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Introduction

In classical C̆ech theory, we “compute” (or better: filter) the cohomology of a sheaf when given an open
covering. Namely, if X is a topological space, U = {Ui} is an indexed open covering, and F is an abelian
sheaf on X, then we get a C̆ech to derived functor spectral sequence

Ep,q2 = Hp(U,Hq(F ))⇒ Hp+q(X,F ),

where Hq(F ) is the presheaf whose value on an open U is Hq(U,F |U ) (and we use the contravariant pullback
functoriality). In particular, H0(F ) = F and Hq(F ) sheafifies to be zero if q > 0. Of course, if F has
vanishing cohomology on the finite overlaps of the Ui’s then this degenerates to give an edge isomorphism

Hn(U,F ) ' Hn(X,F ).

The C̆ech to derived functor spectral sequence is also natural in the space X and the open cover U. Verdier’s
theory of hypercoverings somewhat generalized the scope of these techniques, but still remained within
the framework of using “covers” relative to some Grothendieck topology. A rather dramatic improvement
was given by Deligne in his theory of cohomological descent. This theory is a fantastic derived category
generalization of Grothendieck’s descent theory for sheaves (see Lemma 6.8 and the discussion preceding it
for the precise connection).

As one application, for a smooth projective variety over C, there is a nice theory of Hodge structures
on the topological cohomology of X (by which we really mean the cohomology of X(C)). In [D], Deligne
generalizes this to a theory of mixed Hodge structures with no smoothness conditions. However, ultimately
his construction rests on the amazing possibility of being able to systematically use iterated applications of
resolution of singularities to “compute” the topological cohomology of an arbitrary projective variety X/C in
terms of the topological cohomology of smooth (projective) C-schemes which are proper over X (and highly
disconnected!). In a nutshell, Deligne developed a way to use C̆ech-like methods to compute cohomology
relative to a topology by means of certain maps Xp → X which need not be even remotely like covering
maps for the given topology. Of course, working with such “out of the topology” covers requires some pretty
strong conditions to hold, but such conditions are satisfied in the case of proper maps (due to the proper
base change theorem).
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There are two essential ingredients for making cohomological descent work: the simplicial theory of
hypercoverings, which vastly generalizes the use of C̆ech theory to “compute” (via a spectral sequence) the
cohomology of a sheaf via a covering of the space, and derived category techniques (such as adjointness of
Rf∗ and f∗ for a continuous map f : X → Y between topological spaces) which are needed to even formulate
the definition of cohomological descent (let alone to prove it is a flexible notion).

Although one aim of the theory to construct a (functorial!) spectral sequence of down-to-earth objects

Ep,q1 = Hq(Xp(C), A)⇒ Hp+q(X(C), A)

for any abelian group A and suitable auxiliary smooth projective (usually disconnected!) C-schemes Xp

constructed cleverly by resolution of singularities (see Theorem 4.16, (6.3), and Theorem 7.9), the use of
derived category methods in the construction of such a spectral sequence seems to be unavoidable. The
simplicial theory of hypercovers provides a single framework which subsumes both “exotic” examples such
as the one above with Xp → X that are proper, as well as the spectral sequences coming from classical C̆ech
theory. The astute reader will note that the C̆ech spectral sequence is at the E2 stage, while the one we just
wrote down (ambiguously) in a “proper hypercover” case was at the E1 stage. As we will see later, it is an
E1 term that one always gets for free, and in the C̆ech case one can actually explicate the next step very
concretely and thereby get the expected E2-terms (and of course, one really gets the entire classical spectral
sequence on the nose, not just E2-term objects).

After some initial motivating examples from topology are discussed in §1, for conceptual clarity (as well
as generality) we will discuss the theory of simplicial objects in any category in §2. We place particular
emphasis on the all-important coskeleton functor in §3. Then we will see in §4 how, for suitable categories
(such as schemes, topological spaces, or any Grothendieck site), this gives rise to the notion of hypercoverings
(generalizing ordinary coverings as used in C̆ech theory). We will see how resolution of singularities gives
rise to particularly nice proper hypercoverings of any separated scheme of finite type over a field. In §5 we
discuss some basic aspects of the theory of simplicial homotopy, with special focus on how it interacts with
the coskeleton functors, as this is rather important for Deligne’s main results in the theory.

Once these simplicial foundations have been explained, we will set up the basic formalism of cohomological
descent in §6 and see why it is a derived category version of classical descent theory for sheaves (hence
explaining the name). The deepest part (in terms of non-formal input), as well as (for me) the most
interesting part, is to prove that there are ways to construct interesting examples of cohomological descent,
such as proper surjective hypercoverings. It is in establishing the cohomological descent property of proper
hypercoverings (both in the topological category as well as in the étale topology) that we will have to use non-
formal input – the proper base change theorem – and inductive simplicial techniques in terms of coskeleta.
This issue is treated in §7. Theorems 7.5, 7.10, and 7.22 are really the fundamental results in the theory,
and all of their proofs rest on the use of bisimplicial methods (and extreme cleverness).

For someone interested in [D], here is where you can find proofs in these notes for the facts from the
theory of cohomological descent which Deligne states in [D] (with generic reference to [SGA4, Exp Vbis] for
proofs):

• [D, 5.3.5(I)] is Theorem 7.5 (more general: see Theorem 7.9).
• [D, 5.3.5(II)] is Theorem 7.7.
• [D, 5.3.5(III)] is Theorem 7.2.
• [D, 5.3.5(IV)] is Theorem 7.15 (with the help of Corollary 3.11).
• [D, 5.3.5(V)] is Theorem 7.22 (actually, this is not discussed in [SGA4], but follows from an extension

of preceding methods).

Also see Example 7.8 for an application of cohomological descent for proper hypercoverings in the context
of computing the cohomology of a space in terms of a locally finite covering by closed sets.

The theory of cohomological descent has applications far beyond the construction of mixed Hodge struc-
tures. For example, de Jong’s resolution theorem [dJ] makes it possible – via cohomological descent – to
prove quasi-unipotence of inertia actions in the strongest possible form (with an “independence of `” as-
pect) for the `-adic cohomology of an arbitrary separated scheme of finite type over the fraction field of
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a discrete valuation ring. Earlier results of Grothendieck in this direction were only valid for a residue
field with non-trivial `-adic cyclotomic character (e.g., algebraically closed residue field wasn’t included) and
more significantly did not give results which were independent of `. Moreover, it should be noted that de
Jong’s theorem is adequate for Deligne’s hypercovering methods in [D], so the dependence on Hironaka in
[D] is eliminated by means of [dJ]. In Theorem 4.16 we review the role of resolution of singularities in the
construction of regular proper hypercoverings.

When I first wanted to learn the theory of cohomological descent years ago, I tried to read the discussion
in [SGA4], but the intense amount of topos theory in that discussion obscured (for me at that time) what
was going on. There were also other references which tended to use a big dosage of homotopy theory (about
which I knew nothing), so it all seemed rather remote. But once I finally got over my psychological crutches
and learned a bit of topos theory and homotopical category theory, I was able to understand what was going
on in the cohomological descent discussion in [SGA4] and to my pleasant surprise found that the topos theory
was (mostly) a red herring and one could develop the central ideas of the theory in the generality with which
it is frequently used (such as in [D], or for schemes with the étale topology, or for other similar Grothendieck
topologies) without really requiring any fancy general topos theory at all, though of course sacrificing some
super-generality in the process. I decided to write up these notes explaining Deligne’s theory with the hope
that they would enable more people who are comfortable with derived categories and are as ignorant as I
was about homotopy theory to become familiar with the beautiful theory of cohomological descent without
mistakenly thinking that first they have to learn a lot of topos theory and advanced homotopy theory to
understand what’s going on. Of course, these notes should also make it easier for the interested reader to
study the wealth of additional ideas in [SGA4, Exp Vbis] which we don’t address here.

The informed reader will readily check that everything we do also applies pretty much verbatim, with
occasional minor modification, to other interesting sites (such as non-archimedean analytic spaces with the
Tate topos, or schemes with quasi-coherent sheaves and quasi-compact quasi-separated morphisms and the
fppf topology, or pretty much any reasonable ringed topos for which pullback functors on sheaves are exact).

A caveat. In these notes, we take a partly ad hoc approach to the theory of multisimplicial objects. In a
couple of places, bisimplicial objects play an essential role in proofs and we have developed what we need to
make those arguments work. That said, the bisimplicial ideas in the proofs of Theorem 7.5(1) and Theorem
7.17 are not presented in the slick manner of [SGA4] for the simple reason that I couldn’t fully understand
Deligne’s arguments at those “bisimplicial” steps and hence came up with alternative arguments. I suspect
these alternative arguments ultimately boil down to explications of Deligne’s slicker point of view, but the
reader will see that our arguments at these steps are rather long. If any reader of these notes can understand
Deligne’s more efficient ways of dealing with these particular proofs, please contact me!

Conventions. Following (what should be) standard conventions, chain complexes in an abelian category
have differentials which increase degrees and cochain complexes in an abelian category have differentials which
decrease degrees. Passing to the opposite category interchanges these notions. Also, if C is a category and
S is an object, we define the slice category C/S to be the category whose objects are morphisms X → S
(with evident notion of morphism between two such objects).

Although at the beginning of these notes we treat topological spaces and schemes as separate entities (as
the notions of fiber product and properness in the two categories are not compatible with the functor that
assigns to each scheme its underlying topological space), after a certain amount of time we just adopt the
terminology “space” for an object in either the category of topological spaces or the category of schemes (with
the étale topology), and we’ll say a map in the topological category is “étale” if it is a local isomorphism.
This enables us to be a bit more efficient with the exposition and creates no risk of confusion (and any site
which is similar to these sites would work just as well). We could instead have opted to use the more uniform
and universal language of ringed topoi so as to handle all examples at once, and of course the whole point
of topoi is to put such arguments into a single universally applicable framework. However, to have written
in such style would have defeated the expository purpose of these notes (as those who prefer topoi would
probably just read the exposition in [SGA4] anyway).
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1. Motivation for simplicial methods

Let X be a topological space. The proofs of the basic results in C̆ech theory are very combinatorial (mostly
index-chasing), and we wish to find a suitably abstract context for those techniques. Let U = {Ui}i∈I be
an indexed open covering of X, and U =

∐
Ui the disjoint union of the Ui’s. We emphasize that we do not

assume our index set to be ordered, and we recall that when computing with C̆ech theory, it (functorially)
does not matter whether one universally computes with ordered covers or unordered covers. Of course, even
a finite (non-empty) covering gives rise to an infinitely long C̆ech complex when using unordered covers (e.g.,
one has an (n + 1)-fold “self-overlap” Ui of each Ui with itself for each tuple (i, i, . . . , i) ∈ In+1 for each
n ≥ 0). We will see that for theoretical purposes it is the unordered case which fits best into the abstract
simplicial formalism we wish to set up.

Define X0 = U =
∐
Ui, X1 = U ×X U , and in general define Xn = U×(n+1) to be the (n + 1)-fold fiber

product of U over X. Note that

X1 =
∐

(i,j)∈I2

(Ui ∩ Uj), X2 =
∐

(i,j,k)∈I3

(Ui ∩ Uj ∩ Uk),

and so on. The indexing for Xn is by In+1, so there is no ruling out of repeated coordinates. For example,
the overlap Ui ∩ Uj = Uj ∩ Ui really shows up twice in X1, for the pair (i, j) and the pair (j, i), unless of
course i = j, in which case this Ui term shows up once (corresponding to (i, i) ∈ I2). This is in contrast with
what one encounters in C̆ech theory for ordered open covers. For i 6= j the first projection X1 → X0 = U
sends the (i, j) copy of Ui ∩ Uj to Ui via the canonical map and sends the (j, i) copy of this overlap to Uj
via the canonical map. Note that the diagonal section

∆ : X0 = U → U ×X U = X1

sends each Ui to the (i, i)-copy of Ui in X1 via the identity map.
Let us label the n+ 1 factors U of the fiber product Xn with the elements of the ordered set

[n] := {0, . . . , n}
(in particular, we view these fiber powers Xn as having factors U with a specified ordering). For each n ≥ 1
and 0 ≤ j ≤ n there are natural projection maps

pjn : Xn → Xn−1

away from the jth factor, described by

(u0, . . . , un) 7→ (u0, . . . , ûj , . . . , un).

Likewise, for n ≥ 0 and 0 ≤ j ≤ n there are inclusion maps

ιjn : Xn → Xn+1

which “repeat” the jth factor twice:

(u0, . . . , un) 7→ (u0, . . . , uj , uj , uj+1, . . . , un)

(this is just obtained by inserting the diagonal map of U on the jth slot of the fiber product Xn).
As an example, ι00 : X0 → X1 is just the diagonal map for U , and so is a section to both p0

1 and p1
1, while

ι01 : X1 → X2 is given by (u0, u1) 7→ (u0, u0, u1) and hence is a section to both p0
2 and p1

2, but not to p2
2.

Similarly,
ι11 : (u0, u1) 7→ (u0, u1, u1)

is a section to p1
2 and p2

2 but not to p0
2. In general, by staring at pictures such as (2.3) and walking along the

tree of arrows, one readily checks the following identities (to be generalized vastly later on):
Lemma 1.1. For 0 ≤ j < j′ ≤ n+ 1 we have

pjn ◦ p
j′

n+1 = pj
′−1
n ◦ pjn+1.

For 0 ≤ j ≤ j′ ≤ n we have
ιjn+1 ◦ ιj

′

n = ιj
′+1
n+1 ◦ ιjn.
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Finally, we have

pjn ◦ ι
j′

n−1 =


ιj
′−1
n−2 ◦ p

j
n−1, if 0 ≤ j < j′ ≤ n− 1

id, if 0 ≤ j′ ≤ j ≤ j′ + 1 ≤ n

ιj
′

n−2p
j−1
n−1, if 0 ≤ j′ + 1 < j ≤ n

As an example, for n ≥ 1, the “identity” composites in Lemma 1.1 reflect the fact that ιj
′

n−1 is a section
to pjn for j = j′, j′ + 1.

If we consider the “covering” map

ε : X0 = U =
∐

Ui → X

(for which there is no natural section!), then observe that for a fixed n ≥ 1 all composites

(1.1) ε ◦ pj11 ◦ · · · ◦ p
jn−1
n−1 ◦ pjnn : Xn → X

coincide (and are just the structure map for the fiber powers of U over X). If we denote this map pn : Xn → X
then all Xn’s become spaces “over” X and one readily checks:
Lemma 1.2. All maps ιjn, pjn are morphisms over X, with pn ◦ pjn+1 = pn+1 for all 0 ≤ j ≤ n+ 1.

The entire structure of C̆ech theory for the covering U = {Ui} can be recovered from the data of the maps
pjn, ιjn, and ε (which we might call p0 = p0

0). Let’s see how this goes. For an abelian sheaf F on X, define
Fn = p∗nF on Xn for n ≥ 0 (so F 0 = ε∗F ). In view of the concrete description of Xn in terms of a disjoint
union of (n + 1)-fold overlaps of the Ui’s, we see that Fn just encodes the restrictions of F to all of these
overlaps. Moreover, the abelian sheaf

F̃n := pn∗p
∗
nF = pn∗F

n

is just the nth term C n(U,F ) of the C̆ech complex for F with respect to the open covering U = {Ui} (again,
we remind the reader that we compute C̆ech theory using unordered index sets). Since pn ◦ pjn+1 = pn+1, we
get a natural map

δnj : F̃n = pn∗p
∗
nF → pn∗p

j
n+1 ∗p

j ∗
n+1p

∗
nF ' pn+1 ∗p

∗
n+1F = F̃n+1

and the map

(1.2) ∂n =
n+1∑
j=0

(−1)jδnj : F̃n → F̃n+1

is exactly the natural differential in degree n in the C̆ech complex C •(U,F ). The fact that ∂n+1 ◦∂n = 0 for
n ≥ 0 can be deduced purely formally from the relations on the pjn’s in Lemma 1.1. Moreover, the natural
map

∂−1 : F → ε∗ε
∗F = F̃ 0

is exactly the canonical augmentation in degree 0 (and by Lemma 1.2 we see formally that ∂0 ◦ ∂−1 = 0).
Thus, we see that the entire structure of C̆ech theory can be obtained from the maps p, ι, ε with the help
of canonical adjointness maps, without needing to explicitly refer to the cartesian power aspect of the
construction that gave rise to these maps in the first place.

Now an important point arises: in the C̆ech theory, we didn’t really use the maps ι very much, and
we effectively collapsed all the pjn’s for fixed n into the single map ∂n by means of the additive structure
on abelian sheaves. The crucial point of simplicial theory is to keep track of all the maps pjn, ιjn, ε: such
data is much more fundamental than the cartesian power specificity, for (as we shall see) there are ways
to “refine” the Xn’s such that the cartesian power structure is lost but the information of maps satisfying
relations as in Lemma 1.1 is not lost. Such techniques of “refinement” will make sense within the framework
of hypercoverings.
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Let us summarize by indicating the two biggest drawbacks in C̆ech theory (from the point of view of the
more general theory of hypercoverings, to be discussed later):

• The single map ε : X0 → X determines everything else (via fiber powers over X, etc.), and refining
an open covering only gives rise to “refinements coming from degree 0”. We want to be able to
modify things in higher degrees without affecting lower degrees. The ordinary theory of coverings is
too restrictive for carrying this out.
• The C̆ech complex only uses the pjn’s, not the ιjn’s, and for fixed n doesn’t even directly keep track

of all of the pjn’s separately (rather, only the alternating sum ∂n is encoded).
We will now consider one further example from topology in which the preceding structure is visible but

which again suffers from a similar drawback of not “keeping track of all the data” in classical applications.
Once again let X be a topological space, and let ∆n(X) denote the set of n-simplices in X. That is, ∆n(X)
is the set of all continuous maps ϕ : ∆[n]R → X where ∆[n]R ⊆ Rn+1 is the standard n-simplex

∆[n]R = {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ tj ≤ 1,
∑

tj = 1}.

For n ≥ 1 and 0 ≤ j ≤ n there are natural “face” maps

Dj
n : ∆n(X)→ ∆n−1(X)

given by composing an n-simplex ϕ : ∆[n]R → X with the (continuous) inclusion

∂jn : ∆[n− 1]R → ∆[n]R

onto the jth “face” via
(t0, . . . , tn−1) 7→ (t0, . . . , tj−1, 0, tj , . . . , tn−1)

(so this map Dj
n assigns to each n-simplex ϕ its jth face ϕ◦∂jn, an (n−1)-simplex). For n ≥ 0 and 0 ≤ j ≤ n,

we also have “degeneracy” maps
sjn : ∆n(X)→ ∆n+1(X)

given by composing each n-simplex ϕ : ∆[n]R → X with the map ∆[n+ 1]R → ∆[n]R defined by

(t0, . . . , tn+1) 7→ (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn+1).

This converts each n-simplex into a “degenerate” (n+ 1)-simplex.
By essentially the same index-pushing as in the preceding C̆ech situation, one checks that the relations in

Lemma 1.1 continue to hold if ∂jn replaces pjn and sjn replaces ιjn. If we also define

∆−1(X) = HomTop(∅, X) = {∅}
to be the singleton set, there is a unique (!) map D0

0 = ε : ∆0(X) → ∆−1(X) for which the analogues of
Lemma 1.2 continues to hold.

Defining Sn(X) to be the free abelian group generated by the sets ∆n(X) and

Sn(X) = HomAb(Sn(X),Z) = HomSet(∆n(X),Z)

for n ≥ −1, we can define natural maps

∂n =
n∑
j=0

(−1)jDj
n : Sn(X)→ Sn−1(X)

for n ≥ 0 and

dn =
n+1∑
j=0

(−1)jDj
n+1 : Sn(X)→ Sn+1(X)

for n ≥ −1. The analogue of Lemmas 1.1 and 1.2 again ensure that these define complexes of abelian groups,
and these are just the usual (augmented) simplicial chain and cochain complexes from algebraic topology.

We stress that the simplicial (co)chain complex of X is less information than the data of the individual
set maps Dj

n and sjn. A key philosophical point in simplicial topology is to retain all of this data and not to
just ignore the sjn’s and collapse the Dj

n’s (for fixed n) into an alternating sum on abelian group objects.
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2. Simplicial Objects

The two examples considered in §1 seem to be formally quite similar in terms of the structure they
encode. This is made precise by means of the theory of simplicial objects in a category. We begin with a
basic definition.

Definition 2.1. For an integer n ≥ −1, let [n] = {0, . . . , n} be an ordered set in the usual manner (so
[−1] = ∅). We define ∆+ to be the category of these objects, with Hom∆+([n], [m]) denoting the set of
non-decreasing (i.e., monotonically increasing) maps of ordered sets [n] → [m]. We denote by ∆ the full
subcategory of objects [n] with n ≥ 0.

Note that ∆+ has an initial object [−1] with no object other than [−1] having any morphism to [−1],
whereas ∆ does not have an initial object (e.g., there exist two distinct maps [0] → [1]). This fact is the
abstraction corresponding to the distinction between classical chain complexes in non-negative degrees and
augmented chain complexes. A typical map φ : [n] → [m] in ∆ amounts to collapsing several strings of
adjacent elements in [n] (if φ isn’t injective) and then sticking in some gaps (if φ isn’t surjective). The basic
examples of morphisms are

(2.1) ∂nj : [n− 1]→ [n], σnj : [n+ 1]→ [n]

for n ≥ 0 and 0 ≤ j ≤ n, with ∂nj the unique increasing injection whose image does not contain j ∈ [n], and
σnj the unique increasing surjection which hits j ∈ [n] twice. These maps embody the ultimate abstraction
of the index-chasing in classical C̆ech theory, and it is by thinking in terms of the categories ∆ and ∆+ that
will be be able to formulate a vast generalization of C̆ech theory which allows us to do calculations in a much
wider range of situations.

By thinking in terms of how a map φ : [n] → [m] in ∆ collapses adjacent integers or inserts gaps in the
target, one readily checks that φ can be uniquely expressed as a composite

(2.2) φ = ∂mj′s ◦ ∂
m−1
j′s−1

◦ · · · ◦ ∂m−s+1
j′1

◦ σn−rjr
◦ · · · ◦ σn−1

j1

with 0 ≤ jr < · · · < j1 < n, 0 ≤ j′1 < · · · < j′s ≤ m, and m − s = n − r (necessarily equal to the size of
the image of φ). Of course, we understand the empty expression on the right (i.e., r = s = 0, so m = n) to
denote the identity map on [m].

The maps ∂nj and σnj satisfy relations analogous to those in Lemma 1.1, and although there are plenty of
other relations among the maps in ∆, it is an interesting and crucial fact that all relations among morphisms
in ∆ can be derived from the ones analogous to the relations in Lemma 1.1. This is given by:

Lemma 2.2. The category ∆ on the objects [n] for n ≥ 0 is generated by identity maps and the morphisms
(2.1) for 0 ≤ j ≤ n, with the relations of associativity and

∂n+1
j ∂nj′ = ∂n+1

j′ ∂nj−1

for 0 ≤ j′ < j ≤ n+ 1,
σnj σ

n+1
j′ = σnj′σ

n+1
j+1

for 0 ≤ j′ ≤ j ≤ n, and

σn−1
j ∂nj′ =


∂n−1
j′ σn−2

j−1 , if 0 ≤ j′ < j ≤ n− 1

id[n−1], if 0 ≤ j ≤ j′ ≤ j + 1 ≤ n

∂n−1
j′−1σ

n−2
j , if 0 ≤ j + 1 < j′ ≤ n

Proof. By (2.2), the asserted list of maps does generate all maps in ∆. We just have to check that all
relations among morphisms are in fact obtained from the ones listed in the statement of the lemma (together
with the associativity of composition). This is shown in [GZ, p. 24].

�
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Observe that the data (Xn, p
j
n, ι

j
n)n≥0 and (∆n(X), ∂jn, s

j
n)n≥0 from §1 are really just contravariant func-

tors from the category ∆ to the categories of topological spaces and sets respectively. That is, to each object
[n] in ∆ we associate the object Xn (resp. ∆n(X)) and to each map φ : [n] → [m] in ∆ we assign a map
X(φ) : Xm → Xn (resp. ∆(φ) : ∆m(X) → ∆n(X)) defined as follows. If φ = ∂nj : [n − 1] → [n] then
X(φ) := pjn and ∆(φ) := Dj

n. If φ = σnj , then X(φ) := ιjn and ∆(φ) := sjn. Notice that the relations in
Lemma 2.2 are inherited under these constructions, as given by Lemma 1.1 and its analogue for the classical
simplex construction. This is crucial, because what we would like to do for general φ is use the unique
factorization (2.2) to define X(φ) and ∆(φ) in the unique possible manner compatible with associativity,
contravariance, and the previous definitions made in the special cases φ = ∂nj , σ

n
j . However, the factorization

(2.2) is poorly behaved with respect to composition, so in principle we’re faced with a rather painful problem
of chasing relations to ensure well-definedness, compatibility with composition, etc.

This is where Lemma 2.2 saves the day: since we have Lemma 1.1 and its analogue for the simplex
construction, by Lemma 2.2 it is legitimate to define X(φ) in accordance with the desired recipe resting on
(2.2). Hence, the two examples in §1 really are genuinely contravariant functors from ∆ to the categories of
topological spaces and sets respectively. This interpretation of the §1 examples automatically includes all of
the maps we have been studying, as well as all of the relations which we have considered among these maps.

With this connection between the examples in §1 and the abstract category ∆ now understood, we can
give the ultimate abstraction of the examples from §1. We emphasize that the specificity of cartesian powers
and topological simplices is completely eliminated in the following definition, and all we retain is the essential
structure of many maps:
Definition 2.3. Let C be a category. A simplicial object (or simplicial complex) in C is a contravariant
functor X• : ∆ → C. That is (by Lemma 2.2!), it is a collection of objects Xn in C for all n ≥ 0 and (face
and degeneracy) maps

djn : Xn → Xn−1, s
j
n : Xn → Xn+1

for 0 ≤ j ≤ n satisfying the opposite of the relations in Lemma 2.2.
These objects form a category Simp(C) with morphisms X ′• → X• just natural transformations (i.e.,

collections of morphisms X ′n → Xn which commute with the degeneracy and face maps on both sides).
Example 2.4. If C is a category with products and Y0 is an object in C, then an example of a simplicial
object in C is provided by the cartesian powers of Y0 with the evident degeneracy and face maps as in our
earlier simplicial formulation of C̆ech theory. This is typically drawn as a diagram:

(2.3) Y0

s // Y0 × Y0oo
d
oo

//
s //

Y0 × Y0 × Y0oooo
d
oo

////
s //

Y0 × Y0 × Y0 × Y0 . . .oooooo
d
oo

where, for example, the two maps s0
1, s

1
1 : Y0 × Y0 → Y0 × Y0 × Y0 are given by

s0
1(y, y′) = (y, y, y′), s1

1(y, y′) = (y, y′, y′).

Note that we never “switch” the order of coordinates.
A general simplicial object in any category C is also essentially a diagram of arrows as in (2.3) in which

the terms need not be cartesian powers of the term in degree 0 but where we require that the arrows do
satisfy the evident relations which are satisfied by the maps in (2.3) (i.e., the opposite of the relations in
Lemma 2.2).

Intuitively, we’d like to imagine a simplicial object X• as a generalized CW-complex, with n-cells given by
Xn and functoriality giving the gluing data. In fact, there is a “geometric realization” functor from simplicial
objects in a category to topological spaces, but we will not make any use of this. Nevertheless, the intuitive
picture provided by thinking about X• as a CW-complex is very suggestive and helpful.

