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1. Introduction

1.1. Motivation. Over C and over non-archimedean fields, analytification of algebraic spaces is defined as
the solution to a quotient problem. Such analytification is interesting, since in the proper case it beautifully
explains the essentially algebraic nature of proper analytic spaces with “many” algebraically independent
meromorphic functions. (See [A] for the complex-analytic case, and [C3] for the non-archimedean case.)
Working with quotients amounts to representing a covariant functor. Our aim is to characterize analytifica-
tion of algebraic spaces via representing a contravariant functor, generalizing what is done for schemes.

In the remainder of §1.1, we review the situation in the case of schemes, and then address the difficulties
which arise for algebraic spaces (especially over non-archimedean fields). In particular, we will explain why
a certain naive approach to the non-archimedean case (using functors on affinoid algebras) is ultimately not
satisfactory. Our main theorem is stated in §1.2.

For a scheme X locally of finite type over C, the analytification Xan can be defined in two ways. In the
concrete method, we choose an open affine cover {Ui} and use a closed immersion of each Ui into an affine
space to define Uan

i as a zero locus of polynomials in a complex Euclidean space. These are glued together,
and the result is independent of {Ui}. A more elegant approach, pushing open affines into the background
and functoriality into the foreground, is to use a map iX : Xan → X that exhibits Xan as the solution to
a universal mapping problem: it is final among all morphisms Z → X where Z is a complex-analytic space
and morphisms are taken in the category of locally ringed spaces of C-algebras. In other words, (Xan, iX)
represents the contravariant functor Hom(·, X) on the category of complex-analytic spaces.

Example 1.1.1. If X is affine n-space An
C for some n ≥ 1, the functorial criterion yields Xan = Cn with

its evident iX because (i) Cn equipped with its standard coordinate functions is universal among complex-
analytic spaces equipped with an ordered n-tuple of global functions, (ii) An

C satisfies the analogous property
in the category of all locally ringed spaces over C (by [EGA, II; ErrI, 1.8.1]).

For fields k complete with respect to a non-archimedean absolute value, if |k×| 6= 1 then it goes similarly
since the categories of algebraic k-schemes and rigid-analytic spaces over k are full subcategories of the
category of locally ringed G-spaces of k-algebras (where a G-space is a Grothendieck topology whose “opens”
are subset inclusions, coverings are distinguised set-theoretic coverings, and fiber products are set-theoretic
intersections); see [C1, §5.1]. The analogue for k-analytic Berkovich spaces is in [Ber2, 2.6].

One merit of introducing the map iX is that it underlies various “analytification” operations:

Example 1.1.2. Let f : X → Y be a map between locally finite type schemes over C. By the universal
property of iY , there is a unique analytic map filling in the top row of a commutative diagram:

Xan
fan

//

iX

��

Y an

iY

��
X

f
// Y
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The same happens in the non-archimedean cases. This illustrates the role of the functorial characterization:
it not only defines fan in an elegant manner, but also underlies the definition F an := i∗X(F ) for any coherent
sheaf F on X (as arises in the formulation of GAGA over C; see [Se, Prop. 2, Def. 2] for the implicit use of iX
in Serre’s original work). A similar procedure is used in the formulation of the Artin comparison isomorphism
between topological and algebraic étale cohomology for finite type schemes over C [SGA4, XVI, 4.1], as well
as its non-archimedean analogue with Berkovich spaces ([Ber1, §3.4], [Ber2, 7.5.1]).

In a previous joint work with M. Temkin [CT], a theory of analytification was developed for (quasi-
separated) algebraic spaces X locally of finite type over a field k complete with respect to a non-archimedean
absolute value. We considered analytification in two senses, using rigid-analytic spaces (when k has a non-
trivial absolute value) and using k-analytic spaces in the sense of Berkovich. Briefly, the idea is to choose
an arbitrary étale chart in schemes R ⇒ U for X , and to consider a quotient X an for the analytified
equivalence relation Ran ⇒ U an, where these latter analytifications are either taken to be rigid-analytic
spaces (with |k×| 6= 1) or k-analytic Berkovich spaces; when defining the quotient (if it exists!), we use the
Tate-étale topology from [CT, §2.1] in the rigid-analytic case and the usual étale topology in the Berkovich
case. The same analytified quotient procedure is used over C.

The existence or not of X an, as well as its functoriality, turn out to be independent of the choice of étale
scheme chart (in a sense made precise in [CT, §2], especially [CT, §2.2]). The main theorem in [CT] is that
X an exists in both the rigid-analytic and Berkovich senses when X is separated (along with a compatibility
between these two kinds of analytification, as well as for fiber products and extension of the ground field).

Remark 1.1.3. To emphasize the importance of the global hypothesis of separatedness for the existence of
X an, even though it may seem that the existence should be a more local problem, we note that in [CT,
§3.1] there are examples of non-separated smooth algebraic spaces S of dimension 2 over Q whose diagonal
∆S /Q is an affine immersion and whose scalar extension to any non-archimedean field of characteristic 0
does not admit an analytification in either sense yet for which S an

C does exist.

Remark 1.1.4. In the complex-analytic and both non-archimedean cases, a necessary condition for X an to
exist (or as we shall say, for X to be analytifiable) is that the quasi-compact ∆X /k is an immersion [CT,
2.2.5, 4.1.4]. It is elementary to prove sufficiency of this condition over C [Kn, I, 5.18], but Remark 1.1.3
shows that such sufficiency fails in the non-archimedean case. (The dichotomy stems from the nature of fiber
products in these various cases.) In the non-archimedean case it a very difficult problem to exhibit sufficient
conditions for the existence of X an which are weaker than separatedness

Question. In the complex-analytic and especially both non-archimedean cases, can we characterize the
analytification X an in a manner which avoids the crutch of an étale scheme chart (much as the character-
ization of Xan in the scheme case via iX avoids the crutch of affine open subschemes)? The aim is not to
give a new construction of (or practical existence criterion for) X an, but rather to describe the contravariant
functor of points Hom(·,X an) in a manner which also characterizes when X an exists, akin to the scheme
case. (The quotient approach describes the covariant functor Hom(X an, ·).)

The answer to this Question is provided by our main result in Theorem 1.2.1 below. It involves topoi,
so we now consider a more concrete attempt in the non-archimedean case. The essential problem when X
is an algebraic space is that it is (by definition) a functor on schemes, so it is not obvious how to define a
concept of morphism Z → X with Z an analytic space over the ground field. In the rigid-analytic case,
if Z = Sp(A) is affinoid then it is tempting to make the ad hoc definition that a morphism Z → X is an
element in X (A) = Homk(SpecA,X ). But is this local on Z? More specifically, if {Sp(Ai)} is a finite
affinoid cover of Z and A′ :=

∏
Ai then is the diagram of sets

(1.1.1) X (A)→X (A′)⇒X (A′⊗̂AA′)

exact? This is not clear, because although fpqc descent holds for (quasi-separated) algebraic spaces [LMB,
A.4], so

X (A)→X (A′)→X (A′ ⊗A A′)
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is exact, it is not evident if X (A′ ⊗A A′)→X (A′⊗̂AA′) is injective since A′ ⊗A A′ → A′⊗̂AA′ is generally
not faithfully flat (as A′ ⊗A A′ is generally not even noetherian).

