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1. FACTS WE’LL SOON KNOW ABOUT CURVES

We almost know enough to say a lot of interesting things about curves. There are a few
more notions and facts that are very helpful, and I’ll state them now as “black boxes” to
take for granted. We’ll prove everything in due course, and hopefully after seeing how
useful they are, you’ll be highly motivated to learn more.

For this topic, we will assume that all curves are projective, geometrically integral,
nonsingular curves over a field k.

We will sometimes add the hypothesis that k is algebraically closed. Most people are
happy with working over algebraically closed fields, and those people should ignore the
adverb “geometrically” in the previous paragraph.

1.1. Differentials on curves.

Riemann surfaces (and complex manifolds more generally) support the notion of a dif-
ferential, things which can be locally interpreted as f(z)dz, where z is a local parameter.

Similarly, there is a sheaf of differentials on a curve C, denoted ΩC, which is an in-
vertible sheaf. In general, a nonsingular k-variety X of dimension d will have a sheaf of
differentials ΩX that will be locally free of rank d. Its determinant is called the canonical
bundle KX. In our case, X = C is a curve, so KC = ΩC, and from here on in, we’ll use K

instead of ΩC.

1.2. Serre duality.

The canonical bundle K is also an example of a dualizing sheaf because of its role in Serre
duality. Serre duality states that (i) H1(C,K) ∼= k. (ii) Further, for any coherent sheaf F ,
the natural map

H0(C,F) ⊗k H1(C,K⊗ F∨) → H1(C,K) ∼= k
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is a perfect pairing. (This is our first black box! — remember this, as we will use it re-
peatedly!) Thus in particular, h0(C,F) = h1(C,K⊗F∨). Recall we defined the arithmetic
genus of a curve to be h1(C,OC). Hence h0(C,K) = g as well: there is a g-dimensional
family of differentials.

1.3. Proposition. — degK = 2g − 2.

Proof. Recall that Riemann-Roch for a invertible sheaf L states that

h0(C,L) − h1(C,L) = degL − g + 1.

Applying this to L = K, we get

degK = h0(C,K)−h1(C,K)+g−1 = h1(C,O)−h0(C,O)+g−1 = g−1+g−1 = 2g−2.

�

1.4. Example. If C = P1, then the above Proposition implies K ∼= O(−2). Here is a
heuristic which will later be made precise. On the affine open subset x0 6= 0, given by
Spec k[x1/0], we expect dx1/0 to be a differential, which has no poles or zeros. Let’s analyze
this as a differential on an open subset of the other affine open subset, Spec k[x0/1], where
x0/1 = 1/x1/0. If differentials behave the way we are used to, then dx1/0 = −(1/x2

0/1)dx0/1.
Thus we expect that the rational differential dx1/0 on P

1 to have no zeros, and a pole at
order 2 “at ∞”, so the line bundle of differentials must be isomorphic to O(−2).

Part (i) of Serre duality certainly holds: h1(P1,O(−2)) = 1. Moreover, we also have a
natural perfect pairing

H0(P1,O(n)) × H1(P1,O(−2 − n)) → k.

If n < 0, both factors on the left are 0, so we assume n > 0. Then H0(P1,O(n)) corresponds
to homogeneous degree n polynomials in x and y, and H1(P1,O(−2 − n)) corresponds
to homogeneous degree −2 − n Laurent polynomials in x and y so that the degrees of x

and y are both at most n − 1. You can quickly check that the dimension of both vector
spaces are n + 1. The pairing is given as follows: multiply the polynomial by the Laurent
polynomial, to obtain a Laurent polynomial of degree −2. Read off the co-efficient of
x−1y−1.

1.5. The Riemann-Hurwitz formula.

Differentials pull back: any surjective morphism of curves f : C → C ′ induces a natural
map f∗ΩC ′ → ΩC.

Suppose f : C → C ′ is a dominant morphism. Then it turns out f∗ΩC ′ ↪→ ΩC is an
inclusion of invertible sheaves. (This is a case when inclusions of invertible sheaves does
not mean what people normally mean by inclusion of line bundles, which are always
isomorphisms.) The fact that this is injective arises from the fact that ΩC is a line bundle,
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and hence torsion-free, and thus has no non-zero torsion subsheaves. But f∗ΩC ′ → ΩC is
non-zero at the generic point, so the kernel is necessarily torsion.