There is an evident extension of the preceding definition to the case of the category ∆+ containing the
initial object [−1] = ∅, and we call the corresponding notion an augmented simplicial object in C. By
thinking about how the category ∆+ is made from the category ∆ by “formally adjoining” an initial object
[−1] (check!), it is straightfoward to check that to give an augmented simplicial object in C is to give a
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simplicial object X• and another object X−1 of C equipped with a map ∂0
0 : X0 → X−1 (to be X•(ε) with

ε : [−1]→ [0] the unique map) such that for any n ≥ 0, all composites

∂0
0 ◦ ∂

j1
1 ◦ · · · ◦ ∂jnn : Xn → X−1

coincide (cf. (1.1)). This also then gives each Xn a structure of “object over X−1” and then all maps in X•
are over X−1. In other words, to give an augmented simplicial object in C with a specified augmentation
object X−1 is nothing more or less than a simplicial object in the “slice category” C/X−1 of objects in C
over X−1.

Definition 2.5. We write Simp+(C) to denote the category of augmented simplicial objects in C.

We will usually write a : X• → S to denote an augmented simplicial object with S in degree −1 and
X• the part in degrees ≥ 0. There are then canonical maps an : Xn → S for all n ≥ 0. We stress that a
isn’t really a “morphism”, but is more shorthand notation for a collection of data. In other cases we may
write X• to denote the entire augmented structure (rather than just the “simplicial part” in degrees ≥ 0).
The context should always make clear what we mean, but sometimes we will also write X•/S to denote an
augmented simplicial object with S in degree −1 and X• the simplicial part.
Example 2.6. A somewhat boring example of a simplicial object (but one which will actually useful later on)
is to take X• with Xn = S a fixed object in C for all n ≥ 0 and to take all simplicial maps among the Xn’s
to be the identity on S. This sort of example is called a constant simplicial object. If we fix an augmentation
structure by the identity on S, we call the result a constant augmented simplicial object.

Definition 2.7. A convariant functor X : ∆ → C will be called a cosimplicial object (or cosimplicial
complex) in C, with Cosimp(C) denoting the corresponding category. The augmented variant is defined and
explicated in the evident manner.

Note that Simp(C)opp = Cosimp(Copp).
Example 2.8. We begin with a non-example by providing a word of warning about a possible example of
cosimplicial object that might spring to mind: the data of the sheaves Fn = p∗nF on the Xn’s from §1 with
maps

(2.4) pj ∗n Fn → Fn+1, ιj ∗n Fn → Fn−1

on Xn+1 (for n ≥ 0) and Xn−1 (for n ≥ 1) respectively. Recall that these maps were defined via adjunction
morphisms for pushfoward/pullback with the help of the identities

pn+1 = pn ◦ pjn, pn+1 ◦ ιjn = pn ◦ pjn ◦ ιjn = pn.

This data generally does not constitute a “cosimplicial sheaf” for the midly annoying technical reason
that these Fn’s live on different spaces and hence are not really objects of a common category (of sheaves).
Formally we’d like to say that the maps in (2.4) should play the respective roles of ∂n+1

j (n ≥ −1) and σn−1
j

(n ≥ 1) since natural analogues of the relations in Lemma 2.2 do clearly hold, thanks to the “opposite” of
the relations in Lemma 1.1 (upon passing to pullbacks). This should not prevent us from thinking about
the Fn’s and the data in (2.4) as if it were a “cosimplicial sheaf” or perhaps more accurately a “sheaf on
X•”. We will later give a precise definition of such concepts (see Definition 6.1 and Example 6.2).

Of course, this sort of example is clearly of fundamental nature, and Deligne’s way of generalizing the
situation and working with it was to replace the sheaf categories on the various Xn’s and adjoint pair
functors (pjn∗, pj∗n ) and (ιjn∗, ιj∗n ) between them with ringed topoi and suitable geometric morphisms between
them, and to just develop a general theory in the context of simplicial ringed topoi to solve all problems
at once. However, this generality comes at a price: in order to have a derived pullback which is well-posed
on “bounded below” derived categories, Deligne needs to pay careful attention to flatness issues. We will
only be discussing pullback maps in the level of abelian sheaves (on a topological space, scheme with étale
topology, or on any site), for which f∗ is always exact. This restriction is one reason we don’t need to carry
around the amount of technical baggage that accompanies [D]. In any case, do keep in mind that the sheaf
example from §1 is, strictly speaking, not quite a cosimplicial object in the sense of Definition 2.3.
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Example 2.9. Actually, we can make an honest cosimplicial object out of the non-example above by con-
sidering the pushfoward sheaves F̃n = pn∗p

∗
nF on the common space X = X−1. We use the old face

map
∂n+1
j = dnj : F̃n → F̃n+1

from (1.2) and we define the degeneracy maps

σnj : F̃n+1 = pn+1 ∗p
∗
n+1F → pn∗p

∗
nF = F̃n

for n ≥ 0 via the adjunction morphism

pn+1 ∗p
∗
n+1 ' pn∗p

j
n+1 ∗p

j ∗
n+1p

∗
nF → pn∗p

j
n+1 ∗ι

j
n∗ι

j∗
n p

j ∗
n+1p

∗
nF ' pn∗p∗nF .

Here we have used the identities pn+1 = pn ◦ pjn+1 and pjn+1 ◦ ι
j
n+1 = id. This cosimplicial object “knows”

about the sheaf C̆ech complex of F with respect to the covering U which gave rise to our simplicial object
X•, as we will see in Example 2.11

We wish to conclude our introductory discussion of simplicial objects in categories by focusing on the
particularly interesting case in which C is an abelian category. In this special case, there is a general
construction (called the Dold-Kan correspondence) which effectively says that in an abelian category, a
cosimplicial object is nothing more or less than a chain complex in non-negative degrees. One of the crucial
applications of this correspondence for our purposes is that it will enable us to “see” certain aspects of the
theory of injective resolutions (in the category of cosimplicial objects) which would otherwise be somewhat
shrouded in mystery. More philosophically, the Dold-Kan correspondence shows that simplicial theory is a
good non-abelian generalization of the chain complexes which are so useful in abelian categories.

Let A be an abelian category, and let Simp(A ) denote the category of simplicial objects in A . It
is trivial to check that this is an abelian category, with formation of kernels and cokernels given by the
termwise constructions within A with the obvious induced functoriality from ∆ (i.e., induced face and
degeneracy maps). In particular, we can check exactness by looking in each separate degree, and likewise for
checking if a morphism is monic, epic, or an isomorphism. Also, observe that Simp(A )opp ' Cosimp(A opp)
in an evident manner.

There is a close connection between the category Cosimp(A ) and the category Ch≥0(A ) of chain com-
plexes in A concentrated in non-negative degrees:
Definition 2.10. We define the functor

s : Cosimp(A )→ Ch≥0(A )

to assign to any cosimplicial object C• the chain complex s(C•) whose degree n term is Cn and whose degree
n differential is

∂nC• =
n+1∑
j=0

(−1)jC•(∂n+1
j )

for n ≥ 0 (the relations on the ∂j ’s in ∆ ensure that ∂n+1
C• ◦ ∂nC• = 0).

Example 2.11. Applying Definition 2.10 to Example 2.9 yields the classical sheaf C̆ech complex.
Of course, we have an obvious analogue of the functor s from simplicial objects to cochain complexes

in nonnegative degrees, and we denote that functor s also without risk of confusion (though the formula
defining the differential in degree n now involves only 0 ≤ j ≤ n instead of 0 ≤ j ≤ n+ 1).

It is trivial to check that s is an exact functor. Somewhat more remarkable is the (independent) discovery
by Dold and Kan that inside of s(C•) is a functorial subcomplex N(C•) (called the “normalized” chain
complex associated to C•) which is not only quasi-isomorphic to s(C•) via the inclusion map but actual con-
tains enough information to reconstruct the entire cosimplicial object C•! This may seem rather surprising,
considering that we seem to have thrown out all information about the degeneracy maps when passing to
s(C•), but the way around this is to realize that s(C•) contains a lot of redundant information in its terms
Cn in each degree (redundant in the sense that the many degeneracy maps into degree n from higher degrees
have images which usually overlap a lot, so we can’t distinguish them just by being given s(C•)). By passing
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to a well-chosen subcomplex with less redunancy, we will actually be able to reconstruct everythimg. This
was the basic insight of Dold and Kan.

To illustrate the basic mechanism underlying the Dold-Kan correspondence, let’s liven things up by
working with a simplicial object A• in A instead (once we state the general result, passing to the opposite
category will give a result for cosimplicial objects too). For any simplicial object A = A• in A and positive
integer n, we define a subobject

N(A)n =
n⋂
j=1

ker(∂jn : An → An−1).

Note that this intersection is taken over 1 ≤ j ≤ n, not 0 ≤ j ≤ n.
Define a differential dn : N(A)n → N(A)n−1 via A•(∂0

n) for n ≥ 1. The relations on the ∂’s in ∆ show that
dn really does take N(A)n into N(A)n−1, and since dn agrees with ∂A,n on N(A)n it follows that dn ◦ dn+1

on N(A)n+1 coincides with ∂A,n ◦ ∂A,n+1 = 0. By defining N(A)0 = A0 and d0 = 0, we have dn ◦ dn+1 = 0
for all n ≥ 0, so (N(A)•,d•) is an ordinary cochain complex in A concentrated in non-negative degrees.

One easily checks that N(A)• is naturally a subcomplex of s(A) which is moreover functorial in A. In
fact, N(A)• is even a direct summand subcomplex, with a complement in degree n given by the sum of the
images of the degeneracy maps from degrees below n (recall s(A)i = Ai for all i). The proof of Theorem 2.12
below makes it clear that this really gives a complementary subcomplex. One easily checks that A N(A)•
defines an additive exact functor

N : Simp(A )→ CoCh≥0(A )
to the abelian category of cochain complexes in A concentrated in non-negative degrees. The miracle is that
the abelian category structure will enable us to reconstuct the simplicial object A just from the data of the
cochain complex N(A), and in fact the functor N will turn out to be an equivalence of categories (with a
precise quasi-inverse functor).

Let’s see what is going on in low degrees. In degree 1, since ∂j1σ
j
0 is the identity on A1 we see that

σ0
0 : A0 → A1 is naturally split, and in fact one can show from the simplicial map relations that the natural

map

(2.5) N(A)1 ⊕N(A)0 → A1,

with N(A)0 mapped in via σ0
0 , is an isomorphism (Theorem 2.12 below tells us much more). Under this

identitification, the map σ0
0 : A0 → A1 is explicated by the inclusion of N(A)0 into the left side of (2.5),

and the map ∂0
j : A1 → A0 is given by projection onto N(A)0 for j = 1 and is given by the sum of this

projection map and d1 : N(A)1 → N(A)0 = A0 for j = 0. In this way, the truncation of A• in degrees ≤ 1
is reconstructed from N(A)• in degrees ≤ 1. A clever inductive iteration of this to higher degrees yields the
Dold-Kan correspondence:
Theorem 2.12. (Dold-Kan) The exact functor N : Simp(A )→ CoCh≥0(A ) is an equivalence of categories.
Moreover, the complex N(A) is naturally direct summand of the cochain complex s(A) with the inclusion
inducing an isomorphism on homology.

The evident analogue holds for the categories of cosimplicial objects and chain complexes (in non-negative
degrees), and there is an analogue of the “normalized (co)chain complex” construction which goes over
essentially the same way. We have formulated the theorem for simplicial objects since this is the version
handled in the reference we give for the proof below; of course, passage to the opposite category renders the
two situations equivalent.

Proof. See [Mac, pp.11–13] (in which simplicial complexes are strangely called FD-complexes) for a “split-
ting” construction for objects in Simp(A ), as well as the application of this “splitting” to motivate and study
the construction of a quasi-inverse functor T to N , with T (C•)n defined as a somewhat involved finite direct
sum of various terms Cm with m ≤ n, with components of the direct sum indexed by various degeneracy
maps among [m]’s for m ≤ n. Lemma 2.2 is useful for the task of actually constructing the well-defined sim-
plicial structure maps between the T (C•)n’s. This construction makes explicitly clear that N(A) is a direct
summand of s(A) with complementary complex D(A) given in degree n by the sum of images of degeneracy
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maps from lower degrees (one can use relations as in Lemma 2.2 to see a priori that the D(A)n’s constitute
a subcomplex of s(A)). Strictly speaking, the proof in [Mac] is given with A the category of abelian groups,
but by chasing “points” one sees that the same argument is valid in an arbitrary abelian category.

See [W, pp. 266-7] for the quasi-isomorphism property of the inclusion N(A) → s(A). One just has to
show that D(A) is acyclic, and this is done by filtering D(A) and proving that the successive quotients are
acyclic. Beware that the calculations in the proof of acyclicity in [W, Thm 8.3.8] are riddled with sign errors.

�

Keeping in mind that the sheaf example from Example 2.8 was nearly an example of a cosimplicial object,
the following corollary of the proof of the Dold-Kan correspondence will wind up playing an important
technical role in the study of sheaves on simplicial objects later on.
Corollary 2.13. Let A be an abelian category with enough injectives. The category Cosimp(A ) has enough
injectives. In fact, a cosimplicial object C• in A is injective in Cosimp(A ) if and only if each Cn is an
injective object in A and the associated chain complex s(C•) in non-negative degrees is acyclic in positive
degrees.

Of course, in the sheaf context we will be interested in “cosimplicial” objects and injective resolutions, and
not projective resolutions, so we expect to be more interested in projective resolutions only in the context
of simplicial objects.

By passage to opposite categories, we get a similar result concerning projectives in the category Simp(A ).
This corollary is a prototype for a later result (Lemma 6.4) which will tell us about the structure of injective
objects in the category of “sheaves” on a simplicial topological space (or scheme, or object of any site), and
that in turn will be used in the construction of the cohomological descent spectral sequence in Theorem 6.11.

Proof. By the Dold-Kan correspondence, the problem of having enough injectives in Cosimp(A ) is equivalent
to the problem of having enough injectives in Ch≥0(A ). But it is a basic fact in homological algebra that
when A has enough injectives then so does Ch≥0(A ), and moreover the injectives in this latter category are
precisely the chain complexes C• with Cn an injective of A for each n and Hi(C•) = 0 for all i > 0.

It remains to describe the injective objects in Cosimp(A ). Well, if C• is injective in here, then N(C•)
is an injective in Ch≥0(A ). That is, N(C•)n is an injective in A for each n and Hi(N(C•)) = 0 for all
i > 0. But the quasi-inverse functor in the Dold-Kan correspondence constructs each Cn as a finite direct
sum of N(C•)m’s for various m ≤ n (with some terms repeated several times). Since a finite direct sum of
injectives is injective, we conclude that if C• is injective in Cosimp(A ) then Cn is injective in A for each n
and moreover

Hi(s(C•)) ' Hi(N(C•)) = 0
for all i > 0, the isomorphism coming from Theorem 2.12. Conversely, if C• is a cosimplicial object with
each Cn injective in A and s(C•) acyclic in positive degrees, we want to show that C• is an injective object
in Cosimp(A ). By the Dold-Kan correspondence, we want N(C•) to be injective in Ch≥0(A ), which is to
say that each N(C•)n should be an injective in A and N(C•) should be acyclic in positive degrees. Since
N(C•) → s(C•) is a quasi-isomorphism, the acyclicity is clear. Since each N(C•)n is a direct summand of
the injective Cn, it follows that N(C•)n is injective in A for each n ≥ 0.

�

3. Coskeleta

Having survived the arid generality of (co)simplicial objects, we are ready to see how that theory provides
the context for carrying out a vast generalization of C̆ech theory via the simplicial concept of hypercoverings.
We have seen already how C̆ech theory can be recast as a special instance of (augmented) simplicial topology.
Hypercovers will be certain special kinds of augmented simplicial spaces which satisfy a more subtle property
enjoyed by the fiber power C̆ech construction, going beyond the mere simplicial structure.

In order to even define what a hypercovering is, and to make sense of “refining” a simplicial object in
higher degrees without affecting lower degrees (something we cannot conceive in the framework of ordinary
C̆ech theory, but which underlies what is so “hyper” about hypercovers – see Theorem 4.13), we need the
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coskeleton functors. For example, just as an ordinary covering has a certain kind of “surjectivity” condition
built into the definition, a hypercovering will be an augmented simplicial object satisfying an analogous
“surjectivity” requirement in each degree, expressed in terms of certain coskeleta.

As another important application of the concepts we are about to introduce, we mention that coskeleta
will give us a technique for proving theorems about general simplicial concepts (such as hypercovers) by
means of induction on degree. A dramatic application of such inductive arguments is the use of the (topo-
logical or étale) proper base change theorem for “sheaves in degree 0” to create the theory of cohomological
descent on the level of derived categories of “sheaves” on proper hypercoverings. In a nutshell, the theory
of hypercoverings will be a “derived” version of the classical theory of coverings, with the cohomological
descent property of proper hypercoverings serving as a “derived” version of the proper base change theorem
for ordinary sheaves.

Without further delay, let us prepare for the definition and basic properties of coskeleta. Just as we want
to have the intuition of thinking of a simplicial object X• as a generalized CW-complex, we can think of the
truncated version (as if we stopped gluing cells at dimension n). More specifically, if we let ∆≤n and ∆+

≤n
denote the full subcategories of ∆ and ∆+ consisting of objects [m] with m ≤ n, we can make the:
Definition 3.1. For n ≥ 0, an n-truncated simplicial object in a category C is a contravariant functor
X• : ∆≤n → C. Such objects form a category Simpn(C), with Simpn(C) abelian if C is (using the evident
term-by-term constructions for kernels and cokernels).

We define the augmented and cosimplicial variants in the obvious analogous manner (using ∆+
≤n, etc.).

One has an evident analogue of Lemma 2.2 for describing the category ∆≤n in terms of generators and
relations, and the same proof carries over verbatim. Consequently, as with (co)simplicial objects, we can
describe n-truncated (co)simplicial objects (as well as augmented ones) in terms of a more minimalist amount
of data by just specifying face and degeneracy (and augmentation) maps subject to the expected relations.

Given a simplicial object X• : ∆→ C we can “restrict” it to the full subcategory ∆≤n (and similarly with
the augmented version), and in this way we get a functor from (co)simplicial objects in C to n-truncated
(co)simplicial objects in C (and similarly if we impose augmentations). We write

skn : Simp(C)→ Simpn(C)

for this n-truncation functor (and use a similar notation on categories of augmented objects). We will call
skn(X•) the n-skeleton of X•, but beware that this is not always what is called the n-skeleton of X• (this
terminology is sometimes used to describe a genuine simplicial object – not a truncated one – which is
“generated” by what we have called skn(X•) by formally adjoining simplices in degrees > n by means of
“applying” degeneracy maps to the Xm’s for m ≤ n in a suitably universal manner). Using ∆+

≤n we likewise
get truncation functors

skn : Simp+(C)→ Simp+
n (C)

for n ≥ −1 (with sk−1 just the assignment of the augmented object in degree −1 in Simp+
−1(C) = C). We

should probably write sk+
n , but we won’t.

The problem which is “solved” by the n-coskeleton construction is to determine whether skn has a right
adjoint:
Definition 3.2. For n ≥ 0, an n-coskeleton functor coskn : Simpn(C) → Simp(C) is a functor for which
there is a bifunctorial bijection

HomSimpn(C)(skn(X•), Y•) ' HomSimp(C)(X•, coskn(Y•))

for any n-truncated cosimplicial object Y• in C (and similarly in the augmented case with n ≥ −1 and
augmented simplicial object categories.).

We should probably use notation cosk+
n in the augmented case, but we won’t; this seems to present little

risk of confusion, though one must be careful to note that coskn does not commute with the “forget” functors
Simp+

n (C)→ Simpn(C) and Simp+(C)→ Simp(C), for much the same reason that forming the underlying
scheme of a fiber product over a base is not the same as forming the product of the underlying “bare” schemes
(see Example 3.3 below). If Y ′• = Y•/S is an n-truncated augmented simplicial object, we sometimes denote
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the augmented simplicial space coskn(Y ′•) in other ways: coskn(Y•/S) or coskn(Y•/S) → S. In particular,
when we choose the latter option we are intending coskn(Y•/S) to denote just the part of the coskeleton in
non-negative degrees. The context should always make clear what is intended.

Of course, we have to prove (under suitable conditions on C) that an n-coskeleton functor exists. In more
concrete terms, given an n-truncated Y•, to compute coskn(Y•) we must determine the “stuff” to introduce
in higher degrees so that any map f : skn(X•)→ Y• uniquely “extends” to a map X• → coskn(Y•) We will
see in Corollary 3.10 that in fact the adjoint coskn has the additional property that the adjunction map
skn(coskn(Y•)) → Y• is an isomorphism in favorable situations for which we can show coskn exists in the
first place, so thinking of coskn(Y•) as a “higher degree” extension of Y• is reasonable. That said, what we
really must do is construct for each Y• in Simpn(C) a simplicial object coskn(Y•) and an adjunction map
skn(coskn(Y•))→ Y• making the composite map

HomSimp(C)(X•, coskn(Y•))
skn−→ HomSimpn(C)(skn(X•), skn(coskn(Y•)))→ HomSimpn(C)(skn(X•), Y•)

bijective for any X•. Once again, we must also keep in mind the augmented case (after all, C̆ech theory
gives rise to augmented simplicial objects).

Since we will show later that (in favorable cases) skn(coskn(Y•)) → Y• is an isomorphism, we can safely
imagine the universal property of coskn(Y•) as being a simplicial object extending Y• such that for any
simplicial object X• and map f : skn(X•) → Y• in degrees ≤ n, the map f admits a unique extension
F : X• → coskn(Y•) on the level of simplicial objects (and likewise in the augmented case).

We will study the special case n = 0 in a moment (before we treat the general case under some mild
auxiliary hypothesis on C), but we first want to stress that the idea on the geometric side is that coskn(Y•)
has the “least” amount of simplicial data in higher degrees which is necessary given that we are starting with
Y• in degrees ≤ n and that for any map sknX• → Y• there must be somewhere for each Xm (with m > n)
to go inside of coskn Y•.

For example, given a topological 1-simplex Y• which is the edge E of a triangle T we could imagine
in (cosk1 Y•)2 that we are forced to have that triangle T put in as a 2-cell since an actual triangle whose
1-truncation maps via the identity to E can only map to cosk1(Y•) in degree 2 if the triangle 2-cell in the
source has somewhere to go! However, we cannot forget that not only are we required to be able to lift
maps to Y• in degrees ≤ n to maps all the way up to every level on the n-coskeleton coskn(Y•), but such a
lifting has to be unique. This makes it more difficult to visualize what coskn(Y•) looks like if we’re trying to
think intuitively in terms of ordinary topological categories (as opposed to homotopy categories!). For this
reason, I don’t actually try to visualize the n-coskeleton at all beyond the vague intuition which has just
been described; it is the functorial property of coskn (as being right adjoint to skn) which is what matters
for our purposes.
Example 3.3. Let’s now consider the case n = 0 and construct cosk0 “by hand” before we attack the general
case. In fact, the case n = 0 is theoretically important both for the role it plays in starting inductive
arguments (for which having a concrete description of cosk0 is quite useful!) and also because it is the
precise point of contact between C̆ech theory and the theory of hypercoverings. In essence, as we shall see,
C̆ech theory is part of the theory of cosk0 in the augmented case.

First consider the non-augmented case. Given an object Y0 in C, is there some “final” simplicial object
X• in C with respect to the property of being equipped with a map φ0 : X0 → Y0 in Simp0(C) = C? That
is, we seek such a pair (X•, φ0) such that for any simplicial object X ′• equipped with a map φ′0 : X ′0 → Y0

there is a unique map ξ : X ′• → X• with φ0 ◦ ξ0 = φ′0. We will carry out the construction of such a pair
(X•, φ0) under the hypothesis that C admits finite products, and we will see that Example 2.4 with φ0 = idY0

provides the universal solution.
Given φ′0 : X ′0 → Y0, we get two maps

X ′1
d1

1

//
d0

1 //
X ′0

φ′0 // Y0
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and hence we get a unique map
ξ′1 : X ′1 → Y0 × Y0

such that the diagram

X ′1
ξ′1 //

d0
1

��
d1

1

��

Y0 × Y0

p0

��
p1

��
X ′0

φ′0

// Y0

commutes. Also, compatibility with the section from degree 0 is straightfoward (using the diagonal section
on the right side). Similarly, composing φ′0 with the three composite “face” maps X ′2 → X ′0 (corresponding
to the three maps [0]→ [2] in ∆) yields a map

ξ′2 : X ′2 → Y0 × Y0 × Y0

such that the diagram

X ′2
ξ′2 //

��
d0

2

��
d2

2

��

Y0 × Y0 × Y0

��
p12

��
p01

��
X ′1

ξ′1

// Y0 × Y0

commutes, with middle vertical arrows d1
2 and p02 (the commutativity is checked by composing both ways

around with the two projections from Y0 × Y0 to Y0). This commutativity uniquely determines ξ′2, and it is
easy to check that we also have compatibility with the degeneracies from degree 1 to degree 2. Continuing,
one finds quite easily that the “C̆ech cover” Xn = Y

×(n+1)
0 with evident simplicial structure as in Example

2.4 and the evident
φ0 : X0 = Y0

id→ Y0

serves as cosk0(Y0) in C.
The augmented version goes essentially the same way, but we must assume C admits finite fiber products.

If we’re given some object Y0 → Y−1 in Simp+
0 (C), then we can either see that it suffices to focus on the

slice category C/Y−1 of objects over Y−1 (in which products are just fibers products in C over Y−1), thereby
reducing to the previous case, or we can just directly go through the preceding argument in the augmented
situation. Such a direct argument shows that essentially the same construction works, the only difference
being that we must use fiber products over Y−1 (as opposed to absolute products in C) so as to keep track
of compatibility with augmentations. This makes it clear that C̆ech theory is part of the theory of cosk0 for
augmented simplicial objects.
Example 3.4. Let’s try to do the non-augmented n = 1 case by hand, assuming C to contain finite products
and finite fiber products. We’ll pretty quickly see that this begins to look like a combinatorial mess. We
give ourselves a 1-truncated simplicial object

d0,d1 : Y1 → Y0, s0 : Y0 → Y1

with s0 a section to both dj ’s. We also give ourselves a simplicial object X• and a map φ : sk1X• → Y• in
degrees ≤ 1. That is, we give ourselves maps φ1 : X1 → Y1 and φ0 : X0 → Y0 compatible with the face and
degeneracy maps between degrees 0 and 1.

Let’s try to figure out what the degree 2 term Y2 of cosk1(Y•) should be (not even worrying about how
to explicate the face and degeneracy maps between Y2 and Y1). Using the three face maps X2 → X1 and
composing with φ1 we get three maps X2 → Y1. However, the resulting map

X2 → Y1 × Y1 × Y1

is not arbitrary. For example, since φ1 and φ0 are compatible with the face maps to degree 0, the three
maps X2 → Y1 enjoy certain extra relations for their composites with the two face maps Y1 → Y0 to degree
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0. This translates into the map to the triple product of Y1 landing inside a fiber product subobject of the
form

Y1 ×Y0 Y1 ×Y0 Y1

where each of the four implicit projections Y1 → Y0 is one of the two face maps (determined by thinking
about the case in which Y1 = Y0 × Y0 and trying to ensure that this triple fiber product is exactly just the
triple product of Y0 without “re-ordering” the factors). We omit the explication, because already we see
that more work is needed: the resulting map

X2 → Y1 ×Y0 Y1 ×Y0 Y1

enjoys yet more properties because of the requirement that φ in degrees ≤ 1 respects the degeneracy map
from degree 0 to degree 1.

It gets very complicated to write down explicitly! In fact, this sort of hands-on approach to figuring out
what cosk1(Y•) should be in degree 2 involves having to think about commutative diagrams among maps
[m] → [2] with m = 0, 1, and there are a lot of such diagrams! In fact, it turns out that there is much
redundancy and one only really needs to think about the six such maps [m] → [2] with m ≤ 1 which are
injective, but already it becomes quite painful to think about these issues in such an explicit manner. One
thing we do see, however, is that the three maps X2 → Y1 have to satisfy a variety of compatibility conditions
with respect to maps between Y1 and Y0. This has the feeling of requiring that we specify a map from X2

to some “inverse limit” of a suitable diagram (with many maps) involving the objects Y1 and Y0, and it is
exactly the point of view of inverse limits over finite diagrams which will resolve the general case in a way
that avoids much pain.