In the special case that A = k′ is a finite extension of k and X is analytifiable, functoriality of analytifi-
cation defines a map

X (k′) = Homk(Spec k′,X )→ Hom((Spec k′)an,X an) = Hom(Sp(k′),X an) = X an(k′)

which is bijective (by [CT, Ex. 2.3.2]). A similar argument works whenever dimA = 0. For general k-affinoid
A, there is a “relative analytification” functor for schemes locally of finite type over A (assigning to any such
Y a rigid-analytic space Y an over Sp(A), with (SpecA)an = Sp(A)). This can be extended to the case of
separated algebraic spaces locally of finite type over A, and for X locally of finite type over k we naturally
have (XA)an 'X an × Sp(A). Thus, in the separated case we get a natural map

(1.1.2) X (A) = XA(A)→ (XA)an(SpA) = (X an × Sp(A))(Sp(A)) = X an(Sp(A))

which is functorial in X and A.
The bijectivity of (1.1.2) is not evident in general, essentially because Sp(A) is rather different from

SpecA when dimA > 0. One source of inspiration for expecting such a bijection to exist is that when
the algebraic space X arises as a moduli space for some class of “polarized” structures, bijectivity often
has natural meaning in terms of rigid-analytic GAGA over an affinoid base. In the appendix, which is
logically independent from the rest of the paper, we prove that (1.1.2) and its Berkovich space analogue are
bijective for separated X . This provides a concrete description of the functor of points of X an on affinoid
objects when X is separated. It rests on the recently proved Nagata compactification theorem for separated
algebraic spaces [CLO] (applied over the base scheme SpecA). One consequence is the exactness of (1.1.1)
for separated X and any faithfully flat map of k-affinoid algebras A → A′, since representable functors on
the category of rigid-analytic spaces are sheaves for the Tate-fpqc topology [C2, Cor. 4.2.5].

We do not regard the concrete viewpoint via (1.1.2) as an adequate one to answer the above Question
(though it is interesting!). First of all, it does not have a useful analogue over C. More importantly, we do
not want to have to assume the existence of X an (which is implies by the separatedness hypothesis), but
rather we wish to characterize even its existence in terms of the representability of a contravariant functor
defined in terms of X , at least in the Berkovich case (which is more natural than the rigid-analytic case
for global construction problems). For this to be interesting, we must relax the separatedness hypothesis in
order to incorporate some examples (such as in Remark 1.1.3) for which the analytification in the sense of
quotients does not exist.

1.2. Main result. In the non-archimedean case, if X an exists as a rigid-analytic space and we give it the
Tate-étale topology [CT, §2.1] then there is a natural map of locally ringed topoi

iX = (iX ∗, i∗X ) : ˜(X an)ét → X̃ét

over k even though there is no “morphism” X an →X in a naive sense. The description of the pushforward
is quite simple: (iX )∗(F )(U ) = F (U an) for any scheme U étale over X . (Here, the content is that if
U ′ → U is an étale cover of schemes then U ′an → U an admits sections locally for the Tate-étale topology;
see [C2, Thm. 4.2.2].) The functor i∗X is characterized as the left adjoint of iX ∗, and it can be constructed
by a procedure that is similar to the topological case.

The formulation and proof of non-archimedean and complex-analytic GAGA for proper morphisms be-
tween algebraic spaces is expressed in terms of maps of ringed topoi such as iX in [CT, §3.3] since there
are no actual “maps of spaces” as in the scheme case. (The same applies to the non-archimedean étale
cohomology comparison morphism for algebraic spaces.) By using a suitable generalization of the notion of
locally ringed topos (strictly henselian topoi, introduced by J. Lurie in [DAGV] and reviewed in Definition
2.2.2), we prove that the map iX satisfies a universal property very similar in spirit to the one used in the
scheme case. This is part of our main result, describing the contravariant functor of points of X an (under
a mild diagonal hypothesis):
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Theorem 1.2.1. Let X be an algebraic space locally of finite over a field k that is either C or is complete
with respect to a non-archimedean absolute value. In the non-archimedean case, use k-analytic spaces in the
sense of Berkovich.

(1) Consider the contravariant functor Homk(·,X ) on the category of k-analytic spaces which assigns
to every Z the set of isomorphism classes of morphisms of locally ringed topoi f : Z̃ét → X̃ét over
k. A representing object for this functor must be an analytification of X .

Conversely, if X is analytifiable and ∆X /k is affine then X an represents Homk(·,X ): for every
f as above, there is a unique map of k-analytic spaces fan : Z → X an over k such that iX ◦ f̃an is
naturally isomorphic to f .

(2) If X is separated and k is non-archimedean with |k×| 6= 1 then the analytification X an in the sense
of rigid-analytic spaces satisfies the universal mapping property analogous to (1) on the rigid-analytic
category.

It was noted earlier that if ∆X /k is a closed immersion then X an exists. We do not know if the affine
hypothesis in the converse part of (1) can be replaced with the condition of being an immersion (which
would be a bit more natural, in view of Remark 1.1.4, though Remark 1.1.3 provides interesting examples
with affine immersive diagonal which are not analytifiable in either sense over non-archimedean fields). The
complex-analytic case in Theorem 1.2.1 is a simpler framework in which we can explain the main ideas of
the proof, without the complications of the non-archimedean case.

Theorem 1.2.1(1) shows that (under mild assumptions on ∆X /k weaker than separatedness) the defini-
tion of analytification through quotients of étale equivalence relations is equivalent to a definition through
representing a contravariant functor defined in terms of X . When it comes to the task of constructing X an,
the quotient approach seems to be unavoidable; however, the characterization as in Theorem 1.2.1 in terms
of representing a contravariant functor is more elegant (and is closer to the spirit of the characterization in
the scheme case).

Remark 1.2.2. In an unpublished work [Lur] (to be incorporated into [DAGVIII]), J. Lurie has proved a result
which has a similar flavor to Theorem 1.2.1: for any strictly henselian topos (T,O) and (quasi-separated)
algebraic space (or more general stack) X , there is an equivalence between morphisms of locally ringed topoi
(T,O) → (X̃ét,OXét) and tensor functors Qcoh(X ) → ModT (O) in the opposite direction. This is stated
precisely in [Lur, Thm. 5.11], and the methods used there carry over to the non-archimedean analytic case
[Lur, Rem. 10.4]. However, neither the main results in the present work nor in [Lur] have logical consequences
for the other; they simply complement each other.