Its cokernel is supported in dimension 0:

0 → f∗ΩC ′ → ΩC → [dimension 0] → 0.

The divisor R corresponding to those points (with multiplicity), is called the ramification
divisor.

By an Exercise from the last couple of classes, the degree of the pullback of an invertible
sheaf is the degree of the map times the degree of the original invertible sheaf. Thus if d

is the degree of the cover, deg ΩC = d deg ΩC ′ +deg R. Hence if C → C ′ is a degree d cover
of curves, then

2gc − 2 = d(2gC ′ − 2) + deg R

This is our second black box. Remember it!

Let’s now figure out how to measure deg R. We can study this in local coordinates.
We don’t have the technology to describe this precisely yet, so we’ll stick to the case
where char k = 0 and k is algebraically closed whenever we use the Riemann-Hurwitz
formula, until we formally prove things. Heuristically, if the map at q ∈ C ′ looks like
u 7→ un = t, then dt 7→ d(un) = nun−1du, so dt when pulled back vanishes to order
n − 1. Thus branching of this sort u 7→ un contributes n − 1 to the ramification divisor.
(More correctly, we should look at the map of Spec’s of discrete valuation rings, and then
u is a uniformizer for the stalk at q, and t is a uniformizer for the stalk at f(q), and t is
actually a unit times un. But the same argument works.)

1.A. EASY BUT CRUCIAL EXERCISE. Suppose C → C ′ is a degree d map of nonsingular
projective curves over k (char k = 0 and k = k), and the closed points p ∈ C ′ has e pre-
images (set-theoretically). Show that the amount of ramification above p (the degree of
the part of the ramification divisor supported in the preimage of p) is d − e.

Here are some applications.

1.B. EXERCISE. Show that there is no nonconstant map from a genus 2 curve to a genus
3 curve. (Hint: deg R ≥ 0.)

1.6. Example: Hyperelliptic curves.. Hyperelliptic curves are curves that are double covers
of P1

k. If they are genus g, then they are branched over 2g + 2 points, as each ramification
can happen to order only 1. (Warning: we are in characteristic 0!) You may already have
heard about genus 1 complex curves double covering P1, branched over 4 points.

1.7. Example. For any map, the degree of R is even: any cover of a curve must be branched
over an even number of points (counted with multiplicity).

3



1.8. Example. The only connected unbranched cover of P1
k is the isomorphism. Reason:

if deg R = 0, then we have 2 − 2gC = 2d with d ≥ 1 and gc ≥ 0, from which d = 1 and
gC = 0.

1.9. Example: Lüroth’s theorem.. Suppose g(C) = 0. Then from the Riemann-Hurwitz
formula, g(C ′) = 0. (Otherwise, if gC ′ were at least 1, then the right side of the Riemann-
Hurwitz formula would be non-negative, and thus couldn’t be −2, which is the left side.
This has a non-obvious algebraic consequence, by our identification of covers of curves
with field extensions. All subfields of k(x) containing k are of the form k(y) where y =

f(x). (It turns out that the hypotheses that char k = 0 and k = k are not necessary; we’ll
remove them in due course.)

1.10. A criterion for when a morphism is a closed immersion.

The third fact we need is a criterion for when something is a closed immersion. This
won’t need to be a black box — we’ll be able to prove it. To help set it up, let’s recall
some facts about closed immersions. Suppose f : X → Y is a closed immersion. Then f

is projective, and it is injective on points. This is not enough to ensure that it is a closed
immersion, as the example of the normalization of the cusp shows (Figure 1). Another
example is the Frobenius morphism from A1 to A1, given by k[t] → k[u], u → tp, where k

has characteristic p.

FIGURE 1. Projective morphisms that are injective on points need not be
closed immersions

The additional information you need is that the tangent map is an isomorphism at all
closed points.
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1.C. EXERCISE. Show that in the two examples described above (the normalization of a
cusp and the Frobenius morphism), the tangent map is not an isomorphism at all closed
point.

1.11. Theorem. — Suppose k = k, and f : X → Y is a projective morphism of finite-type k-
schemes that is injective on closed points and injective on tangent vectors at closed points. Then f

is a closed immersion.

(Remark: this is the definition of an unramified map in this situation. We will later define
this in more generality.)

The example Spec C → Spec R shows that we need the hypothesis that k is algebraically
closed. For those of you who are allergic to algebraically closed fields: still pay attention,
as we’ll use this to prove things about curves over k where k is not necessarily alge-
braically closed.