In the general case, to construct coskeletons we will assume that the category C admits finite fiber
products, or equivalently inverse limits over finite diagrams. Let us recall what limits over a diagram mean,
as this will be used in the construction of coskn.

Let D be a small category and F : D → C be a contravariant functor. For example, if D were a directed
set (viewed as a category in an evident manner) then F would just be the specification of an inverse system
in C. In general, we will need to allow non-identity morphisms in D. What we want to do is think about
F (D) as a “diagram” in C and we wish to construct an object in C which is endowed with maps to all of
the F (d)’s for objects d of D, compatibly with F (f)’s for all morphisms f in D, and which is universal with
respect to this property. This is made precise by:
Definition 3.5. With notation as above, we define an inverse limit

lim←−
D

F

of F over D to be an object L of C equipped with maps φd : L→ F (d) for each object d of D such that
• φd = F (f) ◦ φd′ for all f ∈ HomD(d, d′),
• for any object X of C equipped with maps ψd : X → d for all objects d of D such that ψd = f ◦ ψd′

for all f ∈ HomD(d, d′), there is a unique map ξ : X → L in C such that ψd = ψd ◦ ξ for all objects
d of D.

If F is covariant, we have a similar definition of inverse limit by working instead with maps f ∈ HomD(d′, d)
in the above map relations. The corresponding notion of direct limit for F : D → C is defined similarly.

Our interest will be in taking inverse limits when D is a finite category, by which we mean that D has
finitely many objects and finitely many morphisms among them.
Example 3.6. Given the diagram

X ′ → X ← X ′′,

an inverse limit is just a fiber product X ′ ×X X ′′, while an inverse limit over a diagram consisting of only
two objects with just identity morphisms is an ordinary product.
Example 3.7. If D is a finite category and C admits finite fiber products and products, then the inverse limit
of F over D is naturally a subobject of the product of the finitely many F (d)’s (for reasons very much like
in the category of sets).
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In fact, by carefully inducting on the “size” of a finite D, we see that an inverse limit in the sense of the
preceding definition will exist whenever D is finite and C admits the existence of finite products and finite
fiber products (i.e., the two examples considered in Example 3.6). We describe this condition by saying that
C admits finite inverse limits.
Lemma 3.8. If C admits finite inverse limits, so do the categories Simp(C), Simp+(C), Simpn(C), and
Simp+

n (C). The same goes for categories of augmented objects.

Proof. One does constructions in C in each separate degree and checks that the output has the desired
universal property in the various categories of interest.

�

We can now state the basic existence result for coskeleta.
Theorem 3.9. Assume C admits finite inverse limits (or equivalently, admits finite products and finite fiber
products). Then the functor skm : Simp(C) → Simpm(C) admits a right adjoint coskm for all m ≥ 0. The
same statement holds for the categories of augmented objects, then also allowing m = −1.

Although we have already settled the case m = 0 in the non-augmented situation in Example 3.3, we will
see that our general argument recovers our explication of cosk0. Knowledge of how coskm is constructed will
be used in some later proofs!

Proof. Since C admits fibers products, for the augmented case it suffices by a pullback argument to restrict
to the case of a slice category C/S (which also admits finite fiber products), and to consider only objects
augmented by S. But then aside from the case m = −1 this brings the augmented case down to the non-
augmented case (using the category C/S instead of C). We first quickly dispose of the augmented case with
m = −1 and then we will just have to treat the case of categories of simplicial (and truncated simplicial)
objects without augmentation.

For m = −1, the right adjoint to the functor sk−1 : Simp+(C)→ C is the “constant augmented complex”
functor which assigns to each object Y−1 in C the augmented simplicial complex given by Y−1 in each degree
with all simplicial maps (including augmentation) given by the identity map.

Now we turn to the case of (non-augmented) simplicial objects and fix m ≥ 0 and fix an m-truncated
simplicial object Y = Y• in C. We will construct a simplicial object which should be coskm Y , and then will
see that it enjoys the expected properties.

The first order of business is to construct what should be the degree n piece of coskm Y before we worry
about making it functorial in [n]. To this end, fix n ≥ 0. Consider the “representable” simplicial complex of
sets

∆[n] : [k] Hom∆([k], [n]),

to be viewed as a combinatorial abstraction of the classical n-simplex ∆[n]R in Rn+1 (with contravariant
functorial structure in [k] given in the obvious manner). We view ∆[n] as a category with objects given
by the elements in each ∆[n]k (i.e., objects are maps φ : [k] → [n]) and a morphism from φ : [k] → [n] to
φ′ : [k′]→ [n] is a map α : [k]→ [k′] such that φ′ ◦α = φ. In other words, ∆[n] as a category is just the slice
category ∆/[n] of objects in ∆ over [n].

Note that applying Yondea’s lemma in the category ∆ yields a bijection

Hom∆([n′], [n]) ' HomSimp(Set)(∆[n′],∆[n])

for any n, n′ ≥ 0. We likewise define the m-truncated simplicial complex of sets skm(∆[n]), with the
underlying set ∆[n]k in degree k ≤ m consisting of the set of maps [k] → [n] in ∆. Note that even when
m > n this can can be quite big. We view skm ∆[n] as a full subcategory of ∆[n]. Note that this is a finite
category.

In the augmented case, we can define ∆+[n] similarly (and interpret it as an abstract of the idea of a
pointed n-simplex), and we likewise get the finite category skm ∆+[n]. Note that we can even make sense of
this latter construction for any m,n ≥ −1, and when n = −1 these categories are all just a single object with
only the identity morphism (since there is a unique arrow in ∆ with target [−1] = ∅, namely the identity map
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of [−1].) This is related to our earlier observation that cosk−1 is just the “constant (augmented) simplicial
object” construction.

Returning back to the non-augmented situation, consider the finite category skm(∆[n]). For each object
φ : [k]→ [n] in Hom([k], [n]) = ∆[n]k with k ≤ m, define Yφ = Yk. Given another φ′ : [k′]→ [n] with k′ ≤ m
and a morphism α : φ→ φ′ in skm(∆[n]) (i.e., a morphism α : [k]→ [k′] in ∆ such that φ′ ◦ α = φ) we get
a morphism Y (α) : Yk′ → Yk, or equivalently a morphism

Y (α) : Yφ′ → Yφ.

As we vary over the φ’s and α’s, we have made a new contravariant functor skm ∆[n]→ C which we denote
Y . It makes sense to form the inverse limit object for this situation:

Ỹ (m)
n = lim←−

skm(∆[n])

Yφ.

This object captures all relations “among” [k]’s for k ≤ m, at least as far as their maps to [n] are concerned,
and essentially for this reason Ỹ

(m)
n will turn out to be the degree n part of the m-coskeleton of the given

m-truncated object Y•. Of course, making sense of this requires that we first must make [n] Ỹ
(m)
n into a

contravariant functor ∆→ C. If m = 0, the category skm(∆[n]) is a discrete category with n+ 1 points, so
Ỹ

(m)
n is just the product Y ×(n+1)

0 .
Now we explicate the functoriality of [n] Ỹ

(m)
n (e.g., for m = 0 we expect the usual C̆ech-like cartesian

power simplicial object). For any morphism α : [n′] → [n], we want to define a map Ỹ
(m)
n → Ỹ

(m)
n′ arising

from α : [n′] → [n] by “contravariance.” To define this, we will define maps from Ỹ
(m)
n to each object

appearing in the diagram over skm(∆[n′]) whose inverse limit is Ỹ (m)
n′ , and we will then check the necessary

compatibilities to ensure that these maps glue to give a map from Ỹ
(m)
n to the inverse limit Ỹ (m)

n′ .
For any object φ′ : [k′]→ [n′] in skm(∆[n′]) (with k′ ≤ m) we get a natural map

(3.1) ξφ : Ỹ (m)
n → Yφ′ = Yk′

by canonically projecting the inverse limit Ỹ (m)
n over skm(∆[n]) onto Yα◦φ′ = Yk′ (note that α ◦φ′ lies in the

category skm ∆[n]). The maps ξφ′ in (3.1) are natural in φ′ in the sense that for any commutative diagram

[k′1]
φ′1 //

β

��

[n′]

[k′2]
φ′2

==||||||||

we get a diagram

(3.2) Ỹ
(m)
n

ξα◦φ′1 //

ξα◦φ′2 ##FFFFFFFF
Yα◦φ′1 Yk′1

Yα◦φ′2

β

OO

Yk′2

Y (β)

OO

in which the left side commutes by the universal property of Ỹ (m)
n as an inverse limit, the right square makes

sense since k′1, k
′
2 ≤ m, and the right square commutes by the very definition of Yφ for φ in skm ∆[n] and

how φ Yφ is functorial in φ.
By the commutativity of the outer edge of (3.2), we conclude that (3.1) is natural in φ′, so we may pass

to the inverse limit over φ′’s and conclude that the data in (3.1) uniquely determine a morphism

Ỹ (m)(α) : Ỹ (m)
n → Ỹ

(m)
n′

in C. In other words, for each morphism α : [n′] → [n] in ∆ we have constructed a morphism Ỹ (m)(α) :
Ỹ

(m)
n → Ỹ

(m)
n′ . It is trivial to check (by projection to “pieces” of an inverse limit) that this construction
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is contravariant with respect to composition in α, so we have defined a simplicial object Ỹ (m) in C which
might might suggestively write as

Ỹ (m) = lim←−
skm ∆

Yφ

(with the understanding that the object Ỹ (m)
n in degree n is an inverse limit over skm ∆[n]). One easily

checks that when m = 0 we get exactly the simplicial object on cartesian powers of Y0 with exactly the
expected functorial structure on ∆ (i.e., we get our explication of cosk0 as in Example 3.3, or really as in
Example 2.4).

Before we can show that Ỹ (m) can serve as coskm Y , we need to directly define what should be the
adjunction map

(3.3) skm Ỹ (m) → Y.

Well, for µ ≤ m the inverse limit Ỹ (m)
µ is taken over a category skm ∆[µ] with an initial object, namely the

identity map on [µ]. Hence, Ỹ (m)
µ = Yid[µ] = Yµ, with this identification visibly functorial in [µ]. In other

words, we have a natural isomorphism skm Ỹ (m) ' Y induced in degree µ ≤ m by the natural projection
from the inverse limit Ỹ (m)

µ to the object Yid[µ] = Yµ.
Now we will prove that Ỹ (m) equipped with (3.3) is “final” among simplicial complexes in C equipped

with a map from their m-skeleton to Y . Actually, before doing this we make a minor remark concerning the
augmented case. Just as the inverse limit of a finite diagram in a category admitting finite fiber products
and products can be realized as a subobject of the product of all of the objects (for much the same reason
inverse limits are found inside of products in the category of sets), we could have run through the preceding
argument (with m ≥ 0) in the augmented case as well. The only difference would be that we replace ∆[n]
with ∆+[n] and instead of forming the finite inverse limit Ỹ (m)

n as a subobject of the product of the Yφ’s,
this inverse limit would be a subobject of the fiber product over Y−1 of the same Yφ’s (cut out as a subobject
of the product by the “same” relations as in the nonaugmented case).

Of course, we really don’t need to replace ∆[n] with ∆+[n] when doing the augmented construction for
n ≥ 0, because the unique map [−1] → [n] is the initial object of ∆+[n] and Y is contravariant (so leaving
this one contributing piece out of the inverse limit construction will not affect the limit). Meanwhile, for
n = −1 we see that skm ∆+[−1] is a discrete 1 point category, so forming the limit as suggested above would
actually just yield the “constant augmented simplicial object” construction, just as we would want.

Turning to the proof that our above construction really is an m-coskeletion in the nonaugmented situation,
we note that for a simplicial object X• in C, to give a map X• → Ỹ (m) as simplicial objects is to give maps
Xn → Ỹ

(m)
n naturally in [n]. By the very definition of Ỹ (m)

n as an inverse limit, such a map to Ỹ
(m)
n is

equivalent to specifying maps
ξφ : Xn → Yφ := Yk

for all φ : [k]→ [n] with k ≤ m, in a manner which is natural in [k] and in [n]. Because of the naturality of
X• : ∆→ C, such naturality for the ξφ’s amounts to the requirement that the diagrams

Xn

X•(φ)

��

ξφ // Yk

Xk
ξid[k]

// Yk

commute, with ξk := ξid[k] required to be natural in [k] for k ≤ m. That is, we have to define ξφ := ξk ◦X•(φ)
and such a definition does work, thanks to the naturality of X•, provided ξk : Xk → Yk is natural in [k] for
k ≤ m.

This gives a bijection

HomSimp(C)(X•, Ỹ (m)) ' HomSimpm(C)(skmX•, Y ).
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Moreover, the construction of this bijection is exactly what one gets by first applying the functor skm (i.e.,
restriction to degrees k ≤ m) and then composing with the map (3.3) defined in degrees µ ≤ m in terms of
the isomorphism projection from Ỹ

(m)
µ to Yid[µ] = Yµ.

Hence, we have explicated the existence of both an m-coskeleton functor as well as the adjunction mor-
phism skm coskm → id which turns out to be an isomorphism.

�

We remind the reader that in the augmented case the above proof recovers the earlier explicit construction
of cosk0 in Example 3.3, and we record for later use the following few additional facts concerning the
coskeleton functors.
Corollary 3.10. For any m-truncated simplicial object Y in C with m ≥ 0, the natural adjunction map
skm coskm Y → Y is an isomorphism. The same is true for augmented objects with m ≥ −1.

Moreover, when constructing (coskm Y )n for m,n ≥ 0 as an inverse limit over skm ∆[n] (in either the
augmented or non-augmented cases), it suffices to take the limit over the full subcategory of skm(∆[n]) whose
objects φ : [k]→ [n] are injective set maps with k ≤ m.

The second part of the corrollary trivially remains true for the augmented case even when we allow m or
n to equal −1 and use either ∆[n] or ∆+[n] (except that for n = −1 we must use ∆+[n]). The sufficiency of
using injective set maps is a key technical observation in Deligne’s inductive proof of Theorem 7.9: proper
hypercoverings are morphisms of cohomological descent (really see the proof of the ingredient Theorem 7.16).

Proof. The isomorphism assertion for the non-augmented case was seen in the construction of coskm for
m ≥ 0, and this also takes care of the augmented case with m ≥ 0 (e.g., by passage to a slice category).
The case m = −1 is clear from the explicit construction of cosk−1 as a “constant” comsiplicial object in the
augmented case.

As for the second assertion, concerning taking an inverse limit over injective set maps φ : [k] → [n]
with k ≤ m, the slice category argument reduces the augmented case to the non-augmented case. Thus,
we just have to check that the subcategory in skm ∆[n] consisting of objects [k] → [n] which are injective
maps is “cofinal” in a sufficiently strong sense (roughly, every map [k] → [n] with k ≤ m factors through a
particularly canonical injective map [k′]→ [n] with k′ ≤ m).

In more concrete terms, any φ : [k] → [n] with k ≤ m uniquely factors as φ = α ◦ β with β : [k] → [k]
surjective (so k ≤ k ≤ m) and α : [k]→ [n] injective (see (2.2)). Now if we are given a map ξ in skm(∆[n])
from φ to some φ′ : [k′]→ [n] with k′ ≤ m (and with corresponding unique injective/surjective factorization
β′ ◦ α′ through some [k

′
]), which is to say a commutative diagram

[k]

φ

��

ξ // [k′]

φ′~~}}}}}}}}

[n]

then we trivially see that there is a unique map

ξ : [k]→ [k
′
]

which is compatible with ξ and the “surjective” parts β and β′ of the factorizations of φ and φ′. This ξ is
also compatible with the injections α : [k] → [n] and α′ : [k

′
] → [n]. Because of this uniqueness, it is easily

checked that ξ  ξ is compatible with compositions. More importantly, it is clear that any factorization of
φ through an injective map α̃ : [k̃]→ [n] (say with k̃ ≤ m) must have the injective α uniquely factor through
α̃. Consequently, to compute the inverse limit of all Yφ’s over skm ∆[n], it really does suffice to deal with
Yα’s for injective α.

The point is that Y is a contravariant functor, so in the above notation we have canonical maps Yα → Yφ
defined by Y (β), and the composition compatibility of ξ  ξ and the above unique factorization of α
through any other injective α̃’s guarantees well-definedness and naturality (in φ) of defining maps to Yφ
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via factorization of φ through any injective map [κ] → [n] with κ ≤ m. This concludes the proof that for
computing (coskm Y )n it suffices to take the inverse limit only over injective maps [k]→ [n] (with k ≤ m). �

Although the adjunction id→ coskm skm is generally not an isomorphism (and in fact this sort of map will
play an important role in the definition of hypercovers), there is a class of objects on which this adjunction
does induce an isomorphism: n-coskeleta for n ≤ m.

Corollary 3.11. For 0 ≤ n ≤ m, the natural map

(3.4) ρm,n : coskn → coskm skm coskn

of functors on Simpn(C) is an isomorphism. The same holds on Simp+
n (C) allowing −1 ≤ n ≤ m.

Before giving the proof, we make some remarks. By taking n = 0 in the augmented case, this corollary
“explains” the mechanical nature of the C̆ech construction. Namely, given a covering map Y0 → Y−1,
the truncation Y≤m in degrees ≤ m on the C̆ech construction cosk0(Y0/Y−1) has coskm(Y≤m) canonically
isomorphic to cosk0(Y0/Y−1), so we are back where we began. In other words, one can either view the C̆ech
construction as being a one-step application of cosk0 or alternatively as a process of applying coskn and
skn+1 to build the (n + 1)th level, then coskn+1 and skn+2 to build the (n + 2)th level, and so on (always
secretly returning back to the original cosk0 after each coskeleton step).

The version of Corollary 3.11 which is stated in [SGA4, Exp Vbis, 7.1.2] is a little sloppy: the inequality
on subscripts is backwards and slightly more dangerously the intermediate functor skm is omitted (by “abuse
of notation”). However, within the framework of [SGA4] such abuse of notation is permissible because they
also discuss a left adjoint to skm which we have not addressed. Thus, we will have to argue a little less
cleverly. If we were sloppy and omitted the skm, we would be tempted to just use adjointness to reduce to
the obvious transivity

skmn ◦ skm ' skn

of truncation functors (where skmn : Simpm(C)→ Simpn(C) is the evident “restriction”). The more refined
approach in [SGA4] permits such an argument, but from the way we’ve set things up we need to do a
little more work (on the other hand, being forced to work a little more directly with the definitions and
constructions is a good way to get used to new concepts).

Proof. The augmented cases m = −1, as well as n = −1 with m arbitrary, are clear “by hand”, since
the coskeleton of a “constant” n-truncated (augmented) simplicial object is clearly the associated constant
(augmented) simplicial object. Thus, we may assume m ≥ n ≥ 0. By passing to slice categories we may also
reduce to the non-augmented situation.

Now fix an n-truncated simplicial object Y , and consider a map

f : X → coskm skm coskn Y.

We must show that there is a unique map g : X → coskn Y whose composite with ρm,n(Y ) in (3.4) is f
(and then by Yoneda we’ll be done). To check the equality of two maps to an m-coskeleton, it suffices to
check equality on the level of m-truncations. In other words, given a map f ′ : skmX → skm coskn Y , we
must show that there is a unique map g : X → coskn Y such that skm(g) = f ′. Well, to give g is to give
its restriction g′ : sknX → Y on n-skeleta (here we are using that skn coskn is isomorphic to the identity
via adjunction), and g′ has no choice but to be the restriction of skm(g) to skn(X). Thus, to find g with
skm(g) = f ′ the only possibility is to take g′ to be the restriction of f ′ to n-skeleta, so we must show that
for any f ′ : skmX → skm coskn Y , the n-skelecton restriction

skmn (f ′) : sknX → skmn skm coskn Y ' skn coskn Y ' Y

corresponds under adjointness to a map F : X → coskn Y whose m-skeleton restriction is f ′.
In order to prove that f ′ = skm(F ), we just have to show that two maps

h, h′ : skmX → skm coskn Y
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which coincide on n-skeleta must be equal, when 0 ≤ n ≤ m. If m = n, there’s nothing to do. In general,
with m > n fixed we may induct on m and so we may suppose we have equality on skm−1’s. The only
problem is to show that the two maps

(3.5) hm, h
′
m : Xm

//// (coskn Y )m
lim←−

skn ∆[m]

Yφ

coincide (where the inverse limit is taken over maps φ : [k]→ [m] with k ≤ n). It suffices to consider equality
after composing with projection to each Yφ = Yk. From the very construction of coskn Y as a simplicial
object, this projection map to Yφ is canonically identified with

(coskn Y )(φ) : (coskn Y )m → (coskn Y )k ' Yk
via the canonical identification of (coskn Y )k with Yk for k ≤ n. But by naturality our maps h and h′ with
degree m restriction (3.5) must respect functoriality with respect to φ, so checking that the composites of
(3.5) with projection to Yφ = Yk yield a common map is equivalent to checking that the composition of

X(φ) : Xm → Xk

with hk and h′k yields a common map. But due to our assumption that h and h′ have the same restrictions
to n-skeleta, the fact that k ≤ n implies that we’re done.

�

We end this secion with a useful consequence of Corollary 3.11. For 0 ≤ n ≤ m we have a functor

skmn : Simpn(C)→ Simpm(C)

which is just “restriction”. We can ask if this has a right adjoint cosknm, an analogue of the coskeleton in the
context of truncated objects (now depending on n and m). A natural guess is to use skm coskn, with

skmn ◦(skm coskn) = skn ◦ coskn = id

as the adjunction. Indeed, this works:
Corollary 3.12. For 0 ≤ n ≤ m, the functor skm coskn is right adjoint to skmn via the above indicated
adjunction isomorphism. The same holds in the augmented case with −1 ≤ n ≤ m.

Proof. We will work out a bijection on the level of Hom-sets, and leave it to the reader to see that the
adjunction morphism is as expected. Form-truncatedX and n-truncated Y , we have the following calculation
(dropping the category labels on Hom-sets so as to treat augmented and nonaugmented cases at the same
time):

Hom(skmn X,Y ) = Hom(skmn skm coskmX,Y ) = Hom(skn coskmX,Y ) = Hom(coskmX, coskn Y ).

Now by Corollary 3.11 we have
coskn Y ' coskm skm coskn Y,

so

Hom(skmn X,Y ) = Hom(coskmX, coskm skm coskn Y )
= Hom(skm coskmX, skm coskn Y )
= Hom(X, skm coskn Y ).

This provides the desired right adjoint functor.
�

For technical reasons in Deligne’s proofs, it is convenient to discuss a mild extension of the simplicial
theory to the multisimplicial case (we will only need the bisimplicial case). For categories C1, . . . , Cr, we
can form the product category C1 × · · · × Cr whose objects are r-tuples (c1, . . . , cr) with cj an object of Cj
and whose morphisms from (ci) to (c′i) are r-tuples (f1, . . . , fr) with fi : ci → c′i (and composition defined
in the evident manner). For r ≥ 1, consider the r-fold product category ∆r, with objects simply r-tuples
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([n1], . . . , [nr]) with n1, . . . , nr non-negative integers, etc. We also define ∆0 to denote the category consisting
of a single discrete point.
Definition 3.13. A multisimplicial object (or multisimplicial complex) in a category C is a contravariant
functor X : ∆r → C for some r ≥ 0. We say such X is r-multisimplicial.

We define the cosimplicial variant by using covariant functors, and for fixed r both concepts form categories
r Simp(C) and rCosimp(C) in an obvious manner.

This is a multi-dimensional version of (2.3). As an example, a bisimplicial object is a very complicated
first quadrant diagram with lots of little commutative squares. Just look at the diagram of arrows in (7.4),
ignoring the left and bottom edges. In concrete terms, this picture is an illustration of the typical way
one encounters a bisimplicial object: when our category C admits products, then when given two simplicial
objects X• and Y• we can form the products Xp × Yq and endow the resulting 2-dimensional grid with a
bisimplicial structure coming from products of the maps among the Xp’s and the maps among the Yq’s.
Definition 3.13 is a more efficient way to package the idea than to try to write down the oodles of relations
explicitly. We ignore the issue of defining truncated subcategories and augmented variants (in particular, we
don’t contemplate coskeleton functors for multisimplicial objects).

Of course, the cases r = 1, 2 are the most interesting ones. Note that in the entire preceding development
we only ever imposed conditions on C which were inherited by Simp(C), so the following trivial lemma is
sometimes a useful trick.
Lemma 3.14. For any category C, there is a natural equivalance (in fact, there are many!)

r Simp(C) ' Simp((r − 1) Simp(C))

for all r ≤ 1.
Of course, since the equivalence in this lemma is by no means special (there are lots of ways to make an

equivalence), one certainly doesn’t want to use this lemma to make recursive definitions in the multisimplicial
world (as then one would constantly have to check it didn’t matter which equivalence one chose). On the
other hand, when doing proofs involving previously-defined concepts, this lemma is sometimes a handy
device.

Proof. We may assume r > 1. Since ∆r ' ∆ × (∆r−1) (in many ways; pick one), this lemma comes down
to the claim that for small categories D and D′, to give a contravariant functor D × D′ → C is really to
assign to each object d in D a contravariant functor Xd : D′ → C such that the assignment d Xd is itself
contravariant (to each map d→ δ we get a natural transformation Xδ → Xd such that . . . ). But this claim
is obvious.

�

4. Hypercovers

Now that we have constructed coskeleta, we are ready to apply them to define the concept of hypercover.
Rather crudely, the idea is to begin with a covering {Ui} of a topological space X, then at the next level
we pick coverings {Vij} of the Ui’s, then at the next level we pick coverings {Wijk} of the Vij ’s and so on,
with the (n + 1)th stage arising as a “cover” of everything from stages in degrees ≤ n. The precise way of
formulating this latter condition is in terms of the degree n+ 1 part of the functor coskn:
Definition 4.1. Let C be a category admitting finite products and finite fiber products (i.e., admitting
finite inverse limits). Let P be a class of morphisms in C which is stable under base change, preserved under
composition (hence under products), and contains all isomorphisms. A simplicial object X• in C is said to
be a P-hypercovering if, for all n ≥ 0, the natural adjunction map

(4.1) X• → coskn(skn(X•))

induces a map Xn+1 → (coskn(skn(X•)))n+1 in degree n+ 1 which is in P. If X• is an augmented simplicial
complex, we make a similar definition but also require the case n = −1 (and we then say X• is a P-
hypercovering of X−1).
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By Theorem 7.5 below, the class of morphisms which are universally of cohomological descent (see Defi-
nition 6.5) can be taken for P in the preceding definition.
Example 4.2. When C is a suitable category of spaces and P is the class of proper surjective maps, we speak
of a proper hypercovering (supressing explicit mention of the surjectivity condition), and likewise when P is
the class of étale surjective maps, we speak of étale hypercoverings.

It seems that the only interesting case of Definition 4.1 is the augmented case, but the augmentation isn’t
really needed for all proofs (though it is needed for the interesting ones), and (by means of slice categories)
we can often reduce the augmented case to the nonaugmented case. Thus, for reasons of both technical
simplicity as well as clearer generality we will keep in mind both the augmented and nonaugmented cases
of this definition (e.g., one must beware that an augmented simplicial object which is a hypercovering need
not have its underlying non-augmented incarnation a hypercovering as well; this usually is very false, due to
the failure of coskeletons to commute with “forgetting the augmentation”).