In the same spirit as in [Lur], one could consider carrying over the concept of Deligne–Mumford stack
to the non-archimedean analytic setting (which amounts to working more directly with diagrams such as
Ran ⇒ U an rather than with an analytic quotient space), and then asking for a version of Theorem 1.2.1 with
Deligne–Mumford stacks instead of algebraic spaces. (Beware that the Deligne–Mumford version, specialized
back to the case of algebraic spaces, is not concerned with the issue of existence the quotient U an/Ran as
an analytic space, much as using algebraic spaces entails giving up on representing functors by “spaces” and
instead doing geometry with suitable functors.) We leave this task to the interested reader; our arguments
should carry over to handle that generality.

2. Strictly henselian topoi and morphisms

We begin by reviewing some concepts related to Grothendieck’s definition of locally ringed topoi [SGA4,
IV, Exer. 13.9]. The formulation will differ a bit from Grothendieck’s in that it makes the role of the Zariski
topology more explicit. That will enable us (following Lurie) to replace appearances of the Zariski topology
with the étale topology (for affine schemes) to get a “strictly henselian” variant that is the main goal of this
section.

Fix a (small) site X, and let T be the corresponding topos (category of sheaves of sets on X) and O a
commutative ring object in the category T (i.e., the functor of points of O on T is ring-valued, or equivalently
O is a sheaf of rings on X). We assume that all representable functors on X are sheaves. That is, for all
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objects U in X, the functor U := HomX(·, U) on the site X satisfies the sheaf axioms. In other words, the
topology on the site is subcanonical.

Subcanonicity holds in many familiar cases, such as if X is the site associated to a topological space,
or a scheme or algebraic space equipped with the étale topology (and it is not assumed in Grothendieck’s
definition of locally ringed topoi, but that is irrelevant for the cases of interest).

2.1. Spec in a ringed topos. It is important for what follows that the the étale topology sites arising in
non-archimedean geometry are subcanonical:

Example 2.1.1. If X is the Tate-étale site of a rigid-analytic space (see [C2, Def. 4.2.1]) then the sheaf
property for representable functors follows from [C2, Cor. 4.2.5]. If X is the étale site of a k-analytic space
X in the sense of Berkovich over a non-archimedean field k (see [Ber2, 4.1]), then the sheaf property follows
from combining [Ber2, 4.1.3, 4.1.5] and [CT, 4.1.2]. In fact, these references give more for Berkovich spaces:
the functor Homk(·,X ′) = HomX (·,X ×X ′) on X = Xét is a sheaf for any k-analytic space X ′ (not
necessarily an étale X -space).

We also note for later purposes that coherent sheaves on rigid-analytic spaces satisfy effective descent
for the Tate-étale topology, and coherent sheaves for the G-topology on k-analytic Berkovich spaces satisfy
effective descent for the étale topology on such spaces; in the rigid-analytic case this is [C2, Thm. 4.2.8],
and in the Berkovich case it is [CT, 4.2.4]. Applying this to coherent ideal sheaves inside of the structure
sheaf (for the G-topology in the Berkovich case), relative to these étale topologies there is effective descent
for closed immersions, and hence likewise for Zariski-open immersions.

The preceding examples (including algebraic spaces and complex-analytic spaces) are the only ones which
interest us, so the reader may safely restrict attention to sites X which admit fiber products. Thus, by [MM,
III.4, Prop. bis], the sheaf axioms on the topos T can be expressed in familiar terms without digressing into
the language of sieves.

Remark 2.1.2. We will write X̃ to denote (T,O) (or to denote the underlying topos T if the context makes
it clear). In the special case that X arises from a scheme X with the Zariski (resp. étale) topology, we
will also write X̃ (resp. X̃ét) to denote (X̃ ,O) (resp. (X̃ét,O)); the analogous convention will be used for
algebraic spaces, complex-analytic spaces, and non-archimedean spaces as in Example 2.1.1.

For any commutative ring R and object U in X, define a morphism f : U → SpecR (or more precisely,
(U,O) → SpecR) to be a ring homomorphism R → O(U). Observe the role of O in this definition.
Composition of f with morphisms U ′ → U and morphisms SpecR → SpecR′ is defined in an evident
“associative” manner (using O(U)→ O(U ′)).

Example 2.1.3. If X is the site associated to a topological space and O has local stalks (so each (U,O|U ) is
a locally ringed space) then this notion of morphism naturally coincides (functorially in U and R) with the
usual notion of a morphism (U,O|U ) → SpecR of locally ringed spaces (by assigning to any morphism of
the latter sort the induced ring map between rings of global functions). This is [EGA, II, ErrI, 1.8.1].

Definition 2.1.4. Consider an object U in X and a morphism U → SpecR for a commutative ring R. For
any R-algebra R′, the functor UR′/R on X assigns to any V the set of commutative diagrams

V
f //

s

��

U

��
SpecR′ // SpecR

The functor UR′/R should be viewed as a replacement for U ×SpecR SpecR′. It is contravariant in the
R-algebra R′ and covariant in U in an evident manner. In particular, UR′/R → UR/R = U is the map which
forgets s. We will only be interested in cases when R′ is R-étale.
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Example 2.1.5. If SpecR′ → SpecR is an open immersion then there is at most one possibility for s. This
is most easily seen by using the equivalent expression

Spec O(V )
f∗ //

s∗

��

Spec O(U)

��
SpecR′ // SpecR

with affine schemes. In particular, the forgetful map UR′/R → U is a subfunctor inclusion when SpecR′ →
SpecR is an open immersion.

To work more effeciently with UR′/R and subsequent generalizations, it will be convenient (following
Lurie) to introduce another way to work with morphisms U → SpecR. This rests on:

Proposition 2.1.6. For any F in T define O(F ) to be the ring HomT (F ,O). Let R be a commutative
ring.

(1) The contravariant functor H : F  Hom(R,O(F )) is represented by an object O(R) in T . Explic-
itly, O(R)(U) = O(R)(U) = Hom(R,O(U)) for U ∈ X.

(2) For any ring R and map of topoi f : T ′ → T there is a canonical morphism f∗(O(R))→ (f∗O)(R)
in T ′ that is functorial in O and R, as well as in f . When R is finitely generated over Z, this
canonical morphism is an isomorphism.

(3) If SpecR′ → SpecR is an open immersion then O(R′)→ O(R) is a subobject.

Loosely speaking, O(R) serves as a substitute for SpecR when working in (T,O).

Proof. Since O is a sheaf on X, it is trivial to verify that the functor U  Hom(R,O(U)) satisfies the sheaf
axioms and hence is an object O(R) in T . Likewise, if

R ⇒ F ′ � F

is a cokernel presentation in T (i.e., R → F ′ ×F ′ has image F ′ ×F F ′) then

O(F )→ O(F ′)⇒ O(R)

is an exact sequence of rings. Applying Hom(R, ·) then gives an exact sequence of sets

H(F )→ H(F ′)⇒ H(R).