We need the hypothesis of projective morphism, as shown by the example of Figure 2.
It is the normalization of the node, except we erase one of the preimages of the node. We
map A1 to the plane, so that its image is a curve with one node. We then consider the
morphism we get by discarding one of the preimages of the node. Then this morphism
is an injection on points, and is also injective on tangent vectors, but it is not a closed
immersion. (In the world of differential geometry, this fails to be an embedding because
the map doesn’t give a homeomorphism onto its image.)

FIGURE 2. We need the projective hypothesis in Theorem 1.11

Suppose f(p) = q, where p and q are closed points. We will use the hypothesis that X

and Y are finite type k-schemes where k is algebraically closed at only one point of the
argument: that the map induces an isomorphism of residue fields at p and q.

This is the hardest result of today. We will kill the problem in old-school French style:
death by a thousand cuts.

Proof. The property of being a closed immersion is local on the base, so we may assume
that Y is affine, say Spec B.

I next claim that f has finite fibers, not just finite fibers above closed points: the fiber
dimension for projective morphisms is upper-semicontinuous (an earlier exercise), so the
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locus where the fiber dimension is at least 1 is a closed subset, so if it is non-empty, it
must contain a closed point of Y. Thus the fiber over any point is a dimension 0 finite
type scheme over that point, hence a finite set.

Hence f is a projective morphism with finite fibers, thus finite (an earlier corollary).

So far this argument is a straightforward sequence of reduction steps and facts we know
well. But things now start to get weird.

Thus X is affine too, say Spec A, and f corresponds to a ring morphism B → A. We wish
to show that this is a surjection of rings, or (equivalently) of B-modules. We will show
that for any maximal ideal n of B, Bn → An is a surjection of Bn-modules. (This will show
that B → A is a surjection. Here is why: if K is the cokernel, so B → A → K → 0, then
we wish to show that K = 0. Now A is a finitely generated B-module, so K is as well,
being a homomorphic image of A. Thus Supp K is a closed set. If K 6= 0, then Supp K is
non-empty, and hence contains a closed point [n]. Then Kn 6= 0, so from the exact sequence
Bn → An → Kn → 0, Bn → An is not a surjection.)

If An = 0, then clearly Bn surjects onto An, so assume otherwise. I claim that An =

A⊗B Bn is a local ring. Proof: Spec An → Spec Bn is a finite morphism (as it is obtained by
base change from Spec A → Spec B), so we can use the going-up theorem. An 6= 0, so An

has a prime ideal. Any point p of Spec An maps to some point of Spec Bn, which has [n] in
its closure. Thus there is a point q in the closure of p that maps to [n]. But there is only
one point of Spec An mapping to [n], which we denote [m]. Thus we have shown that m

contains all other prime ideals of Spec An, so An is a local ring.

Here things get weirder still. We apply Nakayama, using two different local rings.

Injectivity of tangent vectors means surjectivity of cotangent vectors, i.e. n/n2
→ m/m2

is a surjection, i.e. n → m/m2 is a surjection. I claim that nAn → mAn is an isomorphism.
Reason: Using Nakayama’s lemma for the local ring An and the An-module mAn, we con-
clude that nAn = mAn.

Next apply Nakayama’s Lemma to the Bn-module An. The element 1 ∈ An gives a
generator for An/nAn = An/mAn, which equals Bn/nBn (as both equal k), so we conclude
that 1 also generates An as a Bn-module as desired. �

1.D. EXERCISE. Use this to show that the dth Veronese morphism from Pn
k , corresponding

to the complete linear series |OP
n
k
(d)|, is a closed immersion. Do the same for the Segre

morphism from Pm
k ×Spec k Pn

k . (This is just for practice for using this criterion. This is a
weaker result than we had before; we’ve earlier checked this over an arbitrary base ring,
and we are now checking it only over algebraically closed fields.)

Although Theorem 1.11 requires k to be algebraically closed, the following exercise will
enable us to use it for general k.
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1.E. EXERCISE. Suppose f : X → Y is a morphism over k that is affine. Show that f is
a closed immersion if and only if f ×k k : X ×k k → Y ×k k is. (The affine hypothesis is
certainly not necessary for this result, but it makes the proof easier, and this is the situation
in which we will most need it.)
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