One might ask for a definition of when a map

u• : X• → Y•

between augmented simplicial objects (with a common S in degree −1) is to be regarded as a P-hypercovering
(recovering Definition 4.1 when Y•/S is constant). This issue will be addressed at the end of §7, after the
proof of Theorem 7.17.
Example 4.3. If C is a category with finite inverse limits and a Grothendieck topology (e.g., the category of
topological spaces, or schemes, or schemes with the étale topology), it is natural to take P to consist of the
class of covering maps in the topology. This example will yield C̆ech theory as a special case. The amazing
fact is that one can actually sometimes “compute” cohomology using P’s that are rather unlike covering
maps for a Grothendieck topology, such as the class of proper surjections for either topological spaces or
schemes with the étale topology.
Example 4.4. Let’s take C to be a category of spaces, and P the class of surjective étale morphisms. If
we let X be a space and {Ui} a covering of X, then for U =

∐
Ui we have that X• = cosk0(U/X) is an

(augmented) P-hypercovering. Indeed, for every n ≥ 0 the natural map

X• → coskn(sknX•)

is an isomorphism by Corollary 3.11, hence induces an isomorphism in degree n+ 1. Meanwhile, for n = −1
this map induces the augmentation map U → X in degree 0, which by construction is a surjective local
isomorphism. This same argument shows that in the categorical generality of Definition 4.1, the augmented
simplicial object cosk0(S′/S)→ S is a P-hypercovering if and only if S′ → S is a morphism of type P.

We’ll see in Corollary 4.14 that in the category of topological spaces or schemes, with P either the proper
surjections or the étale surjections, then the face and degeneracy maps of an augmented P-hypercovering are
necessarily proper or étale respectively.
Example 4.5. We can somewhat generalize the preceding example by means of the concept of an m-truncated
P-hypercovering X• for m ≥ 0. This concept is defined as follows. For n < m, we require that the adjunction
map of m-truncated objects

(4.2) X• → coskmn skmn X•

be of class P, where the m-truncated coskeleton functor coskmn is as in Corollary 3.12. When m = 0 and
we work with augmented objects we see that an m-truncated P-hypercovering is just an augmentation map
X0 → X−1 which is of class P. Also, it is clear (check!) that skm carries P-hypercovers to m-truncated
P-hypercovers (and ditto for skm

′

m applied to m′-truncated P-hypercovers, where m′ ≥ m).
In order to generalize Example 4.4, suppose we are given an m-truncated P-hypercovering Y• with some

m ≥ 0 (either in the augmented or non-augmented sense). Then X• = coskm(Y•) is a simplicial object
(augmented when Y• is), and we claim it is automatically a P-hypercovering. For m = 0 and Y• augmented,
this really is Example 4.4.

To see (for any m ≥ 0 above) that the m-coskeleton X• of an m-truncated P-hypercovering is itself a
P-hypercovering, we must show that for each n, the adjunction X• → coskn sknX• induces a map of class
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P in degree n + 1. When n < m, we can compute in degree n + 1 ≤ m by first applying skm. That is, we
consider

(4.3) skmX• → skm coskn sknX•

in degree n+ 1 ≤ m. But skmX• = Y• (due to the definition of X•), so sknX• = skmn Y•. Since skm coskn =
coskmn by Corollary 3.12, the map (4.3) in degree n+ 1 ≤ m is identified with the degree n+ 1 level of

Y• → coskmn skmn Y•.

However, this latter map is readily checked to be the canonical adjunction (check!), so since Y• is by hypothesis
an m-truncated P-hypercovering we conclude that our map (4.2) in degree n+ 1 ≤ m is of class P.

Now consider what happens in degree n+ 1 when n ≥ m. In this case, since X• is an m-skeleton, we may
apply Corollary 3.11 (with the roles of the variables n and m reversed) to conclude that the adjunction map

X• → coskmn skmn X•

is actually an isomorphism and hence in degree n+ 1 is certainly of class P!
Assuming that C admits finite products and finite fiber products, we can form an ad hoc product and

fiber product for simplicial objects of C, by forming the products in each separate degree. It is trivial to
check that this ad hoc construction serves as such a product within the category Simp(C) (and the same goes
through in Simp+(C)). More generally, again working degree-by-degree, we see that Simp(C) and Simp+(C)
admit finite inverse limits, and similarly for categories of n-truncated objects, with the functors skn and skmn
(for n ≤ m) commuting with formation of such limits. Since coskn and coskmn (for n ≤ m) are right adjoints,
they tautologically commute with formation of finite inverse limits (such as finite products or fiber products).
Consequently, by looking back at the definitions of hypercovers and m-truncated hypercovers, we arrive at:
Lemma 4.6. Assume C admits finite inverse limits. The product of two P-hypercovers is a P-hypercover. If
the class P is preserved under formation of fiber products of morphisms (i.e., f×gh is of type P if f, g, h are),
then a fiber product of P-hypercovers is a P-hypercover. In particular, any two augmented P-hypercovers of
a common object S in degree −1 admit a common “refinement”.

This is also all true for the m-truncated case with any m.
The hypothesis on the stability of P under fiber products is satisfied in most (all?) interesting cases.

Proof. The preceding discussion gives us a handle on the behavior of the adjunction morphisms (as in the
definition of hypercoverings) under products and fiber products of simplicial objects in C, so the problem
comes down to showing that in the category C, a product of two maps of class P is of class P (the fiber
product case being immediate from the hypotheses in that case). Since P is preserved under composition
and base change and contains isomorphisms, the preservation of property P under products is clear.

�

Now it is time to show that there are lots of hypercoverings aside from the ones coming from C̆ech theory.
We are particularly interested in the case when C is the category of schemes (given the étale topology) or
when C is the category of topological spaces. In these two respective cases we may take P to be the class
of proper surjective maps, and we refer to P-hypercoverings as proper hypercoverings. We’ll see in Corollary
4.14 that all of the face and degeneracy maps for an augmented proper hypercovering are necessarily proper,
with the degeneracies then necessarily closed immersions (as each is the section to some face map). The key
fact for our purposes is the following, which we will prove later (as Theorem 4.16):
Theorem 4.7. Let S be a separated scheme of finite type over a field k. Then there exists a dense open
immersion S ↪→ S into a proper k-scheme and an augmented proper hypercovering X• of S such that each
Xn is a regular k-scheme (so each Xn is k-smooth for perfect k) and the part Dn of Xn over S − S is a
strict normal crossings divisor in Xn.

In particular, X• − D• is a proper hypercovering of S by regular algebraic k-schemes, and when k = C
the topological space S(C) admits a topological proper hypercovering X•(C) with each Xn(C) a Hausdorff
complex manifold.
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We note that, just as with the C̆ech example in Example 4.4, the Xn’s in Theorem 4.7 are typically very
disconnected. In order to prove Theorem 4.7, we will of course need to use resolution of singularities (in the
form given by deJong if k has positive characteristic). In some sense, this plays the role of the inductive
step. However, to get things off the ground, we first need to develop a few more tools for constructing new
hypercovers from old ones. For example, we still have yet to discuss how to “refine” a hypercovering in
higher degrees without affecting lower degrees. After we spend some time developing these additional tools,
we will prove Theorem 4.7.

Let’s begin by trying to make a naive proof of Theorem 4.7. By resolution of singularities, for S separated
of finite type over k there exists a map X0 → S of class P (i.e., a proper surjection) with X0 regular. The
C̆ech approach (i.e., cosk0) would introduce X0 ×S X0 at the next level, but of course this is rarely again
regular. Hence, we apply resolution of singularities to get a proper surjection

X ′1 � X0 ×S X0

with X ′1 regular. We have two candidate face maps X ′1 → X0, but there’s no section to serve as a degeneracy
map (e.g., the diagonal for X0/S can’t help anymore). But we can just define

X1 = X ′1
∐

X0

to force a section, and in this way we have built a 1-truncated augmented simplicial object X≤1 of the desired
type: the map

X≤1 → cosk0 sk0X≤1

in degree 1 is
X ′1
∐

X0 = X1 → X0 ×S X0,

given by the proper surjective resolution map on X ′1 and the diagonal map on X0. This is a proper surjection
(since X0 is S-separated). Passing to the construction in degree 2 is going to be a bit more complicated to
do by hand because there are many more relations to deal with, and computing the coskeleton property as
required to be a hypercovering is going to be a real mess if we work explicitly.

The basic strategy is that once we have an n-truncated solution X≤n, we apply coskn (which has no
impact in degrees ≤ n) and apply resolution of singularities to the inverse limit beast that we get in degree
n+ 1, and then define Xn+1 to be a disjoint union of this resolution with several copies of Xn (so as to have
degeneracy maps from degree n to degree n+ 1). But as we have mentioned, it will be somewhat unpleasant
to directly compute whether our (n+ 1)-truncated construction is actually a truncated hypercovering (there
is now a condition to be checked in degree n+ 1). Thus, in order to make the argument go more smoothly,
it behooves us to develop some general tools for manipulating truncated hypercovers.

But first, lets look at an important class of examples for which the 0-coskeleton already works even when
S is not regular.
Example 4.8. Let Z be a regular noetherian scheme or compact complex analytic space, and let D in Z be a
strict normal crossings divisor. By this we mean that D is a (reduced) union of distinct irreducible divisors
D1, . . . , Dn in Z with each Dj regular and all higher order overlaps among the Dj ’s being regular (of the
expected codimension). Let X0 =

∐
Dj . In this case, X0 → D is a proper surjection, so

cosk0(X0/D)→ D

is a proper hypercovering. The constituent terms in each degree are already regular, since in degree p ≥ 0
we just get the (p+ 1)-fold overlaps in D among the Dj ’s (with repetitions allowed), all of which are regular
of codimension ≤ p+1 in Z (with equality exactly for the overlaps of p+1 distinct Dj ’s). If we consider just
those terms in degree p of codimension exactly p+ 1, we get a finite collection of objects (sort of a geometric
counterpart to the “alternating subcomplex” when doing “unordered” C̆ech theory). We’ll return to this
example in Example 7.8.

The starting point for the conceptual approach to construction questions for hypercoverings is the following
definition which extends the Dold-Kan construction to non-abelian situations. We return therefore to the
original general setup of an arbitrary category C.
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Definition 4.9. Assume that our category C admits finite coproducts (disjoint unions in geometric cases,
ordinary direct sums in abelian categories). We say that a simplicial object X• in C is split if there exist
subobjects NXj in each Xj such that the natural map∐

φ:[n]�[m],m≤n

NXφ → Xn

is an isomorphism for every n ≥ 0, where NXφ := NXm for a surjection φ : [n] � [m] and the map
NXφ → Xn is the inclusion NXφ ↪→ Xm followed by X(φ). We call the specification of such subobjects
NXj a splitting of X•.

For m-truncated objects (with m ≥ 0) or augmented objects or m-truncated augmented objects we make
a similar definition (with a fixed augmented object in degree −1).

The proof of the Dold-Kan correspondence shows that if C is an abelian category, then every simplicial
object in C is canonically split (and likewise in the augmented and truncated situations). Let’s see to what
extent the subobjects NXj in Definition 4.9 are uniquely determined for a split object X•. Obviously we
must have NX0 = X0, and in the abelian category case there is some flexibility in higher degrees (due to the
non-uniqueness of “complementary factors” for a direct summand of a module). I claim that in “geometric”
situations, the other NXj ’s are uniquely determined. To make this precise, we first make a definition.
Definition 4.10. Let C be an arbitrary category admitting finite coproducts. We say that C admits unique
complements if for any object Z with subobject X and any isomorphism

X
∐

Y ' Z ' X
∐

Y ′

in C lifting the identity on X, this map arises from a unique isomorphism Y ' Y ′. We then call the uniquely
determined Y the complement to X in Z.

This definition applies when C is the category of topological spaces, since if X = U
∐
V is a coproduct

(i.e., disjoint union) in C then the only decomposition X = U
∐
V ′ is with V ′ = V . The same applies to

schemes, or sheaves of sets (but not to abelian sheaves on X or more generally abelian categories, though in
that context Dold-Kan gives a canonical splitting for the categories of (co)simplicial objects).
Lemma 4.11. Let C be a category admitting finite coproducts, with unique complements. Any split simplicial
object X• in C has its subobjects NXj uniquely determined up to unique isomorphism. The same is true in
the augmented and truncated situations.

Proof. We argue by induction, the case of degree 0 being clear, so we may pick n > 0 and assume the result
is known in degrees < n. Thus, we have unique NXj ’s for 0 ≤ j < n and for any m ≤ n− 1 we have Xn−1

is a coproduct of NXφ’s for surjective φ : [n − 1] � [m] (so NXφ = NXm). If we consider the degeneracy
map sjn−1 : Xn−1 → Xn for 0 ≤ j ≤ n − 1, then the component NXm = NXφ of Xn−1 labelled by φ is
carried by sjn−1 to the component NXm of Xn labelled by the surjection φ ◦ σjn−1. Due to the uniqueness
of the factorization of surjections in ∆ via (2.2), the surjective map φ ◦ σjn−1 uniquely determines j and φ,
whence the canonical map ∐

0≤j≤n−1

sjn−1 :
∐

0≤j≤n−1

Xn−1 → Xn

is a direct factor because X• is actually split, and NXn has no choice but to be the unique complement to
this direct factor (the existence of which is ensured by the hypothesis that X• is split).

�

From now on in this section, we assume C admits finite inverse limits and finite coproducts, as well as
unique complements. Our hypotheses ensures that we can make sense of coskeleta and hypercoverings in C,
and split simplicial objects in C have unique splittings. Moreover, the preceding proof makes it clear that
the splitting (i.e., formation of NXj ’s for a split object) is functorial. For a split object X, we will call the
NXj ’s the (split) components of X.

In order to make inductive constructions, it is convenient to give a precise mechanism by which a split
simplicial object X• in C can be reconstructed from the “bare” objects NXj . We wish to regard the notion
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of a split simplicial object as a “derived” version of the notion of coproduct: to give a map from a split
object X• to an arbitrary simplicial object we ought to just need to say what happens on the NXj ’s.

To make this precise, we will formulate things on the level of truncated objects, describing how to functo-
rially reconstruct a split (n+1)-truncated X from the data of the n-split Y := sknX and the complementary
object N := NXn+1. Actually, there is one more piece of information we need, intuitively corresponding to
the “gluing data”: from the structure X• we get a natural composite map

β : N ↪→ Xn+1 → (coskn sknX)n+1 = (coskn Y )n+1.

It is the triple of data α(X) = (Y,N, β) which will suffice to reconstruct our (n + 1)-truncated split object
X. It is clear how to define a category of triples (consisting of an n-truncated simplicial object in C, an
object of C, and a suitable map involving the degree n+ 1 part of an n-coskeleton) in which α(X) lives.

To make things more explicit, notice that if Z is any (n+ 1)-truncated simplicial object (split or not) and
if we are given a map f : X → Z, then we get a map

f ′ = skn(f) : Y = skn(X)→ skn(Z)

and a map

f ′′ : N = NXn+1
// Xn+1

fn+1 // Zn+1

such that the diagram

N
β //

f ′′

��

(coskn Y )n+1

(coskn(f ′))n+1

��
Zn+1

// (coskn skn+1
n Z)n+1

commutes, thanks to the naturality of the degree n+ 1 map induced by the adjunction id→ coskn+1
n skn+1

n

(applied to the morphism f). Note that from a slightly more intrinsic “truncated” point of view, we could
have replaced coskn skn+1

n with coskn+1
n skn+1

n in the above digram without harming anything.
The above considerations lead us to:

Theorem 4.12. With the category C as above, fix an integer n ≥ 0.
(1) For any split n-truncated simplicial object Y in C, any object N in C, and any morphism

β : N → (coskn Y )n+1,

there exists a split (n+ 1)-truncated simplicial object X in C with α(X) ' (Y,N, β).
(2) This X is unique up to unique isomorphism in the sense that for any (n+ 1)-truncated simplicial Z

in C, the natural map

HomSimpn+1(C)(X,Z)→ Hom(α(X), (skn+1
n Z,Zn+1, Zn+1 → (coskn+1

n skn+1
n Z)n+1))

is bijective.
This all remains true in the augmented case too (still with n ≥ 0).

Proof. The augmented case trivially reduces to the non-augmented case by the usual slice argument, so
now consider the non-augmented case. On the level of objects there is not much mystery for the first part
concerning how to define Xn+1: we take a disjoint union of N with a lot of copies of NYm’s indexed by
surjections [n + 1] → [m] over all m ≤ n. The tedious part is to define the face and degeneracy maps
correctly. The gory details (actually, they’re not really all that gory) are given in [SGA4, Exp Vbis, pp.66-7]
in a very readable manner (with Lemma 2.2 helping to keep things under control).

�

The upshot of all of this is that in order to “promote” a split n-truncated object Y to a split (n + 1)-
truncated object X (we want sknX = Y ), we just have to specify a map

β : N → (coskn Y )n+1
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which tells us how to “glue an (n+ 1)-cell” N in at degree n+ 1. The term Xn+1 will be a coproduct of N
and various split components of Y , but the face and degeneracy maps are a little more complicated to write
down explicitly (this is where β enters, and is the reason we referred to [SGA4] for the tedious details).

Now we are in position to prove the key theorem which will enable us to prove Theorem 4.7. Instead of
maintaining the level of categorical generality that we have using throughout, for the key theorem we will
specialize ourselves to one of three situations:

• C is the category of spaces over a fixed base, with P the class of proper surjections;
• C is the category of spaces “étale” over a single space (i.e., structure map is étale), with P the class

of surjective étale maps;
• C is any Grothendieck topos, P is the class of epic morphisms in the topos.

Notice that in each case, if S is an object of C then the slice category C/S is again of the same type (with
P replaced with the evident analogue for C/S).

The following lemma illustrates the flexibility of hypercovers: we can “refine” in high degrees without
changing low degrees. This provides for enormous flexibility in inductive proofs.

Theorem 4.13. Fix an integer n ≥ 0 and C,P as in one of the options above. For every simplicial object
X in C for which sknX is split, there exists a map f : X ′ → X from another simplicial object X ′ in C with
skn(f) an isomorphism and X ′ split. In particular, every simplicial object in C admits a “split refinement”.
All the same is true in the augmented case.

Moreover, if X is an augmented P-hypercover, we can take X ′ to be an augmented P-hypercover.

It seems probable that the final part is false if one does not impose an augmentation structure.

Proof. The existence of a split refinement in the augmented case reduces to the non-augmented case by
passing to a slice category, so now we only consider the nonaugmented case (until treating the last part of
the theorem).

By recursion, to find f : X ′ → X with skn(f) an isomorphism and X ′ split, it suffices to consider just
X which are (n+ 1)-truncated with skn+1

n X split, and to find X ′ which is (n+ 1)-truncated and split and
endowed with a map X ′ → X inducing an isomorphism on n-skeleta. Under the correspondence in Theorem
4.12, we simply take X ′ to correspond to the triple (skn+1

n X, (coskn+1
n skn+1

n X)n+1, id). Intuitively, X ′n+1 is
a coproduct of (coskn+1

n skn+1
n X)n+1 and various (repeated copies of the) NXj ’s for j ≤ n. This takes care

of the existence aspect of the theorem (and notice the construction is completely algorithmic).
To show the preservation of the P-hypercover property when we’re given augmentations, we can again

reduce to the truncated situation and it suffices to show that in the construction just described, if the (n+1)-
truncated X (with sknX split) is a P-hypercovering, then the (n+1)-truncated X ′ is also a P-hypercovering.
The only issue is to study the degree n+ 1 map

γ : X ′n+1 → (coskn skn+1
n X)n+1.

We must show this map is of class P. But by the very mechanism of construction of X ′n+1 above, γ restricts
to the identity on the component NX ′n+1 = (coskn skn+1

n X)n+1. This takes care of the topos case as well as
the “surjective” aspects of the other cases. To handle the case of proper or étale hypercoverings, we need
to see what γ looks like when restricted to each component NXφ with surjective φ : [n + 1] � [j] (j ≤ n).
This restriction of γ factors as

NXj → Xj = (coskn skn+1
n X)j

φ→ (coskn skn+1
n X)n+1

(to see this, one has to actually look at the details of the construction in the proof of Theorem 4.12).
Since the surjective γ factors as a composite of degeneracies, we just need to show that the degeneracies

for coskn skn+1
n X are of type P0, where P0 is defined much like P in each of our options except that we

drop the surjectivity requirement. Since coskn skn+1
n X is an augmented P-hypercovering (see Example 4.5),

it suffices to prove Corollary 4.14 below.
�
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Corollary 4.14. For m ≥ 0, an augmented m-truncated P-hypercovering Z in the category of spaces, with
P the class of either étale surjective or proper surjective maps, the face and degeneracy maps for Z are
automatically of type P0. The same holds in the non-truncated case.

Proof. The non-truncated case is immediately reduced to the truncated case, so we assumed we’re in the
m-truncated case for some m ≥ 0. Since each degeneracy map is a section to a face map, it suffices to show
that the face maps are of type P0. The case m = 0 is clear, and to induct we may assume m > 0 and that
all face and degeneracy maps for the split Z ′ = skmm−1 Z are of type P0. It remains to show that the face
maps Zm → Zm−1 are of type P0. By hypothesis on Z being a P-hypercovering,

Zm → (coskm−1 Z
′)m

is of type P (hence P0). Thus, by naturality of adjunction it suffices to check that the face maps in coskm−1 Z
′

from degree m to degree m − 1 are of type P0. Since (coskm−1 Z
′)m is constructed as an inverse limit on

a finite diagram among the Z ′j ’s, among which all maps are of type P0 (by the inductive hypothesis), the
augmentation structure reduces us to proving that a finite diagram D of spaces with type P0 transition maps
has inverse limit with type P0 projection to each object in D provided there is a final object d0 in D (this
is completely false without a final object).

We argue by induction on the “size” of D, using only the stability properties of P0 and the fact that a
section to a map of type P0 is again of type P0. If there are no arrows other than the ones to d0, then the
inverse limit is just the fiber product over d0 and we’re done. Otherwise there is an arrow f : d1 → d2 with
d2 6= d0. If we remove this arrow (but not the objects d1 and d2), we get a “smaller” diagram D′ which
satisfies all of the initial hypotheses, so by induction the inverse limit L′ of D′ has type P0 maps to all of its
objects. In particular, the two maps L′ → d1 and L′ → d2 are type P0. The inverse limit over D is exactly
the inverse limit of the (not necessarily commutative) diagram

L′ //

��@@@@@@@@ d1

f

��
d2

in which all maps are of type P0 (the two from L′ to the dj ’s being of type P0 by the inductive hypothesis).
We just have to show that the inverse limit of this diagram has type P0 projection to all three objects. In
fact, we just have to check that the map to L′ is of type P0. The inverse limit is the fiber product

L = (d1 ×d2 L
′)×d1×d2d1 d1

with evident projections to L′, d1, and d2. Consider the composite

L→ d1 ×d2 L
′ → L′.

The second is a base change on f and hence is of type P0, while the first is a base change on the diagonal

d1 → d1 ×d2 d1

which is itself of type P0 because it is a section to the (say, first) projection d1×d2 d1 → d1 (which is a base
change on f and hence of type P0).

�

Corollary 4.15. If X• → S is a proper (resp. étale) hypercovering, then all structure maps Xn → S are
proper (resp. étale).

It is now easy to prove Theorem 4.7, whose statement we recall.
Theorem 4.16. Let S be a separated scheme of finite type over a field k. Then there exists a dense open
immersion S ↪→ S into a proper k-scheme and an augmented proper hypercovering X• of S such that each
Xn is a projective k-scheme which is regular (and hence is k-smooth for perfect k) and the part of Xn lying
over S − S is a strict normal crossings divisor in Xn for all n ≥ 0.
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Proof. By Nagata’s compactification theorem [C], [L] (or just assume S quasi-projective over k if one wants
to make restrictions), we can find a dense open immersion S ↪→ S with S proper over k. By resolution of
singularities (say in the form given by [dJ, 4.1]) applied to the (irreducible components of the) normalization
of S and the complement of the preimage of the open S, we can find a regular X0 with a proper (even
generically finite) surjection to S such that the preimage X0 of S in X0 has complement D0 a strict normal
crossings divisor. The solves the problem at the 0-truncated level.

Suppose we have solved the problem at the m-truncated level for some m ≥ 0 with an augmented X≤m.
By Example 4.5, coskmX≤m is a proper hypercovering of S. Thus, by Corollary 4.14, each term (e.g., the
term in degree m+ 1) is S-proper. Applying resolution of singularities again, now to the (normalization of
the) term in degree m+ 1 gives a regular X

′
proper and generically finite over the (m+ 1)-coskeleton, with

normal crossings divisor complement to the preimage of S. Now apply the construction in Theorem 4.13 to
get an (m+ 1)-truncated solution. Continue forever.

�

5. Simplicial homotopy

Considering the historical origins of simplicial methods, it is hardly surprising that there should be a
concept of homotopy for maps between simplicial objects, and that this should play a valuable role in the
theory. One application of the homotopy concept in categories of simplicial objects is that it enables one
to formulate Verdier’s theorem on the computability of cohomology in a Grothendieck site by means of a
direct limit over hypercovers, thereby “correcting” the failure of the direct limit (over ordinary open covers)
of C̆ech cohomology to compute the true cohomology of a sheaf in degrees > 1 (and in fact, the hypercover
result nicely clarifies why C̆ech theory does work in degrees ≤ 1). The relevance of homotopies in this case is
that (much like in C̆ech theory) it is only by passing to a suitable “homotopy category” of hypercovers that
one can meaningfully pass to a direct limit over hypercovers. For our purposes, the significance of simplicial
homotopy is that it is an essential ingredient in the proof of some of Deligne’s theorems on cohomological
descent.

We haven’t yet discussed cohomological descent, or even the meaning of cohomology on simplicial spaces
(or even what a “sheaf” on a simplicial space is!), so the applications of simplicial homotopy theory will
have to wait until subsequent sections in which we give the necessary additional sheaf-theoretic concepts.
Right now we want to just set forth the basic definition of homotopy and see how it interacts nicely with
the coskeleton functor. The reader who wants to see what cohomological descent is and how it gives rise to
spectral sequences can actually skip ahead to §6. It is only in §7 where we need to use homotopies: but we
need this in order to actually prove some of the basic theorems on cohomological descent (e.g., that there
exist lots of non-trivial examples!).

Consider the following basic setup. Let X• and X ′• be (non-augmented) simplicial objects in an arbitrary
category C, and let

f, g : X ′• → X•

be two maps between them. We want to define what it means to say that f and g are homotopic. To do
this, for m ≥ 0 recall the simplicial object ∆[m] in the category of (finite non-empty) sets, with ∆[m]n =
Hom∆([n], [m]) and the evident contravariant functoriality in [n]. Corresponding to the two injective maps
[0]→ [1] we get two natural maps

ι0 : ∆[0]→ ∆[1], ι1 : ∆[0]→ ∆[1],

with (ιj)n sending the unique element in Hom∆([n], [0]) to the constant map [n]→ [1] onto j ∈ [1] for each
degree n ≥ 0. We view ∆[m] as the abstraction of the standard m-simplex, so the maps ιj are viewed as the
abstraction of the two identifications of a point with an endpoint of the unit interval.

From this point of view, we are motivated to want to define f and g to be homotopic if there exists a map

h : ∆[1]×X ′• → X•
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such that composing h with

X ′• ' ∆[0]×X ′•
ι0×id−→ ∆[1]×X ′•

yields f and likewise using ι1 yields g. Of course, to make sense of this “definition” we need to make sense
of A•×X ′• as a simplicial object in C whenever A• is a simplicial object in the category of finite non-empty
sets (e.g., A• = ∆[m] with m ≥ 0). This is simple enough if we also assume C has finite coproducts.
Definition 5.1. Assume C admits finite coproducts. If Y• is a simplicial object in C and A• is a simplicial
object in the category of finite non-empty sets, we define the simplicial object A•×X• (also written A×X)
in C as follows:

(A×X)n = An ×Xn :=
∐
a∈An

Xn

as an object of C (with the a-component denoted {a} ×Xn), and for φ : [n]→ [m] in ∆ we define

φ : (A×X)m → (A×X)n

on “points” by
(a, xm) 7→ (A(φ)(a), X(φ)(xm)).

It is trivial to check that this defines a simplicial object, is “associative” with respect to products in A•
and X•, and has evident bifunctoriality structure.
Example 5.2. For any X•, we naturally have ∆[0] ×X• = X•, while ιj : ∆[0] → ∆[1] induces two natural
maps

ιj × id : X• ' ∆[0]×X• → ∆[1]×X•.
Example 5.3. Suppose C is an abelian category, so finite coproducts are just finite direct sums. In this case,
if A is a simplicial object in C, then we describe ∆[1]×A as follows.