Likewise, from the definitions

H(
∐

Fi) = Hom(R,O(
∐

Fi)) = Hom(R,
∏

O(Fi)) =
∏

H(Fi).

The functor HomT (·,O(R)) satisfies the same properties as just verified for H, so to identify these functors
on T it suffices to do so as functors on the full subcategory of representable sheaves. But O(U) = O(U), so
by definition of O(R) we have proved (1).

For (2), first observe that the bijection

HomT (F ,O(R)) = Hom(R,O(F )) = Hom(R,HomT (F ,O))

with F = O(R) provides a canonical ring map φR : R → HomT (O(R),O). (Explicitly, φR(r) is the family
of evaluation maps Hom(R,O(U))→ O(U) at r, for varying U in X.) For any F in T , applying f∗ defines
a map of sets

O(F ) = HomT (F ,O)→ HomT ′(f∗(F ), f∗O) = (f∗O)(f∗F )
that is a map of rings, and setting F = O(R) then defines a ring map

R
φR→ O(O(R))→ (f∗O)(f∗(O(R))).

This is an element in

Hom(R, (f∗O)(f∗(O(R)))) = HomT ′(f∗(O(R)), (f∗O)(R)),
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so we have constructed a canonical map f∗(O(R)) → (f∗O)(R) in T ′, as desired. By construction, it has
the asserted functorial properties. (Explicitly, the map

f∗(O(R))(U)→ (f∗O)(R)(U) = Hom(R, (f∗O)(U))

carries h ∈ f∗(O(R))(U) to the map r 7→ f∗(φR(r))(h).)
Now suppose R is finite type over Z and choose an isomorphism R ' Z[t1, . . . , tn]/(h1, . . . , hm). Then for

any ring S, the set Hom(R,S) is identified with the zero locus in Sn for the hj ’s. Taking S = O(U) for U
in X, O(R)(U) is the zero locus in O(U)n for the hj ’s. That is, as a sheaf of sets, O(R) is the intersection
of the kernels in On of the polynomial maps hj : On → O. This is an expression for O(R) as an iterated
fiber product in T , so by left-exactness of f∗ it follows that f∗(O(R)) is the intersection of the kernels in
(f∗O)n of the polynomial maps hj : (f∗O)n → f∗O. But this latter description also yields (f∗O)(R), so we
have identified f∗(O(R)) and (f∗O)(R) as objects in T ′. We claim that this identification is the canonical
morphism f∗(O(R)) → (f∗O)(R). Since the canonical morphism is functorial in R, by the construction of
the identification just given and the left-exactness of f∗ it suffices to treat the case R = Z[t1, . . . , tn] (with
its evident presentation by itself). This case is an easy calculation.

Finally, (3) is trivial because O(R′)(U)→ O(R)(U) is identified with the map of sets

Hom(Spec O(U),SpecR′)→ Hom(Spec O(U),SpecR).

�

For any U in X, f ∈ O(R)(U) = Hom(U,O(R)), and R-algebra R′, there is a natural isomorphism

UR′/R ' U ×O(R) O(R′)

functorial in U , O, and R′. This is seen by evaluating both sides on any V in X and applying Example 2.1.5,
and recovers the fact that UR′/R is a subfunctor of U when SpecR′ → SpecR is an open immersion. It also
shows that in general the functor UR′/R is a sheaf; i.e., it belongs to the topos T (as can be seen directly
from the sheaf properties of U and O as well.)

Example 2.1.7. Consider any of the following categories C : schemes, algebraic spaces, complex-analytic
spaces, or rigid-analytic or Berkovich spaces over a field k complete with respect to a non-archimedean
absolute value (assumed to be non-trivial in the rigid-analytic case). Let R → R′ be a finite type map of
rings, and U an object in C equipped with a ring map R → O(U). We define the functor UR′/R on C in
the evident manner, analogous to Definition 2.1.4.

We claim that UR′/R is represented by an object UR′/R in C , and that the resulting canonical map
UR′/R → U is an open immersion (resp. étale) when SpecR′ → SpecR is an open immersion (resp. étale).
Likewise, we claim that if {SpecRα → SpecR} is a Zariski-open covering (resp. étale cover) then so is
{URα/R → U}.

In the case of schemes or algebraic spaces, everything is obvious since the “morphism” U → SpecR
corresponds to an actual morphism of schemes or algebraic spaces and so the fiber product U ×SpecR SpecR′

makes sense and represents UR′/R.
We will now handle the case of complex-analytic spaces, and the non-archimedean cases will go in exactly

the same way since in all cases analytic affine spaces An and zero-spaces of coherent sheaves have the
expected universal mapping properties. Choose an R-algebra isomorphism R[t1, . . . , tn]/J ' R′ for some
ideal J . The “morphism” U → SpecR corresponds by definition to a map of rings ϕ : R→ O(U), so we get
a ring homomorphism

R[t1, . . . , tn]→ O(U)[t1, . . . , tn]→ O(U ×Cn)

also denoted ϕ. Inside of U × Cn it makes sense to form the zero locus of ϕ(J), and its functor of points
clearly coincides with UR′/R. (Note that there is no problem if J is not finitely generated, since rising chains
of coherent ideals on complex-analytic spaces locally terminate; the analogue for rigid-analytic or Berkovich
spaces is elementary.) It follows that this construction is independent of the presentation and is functorial
in R′ (independently of a choice of presentation); it is denoted UR′/R. For any morphism V → U , we clearly
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have UR′/R ×U V = VR′/R; in the non-archimedean setting we likewise have compatibility with extension of
the ground field.

It is clear that if R′ → R′′ is another finite type algebra then (UR′/R)R′′/R′ = UR′′/R, so the formation of
UR′/R behaves in the expected manner with respect to replacing R′ with a basic open affine algebra R′[1/r′].
Thus, to prove that UR′/R → U is an open immersion when SpecR′ → SpecR is an open immersion, and
that {URi/R → U} is an open covering when {SpecRi → SpecR} is an open cover, it suffices to consider
R′ and Ri which are basic open affine R-algebras. These cases are clear (e.g., if {ri} in R generates 1, the
images of the ri under a ring map R→ O(U) generate 1).

