F are polynomials in σ1, . . . , σn. (It is easy enough to prove this result for symmetric
polynomials with coefficients in any commutative ring by an induction on degree.)

A consequence of Galois theory and non-solvability of Sn is that there can be no iterated radical formu-
las for the roots of polynomials of degree greater than 4, where the radicals are expressed universally
in terms of the coefficients of the polynomial. In the cases n = 3 and 4, the composition series for S3

and S4 lead systematically to universal iterated radical formulas for the roots of the general equation,
at least if the characteristic is not 2 or 3.

31. The Discriminant. The expression d =
∏

i<j(xi−xj) is invariant under the alternating group An ⊂ Sn.
D = d2 is invariant under Sn, hence is a polynomial in the symmetric functions sn. When the xi are
roots of a separable polynomial, D is called the discriminant of the polynomial, and is given by a
universal formula in terms of the coefficients of the polynomial. If the ground field F has characteristic
different from 2, the Galois group is a subgroup of An if and only if D is a square in F . For the
quadratic X2 + aX + b, D = a2 − 4b. For the cubic X3 + pX + q, D = −4p3 − 27q2. If char(F ) 6= 3,
any cubic can be put in this form without changing D, by replacing X with (X − a/3), where a is the
coefficient of X2. There are many interesting formulas for or involving discriminants.

32. Determination of Galois Groups. There are algorithms for determining the Galois group of any poly-
nomial in Q[X], but these algorithms are not feasible to carry out by hand, even in degrees as low
as 5. For irreducible cubics, there are only two possibilities, distinguished by the discriminant. For
irreducible quartics, there are five possible Galois groups. For irreducible quintics, there are also only
five possible Galois groups, because S5 only has five isomorphism types of transitive subgroups. But
determining which group is correct can be difficult without some luck. An irreducible quintic with three
real roots always has group S5, because complex conjugation provides a 2-cycle in the Galois group,
and, of course, there is a 5-cycle in the Galois group. There is an extremely useful result concerning
reduction modulo p that in many cases is adequate for determining a Galois group. Suppose monic
f(X) has integer coefficients and suppose the mod p reduction of f(X) has no repeated factors. Then
the Galois group of f(X) over Q contains a permutation of the same cycle form as a generator of
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the (cyclic) Galois group over Z/pZ, described in Example 22 above. Thus, factoring f(X) mod p for
various primes may provide enough cycle types in the Galois group to determine the group. The mod
p reduction result is proved using the theory of prime ideals in rings of algebraic integers.

33. Inseparability. Suppose E/F is an arbitrary algebraic field extension. The set of all elements a in
E separable over F forms a field, Es. This is a consequence of characterization (??) of separability.
Every element b in E not in Es is purely inseparable over Es. This means bq is in Es for some
q = pn, p = char(F ). The minimal polynomial for b over F has form g(Xq), where g(X) is an
irreducible separable polynomial over F . Since Xq − bq = (X − b)q, it is clear that any embedding
of E into an algebraic closure Ê of E which fixes Es must be the Identity. Thus, if E is normal over
F , Gal(E/F ) = Gal(Es/F ). Also inside E is the field Ei consisting of elements which are purely
inseparable over F . Always F is the intersection of Es and Ei. In general, the extension E/Ei is not
separable, so there is an ‘asymmetry’ in the two factorizations F ↪→ Es ↪→ E and F ↪→ Ei ↪→ E. In
fact, Ei = F is possible even when Es is a proper subfield of E. However, if E is normal over F then
E is the composite EiEs and E is separable over Ei. In this case, Ei is the fixed field of the Galois
group Gal(E/F ), and Gal(E/Ei) = Gal(E/F ) = Gal(Es/F ).
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