In concrete terms, the elements of ∆[1]n are naturally labelled by 0 ≤ j ≤ n + 1: one simply counts
how often a non-decreasing map [n] → [1] hits 0. In this notation, an element in (∆[1] × A)n is a tuple
(a0, . . . , an+1) of elements of An and the inclusions ι0, ι1 correspond in degree n to the embeddings

An →
n+1∏
j=0

An

given by a 7→ (0, . . . , 0, a) and a 7→ (a, 0, . . . , 0) respectively.
For 0 ≤ i ≤ n, the ith degree n face map on ∆[1]×A is

∂in(a0, . . . , an+1) = (∂in(a0), . . . , ∂in(ai) + ∂in(ai+1), . . . , ∂in(an+1))

and the ith degree n degeneracy map on ∆[1]×A is

σin(a0, . . . , an+1) = (σin(a0), . . . , σin(ai), 0, σin(ai+1), . . . , σin(an+1)).

Example 5.4. If F : C → C ′ is a covariant functor which converts finite coproducts into finite coproducts,
then there is a natural isomorphism

F (A×X•) ' A× F (X•)

for any simplicial object A in the category of finite non-empty sets.
With the product language in Definition 5.1, we can define homotopy:

Definition 5.5. Assume C admits finite coproducts. For two maps f, g : X ′• → X• between simplicial
objects of C, we say that a map h : ∆[1]×X ′• → X• satisfying h ◦ ι0 = f and h ◦ ι1 = g is a strict homotopy
from f to g. If there exists a strict homotopy from f to g, or from g to f , we say f and g are strictly
homotopic.

If there exist r ≥ 1 and maps
f = F0, F1, . . . , Fr = g : X ′• → X•

such that for each 0 ≤ j < r, the maps Fj and Fj+1 are strictly homotopic, we say that f and g are
homotopic.
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Clearly homotopy is an equivalence relation, and by Example 5.4 we see that any covariant functor
F : C → C ′ commuting with finite coproducts carries homotopic maps to homotopic maps. It is actually
possible to reformulate the definition of simplicial homotopy in a way that makes sense in an arbitrary
category (i.e., without requiring the existence of finite coproducts) and for which covariant functors always
preserve the property of being homotopic. To define a strict homotopy from f to g more generally for two
maps f, g as above (i.e., without using coproducts), one specifies a sequence of set maps

Hn : ∆[1]n → HomC(X ′n, Xn)

which carry the contravariant functoriality in [n] on the left over to the the co/contra-variant bifunctoriality
in [n] on the right, and moreover satisfy

Hn((ι0)n) = fn Hn((ι1)n) = gn,

where (ιj)n ∈ ∆[1]n = Hom∆([n], [1]) is the constant map onto j ∈ [1].
The functoriality conditions amount to saying that for each φ : [i]→ [i′] in ∆ we require the diagram

(5.1) ∆[1]i′

∆[1](φ)

��

Hi′ // HomC(X ′i′ , Xi′)
X(φ) // HomC(X ′i′ , Xi)

∆[1]i
Hi

// HomC(X ′i, Xi)
X′(φ)

66lllllllllllll

to commute. It is a simple exercise to check that this recovers the previous definition of strict homotopy from
f to g when C admits finite coproducts. It is also clear from (5.1) that any covariant functor F : C → C ′

carries homotopic maps to homotopic maps (and likewise for contravariant F if we use cosimplicial objects
in C ′).

There are many reasons for interest in this concept of simplicial homotopy, but we only mention the ones
we’ll require.
Lemma 5.6. Let f, g : X ′• → X• be two homotopic maps between simplicial objects in a category C. If
F : C → A is any covariant functor to an abelian category, then the cochain complex maps

s(F (f)), s(F (g)) : s(F (X ′•))→ s(F (X•))

are homotopic in the usual sense, where s is the functor which makes a cochain complex by using the alter-
nating sums of face maps as differentials.

A similar statement holds for contravariant functors.

Proof. The contravariant case is reduced to the covariant case by replacing A with the opposite category,
so we may just consider the covariant case.

Since the property of being homotopic is preserved under applying a covariant functor, we reduce to the
case of in which C = A is an abelian category and F is the identity functor. Since homotopy on the level of
cochain complexes is (unlike strict simplicial homotopy) an equivalence relation, it suffices to show that for
any simplicial object A in A , the two inclusions

A ' ∆[0]×A→ ∆[1]×A

become homotopic in the usual sense after we apply s. We will use the description of ∆[1]×A provided by
Example 5.3.

The degree n differential on the cochain complex s(∆[1]×A) is

∂(a0, . . . , an+1) =
n∑
i=0

(−1)i(∂in(a0), . . . , ∂in(ai) + ∂in(ai+1), . . . , ∂in(an+1)).

We want to find a (functorial) homotopy between the two maps

s(ιj) : s(A) ' s(∆[0]×A)→ s(∆[1]×A)
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defined by
a 7→ (a, 0, . . . , 0), a 7→ (0, . . . , 0, a)

in each degree. Such a homotopy is provided by the maps

hn : An → (∆[1]×A)n+1 =
n+2∏
j=0

An+1

given by
a 7→ (0, s0(a),−s1(a), . . . , (−1)isi(a), . . . , (−1)nsn(a), 0),

and in fact one checks with a bit of computation that

h∂ + ∂h = ι1 − ι0
(where ι1 is inclusion into the 0th coordinate and ι0 is inclusion into the final coordinate).

�

The other fact we’ll need concerning simplicial homotopies is their behavior on coskeleta (so we assume
C also admits finite products and fiber products).
Lemma 5.7. If two maps f, g : X ′•/S → X•/S between augmented n-truncated objects in C agree on (n−1)-
skeleta for some n ≥ 0 (a vacuous condition if n = 0), then there exists a canonical strict simplicial homotopy
(over S) between coskn(f) and coskn(g). In particular, if

f : X ′•/S → X•/S, s : X•/S → X ′•/S

are maps of augmented n-truncated objects in C for which f and s are inverses on (n − 1)-skeleta and sn
is a section to fn, then coskn(f) and coskn(s) are strict simplicial homotopy inverses of each other (i.e.,
composites in either order are strictly homotopic to the identity map).

This all remains valid in the non-augmented case as well.

Proof. Passing to a slice category, we can drop the augmentation data. For 0 ≤ i ≤ n, we define

Hi : ∆[1]i = Hom∆([i], [1])→ HomC(X ′i, Xi)

by Hi((ι0)i) = fi and Hi(φ) = gi for all φ : [i] → [1] not equal to the constant map (ι0)i onto 0 ∈ [1] (so
for 0 ≤ i < n we have Hi is the constant map to fi = gi). A little thought using functoriality of f and g in
degrees ≤ n shows that the resulting diagrams (5.1) do commute for i, i′ ≤ n.

For m > n, the construction of coskn yields

X ′m = lim←−
skn(∆[m])

X ′φ, Xm = lim←−
skn(∆[m])

Xφ

as inverse limits over all maps φ : [i]→ [m] with i ≤ n. Thus, there is a natural map of sets

lim←−
skn(∆[m])

HomC(X ′φ, Xφ)→ HomSimpn(C)(X ′m, Xm).

For m > n, one easily checks

∆[1]m = Hom∆([m], [1]) = lim←−
skn(∆[m])

Hom∆([φ], [1])

where [φ] = [i] for φ : [i] → [m] with i ≤ n. For example, if φ1, φ2 : [m] → [1] are distinct then m ≥ 1
and there exists a map [0] → [m] whose composites with the φj ’s are distinct. If we define Hφ = Hi for
φ : [i]→ [m] with i ≤ n, then we get a natural map of sets

Hm = lim←−
skn(∆[m])

Hφ : ∆[1]m → lim←−
skn(∆[m])

HomC(X ′m, Xφ) = HomC(X ′m, Xm),

where the initial map of inverse limit sets is defined by means of passage to the limit on the maps

∆[1]m
φ // ∆[1]i

Hi // HomC(X ′i, Xi)
X′(φ) // HomC(X ′m, Xi)
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for φ : [i]→ [m] with i ≤ n.
One checks without difficulty that this inverse limit construction recovers the preceding definition of

Hm in case m ≤ n and that it is functorial in [m]. Also, it is easy to check that Hm((ι0)m) = fm and
Hm((ι1)m) = gm for all m, so the Hm’s provided the desired strict homotopy.

The naturality of this construction is formulated as follows. Consider a commutative diagram

X ′•/S
f //
g
//

u′

��

X•/S

u

��
Y ′•/S

F //
G
// Y•/S

with skn−1(F ) = skn−1(G) too. Let H(f, g) and H(F,G) denote the homotopies arising from the preceding
construction. The compatibility of these can be expressed by means of the commutative diagram

∆[1]×X ′•
H(f,g)//

1×u′

��

X

u

��
∆[1]× Y ′• H(F,G)

// Y

when C has finite coproducts, and more generally by means of the commutativity of

∆[1]i
Hi(f,g) //

Hi(F,G)

��

HomC(X ′i, Xi)

ui

��
HomC(Y ′i , Yi)

u′i

// HomC(X ′i, Yi)

for all i. The verification of these commutativities is straightfoward from the construction.
�

6. Cohomological descent

The reader who wishes to only think about spaces in our usual sense (i.e., the category of topological
spaces, or schemes with the étale topology) can take that point of view without impacting any arguments.
However, we note here that our arguments only require that we work with a Grothendieck site admitting finite
fiber products, with the topology generated by a class E of maps satisfying the habitual axioms (preserved
under base change and composition, containing all isomorphisms, etc.). When we speak of “spaces” and
“étale maps”, the reader who prefers this extra generality should just interpret “space” to mean an object
in the site and an “étale map” to mean an E-morphism.

Fix a simplicial object X• in our category C of spaces, or an m-truncated such object in C for some m ≥ 0.
We would like to define what we mean by “sheaf of sets on X•”. Intuitively, such structures should amount
to specifying a sheaf of sets Fn on each Xn (the category of which is denoted X̃n), along with transition
maps as in (2.4), satisfying the obvious face/degeneracy relations. More exhaustively, for any φ : [n]→ [m]
in ∆ (so X(φ) : Xm → Xn), we specify a map of sheaves

[φ] = [φ]F• : X(φ)∗(Fn)→ Fm

and we require
[φ] ◦X(φ)∗[ψ] = [φ ◦ ψ]

for all composable φ, ψ (so these F •’s are vaguely “cosimplicial”). By the usual argument, it suffices to
define [φ] for φ a face or degeneracy map, subject to the usual relations. These form a category in the
evident manner.

For technical reasons, it is convenient to also make the following alternative (but equivalent) definition.
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Definition 6.1. Define X̃• to be the category of sheaves of sets on the following site:

• the objects are étale maps U → Xn

• a morphism from (U → Xn) to (U ′ → Xn′) is a commutative diagram

U
f //

��

U ′

��
Xn

X(φ)
// Xn′

where f is a map in C and φ : [n′]→ [n] is a map in ∆,
• a covering of (Ui → Xn) is just a covering of Ui in C.

We call such objects sheaves of sets on X•. We write X• to denote this site, and Ab(X•) to denote the
subcategory of abelian group objects in X̃•.

Example 6.2. If X• = S• is a constant (non-augmented) simplicial object on S, then X̃• = Cosimp(S̃) and
Ab(S•) = Cosimp(Ab(S)).

The reader can readily check that this fancy-looking definition gives the exact same category as in the
more explicit definition initially suggested. The reader who prefers to avoid thinking about this mild site can
adopt the more naive definition first suggested. However, there are certain technical points where the naive
definition becomes a bit of a headache. For example, from the point of view of the naive definition (i.e.,
without thinking in terms of the site) it is not obvious that the category Ab(X•) has enough injectives. The
nuisance is that a given sheaf on some Xn has no evident natural way to propograte itself to a sheaf on X•.
But from the viewpoint of the site introduced above, this problem goes away because a general argument
shows that the category of abelian sheaves on any site always has enough injectives. On the other hand,
even once we know abstract existence it is hard to see any simple criterion for whether a given abelian F •

is injective in Ab(X•) in terms of the Fn’s and maps between their various pullbacks.
Observe that sheafification relative to this site can be done degree-by-degree, and likewise images, quotients

by equivalence relations, and equalizer kernels of maps of sheaves on X• can be computed degree-by-degree
(as one readily checks the universal properties). Similarly, given a diagram in X̃• we can form its inverse
limit and direct limit in X̃• by using the constructions in the individual X̃n’s. All this is just saying that
the restriction functors X̃• → X̃n on categories of sheaves of sets do commute with formation of images,
equalizer kernels, and so on.

In order to pass between sheaves on X• and sheaves on the Xn’s, we record the following two lemmas. The
first lemma is an immediate consequence of working locally on the site X• (which is sufficient for checking
monicity and epicity of a morphism of sheaves of sets).

Lemma 6.3. A map α• : F • → G • in X̃• is epic if and only if each αn : Fn → G n in X̃n is epic. The
same holds for the properties of being monic and being an isomorphism.

As we noted, it seems rather difficult to say what an injective object in Ab(X•) looks like. Fortunately,
for our later purposes we only need to know the first thing that comes to mind on this topic. This innocent
little fact will be extremely useful.

Lemma 6.4. Let I • be an injective object in Ab(X•). Then I n is an injective in Ab(Xn) for every n ≥ 0.

The intuition here comes from the case of C̆ech hypercoverings, for which this lemma is vaguely analogous
to the fact that an injective abelian sheaf restricts to an injective on any “open” in the space. This classical
fact is proven by means of a left exact “extension by zero” functor which is left adjoint to the restriction
functor. We simply create an analogous adjoint functor and check left exactness in the simplicial context.

A bisimplicial version of this lemma, concerning restriction to a row or a column for a “sheaf on a
bisimplicial object”, is given in Lemma 7.6 and will be rather important later.
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Proof. By general nonsense, it suffices to show that the restriction functor Ab(X•) → Ab(Xn) has a left
exact left adjoint

Ln = LX•n : Ab(Xn)→ Ab(X•)
for each n ≥ 0. That is, for any abelian G • on X• and abelian F on Xn, we seek to find some Ln(F ) in
Ab(X•) such that

HomAb(Xn)(F ,G n) ' HomAb(X•)(Ln(F ),G •)
in a bifunctorial manner, with F  Ln(F ) left exact.

For any F in Ab(Xn), we first want to show that the covariant functor

HF : G •  HomAb(Xn)(F ,G n)

is co-representable on Ab(Xn) (i.e., has the form HomAbX•(Ln(F ), ·) for some Ln(F ) in Ab(X•)). This
will provide the desired adjoint functor Ln, and we will have to make sure it preserves left exactness.

For each m ≥ 0, we define the sheaf Ln(F )m as a finite direct sum:

Ln(F )m =
⊕

φ:[n]→[m]

X(φ)∗(F ).

For any map ψ : [m] → [m′] in ∆, the composite ψ ◦ φ : [n] → [m′] is one of the maps in the direct sum
defining Ln(F )m

′
, so by means of the canonical isomorphism X(ψ)∗ ◦X(φ)∗ ' X(ψ ◦ φ)∗ we get a natural

composite

[ψ] : X(ψ)∗(Ln(F )m) =
⊕

φ:[n]→[m]

X(ψ ◦ φ)∗(F )→
⊕

φ′:[n]→[m′]

X(φ′)∗(F ) = Ln(F )m
′
.

It is straightfoward to check that for any ψ′ : [m′]→ [m′′] in ∆ we have an equality of maps

[ψ′] ◦X(ψ′)∗[ψ] = [ψ′ ◦ ψ],

so this data is exactly the original “naive” definition of a sheaf on X•. We denote this sheaf Ln(F )•. This
construction has evident (additive) functoriality in F with respect to which it is trivially exact, as exactness
can be checked in each separate degree.

Since F is naturally one of the “components” of Ln(F )n (corresponding to the identity map on [n]),
composition with F → Ln(F )n sets up a bifunctorial map

(6.1) HomAb(X•)(Ln(F )•,G •)→ HomAb(Xn)(Ln(F )n,G n)→ HomAb(Xn)(F ,G n)

which we will show to be bijective, thereby completing the proof that the (exact) functor Ln is the desired
left adjoint.

To show (6.1) is bijective, we construct an inverse. Pick a map of abelian sheaves ξ : F → G n on Xn.
For any φ : [n]→ [m] in ∆ we get composite maps

X(φ)∗(F )
X(φ)∗(ξ)// X(φ)∗(G n)

[φ]G• // Gm ,

with the last map coming from the description of the abelian sheaf G • on X• in “naive” terms. Taking these
maps over all φ : [n]→ [m] with fixed m then defines a map of sheaves

ξm : Ln(F )m → Gm.

Unwinding the compatbility properties of the structure maps [ψ]G • of G • for all ψ in ∆ readily yields that
for any ψ : [m]→ [m′] in ∆, the diagram

X(ψ)∗(Ln(F )m)
X(ψ)∗(ξm)//

��

X(ψ)∗(Gm)

��
Ln(F )m

′ // Gm′

commutes. Hence, we have constructed a map of abelian sheaves on X• from Ln(F )• to G •.
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It is clear that this construction

(6.2) HomAb(Xn)(F ,G n)→ HomAb(X•)(Ln(F )•,G •)

is bifunctorial, and that (6.2) followed by (6.1) is the identity on HomAb(Xn)(F ,G n). To check the composite
in the other direction is the identity, we have to show that an arbitrary map of sheaves Ln(F )• → G • is
uniquely determined by the induced map F → G n within degree n, and more specifically is obtained from
this induced map within degree n by means of the construction which produced (6.2). This is straightfoward
definition-chasing, using the compatibilities for the structure maps [ψ]G • .

�

For a map u• : X• → Y• of simplicial spaces (without augmentation!), or m-truncated simplicial spaces
with some m ≥ 0, we can use the usual term-by-term constructions of pushfoward and pullback to define
functors

u•∗ : X̃• → Ỹ•, u
∗
• : Ỹ• → X̃•

with the usual adjointness and exactness properties (recall that exactness aspects can be checked in each
separate degree). Thus, in fancy terms, this defines a morphism of topoi. For our purposes, the case of
interest will be an augmented simplicial (or m-truncated simplicial, with m ≥ 0) space a : X• → S. In this
case, if we let S• denote the constant simplicial space attached to S, there is a unique map

a• : X• → S•

respecting the augmentations. Observe that S̃• is canonically identified with the category Cosimp(S̃) of
cosimplicial sheaves of sets on S. Even though a isn’t really a “map”, we can still define adjoint functors
which we’ll call a∗ and a∗ between X̃• and S̃ (and so from the point of view of topoi, we really do have a
“map” a after all).

There is a natural (exact) pullback functor

a∗ : S̃ → X̃•

defined by (a∗F )n = a∗nF with the evident “face” and “degeneracy” maps just as in Example 2.8. This
visibly left exact functor is an honest pullback in that it does have a right adjoint

a∗ : X̃• → S̃

given by defining a∗F • to be the kernel equalizer of

a0∗F 0
σ1

0 //
σ1

1

// a1∗F 1

(and since a∗ has a right adjoint, it is not only left exact but also right exact; if X• is 0-truncated then a∗F •

is just pushfoward by X0 → S). To check this adjointness, we could compute directly or we can argue more
elegantly as follows. If we do the same construction (ε∗S , εS∗) for the constant augmented simplicial space
εS : S• → S, it is trivial to check that

a∗ ' εS∗ ◦ a•∗, a∗ ' a∗• ◦ ε∗S .

Hence, to check adjointness we are reduced to the case X• = S• with its constant augmentation, for which
S̃• = Cosimp(S̃) and hence everything is clear “by hand” (and of course one gets the adjunction maps one
expects).

On the level of abelian sheaves, we get derived functors

a∗ : D+(S)→ D+(X•), Ra∗ : D+(X•)→ D+(S)

by the usual arguments. Now we can give the key definition of these notes.
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Definition 6.5. The adjoint pair (a∗, a∗) : X̃• → S̃ (which we’ll often abbreviate by writing a : X• → S) is
said to be a morphism of cohomological descent if the natural transformation

id→ Ra∗ ◦ a∗

on D+(S) is an isomorphism.
This concept is called a 1-descent morphism in [SGA4]. It corresponds to just the full faithfulness aspect

of classical descent theory (as we’ll see in a moment), whereas incorporating a further derived analogue of
effectivity gives rise to the stronger notion called a 2-descent morphism in [SGA4] about which we’ll say
nothing here.
Remark 6.6. The reader will observe that whenever we have worked with abelian sheaves, we could just as
well have worked with sheaves of R-modules for a fixed commutative ring R (and likewise for the derived
categories). We opted to stick with the case R = Z for expository simplicity. There is really only one place
where this makes a difference, namely in the case of proper hypercoverings for the étale site on schemes. In
that theory, one only has the proper base change for higher direct image sheaves when R is a torsion ring,
such as R = Z/n for some positive integer n. In [SGA4] the coefficient sheaf of rings is axiomatized at the
beginning so as to treat all cases at the same time. We’ll continue to work with R = Z, except in a couple of
places where we state results for proper hypercoverings on the étale site, in which case we’ll pick R = Z/n
(but any torsion ring would do just fine). The reader familiar with the étale site will readily see how it
all extends to torsion sheaves and `-adic sheaves (e.g., functoriality is checked for spectral sequences in the
torsion sheaf case, and then one can pass to limits to get spectral sequences in the `-adic case), so we omit
discussion in that direction.

Note that by standard exact triangle arguments, the condition of being of cohomological descent on the
level of derived categories is equivalent to the following assertion on the level of abelian sheaves: for any F
in Ab(S), we should have

F ' a∗a∗F = ker(a0∗a
∗
0F → a1∗a

∗
1F ), Ri a∗(a∗F ) = 0 for all i > 0

(where the kernel involves the difference of the two “cosimplicial” face maps). It is the vanishing of the
Ri a∗’s which “distinguishes” cohomological descent from ordinary descent theory, though such vanishing
seems to have no down-to-earth meaning. Instead, the true “meaning” of cohomological descent is perhaps
best captured by Lemma 6.8 (and the discussion preceding it). We’ll make the link with descent theory a
bit more explicit following the next example.
Example 6.7. The most elementary example of cohomological descent is the case of the augmentation S• → S
from the constant simplicial space on S. In this case, a∗ is essentially the H0 functor under the identification
Ab(S•) = Cosimp(Ab(S)). Now under the H0-compatible (!) Dold-Kan correspondence

Cosimp(Ab(S)) ' Ch≥0(Ab(S)),

the adjoint to
a∗ = H0 : Ch≥0(Ab(S))→ Ab(S)

is just the functor F 7→ F [0]. The adjunction id→ a∗a
∗ is readily checked to be the canonical map

F 7→ H0(F [0]),

and this is an isomorphism. Since the derived functors of H0 are exactly Hj , we see that

Rj a∗(a∗F ) = Hj(F [0]) = 0

for j > 0. Since the adjunction F → a∗a
∗F is an isomorphism, we conclude that indeed a is of cohomological

descent in the constant case.
Let’s now see the reason for the terminology “cohomological descent”. In descent theory, one has a “cover”

p : X ′ → X and introduces the two projections

p0, p1 : X ′′ := X ′ ×X X ′ → X ′.

Given a sheaf F on X, we then get the pair of data

(F ′ = p∗F , α : p∗1F
′ ' p∗2F ′)
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consisting of a sheaf on X ′ and an isomorphism between its two natural pullbacks to X ′′ such that α enjoys
an additional cocycle compatibility

p∗02(α) = p∗12(α) ◦ p∗01(α)
when we pull it back to the triple fiber power. This sort of structure is very closely related to the data of
a sheaf on sk2 cosk0(X ′/X) (to see this, look at the calculations in [BLR, p. 133]). Classical descent theory
says (under certain conditions on p, depending on the geometric category in which one is working) that the
functor F  (F ′, α) is fully faithful. Note that a map

(F ′, α)→ (G ′, β)

between two such pairs of data is really just a map on the level of sheaves on the 1-skeleton sk1 cosk0(X ′/X),
hence the terminology “1-descent morphism” in [SGA4].

The cohomological descent property is essentially a “derived” version of full faithfulness, where we work
on an entire simplicial object and not just its truncations in degrees ≤ 2:
Lemma 6.8. A map a : X• → S is a morphism of cohomological descent if and only if a∗ : D+(S)→ D+(X•)
is fully faithful.

Proof. To say id→ Ra∗ ◦ a∗ is an isomorphism is to say that the adjunction

K → Ra∗(a∗K)

is an isomorphism for every complex K in D+(S). Equivalently, by Yoneda, this says that for each K ′ in
D+(S), the natural map

Hom(K ′,K)→ Hom(K ′,Ra∗(a∗K))
is bijective. But due to the adjointness between Ra∗ and a∗ on (bounded below) derived categories, we get
a commutative triangle

Hom(K ′,K) //

a∗ ))RRRRRRRRRRRRR
Hom(K ′,Ra∗a∗K)

'
��

Hom(a∗K ′, a∗K)

in which the diagonal arrow is the functor a∗. The desired equivalence follows. �

Example 6.9. We’ll see in §7 that both proper hypercoverings and étale hypercoverings (really hypercoverings
for any Grothendieck topology) are of cohomological descent. We stress that even the special case of a 0-
coskeleton on a proper or étale surjective map X0 → S is not obvious.

In order to formulate the spectral sequence relating cohomology on S with that on the Xp’s in the presence
of a morphism of cohomological descent a : X• → S, we first need to define a “global sections” functor on
the simplicial object X•. This will have nothing to do with the augmentation structure, and goes as follows.
Definition 6.10. Let X• be a simplicial space (without augmentation!). For an abelian sheaf F • on X•,
we define the global sections of F • by the recipe:

Γ(X•,F •) := ker(Γ(X0,F
0)→ Γ(X1,F

1))

(so this is just Γ(X0,F 0) if X• is 0-truncated).
The functor Γ(X•, ·) is visibly a left exact functor, and we write RΓ(X•, ·) to denote the resulting total

derived functor (to be called hypercohomology on X•), with Hi(X•, ·) the associated hypercohomology groups.
Of course, if we’re given an augmentation a : X• → S then Γ(X•,F •) = Γ(S, a∗F •). Details on how to

generate oodles of examples of cohomological descent will be given in §7. The main formal nonsense result
is:
Theorem 6.11. Let X• be a simplicial space (without augmentation), or one which is possibly m-truncated
for some m ≥ 0. For any complex K ′ in D+(X•), there is a natural spectral sequence

Ep,q1 = Hq(Xp,K
′|Xp)⇒ Hp+q(X•,K ′)

with d•,q1 induced by the “associated differential complex” structure along X•.
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When we are given an augmentation structure a : X• → S which is of cohomological descent and we
consider K ′ = a∗K for some K in D+(S), then K ′|Xp = a∗pK and the abutment of the above spectral
sequence is naturally isomorphic to Hp+q(S,K), so we get a spectral sequence

(6.3) Ep,q1 = Hq(Xp, a
∗
pK)⇒ Hp+q(S,K).

This is all functorial in the spaces, relative to the natural pullback maps on the augmentation and simplicial
complex levels.

Proof. First suppose we are given an augmentation a : X• → S which is universally of cohomological descent.
For K in D+(S), there is a canonical composite map

RΓ(S,K)→ RΓ(S,Ra∗(a∗K)) ' R(Γ(S, ·) ◦ a∗)(a∗K) = RΓ(X•, a∗K)

with the adjunction in the first step an isomorphism because a : X• → S is of cohomological descent (and
Γ(X•, ·) is the composite of Γ(S, ·) and a∗ by definition). This is visibly functorial in a and explains the
cohomological descent aspects of the assertion in the theorem in terms of the rest, for it provides maps
(isomprphisms in the cohomological descent case)

Hi(S,K)→ Hi(X•, a∗K)

which are natural in a too.
We now just have to construct the spectral sequences abutting to (hyper)cohomology on X•, and for this

we have no need for any augmentation structure. Taking K ′ in D+(X•), we have to make a natural spectral
sequence

Ep,q1 = Hq(Xp,K
′)⇒ Rp+q Γ(X•,K ′)

with the expected d•,q1 ’s, and with functoriality in both K ′ and X• (and with vanishing (p, q) terms when
p > m if X• is m-truncated).