Finally, consider étale R-algebras R′. To prove that UR′/R → U is étale, we can first work Zariski-locally
to reduce to the case when R′ is a standard étale R-algebra: R′ = (R[t]/(f))f ′ for a monic f ∈ R[t]. Then
by construction UR′/R is the non-vanishing locus of ϕ(f ′) = ϕ(f)′ ∈ O(U)[t] on the zero-space of the monic
ϕ(f) ∈ O(U)[t] in U × C. Thus, the inverse function theorem for complex-analytic spaces implies that
UR′/R → U is étale. If {SpecRi → SpecR} is an étale cover, to prove that {URi/R → U} is an étale cover
we can use functoriality in U (and compatibility with change of the ground field in the non-archimedean
setting) to reduce to the case when U is a single rational point. The problem is then to show that some
URi/R is non-empty. By functoriality in the map R→ Ri, we can replace R with the field k := O(U) and Ri
with the étale O(U)-algebra Ri⊗R k (since {SpecRi → SpecR} is an étale cover, so it remains as such after
scalar extension by R→ k). Thus, URi/R is the 0-dimensional space associated to the finite étale k-algebra
Ri. One of the Ri is non-zero, so the corresponding URi/R is non-empty.

An unsatisfying feature of the definition of the object UR′/R in T is that it involves the site X. It is
more elegant to give a characterization of UR′/R expressed in terms of T , its ring object O, and its object
U without reference to X. We will generalize the site-dependent definition of UR′/R to the case when the
representable U is replaced with any object F in T , and then reformulate things to avoid mentioning X.

For any F in T , define the “F -valued points” of O to be the ring O(F ) := HomT (F ,O). (If F = U then
this is identified with O(U) naturally in U .) Define a morphism F → SpecR (or more precisely, a morphism
(F ,O) → SpecR) to be a ring homomorphism R → O(F ); observe the role of O in this definition. This
notion of morphism has an evident “associative” notion of composition with morphisms F ′ → F in T and
morphisms SpecR′ → SpecR of affine schemes. Note that we have used (T,O) and have suppressed the
mention of X.

For any F in T , morphism F → SpecR, and R-algebra R′, the functor FR′/R on X is defined exactly
like UR′/R, replacing the arrow V → U (i.e., an element of U(V )) with an arrow V → F (i.e., an element of
F (V )). For representable F = U this recovers UR′/R as defined above (due to the equality O(V ) = O(V )).
The functor FR′/R on X depends covariantly on F and contravariantly on R′ in the evident manner. As in
the case of representable F considered above, we have

(2.1.1) FR′/R = F ×O(R) O(R′)

(so this is always a sheaf, and (2.1.1) provides a definition of FR′/R that is intrinsic to F as an object in
(T,O)). By Proposition 2.1.6(3), FR′/R is a subfunctor of F on T via the forgetful map when SpecR′ →
SpecR is an open immersion.

There is a natural map FR′/R → SpecR′, or equivalently a ring homomorphism R′ → O(FR′/R), func-
torial in the R-algebra R′, via

(2.1.2) FR′/R = F ×O(R) O(R′)→ O(R′)→ SpecR′.

Concretely, for any object V in X, any element (f, s) ∈ FR′/R(V ) gives rise to a map s : V → SpecR′

(i.e., a ring map s∗ : R′ → O(V )) naturally in V . Thus, from any r′ ∈ R′ we obtain a system of set
maps FR′/R(V ) → O(V ) via (f, s) 7→ s∗(r′) which are functorial in V , and the resulting map of sets
R′ → O(FR′/R) corresponds to the composition in (2.1.2).

Now we give the topos-theoretic characterization of FR′/R as a kind of fiber product F ×SpecR SpecR′:
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Proposition 2.1.8. For any G in T , “composition” with FR′/R → SpecR′ and with the forgetful map
FR′/R → F identifies HomT (G ,FR′/R) with the set of commutative diagrams

G
f //

s

��

F

��
SpecR′ // SpecR

This proposition gives a characterization of FR′/R in terms of (T,O,F , R′/R) without mentioning X.

Proof. By expressing the problem in terms of the rings O(F ) and O(G ), the problem reduces to a routine
diagram chase using Proposition 2.1.6(1) and the identification of FR′/R with F ×O(R) O(R′). �

Remark 2.1.9. The formation of FR′/R is left-exact in F , carries epimorphisms in F to epimorphisms, and
naturally commutes with the formation of “disjoint union” (i.e., coproducts) in F in the sense that the
natural map

∐
(Fi)R′/R → (

∐
Fi)R′/R is an isomorphism. These assertions are easily deduced from the

description FR′/R = F ×O(R) O(R′), from which we also see that FR′/R respects the formation of fiber
products in F .

2.2. Locality for topoi. Consider a collection of open immersions {SpecRα → SpecR} which is a covering
for the Zariski topology. For any F in T , the objects Fα := FRα/R all map to F as subobjects. Since
we may think of the Fα as fiber products F ×SpecR SpecRα, which is to say as “pullback” along the
constituents of an open cover of SpecR, it is natural to ask if the Fα “cover” F in the sense that the
natural map

∐
Fα → F is an epimorphism in the topos T . In general this amounts to a restriction on O,

as the following example using representable F shows.

Example 2.2.1. Assume that T has enough points (e.g., the topos associated to a topological space), and
let P be a conservative set of points. We claim that Ox is either 0 or local for all x ∈ P if and only if
{Fα → F} is a covering for F in T , maps F → SpecR (i.e., all ring homomorphisms R → O(F )), and
affine Zariski-open coverings {SpecRα → SpecR}.

It clearly suffices to work with finite Zariski-open covering by basic open affines, which is to say that we
can assume Rα = R[1/rα] for a finite set of rα which generate 1 in R. We have

∑
r′αrα = 1 for some r′α ∈ R.

Define A ⊆ R to be the Z-subalgebra generated by the rα and r′α, and Aα = A[1/rα]. By Proposition 2.1.8,
clearly FAα/A = FRα/R, so it is equivalent to restrict to the case that R is finitely generated over Z.

Since a map F → SpecR is a ring homomorphism R → O(F ), or equivalently a map F → O(R), by
taking the universal case F = O(R) (with the canonical map O(R)→ SpecR) it suffices to check that the
maps {O(Rα)→ O(R)} are a covering in T precisely when each Ox is 0 or local. The covering property may
be checked on stalks at x ∈ P , and so amounts to the condition that the maps of sets O(Rα)x → O(R)x are
collectively surjective. But R and each Rα = R[1/rα] is now finitely generated over Z, so by Proposition
2.1.6(2) applied to x∗ we are reduced to the case when T is the topos of sets.

Now O corresponds to a ring A, and the claim is that A is either 0 or local precisely if and only if for
any Zariski-open covering {SpecRα → SpecR}, every map SpecA→ SpecR factors through some SpecRα.
The “only if” direction is obvious, and for the converse we take R = A and argue by contradiction: if there
are distinct closed points ξ, ξ′ ∈ SpecA then we can take the SpecRα to be open affines each of which omits
at least one of ξ or ξ′.

The preceding example motivates Grothendieck’s definition of a locally ringed topos and Lurie’s general-
ization of it to the étale topology. We first give a definition involving the site X, and then we express it in
terms of T .