The idea is to compute the total derived functor RΓ(X•,K ′) by some other means. Let K ′ → I• be a
quasi-isomorphism to a bounded below complex of injectives in Ab(X•) (so Iq is an abelian sheaf on X•,
vanishing for sufficiently negative q). Consider the right half-plane (nearly) first quadrant commutative
diagram with (p, q) term

(6.4) Γ(Xp, I
q|Xp).

In this planar diagram, the pth column Γ(Xp, I
•|Xp) is a complex in the evident manner via the differentials

on I•, and the qth row is a complex via the alternating sum of pullback maps along face maps on X•, applied
to the sheaf Iq on X•.

The commutativity of this planar diagram follows from naturality considerations.
We create a total complex out of this in the standard manner, and we try to compute the cohomology

in two ways. If we first filter by rows, then we see that the 0th column of horizontal kernels is exactly the
complex

Γ(X•, I•) = RΓ(X•,K ′),

while we claim that all horizontal kernels away from degree 0 vanish. Once this is checked, it follows that
the total complex has nth cohomology exactly Hn(X•,K ′), and then trying to compute using the filtration
by columns will wind up giving the spectral sequence we’re looking for.

In order to justify the claim just made that each row of (6.4) is acyclic away from degree 0, we claim more
generally that if I is an arbitrary injective in Ab(X•) then the complex on the Γ(Xp, I|Xp)’s is acyclic away
from degree 0. To see this, note that the functor

F •  {Γ(Xp,F
p)}p≥0

from Ab(X•) to Ch≥0(Ab) has an exact left adjoint given by the term-by-term “constant sheaf” functor,
it must carry injectives to injectives. But an injective object in Ch≥0(Ab) is necessarily acyclic in positive
degrees (just as is true with Ab replaced by any abelian category).
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With this acyclicity verified, we pass to the column filtration on the total complex attached to our planar
diagram. Now the Ep,q1 term is obtained from forming the qth vertical cohomology in the pth column
Γ(Xp, I

•|Xp). That is, we get a spectral sequence

Ep,q1 = Hq(Γ(Xp, I
•|Xp))⇒ Hp+q(X•,K ′),

with the differential d•,q1 induced by the simplicial structure on the Xp’s. But recall that K ′ → I• is a
quasi-isomorphism of bounded below chain complexes in Ab(X•), so by exactness of the restriction functors
we conclude for each p that K ′|Xp → I•|Xp is a quasi-isomorphism too. Now for the magic: by Lemma
6.4, since each Iq is (by construction) an injective in Ab(X•), its restriction Iq|Xp is an injective in Ab(Xp).
Thus, K ′|Xp → I•|Xp is a quasi-isomorphism to a bounded below complex of injectives in Ab(Xp). It follows
that

(6.5) Ep,q1 = Hq(Γ(Xp, I
•|Xp)) ' Hq(Xp,K

′|Xp),

so we obtain the desired spectral sequence!
It is clear from this construction and from the means by which pullback maps in (hyper)cohomology are

constructed (on the level of resolutions) that this spectral sequence is functorial in X•.
�

In practice, we’d also like to know that we can compute Hn(X•,K) for a bounded below complex K
in D+(Ab(X•)) by using a quasi-isomorphism to something less esoteric than a bounded below complex
of injectives (e.g., use termwise Godement or soft resolutions for ordinary topological spaces). In fact, if
K → K ′ is a quasi-isomorphism to a bounded below complex for which the constituent terms K ′q in Ab(X•)
satisfy

Hi(Xp,K
′q|Xp) = 0

for all i > 0 and all p, q (a condition which is automatic when each K ′
q is injective in Ab(X•), thanks

to Lemma 6.4), then we claim that the total complex attached to the commutative planar diagram of
Γ(Xp,K

′q|Xp)’s computes RΓ(X•,K).
Well, pick a quasi-isomorphism K ′ → I• to a bounded below complex of injectives. We need to show that

the natural maps
Γ(Xp,K

′q|Xp)→ Γ(Xp, I
q|Xp)

induce a quasi-isomorphism on the level of total complexes. But since each K ′
q|Xp is Γ(Xp, ·)-acyclic, the

pth column map
Γ(Xp,K

′|Xp)→ Γ(Xp, I
•|Xp)

is a quasi-isomorphism since K ′|Xp → I•|Xp is a quasi-isomorphism (!) between bounded below complexes
of Γ(Xp, ·)-acyclics. Hence, by using the total complex filtration by columns we conclude that we get the
desired quasi-isomorphism on total complexes.

Although we have constructed a nice spectral sequence whenever we’re giving a morphism of cohomological
descent, we have yet to provide a single example of such a morphism. The next section will show how to
generate many examples. The study of criteria for cohomological descent will require a mild relativization
on our spectral sequence, or rather on the aspect which doesn’t require cohomological descent. Note that
the following assertion includes functoriality with respect to X• → S; this will be rather essential in proofs
later.
Theorem 6.12. If X• is a simplicial space, or an m-truncated such object with m ≥ 0, and a : X• → S is
an augmentation with ap : Xp → S the induced map, then for any K in D+(X•) there is a canonical spectral
sequence

Ep,q1 = Rq ap∗(K|Xp)⇒ Rp+q a∗(K)
functorial in a : X• → S.

Proof. By Theorem 6.11, we have a functorial spectral sequence

Ep,q1 = Hq(Xp,K|Xp)⇒ Hp+q(X•,K)
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which is also natural in X•. We could have just worked directly with a∗ and ap∗ instead of Γ(X•, ·) and
the Γ(Xp, ·)’s and redone the entire construction, essentially verbatim. This yields the desired spectral
sequence. �

7. Criteria for cohomological descent

We continue to work with C as in the preceding section, namely a category of “spaces” with a topology
defined by “étale maps”.

We begin with a definition which is necessary to state the main result.
Definition 7.1. Let X• be a simplicial space, and a : X• → S an augmentation. We say that a is
universally of cohomological descent if for every base change S′ → S, the augmentation a/S′ : X ×S S′ → S′

is of cohomological descent.
We also say that a map of spaces a0 : X0 → S is a map of cohomological descent if the augmented

simplicial space
cosk0(a0) : cosk0(X0/S)→ S

is a morphism of cohomological descent, and we say that a0 is universally of cohomological descent if cosk0(a0)
is universally of cohomological descent (i.e., a0 remains a map of cohomological descent after any base change
on S).

Before we study properties of universal cohomological descent (e.g., is it preserved under composition of
maps of spaces?), we need to establish that it works in a fundamental situation which we’ll see in Corollary
7.3 also provides a vast generalization of C̆ech theory spectral sequences.
Theorem 7.2. Let f : X → S be a map of spaces which has a section locally on S. Then f is a map
universally of cohomological descent.

Proof. The universality is immediate from the rest since the hypotheses are preserved under base change.
We may also work locally on S, so we can assume f has a section ε : S → X. We want to show that the
natural map

K → Ra∗(a∗K)
is an isomorphism in D+(S) for any K in D+(S). It suffices to take K = F in Ab(S).

We now need to recall the spectral sequence for computing Ra∗(K ′) for any K ′ in D+(X•) (as in Theorem
6.12), and then we’ll specialize to K ′ = a∗F . For any K ′ in D+(X•), we have a spectral sequence

Ep,q1 = Rq ap∗(K ′|Xp)⇒ Rp+q a∗(K ′)

in which the qth row E•,q1 has differential d•,q1 given by the simplicial structure on X•. Note that E•,q1

makes perfectly good sense as an augmented complex in degrees ≥ −1, where a−1 is the identity map on
S (so E−1,q

1 = 0 for q > 0 since pushfoward along the identity map has vanishing higher derived functors).
Consider the maps

hp = ε× idXp : Xp = X×(p+1) → X×(p+2) = Xp+1

for p ≥ −1 (where the 0th fiber power of X means S, of course), with products taken over S. In the definition
of hp, we’re simply inserting the section along the 0th coordinate of Xp+1 (e.g., h−1 = ε).

Let’s see how the hp’s interact with the face maps on the simplicial space X• with augmentation f : X0 =
X → S (e.g., h−1 is a section to f !). For any p ≥ 1 and 0 ≤ j ≤ p− 1, we have

(7.1) hp−1 ◦X(∂jp−1) = X(∂j+1
p ) ◦ hp

and X(∂0
p) ◦ hp = idXp for all p ≥ 0.

When K ′ = a∗F with an abelian sheaf F on S, the resulting isomorphisms h∗p(K
′|Xp+1) ' K ′|Xp therefore

give rise to induced pullback maps
Ep,q1 → Ep+1,q

1

which (with the help of lots of cancellation resting on (7.1) and a bit of care in degree 0 and −1) form a
homotopy between the identity map and the zero map on the augmented differential complex E•,q1 (in degrees
≥ −1). Hence, this augmented complex is acyclic! Thus, we conclude that for q > 0 (so E−1,q

1 = 0) the qth
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column E•,q1 is exact (even in degree 0) whereas for q = 0 the column E•,01 with pth term ap∗(a∗F |Xp) =
ap∗(a∗pF ) (and the evident “co-simplicial” differential) is exact away from degree 0 with kernel in degree 0
given by F via the natural augmentation map

F → a0∗a
∗
0F .

We conclude that at the E2 stage the spectral sequence collapses to just the single term F concentrated
in the (0, 0) position. Hence, the total complex Ra∗(a∗F ) has vanishing homology in positive degrees and
homology in degree 0 given by F via the canonical map. In other words, the canonical adjunction map

F → Ra∗(a∗F )

is an isomorphism for any abelian sheaf F on S (and thus for F replaced by any object in D+(S)). This is
what we needed to prove.

�

If one takes the special case of discrete topological spaces with S = {∅} a single point (so higher cohomology
vanishes), the above theorem along with Theorem 6.11 yields the classical fact that any abelian group A

admits a resolution given by the standard combinatorial C̆ech construction on a non-empty set I. Indeed, if
I is viewed as discrete then cosk0(I/{∅}) is an augmented simplicial space which is discrete in each degree,
and we can pull back the constant sheaf A from {∅}. In this case Ep,q1 = 0 for all q > 0 while

Ep,01 = HomSet(Xp, A)

with the usual cosimplicial C̆ech differential. Since Hp({∅}, A) = 0 for p > 0, we get the desired C̆ech
resolution of A based on I. Actually, this is just the classical proof of exactness in disguise: to choose a
section to I → {∅} is to pick an element i0 ∈ I, and the use of a section to make a homotopy in the proof of
Theorem 7.2 then becomes exactly the classical proof of exactness of the C̆ech construction. See Corollary
7.12 for a hypercover generalization.

More interestingly, we can exploit our explicit knowledge of the dp,q1 maps in the hypercovering spectral
sequence in order to recover the following classical fact (note the stage of the spectral sequence and the
location of the p, q labels!):

Corollary 7.3. (C̆ech) Suppose our site admits arbitrary coproducts, and coproducts commute with finite
fiber products over a base. Let U = {Ui}i∈I be an indexed cover of a space S, and pick an object K in D+(S).
Then there is a spectral sequence

Ep,q2 = Hp(U,Hq(K))⇒ Hp+q(S,K),

where Hq(K) is the presheaf whose value on U is Hq(U,K|U ).
This example will be generalized to that of étale hypercovers in Corollary 7.11. An inspection of the

construction shows that this spectral sequence doesn’t just have the same E2-terms and abutment as the
classical C̆ech hypercohomology spectral sequence, but literally is the classical spectral sequence.

Proof. Apply Theorem 7.2 with X = XU =
∐
Ui, with its canonical map to S. This satisfies the requirements

of that theorem since {Ui} is a cover of the space S, so we conclude that cosk0(XU/S) → S is a morphism
of cohomological descent. Thus, by Theorem 6.11, we get a spectral sequence

Ep,q1 = Hq(X×(p+1)
U ,K|

X
×(p+1)
U

)⇒ Hp+q(S,K)

which is natural in K, U, and S. Moreover, the differential on E•,q1 is via the simplicial structure on
cosk0(XU/S).

For fixed q ≥ 0, we’ll show
Ep,q2 = Hp(E•,q1 ) ' Hp(U,Hq(K))

naturally in K, U, and S. This will complete the proof. The key point for the calculation is that forming
cohomology of abelian sheaves on a space converts coproducts (i.e., disjoint unions) of spaces into products
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of abelian groups. Since X×(p+1)
U is naturally identified with

∐
i∈Ip Ui where

Ui = Ui0 ×S · · · ×S Uip
for i = (i0, . . . , ip), we have

Hq(X×(p+1)
U ,K|

X
×(p+1)
U

) =
∏

i∈Ip+1

Hq(Ui,K|Ui) =
∏

i∈Ip+1

(Hq(K))(Ui) = Cp(U,Hq(K)).

More importantly, our description of the dp,q1 ’s in terms of the simplicial structure on X• shows that the
differential between this term in degree p and the term in degree p + 1 is exactly the expected alternating
sum based on the combinatorics of index-chasing in (p + 1)-fold overlaps, etc (i.e., we get the differential
from C̆ech theory relative to U). Thus, we see that the pth homology object Ep,q2 on the qth row E•,q1 is

Ep,q2 = Hp(U,Hq(K)).

�

Corollary 7.4. A faithfully flat scheme map f : X0 → S which is locally of finite presentation is universally
of cohomological descent relative to the étale topology.

There is no torsion requirement on abelian sheaves for this corollary.

Proof. Let a : X• → S be the 0-coskeleton of f . By [SGA4, Cor 9.2, Exp VIII], for F in Ab(S) the natural
map F → a∗a

∗F is an isomorphism. It remains to show that Ri a∗(F ) = 0 for i > 0. The problem is local
for the étale topology, so we may assume S is (strictly) henselian and local. For such S, we can use [EGA,
IV4, 17.16.2, 18.5.11] to conclude that there exists a finite flat local map g : S′ → S such that X0(S′) 6= ∅.
In particular, g is surjective, so the natural map F → g∗g

∗F is injective. Thus, we can resolve F by a
complex of sheaves which are pushfowards under g. Since we’re trying to show that the map of triangulated
functors

id→ Ra∗ ◦ a∗

on D+(S) is an isomorphism, we can therefore reduce to the case in which F = g∗F ′ for an abelian sheaf
F ′ on S′.

Consider the “cartesian” diagram

X ′•
a′ //

g•

��

S′

g

��
X• a

// S

with g finite, and hence g• finite in each degree. By the “finite” case of the proper base change theorem,
which is valid without torsion hypotheses (and even for sheaves of sets), the natural map

a∗g∗F
′ → g•∗a

′∗F ′

is an isomorphism since this condition can be checked in each separate degree (where we have an honest
cartesian diagram of schemes). We there have

Ra∗(a∗(g∗F ′)) ' Ra∗(g•∗(a′
∗
F ′)) ' g∗ ◦Ra′∗(a

′∗F ′)

because a∗◦g•∗ = g∗◦a′∗ with g∗ and g•∗ both exact thanks to finiteness considerations. But the augmentation
a′ : X ′• → S′ is a 0-coskeleton for a map X ′0 → S′ which has a section, so a′ is of cohomological descent by
Theorem 7.2. Hence, Ra′∗(a

′∗F ′) has vanishing homology sheaves in positive degrees, so the same is true
for Ra∗(a∗(g∗F ′)). This proves that the natural map

g∗F
′ → Ra∗(a∗ ◦ g∗F ′)

is an isomorphism, as the degree 0 aspect was handled for any abelian sheaf already (though it could also
be deduced directly from this method, using some commutative diagram verifications).

�
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We warn the reader that it is a somewhat subtle question to determine whether the property of being of
cohomological descent is preserved under composition of maps of spaces. That is, if f : Z → T and g : T → S
are maps of spaces which are of cohomological descent, one can ask whether g◦f : Z → S is of cohomological
descent. What this really means is to determine whether cosk0(Z/T ) → T and cosk0(T/S) → S being of
cohomological descent forces cosk0(Z/S) → S to be of cohomological descent. If you think for a minute,
you’ll see (I beleive) that this is not a tautological consequence of the definitions (even in the topological
category). It might not even be true; an additional assumption of universality is needed in the proof. This
preservation under composition will play a key role in Deligne’s proof of the cohomological descent property
for proper hypercovers. In fact, we prove more because we need more. The next result shows that morphisms
universally of cohomological descent satisfy the requirements to define a Grothendieck topology.
Theorem 7.5. The class of morphisms universally of cohomological descent satisfies the following properties.

(1) In a cartesian diagram of spaces

X ′
π′ //

f ′

��

X

f

��
S′ π

// S

with π universally of cohomological descent, the map f is universally of cohomological descent if and
only if the map f ′ is.

(2) If f : X → Y and g : Y → Z are maps with g ◦ f universally of cohomological descent, then so is g.
(3) If f : X → Y and g : Y → Z are universally of cohomological descent, then so is g ◦ f .
(4) If f : X ′ → X and g : Y ′ → Y over a base object S are universally of cohomological descent, then so

is f × g : X ′ ×S Y ′ → X ×S Y .

Proof. Although we might initially be most interested in (3) and (4), in fact the hard part is (1), and both
(1) and (2) are needed to prove (3) and (4).

Assuming (1) and (2), let’s deduce (3) and (4). To prove (3), consider the cartesian square (with indicated
section s):

(7.2) X ×Z Y

g′

��

h′ // Y

g

��
X

s=1×f

OO

h=g◦f
// Z

Since g is universally of cohomological descent, by (1) applied with the base change map g, it suffices to
show that h′ is universally of cohomological descent. But h′ ◦ s = f is universally of cohomological descent,
so by (2) we conclude that h′ is universally of cohomological descent.

Now that (3) is known, we can deduce (4) by applying (3) to the factorization of f × g given by

X ′ ×S Y ′
1×g→ X ′ ×S Y

f×1→ X ×S Y,

with both maps universally of cohomological descent since g and f are.
To show (2), we will have to assume (1). Consider the cartesian diagram (7.2), but now viewing h

as the base change side. Since h is universally of cohomological descent, to show that g is universally of
cohomological descent it suffices (by (1)) to prove that g′ is. But g′ has a section, so we can use Theorem
7.2!

Finally, we turn to the most subtle part, namely (1). The implication “⇒” is trivial, so now assume that
f ′ is universally of cohomological descent, and we wish to deduce the same for f . For this we will have to
make use of a doubly simplicial object, but one which may be treated without any elaborate theory. The
argument which follows does the job, but it would really have been more aesthetically correct to have directly
developed a general multisimplicial (or at least bisimplicial) theory from the start. Of course, Deligne uses
such an approach, but I was unable to understand his proof. The following alternative argument, which
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should be viewed as somewhat ad hoc, is probably the same as what one would get from unwinding the very
compact argument which Deligne gives.

Consider the two augmented 0-coskeleta

f : cosk0(X/S)→ S, π : cosk0(S′/S)→ S.

We know that π is universally of cohomological descent and that the base change

f ′ : cosk0(X ′/S′)→ S′

of cosk0(X/S)→ S by S′ → S is universally of cohomological descent. It then follows that for any cartesian
power [S′/S]p+1 = cosk0(S′/S)p of S′ over S (with p ≥ 0) we have that

f̃p : cosk0(X/S)×S cosk0(S′/S)p → cosk0(S′/S)p
is universally of cohomological descent (as this is a base change on the case cosk0(X ′/S′) → S′ for p = 0,
and we note that although there are several such base change maps

cosk0(S′/S)p → S′,

but all give the same output f̃p since cosk0(X/S)→ S starts life over the augmentation S of cosk0(S′/S)).
Our situation is now the following. If we define

Zp,q = cosk0(S′/S)p ×S cosk0(X/S)q,

then Zp,q is naturally bisimplicial and there are augmentations

π̃q : Z•,q → cosk0(X/S)q
which are functorial in [q] and hence yield an “augmentation”

π̃ : Z•,• → cosk0(X/S)

(via viewing the bisimplicial Z•,• as a simplicial object with constituent terms given by its columns). Note
that for each q ≥ 0, the row augmentation situation π̃q is a base change on π (by cosk0(X/S)q → S) and
hence is universally of cohomological descent. Likewise, we get another “augmentation”

f̃ : Z•,• → cosk0(S′/S)

which over degree p is given by the augmentation map

f̃p : Zp,• → cosk0(S′/S)p
which we have seen is universally of cohomological descent.

The summarizing picture is the commutative (in an evident sense) diagram:

(7.3) cosk0(X/S)

f

��

{Zp,q = cosk0(S′/S)p ×S cosk0(X/S)q}

f̃

��

π̃oo

S cosk0(S′/S)
π

oo

in which Z•,• is bisimplicial and each of its augmented rows and columns is universally of cohomological
descent (see (7.4) for a more detailed picture). Moreover, we also have that the augmentation data π is
universally of cohomological descent. We wish to infer that f has the same property. To do this, we need
to introduce a suitable category of “sheaves on Z•,•” as well as pushfoward and pullback functors attached
to π̃ and f̃ with respect to which we can meaningfully say that π̃ and f̃ are “universally of cohomological
descent” (although we haven’t given a development of this concept in the bisimplicial theory). Then an
identity of the form

π̃∗ ◦ f∗ = f̃∗ ◦ π∗

on derived categories of abelian sheaves should imply that f∗ is fully faithful (whence f is of cohomological
descent) since all other three functors are (or rather, should be) fully faithful on derived categories. Base
change on S would then provide the universality too. Of course, one could instead argue with (transitive)
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adjunction isomorphisms of derived pushfoward/pullback instead of arguing in terms of full faithfulness of
derived pullback.

Let us make this strategy precise. We define a site “Z•,•” in much the same spirit that we did for simplicial
spaces, namely the objects are étale arrows (U → Zp,q), with the evident concept of morphism (now over
maps in ∆ × ∆) and evident concept of cover. We thereby get a category Z̃•,• of sheaves of sets, and a
subcategory Ab(Z•,•) of abelian group objects. Of course, this has a very down-to-earth explication in terms
of sheaves on the Zp,q’s with oodles of maps among them, just like the naive description of X̃• in terms of
sheaves on the Xn’s. As usual, Ab(Z•,•) has enough injectives.

We can define pullback and pushfoward functors on categories of sheaves of sets

π̃∗ : Z̃•,• → ˜cosk0(X/S), π̃∗ : ˜cosk0(X/S)→ Z̃•,•

and
f̃∗ : Z̃•,• → ˜cosk0(S′/S), f̃∗ : ˜cosk0(S′/S)→ Z̃•,•

by just applying the usual such constructions in each separate row (for π̃) and each separate column (for f̃),
and compatibility with the various auxiliary arrows (coming from the simplicial pullback maps all over the
place) is automatic from the “commutativity” of the original geometric diagram. One checks adjointness for
each pair (π̃∗, π̃∗) and (f̃∗, f̃∗), and we even have (easily explicated) isomorphisms of functors

π̃∗ ◦ f∗ ' f̃∗ ◦ π∗, f∗ ◦ π̃∗ ' π∗ ◦ f̃∗
which are moreover compatible with adjunction between the left sides and the right sides.

Here is a more explicit description of a corner of (7.3), in which we write S′′ := S′ ×S S′:

(7.4) . . .

������

. . .

������

. . .

������
X1

����

X1 ×S S′
π̃1oo

����

X1 ×S S′′

����

oooo . . .oooooo

X0

f0

��

X0 ×S S′

a0
zzuuuuuuuuuu

π̃0oo

f̃0

��

X0 ×S S′′

f̃1

��

oooo . . .oooooo

S S′π0
oo S′′oooo . . .oooooo

In this diagram, for which the outer edges are “augmentation” edges while the other part is the “bisimplicial”
part, we have the “bisimplicial” augmentation map

a0 = f0 ◦ π̃0 = π0 ◦ f̃0 : X0 ×S S′ → S

in degree 0. Let F •• be a sheaf of sets on Z•,•. The common “double pushfoward”

f∗π̃∗F
•• ' π∗f̃∗F ••

to S is just the subsheaf of sections in a0∗F 0,0 which, when viewed as sections of F 0,0 on X0 ×S S′, have
both pullbacks to X0 ×S S′′ coinciding and both pullbacks to X1 ×S S′ coinciding.

We may take as an (ad hoc) definition

a∗ := f∗ ◦ π̃∗ = π∗ ◦ f̃∗
and

a∗ := π̃∗ ◦ f∗ = f̃∗ ◦ π∗.
These definitions are compatible with adjunction, so we also have analogous adjunction-compatible identi-
fications on the level of total derived functors on the various derived categories of abelian sheaves. We can
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define what it means to say that the “morphisms” a, f̃ , or π̃ satisfies cohomological descent: for a, this
means either that the adjunction

id→ Ra∗ ◦ a∗

is an isomorphism on D+(S) or that a∗ : D+(S) → D+(Z••) is fully faithful (these two definitions being
equivalent by the same adjunction argument as in the proof of Lemma 6.8). The cases of f̃ and π̃ go the
same way.

Since we still have
a∗ = π̃∗ ◦ f∗ = f̃∗ ◦ π∗

on the level of derived categories, in order to deduce the full faithfulness of f∗ (which is what we’d like to
show), it suffices to prove full faithfulness for π̃∗ and f̃∗. Indeed, once this is known then since π∗ is also
fully faithful (as π is of cohomological descent), we would get the result for f∗. We’d also get the universality
aspect of the conclusion by first making a base change (as this preserves the initial hypotheses).

We now are reduced to the following general claim which treats f̃ and π̃ simultaneously. Suppose we are
given a first quadrant bisimplicial space Y•• and an augmentation

h : Y•• →W•

to a simplicial space, say along the bottom row (we could just as well have used the left column, up to
switching labelling around). We assume that for each p ≥ 0, the induced augmented simplicial object

hp : Yp,• →Wp

is of cohomological descent. We wish to infer that the natural adjunction

(7.5) id→ Rh∗ ◦ h∗

is an isomorphism on D+(W•). Equivalently, for F • in Ab(W•) we want that the adjunction

(7.6) F • → h∗(h∗F •)

is an isomorphism, and that
Ri h∗(h∗F •) = 0

for all i > 0.
Since a map in Ab(W•) is an isomorphism if and only if it is so on each Wp (for p ≥ 0), and an object

vanishes in Ab(W•) if and only if it does on each Wp, it suffices to check things after restriction to each Wp

for p ≥ 0. The adjunction (7.6) of pushfoward and pullback restricts to

F p → hp∗(h∗pF
p),

and this is an isomorphism since hp is of cohomological descent. As for the vanishing, if we could establish
that for K in D+(Z••) the natural map

(7.7) Rh∗(K)|Wp → Rhp∗(K|Zp,•)

is an isomorphism, we would get the desired vanishing from that on the Wp’s (as each hp is of cohomological
descent). If we think back to how we compute total direct images using an injective resolution, we just have
to check that if K → I is a quasi-isomorphism to a bounded below complex of injectives in Ab(Z••), then
so is

K|Zp,• → I|Zp,•
in Ab(Zp,•). The quasi-isomorphism aspect is clear, so it suffices to check that if I is an injective in Ab(Z••),
then I|Zp,• is an injective in Ab(Zp,•) for each p ≥ 0. This follows from Lemma 7.6 below.

�

Lemma 7.6. Let Z•• be a bisimplicial space, and I an injective in Ab(Z••). Then I|Zp,• is an injective in
Ab(Zp,•) for all p ≥ 0 and I|Z•,q is an injective in Ab(Z•,q) for all q ≥ 0.
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Proof. We want to just adapt the proof of Lemma 6.4 to apply in the bisimplicial context. Note one cannot
just view bisimplicial objects as simplicials of simplicials and expect to just apply Lemma 6.4 directly, because
the definition of the site Z•,• (or better: the category of sheaves on it) makes full use of the 2-dimensional
array structure and doesn’t seem easily built up from an intrinsic topology on a category of simplicial spaces.
What the proof of Lemma 6.4 does readily adapt to show is that each I|Zp,q is an injective in Ab(Zp,q). This
seems not adequate, as it does not seem that spectral sequences of the sort in Theorem 6.11 can be applied
(for a suitable notion of “space”) to yield the Γ(Zp,•, ·)-acyclicity of I|Zp,• (which would suffice). Thus, we
will now show the stronger result that I|Zp,• is an injective object in Ab(Zp,•) for all p ≥ 0.