Definition 2.2.2. The ringed topos (T,O) is locally ringed if {Fα → F} is a covering in T for any F in
T , morphism (F ,O) → SpecR, and affine Zariski-open covering {SpecRα → SpecR}. (In such cases, we
say O is Zariski-local.) If the same holds using affine étale covers, then (T,O) is strictly henselian and we
say that O is étale-local.
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For the reader who is concerned with the apparent quantification over “too many” things in Definition
2.2.2, note that it suffices (by the method of proof of Yoneda’s Lemma) to check the definition only when
the maps R→ O(F ) are identity maps, and moreover if X is a (small) site giving rise to T then it suffices
to restrict to representable F (as we saw in Example 2.2.1 by a formal argument which applies equally well
with étale covers as it does with Zariski covers).

In the Zariski case of Definition 2.2.2 it suffices to use only Zariski covers by basic affine opens, in which
case we recover a trivially equivalent form of Grothendieck’s definition of a locally ringed topos [SGA4,
IV, Exer. 13.9]. For later purposes, it is useful to give an alternative characterization for when O is Zariski-
local (resp. étale-local). This rests on the following result.

Proposition 2.2.3. Let (T,O) be a ringed topos.

(1) The ring object O is Zariski-local (resp. étale-local) if and only if for any collection of maps
{SpecRα → SpecR} that is a Zariski covering (resp. étale covering), the induced collection of
maps {O(Rα)→ O(R)} is a covering in T . Moreover, it suffices to restrict to R which are of finite
type over Z.

(2) If T has enough points and P is a conservative set of points then O is étale-local if and only if for
all x ∈ P the stalk Ox is 0 or a strictly henselian local ring.

Proof. Let X be a (small) site giving rise to T , and fix an object U in X and a morphism U → SpecR.
This is exactly an element f ∈ O(R)(U), and for any V in X and ring map R → R′ we see that UR′/R(V )
is identified with the fiber of O(R′)(V )→ O(R)(V ) over the image of f under O(R)(U)→ O(R)(V ). Thus,
the condition on a collection of ring maps {R→ Rα} that the maps URα/R → U are a covering in T is that
for any map φ : V → U in X there is a covering {Vi → V } such that the element O(φ)(f) ∈ O(R)(V ) has
restriction to each O(R)(Vi) that lifts to some O(Rαi)(Vi). By considering the special case when φ is the
identity map of V , it is necessary and sufficient that the collection of maps {O(Rα)→ O(R)} is a covering
in T . Thus, (1) is proved, apart from the sufficiency of using R of finite type over Z.

Since we may certainly restrict attention to finite collections of Rα, as étale maps have open image
(and SpecR is quasi-compact), by finite presentation of the Rα over R we can always descend the covering
{SpecRα → SpecR} to a covering {SpecAα → SpecA} (of the same type) over a finite type Z-subalgebra
A in R. Then, akin to the argument in Example 2.2.1, we have

O(Rα) = O(R)×O(R) O(Rα) = O(R)Rα/R = O(R)Aα/A = O(R)×O(A) O(Aα).

It therefore suffices to prove that {O(Aα)→ O(A)} is a covering, so the final claim in (1) is proved.
The proof of (2) is similar to the Zariski case in Example 2.2.1, up to two small changes. First, to reduce

to the case when T is the topos of sets, by the local structure theorem for étale morphisms [EGA, IV4,
18.4.6(ii)] we replace argumentsusing just basic affine opens with the analogous arguments using a larger
class of finitely presented algebras: basic affine opens in standard étale algebras (i.e., (B[t]/(h))[1/h′] for
monic h ∈ B[t]) over basic affine opens. Then it remains to check that if A is a ring then it is either 0
or strictly henselian local if and only if for any collection of maps {SpecRα → SpecR} which is an étale
covering, any map SpecA → SpecR factors through some SpecRα. Restricting this latter condition to the
special case of Zariski coverings and using the known Zariski-local case allows us to restrict attention to
the case when A is either local or 0. Then our hypothesis on A (when it is local) is exactly one of the
characterizations of strictly henselian local rings among all local rings in [EGA, IV4, 18.8.1(c)]. �

Corollary 2.2.4. Let f : T ′ → T be a map of topoi, and O a ring object in T . If O is Zariski-local (resp.
étale-local) in T , then so is f∗O in T ′.

Proof. This is immediate from Proposition 2.2.3(1) and Proposition 2.1.6(2). �

Since Zariski covers are étale covers, obviously any strictly henselian topos is locally ringed. By Example
2.1.7, the following ringed topoi are strictly henselian: schemes and algebraic spaces with the étale topology,
complex-analytic spaces, and Example 2.1.1.
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2.3. Locality for morphisms. We need to introduce a property of morphisms between strictly henselian
topoi that refines the notion of morphism of locally ringed topoi (to be reviewed in Definition 2.3.4). This will
enable us to faithfully put algebraic spaces and non-archimedean analytic spaces into a common (bi)category
so that it makes sense to speak of morphisms between them.

Remark 2.3.1. For a pair of topoi X ′ and X, the collection of morphisms Hom(X ′, X) is not a set, but
rather is a category. Namely, if f, g : X ′ ⇒ X are two morphisms (i.e., pairs of adjoint functors (f∗, f∗) and
(g∗, g∗) satisfying the usual axioms), then Hom(f, g) is the set of natural transformations F : f∗ → g∗, or
equivalently the set of natural transformations F ′ : g∗ → f∗ (which is a set due to the exactness of g∗ and
f∗ as well as the fact that we work with topoi arising from small sites). For example, if we work with the
topoi associated to topological spaces, and take f and g to respectively arise from inclusions of the 1-point
space onto points x and y of X such that x 6= y but y is in the closure of x then there is a natural map of
stalk functors g∗ → f∗ and hence a natural transformation f∗ → g∗.

In this way, the right framework for considering morphisms between topoi is that of 2-categories, or really
bicategories, in which the 2-morphisms between a pair of maps among objects may not be invertible and the
composition law

Hom(X ′′, X ′)×Hom(X ′, X)→ Hom(X ′′, X)

viewed as a bifunctor satisfies “associativity” and “identity element” axioms expressed in terms of auxiliary
isomorphism data. We will not state the axioms on such isomorphism data here, but simply note that in the
cases of interest to us below they are the expected isomorphisms expressing associativity of pushforwards
and pullbacks. We will not need any facts from, or even the existence of, the theory of bicategories (see
[Bén, §1, §4] for further details on the basic definitions), and the word “bicategory” is used below because
it is the convenient and appropriate thing to do. The reader who dislikes this will lose nothing by always
thinking in terms of the specific topoi that arise (étale topoi on algebraic spaces, Berkovich spaces, etc.).

The bicategory of ringed topoi is defined in the expected manner, with a morphism from (f, f#) to (g, g#)
being a natural transformation f∗ → g∗ such that f∗O ′ → g∗O ′ is an O-algebra map (via the O-structures
f# and g#). Rather than speaking of a pair of morphisms of topoi (or ringed topoi) X ′ ⇒ X being equal,
we only speak of them being equivalent (or isomorphic) in the sense of natural equivalence of functors.

Beware that even though we are working with small sites, it can happen (e.g., when using classifying
topoi) that with this notion of equivalence, the collection of equivalence classes of morphisms between two
topoi X ′ and X (i.e., the discrete category arising from the category Hom(X ′, X)) is too large to be a set.
An analogue is the fact that any particular abelian group is a direct limit of its finitely generated subgroups,
and finitely generated abelian groups up to isomorphism constitute a set, but the category of abelian groups
is not small. As a consequence of the intervention of bicategories, when contemplating a “universal mapping
property” for morphisms between topoi we do not work with the usual Yoneda Lemma in terms of Hom-sets
or representable Set-valued functors. Nonetheless, Yoneda-style reasoning is still useful, and we will state in
explicit terms the specific universal mapping properties that we require.

Definition 2.3.2. A covariant functor F : C → C ′ between bicategories is faithful if the associated natural
transformation hF,X,Y : HomC(X,Y )→ HomC′(F (X), F (Y )) is fully faithful for any pair of objects X and
Y . The functor F is fully faithful when hF,X,Y is an equivalence of categories for any X,Y .

The case of most interest to us will be when C is an ordinary category (i.e., HomC(X,Y ) is a set), in
which case Definition 2.3.2 takes on a more concrete form as follows. The functor F is faithful precisely when
HomC′(F (f), F (g)) is empty if f 6= g and is {id} when f = g. Likewise, such an F is full faithful precisely
when it is faithful and every natural transformation F (X) → F (Y ) is (necessarily uniquely) isomorphic to
F (f) for a (necessarily unique) morphism f : X → Y in C.

Example 2.3.3. A very important example is the case of sober topological spaces (those in which every
irreducible closed set has a unique generic point, such as schemes and locally Hausdorff topological spaces).
By [MM, IX, §3, Cor. 4] and [MM, IX, §5, Prop. 2], if X ′ and X are sober and T ′ and T are their associated
topoi, then any map of topoi T ′ → T is uniquely isomorphic to the map f̃ arising from a unique continuous
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map f : X ′ → X ; the uniqueness of the isomorphism is due to the fact that the site associated to a
topological space has no non-identity endomorphisms among its objects. It follows that for any ring objects
O and O ′ in T and T ′ respectively, any map of ringed topoi (T ′,O ′)→ (T,O) is uniquely isomorphic to the
map arising from a unique map of ringed spaces (f, f#) : (X ′,O ′)→ (X ,O).

Beware that the functor from the category of sober topological spaces to the bicategory of topoi is not
faithful in the sense of Definition 2.3.2. For example, when X ′ is a 1-point space this corresponds to the
fact that for the stalk functors ix and iy associated to points x, y ∈ X respectively, there is a morphism
ix → iy whenever x is in the closure of y. A similar problem arises for ringed spaces and the bicategory
of ringed topoi. To get faithfulness results for interesting locally ringed spaces we will need to work with
locally ringed topoi, as will be considered in Proposition 3.1.1.

Let X and X ′ be (small) sites on which all representable functors are sheaves, and choose ring objects O
and O ′ in the associated topoi T and T ′. Consider a morphism f : (T ′,O ′)→ (T,O). In particular, there is
a given map O → f∗O ′ of ring objects in T and hence a map f∗O → O ′ of ring objects in T ′. Assume that
O and O ′ are locally ringed.

Consider F in T equipped with a morphism F → SpecA for a ring A (i.e., a ring map A → O(F )).
For any A-algebra B, we have defined the object FB/A in T . The functor f∗ and the map of ring objects
f∗O → O ′ yield a map of rings

(2.3.1) O(F ) := HomT (F ,O)
f∗→ HomT ′(f∗F , f∗O)→ HomT ′(f∗F ,O ′) =: O ′(f∗F ),

so composition with the chosen A→ O(F ) yields a morphism f∗F → A. We likewise define f∗(FB/A)→
SpecB, and unraveling the definitions shows that the diagram

f∗(FB/A) //

��

f∗F

��
SpecB // SpecA

commutes (i.e., both compositions around the diagram define the same ring map A → O ′(f∗(FB/A))).
Hence, Proposition 2.1.8 yields a map

θF ,B/A : f∗(FB/A)→ (f∗F )B/A
in T ′ respecting the natural morphisms from both sides to SpecB. In more suggestive terms, this is a map

f∗(F ×SpecA SpecB)→ f∗F ×SpecA SpecB

in T ′ over SpecB, so it is a kind of “base change morphism” for f∗. This leads to:

Definition 2.3.4. The morphism f is local for the Zariski topology (or is a morphism of locally ringed
topoi) if θF ,B/A an isomorphism for every F in T , morphism F → SpecA, and Zariski-open immersion
SpecB → SpecA.

If O and O ′ are strictly henselian in the sense of Definition 2.2.2 then f is local for the étale topology (or
is a strictly henselian morphism) if the analogous isomorphism condition holds whenever B is A-étale.

To explain why there are no set-theoretic quantification issues in Definition 2.3.4, first note that since B is
finitely presented over A, by the same trick that was used in Example 2.2.1 and the proof of Proposition 2.2.3
we may restrict attention to A which are finite type over Z. Likewise, by exactness of f∗ and the formula
FB/A = F ×O(A) O(B), it suffices to treat the case of representable F when we have chosen a small site
X giving rise to T . This is sometimes convenient in practice. If we restrict attention to basic affine opens
B = A[1/a] in Definition 2.3.4 then we recover Grothendieck’s definition of a morphism of locally ringed
topoi [SGA4, IV, Exer. 13.9]. It is clear conversely that this special case of the definition implies the general
case, so the condition of being local for the Zariski topology in the sense of Definition 2.3.4 is equivalent to
Grothendieck’s notion of morphism of locally ringed topoi.

Moreover, if we unravel the definitions then θF ,B/A factors as the composition

f∗(F ×O(A) O(B)) ' f∗(F )×f∗(O(A)) f
∗(O(B))→ f∗(F )×(f∗O)(A) (f∗O)(B)→ f∗(F )×O′(A) O ′(B)
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where the second map uses the natural morphism f∗(O(R)) → (f∗O)(R) from Proposition 2.1.6(2) (which
is an isomorphism for R of finite type over Z) and the third map uses the natural morphism f∗O → O ′.
Hence, when we restrict to A of finite type over Z, it is equivalent for the maps

f∗F ×(f∗O)(A) (f∗O)(B)→ f∗F ×O′(A) O ′(B)

to be isomorphisms. But this is a fiber product of f∗F over (f∗O)(A) against the map

(2.3.2) (f∗O)(B)→ (f∗O)(A)×O′(A) O ′(B)

(which in turn is exactly the special case F = O(A) when A is finite type over Z). This final condition only
involves the ring map f∗O → O ′ in T ′, so by recalling Corollary 2.2.4 we arrive at:

Proposition 2.3.5. Suppose that (T,O) and (T ′,O ′) are ringed topoi, with O and O ′ both Zariski-local
(resp. étale-local), so f∗O ′ has the same property.