Recall the functor LX•n from the proof of Lemma 6.4. Because LX•n is a left adjoint to “restriction to
degree n”, it is easy to check that in the context of Lemma 6.4 the functors LX•n and LX

′
•

n naturally commute
with pullback with respect to a map h : X ′• → X• of simplicial spaces in the sense that the natural map

h∗(LX•n (F ))→ L
X′•
n (h∗nF )

is an isomorphism (one can use the construction or adjointness nonsense). Consequently, one can check that
for an abelian sheaf G • on Zp,•, if we view G q on Zp,q as a sheaf on the pth term of the simplicial object
Z•,q and apply the associated functor LZ•,qp to this, then we get a sheaf LZ•,qp (G q) on Z•,q with the pullback
compatibility enabling us to endow the data {LZ•,qp (G q)} of sheaves on the Zp,q’s with the structure of an
object Lp(G •) in Ab(Z••). One then checks readily that this provides a left adjoint to the “restrict to Zp,•”
functor from Ab(Z••) to Ab(Zp,•), and is left exact due to how it was made out of left exact functors LZ•,qp

for q ≤ 0. This completes the proof.
�

With the basic properties of cohomological descent now established, let’s think specifically about C being
the category of topological spaces, or perhaps schemes with the étale topology, so we have a good theory
of proper maps. We will eventually prove by a coskeleton induction argument that an augmented proper
hypercovering of a space S is universally of cohomological descent, but in order to get the induction off the
ground we need to show that a proper map of such spaces a0 : X0 → S is universally of cohomological descent.
It is at exactly this point that the proper base change theorem plays a role (see [SGA4, Exp Vbis, pp.58–60]
for an elegant simple proof of the topological proper base change theorem for proper maps between arbitrary
topological spaces without any conditions such as local compactness or paracompactness).

Theorem 7.7. Let f : X → S be a proper surjective map of topological spaces. Then f is a map of
cohomological descent, and remains so after base change to any other topological space S′. The same holds
for the category of schemes with the étale topology if we work with derived categories of sheaves of Z/n-
modules for a fixed integer n > 0.

Proof. We will write the proof using the phrase “abelian sheaf”, but in the étale topology case for schemes
this will be understood to mean Z/n-module sheaves for a fixed n > 0.

The base change issue is clear from the rest, since properness is stable under base change. Thus, we have
to just show that if F is an abelian sheaf on S and a : X• → S is cosk0(X0/S), then F → a∗a

∗F is an
isomorphism and Ri a∗(a∗F ) = 0 for i > 0. Note that all maps ap : Xp → S are trivially proper (being just
fiber powers of the proper f).

By Theorem 6.12, there is a spectral sequence

(7.8) Rq ap∗(K|Xp)⇒ Rp+q a∗(K)

in D+(S) which is natural in a, natural in the object K in D+(X•), and compatible with base change on S.
But by the proper base change theorem, formation of higher direct images under any proper map of spaces
commutes with arbitrary base change. Applying this to the ap’s and using the base change compatibility of
the formation of (7.8), we conclude that the more esoteric higher direct image functors Ri a∗ from D+(X•)
to Ab(S) are also of formation compatible with base change. Applying this with K = a∗F , we conclude that
the isomorphism and vanishing questions for the Ri a∗(a∗F )’s can be checked on the level of (geometric)
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fibers over S. That is, we may reduce to the case in which S is a (geometric) point. In this case, the map
f : X → S has a section (since X is not empty, by the surjectivity of f), so it suffices to use Theorem 7.2. �

Here is a nice application of Theorem 7.7 in a classical (i.e., pre-[D]) context:
Example 7.8. Recall the setup in Example 4.8: we have D which is a strict normal crossings divisor in an
ambient regular noetherian scheme or compact complex analytic space Z, say with irreducible components
{Dj}j∈J . Suppose D is non-empty (so J is non-empty and finite). We take X0 =

∐
Dj , so there is a natural

proper surjective map X0 → D. In fact, such proper surjectivity works even in the topological category
with the Dj ’s a locally finite covering of an arbitrary topological space D by closed subsets (local finiteness
ensures that X0 → D is proper). We allow this as another possible initial setup. We’ll now see how to use
the hypercovering formalism to “compute” the cohomology of such stratified spaces (and again, in the case
of the étale topology with schemes we really have to work with Z/n-module sheaves but we’ll use the more
convenient phrase “abelian sheaf” anyway so as not to disrupt the discussion).

Let X• = cosk0(X0/D), so X• naturally provides a proper hypercovering of D. By Theorem 7.9, the
augmentation X• → D is universally of cohomological descent. In particular, by (6.3), for any K in D+(D)
there is a spectral sequence

Ep,q1 = Hq(Xp,K |Xp)⇒ Hp+q(D,K ).

We want to make this a bit more explicit, and in particular cut it down to something computable. As
was noted in Example 4.8, Xp is just the disjoint union of (p + 1)-fold overlaps of the Dj ’s within D, but
allowing for repetitions. If we define

Dj =
⋂
j∈j

Dj

for j ∈ Jp+1, we can write the spectral sequence in the form∏
j∈Jp+1

Hq(Dj ,K |Dj )⇒ Hp+q(D,K )

with the evident d•,q1 ’s on the left side. In this spectral sequence, there’s a lot of repetition due to the fact
that we’re essentially using an “unordered” C̆ech-like approach.

But just as in classical C̆ech theory, where we may pass to alternating cochains to get the same cohomology
(which is also much more computationally useful when J is finite), here too we can simplify our spectral
sequence by removing redundancies and thereby bring ourselves down to a bounded spectral sequence for
finite J . The key point is that although the general simplicial machinery is needed to functorially compute
the abutment of the above spectral sequence, we see that the actual spectral sequence construction only
uses the face maps of X•. This will enable us to make another, much smaller, spectral sequence which maps
quasi-isomorphically (in an appropriate sense) to the enormous spectral sequence being considered above.

Fix an ordering on our (possibly infinite) J , and let X ′n ⊆ Xn be the disjoint sub-union consisting of the
Dj ’s for which

j = (j0, . . . , jn) ∈ Jn+1

satisfies j0 < · · · < jn. For these j’s, we shall say that Dj “shows up” in X ′n. For example, X ′−1 = D and
X ′n = ∅ for n ≥ |J |. Somewhat more interestingly, in the motivating “normal crossings divisor” situation with
algebraic schemes or complex analytic spaces, we see that each Dj which shows up in X ′n has codimension
n in D at all of its points (though Dj might be empty).

In general, the face maps on X• carry X ′n to X ′n−1 for all n ≥ 0. We have a category X̃ ′• of sheaves of
sets on X ′• defined in the evident manner, analogous to that for X• (explicitly, there are pullbacks along face
maps, no degeneracies), and Ab(X ′•) has enough injectives. There is also a natural pullback functor

φ∗ : X̃• → X̃ ′•.

Note that there is no apparent adjoint “pushfoward” map, since sheaves on X• must have pullback maps
along degeneracies but X ′• has no degeneracies. But even without such an adjoint we see that φ∗ is exact
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since this can be checked in each degree. Moreover, we can define the functor Γ(X ′•, ·) on the category of
sheaves of sets on X ′• and there is a natural transformation

Γ(X•, ·)→ Γ(X ′•, φ
∗(·))

between functors from Ab(X•) to Ab.
The exact same techniques used to construct the basic hypercohomology spectral sequence on X• in

Theorem 6.11 also work essentially verbatim on X ′• (we didn’t need coskeleton functors or other structures
which made use of degeneracies). Since φ∗ is exact, it doesn’t even matter if φ∗ takes injective abelian
sheaves to injective abelian sheaves: we still get a natural “pullback” map on the level of spectral sequences:
for K in D+(X•) with K ′ = φ∗(K) in D+(X ′•), we get natural maps

Ep,q1 (K) = Hq(Xp,K|Xp)→ Hq(X ′p,K
′|X′p) = Ep,q1 (K ′)

compatible with the spectral sequence constructions on each side and with the pullback map of abutments

Hp+q(X•,K)→ Hp+q(X ′•,K
′).

Now I claim that the map of row complexes

(7.9) E•,q1 (K)→ E•,q1 (K ′)

is a quasi-isomorphism for each q ≥ 0, whence the spectral sequences becomes isomorphic at the E2-stage
and the abutments must be isomorphic. Let’s grant this for a moment. If K is the pullback of some K
in D+(S), we can then use such a (functorial) isomorphism at the E2-stage to see that the “cohomological
descent” calculation of the abutment Hp+q(D,K ) for the spectral sequence made on X• also applies to give
(functorially) the abutment for the sequence made on X ′•. That is, the natural pullback map

RΓ(D,K )→ RΓ(X ′•, a
′∗K )

is an isomorphism, where a′ : X ′• → S is the augmentation. Thus, we obtain a functorial spectral sequence

Ep,q1 = Hq(X ′p,K |X′p) =
∏

j0<···<jp

Hq(Dj ,K |Dj )⇒ Hp+q(D,K )

for any K in D+(D). Note the key input of cohomological descent took place in the context of a different
spectral sequence (i.e., on the “big” X•, not the “small” X ′•), and that spectral sequence just happens to
give the same Er-parts as the one on X ′• for r ≥ 2.

It remains to establish that (7.9) is a quasi-isomorphism. In more concrete terms, in degree p this map of
complexes is just the natural “restriction” map

(7.10) Hq(Xp,K|Xp)→ Hq(X ′p,K
′|Xp)

and the differential in degree p is induced by the alternating sum of pullbacks along the face maps Xp+1 → Xp

and X ′p+1 → X ′p. For any j = (j0, . . . , jp) ∈ Jp+1 with p ≥ 0, define the abelian group

Aj = Hq(Dj ,K|Dj ).

Note that since we allow repetition and reorderings among the ji’s, there are many different j’s which give
rise to the same physical Dj . However, if we define the notation j ⊆ j′ for j ∈ Jp+1 and j′ ∈ Jp′+1 to mean

{j0, . . . , jp} ⊆ {j′0, . . . , j′p′}

inside of J , then whenever j ⊆ j′ there is a natural “restriction” map

Aj → Aj′

which is transitive in an evident sense.
We have

Hq(Xp,K|Xp) =
∏

j∈Jp+1

Aj
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and
Hq(X ′p,K

′|X′p) =
∏

j0<···<jp

Aj ,

with the dp,q1 ’s on the hypercohomology side going over to the evident C̆ech-like alternating sum differentials
on the right side. Moreover, under these identifications of degree p terms it is clear that the map (7.10)
corresponds to the projection map ∏

j∈Jp+1

Aj →
∏

j0<···<jp

Aj

(which is easily seen by hand to be compatible with differentials on both sides). Now we just have to show
that this map is a quasi-isomorphism of complexes. But this setup has exactly the same formal structures
as in the classical setup for comparing “unordered” C̆ech cohomology with “ordered” C̆ech cohomology, so
the same classical argument shows that the section map to the subcomplex of alternating cochains provides
a homotopy inverse. This concludes our discussion of this example.

Now we come to the motivating result of these notes (whose proof will require a somewhat long chain of
arguments, and which we’ll quickly see is actually a special case of another result which is really the central
theorem of these notes and has nothing to do with properness or hypercovers, but has everything to do
with coskeleta). We still remain (not for long!) within the framework of ordinary spaces (i.e., topological
spaces, or schemes with the étale topology), so in particular we have a good theory of properness as has
been used already. The next result generalizes Theorem 7.7 from the context of 0-coskeleta to more general
hypercoverings.
Theorem 7.9. Let X• → S be a proper hypercovering of topological spaces. Then it is universally of
cohomological descent. The same holds for the category of schemes with the étale topology, replacing abelian
sheaves with sheaves of Z/n-modules for a fixed n > 0.

Note that the universality aspect is clear once the property of being of cohomological descent is proven,
but in fact the mechanism of proof is to reduce to a situation where properness is not relevant but the
universality is essential. It is for this reason that we state the result including the universality aspect (so as
to put us in the correct frame of mind for what is about to happen). For emphasis, we will write X•/S to
remind ourselves of when we need to think about the entire augmented structure. As in previous discussions,
we will always say “abelian sheaf” but for the étale topology on schemes it must be understood that this
means Z/n-sheaf for a fixed integer n > 0 (and the informed reader can then extend things to torsion sheaves
and `-adic sheaves).

For a proper hypercovering X• → S, each map

Xn+1 → (coskn skn(X•/S))n+1

is a proper surjection (by the definition of “proper hypercover”) and hence is a map universally of cohomo-
logical descent by Theorem 7.7 (!). Thus, to prove Theorem 7.9, we are reduced to proving the following
theorem which is really the key general theorem in the theory of cohomological descent. For the proof of this
theorem, one again only needs to work with the extremely general concept of “space” as in §6, but thinking
about more concrete examples of “space” won’t impact any proofs.
Theorem 7.10. (Deligne) Let a : X• → S be an augmented simplicial space with each map of spaces

Xn+1 → (coskn skn(X•/S))n+1

universally of cohomological descent. Then a is universally of cohomological descent.
The proof of this theorem depends crucially on the universality, and we emphasize that it does not involve

the concept of P-hypercovering for any easily visualized P. Even in concrete geometric categories such as
topological spaces or schemes, properness or étaleness play no role in the proof of Theorem 7.10: the only
input of those special situations was to provide the bootstrapping device of a class of maps whose 0-coskeleta
were proven to be universally of cohomological descent. In view of the stability results in Theorem 7.5, we
can take P to be the class of morphisms universally of cohomological descent. In this case, Theorem 7.10
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says that an augmented P-hypercovering is universally of cohomological descent (as an augmented simplicial
object).

Before we launch into the proof, note that this theorem includes as a special case that of étale hypercovers
of spaces (even with a very general concept of space, using the class P of covering morphisms), since we
know by Theorem 7.2 that a covering morphism is universally of cohomological descent (as such a morphism
has a section locally on the target). Thus, by Theorem 6.11 we get the following vast generalization of C̆ech
theory (with the usual sorts of functorialities which we won’t repeat again).
Corollary 7.11. Let a : X• → S be an étale hypercovering of a space. Then for any K in D+(S), there is
a spectral sequence

Ep,q1 = Hq(Xp, a
∗
pK)⇒ Hp+q(S,K)

in which d•,q1 is induced by the simplicial structure on X•.
There’s also a sheafified version of Corollary 7.11 in the spirit of Theorem 6.12 whose formulation we omit.

Applying Corollary 7.11 to the case of discrete topological spaces, we get the following amusing corollary
which generalizes the classical exactness for C̆ech complexes on an abelian group A (with non-empty index
set I) to a wider combinatorial setting where the complex is really a hypercovering of sets with “values” in
A:
Corollary 7.12. Consider the category C of sets, with P the class of surjective maps. Let X•/S be
an augmented simplicial set which is a P-hypercovering of a point S (i.e., the maps of sets Xn+1 →
coskn skn(X•/S))n+1 are surjective set maps for all n ≥ −1). Then for any abelian group A, the augmented
chain complex

A→ Hom(X•, A),
with nth term Hom(Xn, A) and the evident alternating sum differential, is a resolution of A (i.e., is an exact
sequence of abelian groups).
Corollary 7.13. Let a : X• → S be an fppf hypercovering of a scheme S (by which we really mean to
use maps which are faithfully flat and locally of finite presentation). Then a is universally of cohomological
descent for the étale topology without any torsion restrictions.

It seems rather difficult to construct interesting fppf hypercovers for the étale topology which are not just
étale hypercovers, since the inverse limit step in the construction of coskeleta seems to generally destroy any
flatness unless everything was étale over S in the first place. Thus, Corollary 7.13 seems to be not very
useful.

Proof. Combine Corollary 7.4 and Theorem 7.10. �

Now we turn to the proof of Theorem 7.10, following Deligne’s argument in [SGA4, Exp Vbis, pp.54ff].
The first key observation is that we can make the argument of inductive nature by means of the following
lemma.
Lemma 7.14. If a : X• → S is an augmented simplicial space for which the augmented simplicial spaces

εn : coskn skn(X•/S)→ S

are of cohomological descent for all sufficiently large n, then a is of cohomological descent. The same holds
for universal cohomological descent.

Proof. The universal case is immediate by base change, so now just suppose the maps

εn : coskn skn(X•/S)→ S

are of cohomological descent for all sufficiently large n, and we wish to deduce that a is of cohomological
descent.

It suffices to prove that for any abelian sheaf F on S, we have F ' a∗a
∗F and Ri a∗(a∗F ) = 0 for

all i > 0. The basic idea is that by using the spectral sequence from Theorem 6.12, if we only care about
Rj a∗ ◦ a∗’s for j below some bound, then we don’t really need all of the data of X•, but only a low degree
truncation. Consequently, since coskn skn(X•/S) is the same as X• in degrees ≤ n, we’ll be able to read off
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what we want in any degree by simply shifting attention to the n-coskeleton with sufficiently big n (depending
on what we want to study).

To be more precise, note that the statement that F maps isomorphically to a∗a
∗F really only uses

sk1(X•/S), and we claim that the (functorial in the space!) spectral sequence

Ep,q1 = Rq ap∗(a∗pF )⇒ Rp+q a∗(a∗F )

from Theorem 6.12 shows that Rn a∗(a∗F ) only depends (even functorially) on sk2n+1X• Indeed, suppose
X• → X ′• is a map of augmented spaces over S with isomorphisms in degrees ≤ 2n+ 1. For example, taking
the adjunction

X• → X ′• = cosk2n+1 sk2n+1(X•/S)

is a good example. From such a map of simplicial spaces we get maps

ξp,q1 : Ep,q1 (X ′•/S)→ Ep,q1 (X•/S)

compatible with connecting maps and abutments, with ξp,q1 an isomorphism whenever p ≤ 2n+ 1. But Ep,q∞
is functorially determined by the (p′, q′)-parts of the spectral sequence with p′ + q′ ≤ 2(p+ q) + 1. Thus, if
p + q = n then since we have an isomorphism on (p′, q′)-parts for all p′ ≤ 2n + 1 it is automatic that the
natural map

Rn a′∗(a
′∗F )→ Rn a∗(a∗F )

is an isomorphism.
If, for some N ≥ 1, we apply these considerations to the natural map of simplicial spaces

X• → coskN skN (X•/S)

which is an isomorphism in degrees ≤ N (over the identity map on S in degree −1), we conclude that
knowing cohomological descent for the right side ensures that F ' a∗a

∗F for any abelian sheaf F on S
and that Ri a∗(a∗F ) = 0 for all i ≤ (N − 1)/2. By hypothesis we may take N as large as we please, so we’re
done. �

By Lemma 7.14, to prove Theorem 7.10 it suffices to prove:

Theorem 7.15. If X• → S is an augmented simplicial space such that for all −1 ≤ k < n the maps of
spaces

Xk+1 → (coskk skk(X•/S))k+1

are universally of cohomological descent, then coskn skn(X•/S)→ S is universally of cohomological descent.

This will be proven by induction on n, and we stress the importance of the universality in the hypotheses.
That is, even if we dropped universality from the conclusion, the proof would not work without universality
in the hypotheses. Also, note that (with the help of the truncated variants on the skeleton and coskeleton
functors; cf. Corollary 3.12) we could take X• to instead be n-truncated without affecting the meaning of
the theorem.

Proof. Notice that the hypothesis for n = −1 is empty and the conclusion for n = −1 is automatic. Indeed,
the conclusion for n = −1 is that the augmentation S• → S from the constant simplicial space on S is of
cohomological descent, and this is Example 6.7.

The interesting case is n ≥ 0. Let’s prove the conclusion for n = 0 by hand to see what is going on. To
treat n = 0 directly, we to show that the map

cosk0 sk0(X•/S)→ S

is universally of cohomological descent. But this map is exactly the augmentation on cosk0(X0/S), so we
want the map of spaces X0 → S to be universally of cohomological descent. However, the meaning of the
“n = 0” hypothesis (with only k = −1) is exactly that X0 → S is universally of cohomological descent!
Thus, we have at least been able to settle the base case n = 0 of the induction.
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Now for the induction we pick n ≥ 0 for which we know the theorem and we wish to prove it for n + 1
(actually, one could have skipped the treatment of n = 0 and instead began the induction at n = −1). In
particular, we have that

coskn skn(X•/S)→ S

is universally of cohomological descent. We wish to deduce that

coskn+1 skn+1(X•/S)→ S

is universally of cohomological descent. Consider the natural map

coskn skn(X•/S)→ coskn+1 skn+1 coskn skn(X•/S)

of adjunction. By Corollary 3.11 this is an isomorphism!
Thus, Y• = coskn skn(X•/S) is an (n + 1)-coskeleton over S (i.e., is isomorphic via adjunction to its

own coskn+1 skn+1) and is also known (by inductive hypothesis) to be universally of cohomological descent.
Meanwhile, Y ′• = coskn+1 skn+1(X•/S) is also an (n+ 1)-coskeleton over S, and we can define a map

f : Y ′• → Y•

over S which is just coskn+1 skn+1 applied to the canonical adjunction

h : X• → coskn skn(X•/S).

Note that for j ≤ n, fj : Y ′j → Yj is (up to canonical identifications) just the identity map on Xj and hence
is an isomorphism. Meanwhile, the map fn+1 is naturally identified with the map of spaces

hn+1 : Xn+1 → (coskn skn(X•/S))n+1

which is universally of cohomological descent by one of our initial hypotheses on the situation! Consequently,
to carry out the inductive step it suffices to prove the next two general theorems which abstract the essential
structure from the situation we have just formulated at the inductive step. This will complete the proof of
Theorem 7.10.

�

Theorem 7.16. (Deligne) Consider a map f : Y ′•/S → Y•/S between two simplicial spaces. Suppose n ≥ −1
is an integer such that

• The adjunctions

Y• → coskn+1 skn+1(Y•/S), Y ′• → coskn+1 skn+1(Y ′•/S)

are isomorphisms.
• The map of spaces fj : Y ′j → Yj is an isomorphism for all j ≤ n, and fn+1 is universally of

cohomological descent.
Then fm : Y ′m → Ym is universally of cohomological descent for every m.

We stress that the proof of this theorem makes no use of hypercovers, properness, or étaleness. Note
that the case n = −1 is really Theorem 7.5(3), and the proof of Theorem 7.16 uses Theorem 7.5(4) (whose
justification in turn rests on knowing Theorem 7.5(3) in the first place). Thus, although we include the case
n = −1, it’s actually a case who proof really required a separate discussion earlier.

Granting Theorem 7.16 for a moment, to conclude we just need to apply the following result in which
coskeletons play no explicit role, but in which there is a homotopy hypothesis which is satisfied in our
situation because of Lemma 5.7 (and the fact that formation of coskeletons commutes with fiber products,
thanks to adjointness reasons). It is crucial for the proof of a generalization of Theorem 7.10 (see Theorem
7.22 below) that this next result does not impose any explicit coskeleton hypothesis, even though such a
condition is certainly satisfied for the cases relevant in the proof of Theorem 7.10.
Theorem 7.17. (Deligne) Let f : Y ′•/S → Y•/S be a map between two simplicial spaces. Assume that fm
is of cohomological descent for all m. If [Y ′/Y ]p denotes the pth fiber power of Y ′• over Y•, assume also that
for all p ≥ 1 each simplicial “diagonal degeneracy” map

[Y ′/Y ]p → [Y ′/Y ]p+1
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is a homotopy inverse (over S) to both of the “projection face” maps to which it is a section.
If y : Y• → S and y′ : Y ′• → S are the augmentations, then the natural map

Ry′∗ ◦ y′
∗ → Ry∗ ◦ y∗

on D+(S) is an isomorphism. In particular, by transitivity of pushfoward/pullback adjunction, if Y•/S is of
cohomological descent then so is Y ′•/S.

Note the lack of a universality hypothesis. Of course, since the homotopies are required to be over S, if
the fm’s are universally of cohomological descent then all of the hypotheses are preserved by base change
on S and hence it follows that if Y•/S is universally of cohomological descent then so is Y ′•/S, exactly as
required to complete the proof of Theorem 7.10. Although Theorem 7.17 does not seem to be explicitly
stated in [SGA4], it probably is hidden somewhere in there because this lemma is the only means by which I
can see how to make a proof of Theorem 7.22 (which, while not stated in [SGA4], is said to be proven there
in [D]).

I am fairly certain that Theorem 7.17 is what is intended by the cryptic one-line observation near the
end of the proof of [SGA4, Thm 3.3.3, Exp Vbis] (see paragraph 2, page 138 of [SGA4]) that by means of
Theorem 7.16 it suffices for the proof of Theorem 7.15 (and hence Theorem 7.10) to consider the situation
after base change to fiber powers. Actually, for the purpose of proving Theorem 7.10 one can get away with
something whose proof is somewhat easier than Theorem 7.17. However, it seems that Theorem 7.17 is
essential in the proof of the generalization Theorem 7.22 of Theorem 7.10.

Now we turn to the proofs of Theorems 7.16 and 7.17.

Proof. (of Theorem 7.16) As we have just noted, the case n = −1 is already known, so we may assume n ≥ 0.
The property of fm being universally of cohomological descent follows from the hypotheses when m ≤ n+ 1.
To handle m > n + 1, we use the hypothesis that Y• and Y ′• are actually (n + 1)-coskeleta (over S). More
importantly, we will really make essential use of the “universality” aspect of the hypotheses.

Fix m > n+ 1. Since f is a map of simplicial objects and the adjunction

id→ coskn+1 skn+1

is natural, it follows from our description (better: construction) of coskeleta in terms of finite inverse limits
(here working in the slice category of spaces over S) that the map fm is exactly the canonical map

lim←−
skn+1 ∆[m]

Y ′φ → lim←−
skn+1 ∆[m]

Yφ

induced by the various maps fi : Y ′i → Yi for i ≤ n+ 1 (recall Yφ = Yi for φ : [i]→ [m] in ∆[m]).
We want to make this construction of fm on inverse limits more explicit in order to see that fm is

universally of cohomological descent. Recall first of all that by Corollary 3.10, to construct these inverse
limits it suffices to take the limit over objects φ : [i]→ [m] (with i ≤ n+ 1) such that φ is injective. Consider
a map

(7.11) [i] α //

ψ   @@@@@@@@ [i′]

ψ′

��
[m]

in skn+1 ∆[m] with ψ and ψ′ both injective. In particular, it follows that α must be injective! Thus, either
i < n+ 1 or else i = i′ = n+ 1 with α the identity map. This will be rather important shortly.

Let D denote the full subcategory of objects (φ : [i]→ [m]) in skn+1 ∆[m] with injective φ, so the inverse
limit construction (coskn+1(Y•))m is given by

lim←−
D

Yφ
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and likewise for Y ′• . In particular, these inverse limits can be realized inside of the respective product spaces∏
φ∈ob(D)

Yφ,
∏

φ∈ob(D)

Y ′φ

where we understand these products to be taken over S. The relations that cut out the inverse limit
subobjects inside the product are exactly those imposed by maps among objects in D, such as in (7.11): the
relation from (7.11) is that projection to the Yψ and Yψ′ factors must be compatible with the map

Y (α) : Yψ′ = Yi′ → Yi = Yψ.

Let Kα ↪→
∏
φ∈D Yφ be cut out by the relation (7.11), and define K ′α inside of

∏
φ∈D Y

′
φ similarly. The

inverse limit Ym is just the overlap (i.e., fiber product) of the subobjects Kα inside of
∏
φ∈D Yφ as α runs

over all morphisms in D (as illustrated by (7.11)), and similary for making the inverse limit Y ′m out of the
K ′α’s.

We have a natural map ∏
φ∈D

Y ′φ →
∏
φ∈D

Yφ

induced by the functorial (!) map f : Y ′• → Y•, and this induces the map fm on inverse limits

lim←−
D

Y ′φ → lim←−
D

Yφ,

determined by using the map fi on φ-parts for φ : [i] → [m] an object in D. For any “relation” α as in
(7.11), with 0 ≤ i, i′ ≤ n+ 1, the square

Y ′i′
Y (α) //

fi′

��

Y ′i

fi

��
Yi′

Y ′(α)

// Yi

is commutative because skn+1(f) : skn+1(Y•/S)→ skn+1(Y ′•/S) is natural (note that Yi = Yψ and Yi′ = Yψ′ ,
and similarly for Y ′•). This ensures that the map∏

φ∈D

Y ′φ →
∏
φ∈D

Yφ

induced by skn+1(f) carries the “relation” subobject K ′α over into the relation subobject Kα. Consequently,
for each morphism α of D as in (7.11) we get a commutative square

(7.12) K ′α

��

//
∏
φ∈D Y

′
φ∏
fφ

��
Kα

//
∏
φ∈D Yφ

for a uniquely determined left column (with horizontal maps the subobject inclusions). The induced map⋂
α

K ′α →
⋂
α

Kα

is exactly fm, and we can view this as being induced by the various left columns in (7.12) as we vary over
α’s.

Now the miracle happens: since we managed to get ourselves to just working with the subcategory D
for which relations as in (7.11) only happen for either i < n + 1 or i = j = n + 1 with α the identity, we
claim that the commutative squares (7.12) are cartesian. Indeed, for the case i = j = n + 1 with α the
identity, there is no non-trivial relation and hence Kα and K ′α fill up their respective product spaces. But
when i < n+ 1 then

fi : Y ′i = Y ′ψ → Yψ = Yi
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is an isomorphism (see the initial hypotheses), so a “point”

y′ ∈
∏
φ∈D

Y ′φ

lies in the relation K ′α (i.e., Y ′(α)(y′ψ′) = y′ψ in Y ′ψ = Y ′i ) if and only if

fi(Y ′(α)(y′ψ′)) = fi(y′ψ)

in Yψ = Yi. But
fi ◦ Y ′(α) = Y (α) ◦ fi′

by the naturality of f : Y ′• → Y•, so the condition of membership in K ′α for y′ amounts to f(y′) lying in Kα.
This is exactly the statement that (7.12) is cartesian for each α.

It then follows that the natural commutative diagram

lim←−
D

Y ′φ //

fm

��

∏
φ∈D Y

′
φ

∏
fφ

��
lim←−
D

Yφ //
∏
φ∈D Yφ

is cartesian. Hence, the left column fm is universally of cohomological descent as long as the right column
is of universal cohomological descent (we would hit a brick wall here if we didn’t have the universality
condition). But fφ : Y ′φ = Y ′i → Yi = Yφ is just fi with i ≤ n + 1 and so is universally of cohomological
descent for all φ in D (recall the initial hypotheses!). Thus, our original claim that fm is universally of
cohomological descent for all m has been reduced to the assertion that if Z ′1/S → Z1/S and Z ′2/S → Z2/S
are maps universally of cohomological descent between augmented spaces over S, then the product map of
spaces

Z ′1 ×S Z ′2 → Z1 ×S Z2

is universally of cohomological descent. This follows from Theorem 7.5, and completes the proof that all
maps fm : Y ′m → Ym are universally of cohomological descent. �

Before moving on to prove Theorem 7.17, we record an interesting consequence of the preceding argument.
Corollary 7.18. Let P be a class of space morphisms stable under base change and compositions, and
containing all isomorphisms, and let n ≥ 0 be an integer. For any map u• : X•/S → Y•/S of n-truncated
augmented simplicial objects with uj of type P for all j ≤ n, the map coskn(u•) between simplicial objects is
of type P in each degree.

Proof. The only issue is to check degrees > n. The proof of Theorem 7.16 shows that in each degree, the
induced map on n-coskeleta can be expressed as a base change on a product of various fj ’s (perhaps some
repeated several times). The hypotheses on P ensure that a map constructed in this way is also of type
P. �

Proof. (of Theorem 7.17) In order to apply the cohomological descent property of the fm’s, we need to use
a bisimplicial point of view similar to the proof of Theorem 7.5(1).

Consider the bisimplicial object Z•• made out of the fiber powers of Y ′• over Y•. That is,

Zp,q = Y ′p ×Yp · · · ×Yp Y ′p = cosk0(Y ′p/Yp)q

is a (q + 1)-fold fiber product of Y ′p over Yp (with p, q ≥ 0), with pth column

Zp,• = cosk0(Y ′p/Yp)

as a simplicial object (so we have an augmentation to Y•/S along the bottom edge induced by the map f
from Y ′• = Z•,0 to Y•) and qth row Z•,q = [Y ′/Y ]q+1 given by the (q + 1)th fiber power of Y ′• over Y•. We
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also insert an augmentation to the constant simplicial space S•/S along the left edge, so the summarizing
picture is:

(7.13) cosk0(S/S)

ε

��

{Zp,q = cosk0(Y ′p/Yp)q}

f̃

��

π̃oo

S Y•y
oo

with augmentation π̃0 along the 0th row exactly y′ : Y ′• → S, and f̃ essentially the original map f : Y ′• → Y•
(up to whether we want to focus on it as a map from the 0th row Z•,0 to Y• or as a pair of pushfoward/pullback
functors (i.e. map of topoi) between the categories of sheaves of sets on Z•• and Y•). Of course, the notions
of sheaves of sets on Z•• and functors such as

f̃∗ : Z̃•• → Y•, π̃
∗ : S̃• → Z̃••

and so on are defined just as in the proof of Theorem 7.5(1).
We introduce the map

a0 = ε ◦ π̃0 = y0 ◦ f0 : Z0,0 = Y ′0 → S

(so this is just y′0 : Y ′0 → S) and the pair of adjoint functors a∗ and a∗ between Z̃•• and S̃ just as in the
proof of Theorem 7.5(1). Since the augmented columns of Z•• are of cohomological descent, we conclude
just as in the proof of Theorem 7.5(1) (see (7.5)) that f̃ is of cohomological descent in the sense that

id→ Rf̃∗ ◦ f̃∗

is an isomorphism on D+(Y•), or equivalently that

f̃∗ : D+(Y•)→ D+(Z••)

is fully faithful. Thus, we conclude that the natural map

(7.14) Ry∗ ◦ y∗ → Ry∗ ◦Rf̃∗ ◦ f̃∗ ◦ y∗ = Ra∗ ◦ a∗

is an isomorphism on D+(S).
We now factor the “map” a : Z•• → S (really viewed as an adjoint pair of functors) as a = ε ◦ π̃, so using

(7.14) yields a composite isomorphism

Ry∗ ◦ y∗ ' Ra∗ ◦ a∗ ' Rε∗ ◦ (Rπ̃∗ ◦ π̃∗) ◦ ε∗.
The fact that π̃ along the 0th row is exactly y′ : Y ′• → S is what will provide the link with y′ which will
eventually yield that the natural map

(7.15) Ry∗ ◦ y∗ → Ry′∗ ◦ y′
∗

is an isomorphism (which is what we want to prove). In fact, we’re going to make a degenerate spectral
sequence which will yield an isomorphism

Ra∗ ◦ a∗ ' Rπ̃0∗ ◦ π̃∗0 = Ry′∗ ◦ y′
∗

whose composite with (7.14) will be exactly (7.15).
Using the Dold-Kan correspondence

Ab(S•) = Cosimp(Ab(S)) ' Ch≥0(Ab(S)),

the functor ε∗ on Ab(S•) is identified with the functor H0 on Ch≥0(Ab(S)) which extracts the 0th homology.
Thus, its derived functors Rj ε∗ are just the Hj ’s as a δ-functor. But recall that under the Dold-Kan
correspondence, for any abelian cosimplicial sheaf A• on S, the homology of the associated “normalized”
chain complex (which is what sets up the Dold-Kan correspondence) is δ-functorially isomorphic to the
homology of the chain complex s(A•) whose nth term is An and whose nth differential is the alternating
sum of face maps An → An+1. In other words, if F • is an object in Ab(S•), then δ-functorially

Rj ε∗(F •) ' Hj(s(F •)),
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and we’ll just write Hj(F •) to denote this homology sheaf (with the evident δ-functor structure, though the
δ-functorial compatibility will not be relevant in what follows). Thus, we have a natural Grothendieck-Leray
spectral sequence

Ep,q2 = Hp(Rq π̃∗(G ••))⇒ Rp+q a∗(G ••)

for any G •• in Ab(Z••). In particular, for any F in Ab(S) there is a natural spectral sequence

(7.16) Ep,q2 = Hp(Rq π̃∗(a∗F ))⇒ Rp+q a∗(a∗F ).

We are going to prove that (7.16) degenerates at the E2 stage, with Ep,q2 = 0 for p > 0 and

E0,q
2 ' Rq π̃0∗(π̃∗0F ) = Rq y′∗(y

′∗F ),

and this will essentially give us what we wanted to prove (modulo some compatibility verifications). Pick an
injective resolution I• of a∗F in Ab(Z••), so each Ir is a sheaf on Z••. In order to keep the notation clear,
we will write I••r instead of Ir. For example,

I•,q0 → I•,q1 → . . .

is a resolution of π̃∗q (ε∗F ) = a∗F |Z•,q in Ab(Z•,q), and is even an injective resolution, for the restriction
functor

Ab(Z••)→ Ab(Z•,q)

carries injectives (such as Ir = I••r ) to injectives, by Lemma 7.6. Of course, the object Rj π̃∗(a∗F ) in Ab(S•)
is the jth homology of the complex

π̃∗(I0)→ π̃∗(I1)→ . . .

in Ab(S•).
In order to get a better handle on this situation, let I = Ir for a fixed r ≥ 0, and consider the cosimplicial

sheaf π̃∗(I) on S. Actually, for clarity let’s consider this pushfoward for I an arbitrary abelian sheaf on
Z••. The pushfoward π̃∗(I) is a cosimplicial sheaf on S with qth term π̃q∗(I•,q) and cosimiplicial structure
induced by the vertical face and degeneracy maps in Z•• (all of which are maps over S). Consider a face
or degeneracy map between two adjacent rows Z•,q and Z•,q+1 with q ≥ 0. This may be viewed as a map
between two augmented simplicial spaces over S, with augmentations

π̃q : Z•,q → S, π̃q+1 : Z•,q+1 → S.

We now apply Lemma 5.6 to the category C ′ of objects in the site Z•• (in which the physical object Z••
makes sense as a bisimplicial object, with each row and column a simplicial object). More specifically, if we
consider the rows Z•,q and Z•,q+1 as simplicial objects in C ′, then by the main homotopy hypothesis of the
theorem we’re trying to prove, each “diagonal degeneracy” map

σjq : Z•,q → Z•,q+1

for 0 ≤ j ≤ q is a simplicial map which is a homotopy inverse to the two “projection face” maps ∂jq+1 and
∂j+1
q+1 to which it is a section. Taking F in Lemma 5.6 to be the contravariant functor which assigns to any

object (U → Zp,q) in C ′ the pushfoward to S of the restriction Ip,q|U , we conclude that the resulting “total
pushfowards” F (Z•,q) and F (Z•,q+1) as cosimplicial abelian sheaves on S have the remarkable property that
the map

F (σ) : F (Z•,q+1)→ F (Z•,q)

induced by any vertical degeneracy
σ = σjq : Z•,q → Z•,q+1

is a homotopy inverse to the map induced by both vertical faces

∂jq+1, ∂
j+1
q+1 : Z•,q+1 → Z•,q

to which σ is a section, where “homotopy inverse” may be understood to mean on the level of chain complexes
s(F (Z•,q)) and s(F (Z•,q+1)).
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Thus, if we pass to the 0th homologies π̃q∗(I|Z•,q ) and π̃q+1 ∗(I|Z•,q+1) of these chain complexes, it follows
that each map

sqj : π̃q+1 ∗(I|Z•,q+1)→ π̃q∗(I|Z•,q )
in Ab(S•) induced by a vertical degeneracy σjq is a genuine inverse to the map induced by each of the vertical
faces ∂jq+1, ∂

j+1
q+1 . Thus, when we consider π̃∗(I) as a cosimplicial sheaf on S, any two “consecutive” face

maps dj and dj+1 from degree q to degree q+ 1 are equal to a common isomorphism (namely, the inverse of
a certain degeneracy map). Now varying j shows that all the face maps in degree q are equal to a common
isomorphism. Consequently, if we pass to the chain complex

s(π̃∗(I))

in Ab(S) whose differentials are alternating sums of face maps (a sum over 0 ≤ j ≤ n + 1 in degree n), it
follows that the differentials in even degree are 0 and the differentials in odd degree are isomorphisms. Thus,
the homology of this chain complex vanishes in positive degrees and is isomorphic to π̃0∗(I|Z•,0) in degree 0!!

Now consider the computation of
Rq π̃∗(G ••)

as a cosimplicial sheaf on S for an abelian sheaf G •• on Z•• (we’ll specialize to G •• arising as pullback from
S•, or even S, shortly). We pick an injective resolution

I••0 → I••1 → . . .

of G ••, and then apply π̃∗ to get a complex

π̃∗(I••0 )→ π̃∗(I••1 )→ . . .

in Ab(S•) whose qth homology in Ab(S•) is exactly Rq π̃∗(G ••). The preceding calculation shows that each
π̃∗(I••r ) in Ab(S•) is sent by

Ab(S•) ' Cosimp(Ab(S)) s−→ Ch≥0(Ab(S))

to a chain complex with vanishing differentials in even degrees and isomorphism differentials in odd degrees.
This property is therefore inherited by the homology sheaves Rq π̃∗(G ••) on S•. Thus, applying Rp ε∗ = Hp◦s
to Rq π̃∗(G ••) yields 0 when p > 0 and yields

Rq π̃∗(G ••)|S0 ' Rq π̃0∗(G ••|Z•,0)

when p = 0, where this latter isomorphism of course uses the fact that restricting an injective in Ab(Z••) to
a fixed row or column (e.g., Z•,0) yields an injective abelian sheaf on that row or column.

Since Z•,0 = Y ′• with augmentation π̃0 = y′, by taking G •• = a∗(F ) for an abelian sheaf F on S (so
G ••|Z•,0 is just y′∗F ) we conclude that

Rp ε∗(Rq π̃∗(a∗F )) =
{

0, p > 0
Rq y′∗(y

′∗F ), p = 0

In other words, in the natural spectral sequence (7.16) for computing Rn a∗(a∗F ), we have Ep,q2 = 0 when
p > 0 and degeneration yields a natural edge isomorphism

Rn y′∗(y
′∗F ) ' Rn a∗(a∗F ).

It remains to check that for all n ≥ 0, the diagram

(7.17) Rn y∗(y∗F ) //

'
''PPPPPPPPPPPP Rn y′∗(y

′∗F )

'
��

Rn a∗(a∗F )

commutes, where the top row is “pullback” along f : Y ′•/S → Y•/S, the right vertical arrow is the edge map
just shown to be an isomorphism, and the diagonal arrow is “pullback” along the augmentation

f̃ : Z•• → Y•.
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One way to check the commutativity is to identify all three sides with Hn’s of natural adjunction maps on
the level of derived categories, but a simpler way (in the present context, where we’re evaluating on the level
of abelian sheaves) is to just chase how everthing is constructed in terms of injective resolutions of abelian
sheaves. �

Let us conclude these notes by discussing a mild “relativization” of the theory (also due to Deligne, but
apparently not mentioned in [SGA4]). So far, we have studied the phenomenon of cohomological descent for
augmented simplicial objects

a : X• → S.

We also saw in the discussion preceding Definition 6.5 that such an a can be uniquely factored as a = εS ◦a•
where εS : S• → S is the constant simplicial object on S and

a• : X• → S•

is a map respecting augmentations. It is reasonable to ask if we can somewhat enlarge the scope of the
preceding conclusions by focusing more on a• instead of the augmentation. More specifically, suppose

X• → S, Y• → S

are two augmented simplicial objects over S, and

u• : X• → Y•

is a map respecting the augmentations. We can ask if there is a good theory of cohomological descent for
u• which will recover the earlier theory when we take Y•/S = S•/S to be the constant augmented object.

The basic setup goes as follows. We fix a category C which has finite fiber products, and a fix an
augmented simplicial object Y•/S in C. Consider the functor on slice categories

skY•n : Simp(C/S)/(Y•/S)→ Simpn(C/S)/ skn(Y•/S)

which assigns to any X•/S → Y•/S the truncation skn(X•/S) → skn(Y•/S) for n ≥ −1. Taking Y•/S =
S•/S recovers the old skeleton functors for simplicial objects in the slice category C/S. In any case, one can
ask if this functor has a right adjoint, and it does:

coskY•n (Z•/S) = coskn(Z•/S)×coskn skn(Y•/S) (Y•/S).

The functor sk−1 has constant value S and the adjoint coskY•−1 sends the unique object S to Y•/S.
By using the easy fact that these modified skeleton and (right adjoint!) coskeleton functors still commute

with finite inverse limits (such as fiber products), one readily checks (by reduction to the first part of
Corollary 3.11) that the adjunction

skY•n ◦ coskY•n → id

is an isomorphism. Also, the basic properties of coskeleta (such as Corollary 3.11) remain true in this more
general setting. Note, however, that there seems to be no analogue of Theorem 6.12 for u•.

The basic homotopy property of coskeleta in Lemma 5.7 also carries over:
Lemma 7.19. Let T•/S be an augmented simplicial object in C, and let f, g : X ′•/S → X•/S be maps of
n-truncated augmented simplicial objects in C over skn(T•/S), where n ≥ 0 is an integer. Assume that f and
g coincide on (n− 1)-skeleta (a vacuous condition if n = 0). Then there exists a strict simplicial homotopy
(over S) between coskT•n (f) and coskT•n (g).

In particular, if f : X ′•/S → X•/S and s : X•/S → X ′•/S are maps of n-truncated augmented simplicial
spaces over skn(T•/S) with f and s inverse on (n − 1)-skeleta and sn a section to fn, then coskT•n (f) and
coskT•n (s) are strict homotopy inverse to each other.

Proof. By Lemma 5.7, coskn(f) and coskn(g) are strictly homotopic (these coskeleta being computed relative
to the augmentation to S, of course). Recall that by construction

coskT•n (X•/S) = coskn(X•/S)×coskn skn(T•/S) (T•/S),
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and similarly for X ′•. We must check that the strict homotopy constructed between coskn(f) and coskn(g)
in the proof of Lemma 5.7 is well-behaved with respect to base change by the adjunction

T•/S → coskn skn(T•/S).

Since the diagram

X•/S
f //
g

//

��

Y•/S

��
skn(T•/S)

id //
id
// skn(T•/S)

commutes, we can apply the naturality aspect of Lemma 5.7, keeping in mind that when Lemma 5.7 is applied
to two equal maps h : Z ′•/S → Z•/S, such as in the bottom row of the preceding diagram, the resulting
homotopy is the trivial one (corresponding to the map ∆[1]i → HomC(Z ′i, Zi) sending everything to hi,
which in the case of a category admitting finite coproducts corresponds to the projection ∆[1] × Z ′• → Z•
defined by h). Thus, the homotopy H between the two maps

coskn(f), coskn(g) : coskn(X•/S)→ coskn(Y•/S)

is compatible with the “identity” homotopy on coskn skn(T•/S).
In other words, the map

Hi : ∆[1]i → HomC(coskn(X•/S)i, coskn(Y•/S)i)

has values in C-maps over (coskn skn(T•/S))i, and the naturality of X•/S → skn(T•/S) and Y•/S →
skn(T•/S) and the functoriality of coskn ensure that everything here respects functoriality in [i]. A more
picturesque description of this situation can be given when C admits finite coproducts: it says that the
diagram

∆[1]× coskn(X•/S) H //

��

coskn(Y•/S)

��
∆[1]× coskn skn(T•/S)

pr2

// coskn skn(T•/S)

commutes.
In any case, we may make the base change by the maps

Ti → (coskn skn(T•/S))i
which respect functoriality in [i], and this yields maps

H ′i : ∆[1]i → HomC/Ti(coskT•n (X•/S)i, coskT•n (Y•/S)i)

which carry (ι0)i to coskT•n (f)i and (ι1)i to coskT•n (g)i, and respect naturality in [i]. The reader can easily
supply a more visual description when C admits finite coproducts, and either way we see that this data H ′

is exactly the desired homotopy between coskT•n (f) and coskT•n (g) (and is even readily checked to enjoy a
naturality property analogous to that shown in Lemma 5.7 for “ordinary” coskeleta over S). �

We now make a definition which, for Y•/S = S•/S, recovers our earlier notion of P-hypercovering (origi-
nally formulated only for “maps” of the type a : X• → S):
Definition 7.20. Let P be a class of morphisms in C which is stable under base change and composition,
and contains all isomorphisms. We say that a map

u• : X• → Y•

of augmented objects over S is a P-hypercovering if

Xn+1 → (coskY•n skY•n (X•/S))n+1 ' (coskn skn(X•/S))n+1 ×(coskn skn(Y•/S))n+1 Yn+1

is in P for each n ≥ −1.



COHOMOLOGICAL DESCENT 65

Example 7.21. When Y•/S = S•/S, this coincides with the earlier notion of P-hypercovering. When n = −1,
then since

coskY•−1 skY•−1(X•/S) = Y•/S

we see that the condition is that X0 → Y0 be of type P.
Passing to the case of simplicial spaces, we can now speak of u• being a proper hypercovering, or an étale

hypercovering, or more generally a hypercovering relative to the class of morphisms which are universally
of cohomological descent (note that Theorem 7.5 ensures that this class of morphisms satisfies the stability
requirements for P as in Definition 7.20). The natural extension of Theorem 7.10 is:
Theorem 7.22. Consider u• : X•/S → T•/S a map of augmented simplicial spaces, and let

x : X• → S, t : T• → S

be the augmentations. If u• is a hypercovering with respect to the class of morphisms universally of cohomo-
logical descent, then the natural “pullback” map

(7.18) Rt∗ ◦ t∗ → Rt∗ ◦Ru•∗ ◦ u∗• ◦ t∗ ' Rx∗ ◦ x∗

on D+(S) is an isomorphism.
When T•/S = S•/S, this is exactly Theorem 7.10 (thanks to Example 6.7 and some easy compatibility

checks).

Proof. For ease of exposition, let’s refer to the condition of (7.18) being an isomorphism as the property that
X• (or more accurately, u•) is of T•/S-cohomological descent. The proof that X• is of T•/S-cohomological
descent whenever u• is a “universal cohomological descent” hypercovering basically amounts to modifying
the string of arguments that proved Theorem 7.10.

It suffices to show that for F in Ab(S), the map

(7.19) Rt∗(t∗F )→ Rx∗(x∗F )

is an isomorphism. By the “functoriality in spaces” aspect of Theorem 6.12 (applied to u•), we have a
commutative diagram of spectral sequences

Rq tp∗(t∗pF ) ⇒ Rp+q t∗(t∗F )
↓ ↓

Rq xp∗(x∗pF ) ⇒ Rp+q x∗(x∗F ).

Thus, we can use the technique of proof of Lemma 7.14 to conclude that the property of (7.19) being an
isomorphism on nth homology only depends on sk2n+1(u•). Thus, by using the adjunction maps

X• → coskT•N skT•N (X•/S)

over T•/S for all N , we see that if coskT•N skT•N (X•/S) is of T•/S-cohomological descent for all N then so is
X•, as desired.

Recalling the hypothesis on our original u•, we can therefore reduce to the analogue of Theorem 7.15:
if n ≥ −1 is an integer and u• : X•/S → T•/S is a map of augmented simplicial spaces such that for all
−1 ≤ k < n the degree k + 1 map

Xk+1 → (coskT•k skT•k (X•/S))k+1

is universally of cohomological descent, then we claim that coskT•n skT•n (X•/S) is of T•/S-cohomological
descent. The case n = −1 is trivial, since

coskT•−1 skT•−1(X•/S) = T•.

On the other hand, the case n = 0 (so just k = −1) is not so trivial, and this contrasts with the setup in the
proof of Theorem 7.15, where we could readily verify the case n = 0. The hypothesis for n = 0 amounts to
requiring that X0 → T0 be universally of cohomological descent, and we wish to conclude that

coskT•0 (X0/S) = cosk0(X0/S)×cosk0(T0/S) (T•/S)
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is of T•/S-cohomological descent. Even when T• = cosk0(T0/S) this is not obvious (to me): this special case
says that if X0 → T0 is a map over S which is universally of cohomological descent, then cosk0(X0/S) is of
cosk0(T0/S)/S-cohomological descent. Thus, we really do begin the induction at the trivial case n = −1.

Since the analogue of Corollary 3.11 for the functors skT•n and coskT•n is true, we can use the exact same
inductive argument as in the proof of Theorem 7.15 (beginning the induction at the trivial case n = −1).
We use the functors coskT•n and skT•n , and consider T•/S-cohomological descent, whereas in the proof of
Theorem 7.15 we only considered (universal) cohomological descent over S (or what comes to the same,
S•/S-cohomological descent).

By letting

Y ′• = coskT•n+1 skT•n+1(X•/S), Y• = coskT•n skT•n (X•/S)

we have a natural map

(7.20) f : Y ′•/S → Y•/S

obtained by applying coskT•n+1 skT•n+1 to the canonical adjunction

h : X• → coskT•n skT•n (X•/S),

and by a transitivity argument it suffices to show that Y ′• is of Y•-cohomological descent (for our arbitrary
but fixed n ≥ −1 which we have suppressed from the notation Y• and Y ′•).

As in the proof of Theorem 7.15, the map fj is an isomorphism for j ≤ n while fn+1 is identified with
the map

Xn+1 → (coskT•n skT•n (X•/S))n+1

which by hypothesis on u• : X•/S → T•/S is universally of cohomological descent. We want to apply
Theorem 7.17 to (7.20), and this requires we check that all maps fm are of cohomological descent and that
the homotopy hypothesis in Theorem 7.17 is satisfied (it is important here that Theorem 7.17 does not
require that anything be a coskeleton relative to S). We will obtain the (universal) cohomological descent
property for the fm’s by an indirect application of Theorem 7.16 (rather than have to rework the proof
of Theorem 7.16 for more general skeleton and coskeleton functors), and then we’ll check the homotopy
requirement.

We argue as follows. Since fj is an isomorphism for all j ≤ n and fn+1 is universally of cohomological
descent, by applying coskn+1 skn+1 throughout (functors relative to S•/S) we conclude via Theorem 7.16
that the simplicial map coskn+1 skn+1(f) induces a degreewise map of spaces which (for each degree) is
universally of cohomological descent. Thus, for all m > n+ 1 the base change map

(coskn+1 skn+1(Y ′•/S))m ×(coskn+1 skn+1(T•/S))m Tm → (coskn+1 skn+1(Y•/S))m ×(coskn+1 skn+1(T•/S))m Tm

is also (universally) of cohomological descent. But this map is exactly the map coskT•n+1 skT•n+1(f), in degree
m. Since f is a map between coskT•n+1’s, we may make the identification

coskT•n+1 skT•n+1(f) = f.

Thus, we conclude that for all m > n+1, the map of spaces fm is (universally) of cohomological descent. That
is, fm is (universally) of cohomological descent for all m > n+ 1. Hence, fj is (universally) of cohomological
descent for every j.

To apply Theorem 7.17, it remains to check that for all p ≥ 1 and all 0 ≤ j < p, the simplicial fiber power
“face” projections

∂j , ∂j+1 : [Y ′/Y ]p+1 → [Y ′/Y ]p

are homotopy inverse to the common diagonal “degeneracy” section σj , with these all viewed as maps of
simplicial spaces. Since skT•n and coskT•n commute with fiber products, we may invoke Lemma 7.19 (replacing
the use of Lemma 5.7 in the proof of Theorem 7.10). �
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