(1) A map of ringed topoi f : (T ′,O ′)→ (T,O) is local for the Zariski topology (resp. strictly henselian)
if and only if the map f∗O → O ′ in T ′ (i.e., the morphism (T ′,O ′) → (T ′, f∗O)) has the same
locality property.

(2) It is equivalent in (1) that for any map of affines SpecB → SpecA that is a Zariski-open immersion
(resp. étale), the induced map (2.3.2) in T ′ is an isomorphism. Moreover, it suffices to consider A
of finite type over Z.

Example 2.3.6. Let f : (X ′,O ′) → (X ,O) be a morphism of locally ringed spaces. Example 2.1.3 (which
is trivial in the case of schemes) implies that the associated map X̃ ′ → X̃ of ringed topoi is local for the
Zariski topology (i.e., it is a morphism of locally ringed topoi). Thus, (X ,O) X̃ defines a functor from
the category of locally ringed spaces (with local morphisms) to the bicategory of locally ringed topoi (with
Zariski-local morphisms).

Proposition 2.3.7 (Lurie). For strictly henselian ringed topoi (T,O) and (T ′,O ′), morphisms (T ′,O ′) →
(T,O) as locally ringed topoi are automatically strictly henselian.

Proof. I am grateful to Lurie for providing the following concrete version of an argument given in a more
general framework in [DAGV]. By Proposition 2.3.5(1) we may assume T ′ = T and that the underlying
map of topoi is the identity. Thus, by Proposition 2.3.5(2), we are given a map O → O ′ between strictly
henselian ring objects in T such that

(2.3.3) O(B)→ O(A)×O′(A) O ′(B)

is an isomorphism in T for any Zariski-open immersion SpecB → SpecA, and we seek to prove the same
when B is merely étale over A.

For an étale A-algebra B, the image of SpecB in SpecA is open and quasi-compact, so it is covered by
basic affine opens SpecA[1/ai] for finitely many ai ∈ A. Letting bi ∈ B denote the image of ai, the bi
generate 1, so {SpecB[1/bi]} is a Zariski covering of SpecB. Thus, since O ′ is Zariski-local, the collection of
maps O ′(B[1/bi])→ O ′(B) is a covering in T . Thus, to prove the isomorphism property of (2.3.3) it suffices
to do so after pullback to each O ′(B[1/bi]): this yields the maps

O(B)×O′(B) O ′(B[1/bi])→ O(A)×O′(A) O ′(B[1/bi]) = (O(A)×O′(A) O ′(A[1/ai]))×O ′(A[1/ai])O ′(B[1/bi]).

Applying the isomorphism property in (2.3.3) for the basic open affine algebras A→ A[1/ai] and B → B[1/bi]
then identifies the above map with (2.3.3) for the étale algebra A[1/ai]→ B[1/bi] that is faithfully flat. Thus,
we may now assume that SpecB → SpecA is an étale covering.

Since O is strictly henselian, O(B)→ O(A) is a covering in T and so to prove that the map (2.3.3) over
O(A) in T is an isomorphism, it suffices to do so after pullback along O(B) → O(A). This is the natural
map

O(B)×O(A) O(B)→ O(B)×O′(A) O ′(B) = O(B)×O′(B) (O ′(B)×O′(A) O ′(B)).
The natural maps

O(B ⊗A B)→ O(B)×O(A) O(B), O ′(B ⊗A B)→ O ′(B)×O′(A) O ′(B)
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are isomorphisms, due to the general definition O(R)(U) = Hom(R,O(U)), so we can replace A → B with
the first factor inclusion B → B ⊗A B to reduce to the case when there is a section s : B → A. Hence,
since B is étale over A, s identifies SpecA with an open subscheme of SpecB over SpecA. The Zariski-local
hypothesis on O → O ′ then implies that the natural map

O(A)→ O(B)×O′(B) O ′(A)

over O ′(A) is an isomorphism. The resulting composite map

O(B)→ O(A)×O′(A) O ′(B) ' (O(B)×O′(B) O ′(A))×O′(A) O ′(B) = O(B)

is readily checked to be the identity map, so the first step is an isomorphism. �

In the examples we need, it will be easy to directly verify the strictly henselian property for the morphisms
arising from geometric maps. Thus, for our purposes the main point of Proposition 2.3.7 is to simplify the
statements of results, rather than to simplify proofs.

3. Construction of morphisms

We now take up two primary tasks. In §3.1 we faithfully (and sometimes fully faithfully) embed various
categories of geometric objects into (bi)categories of strictly henselian topoi. Then in §3.2 we prove universal
mapping properties for complex-analytifications in terms of such topoi, thereby answering the complex-
analytic case of the Question raised in §1.1. We conclude in §3.3 by adapting those arguments to the
non-archimedean case, completing the proof of Theorem 1.2.1.

3.1. Faithfulness results. Building on the consideration of ringed topoi in Example 2.3.3, we have:

Proposition 3.1.1. Let (X ′,O ′) and (X ,O) be locally ringed topoi, and f : (X ′,O ′) → (X ,O) a mor-
phism of ringed topoi.

(1) The map f is a map of locally ringed spaces if and only if the corresponding map f̃ of ringed topoi
is local for the Zariski topology.

(2) The functor from sober locally ringed spaces to locally ringed topoi is fully faithful when restricted to
the full subcategory of schemes, as well as the full subcategory of locally Hausdorff objects.

Part (2) fixes the lack of faithfulness in Example 2.3.3.

Proof. It is clear that if f is locally ringed, then f̃ is local for the Zariski topology. For the converse we have
to show that if f̃ is local for the Zariski topology then f respects the local structure of the stalks. Assume
not, so for some x′ ∈X ′ the map Of(x′) → O ′x′ is not local. By shrinking around x′ and x, we can arrange
that there exists a ∈ O(X ) which is a non-unit at f(x′) such that its image under O → f∗(O ′) is a unit in
(f∗O ′)(X ) = O ′(X ′).

Consider the morphism (X ,O) → Spec Z[t] corresponding to t 7→ a, and the Zariski-open subscheme
Spec Z[t, 1/t] ↪→ Spec Z[t]. Since f̃ is local for the Zariski topology, f∗(OZ[t,1/t]/Z[t]) = O ′Z[t,1/t]/Z[t]. But
OZ[t,1/t]/Z[t] is represented by the maximal open subspace Xa of X on which a is a unit, and likewise
O ′Z[t,1/t]/Z[t] is represented by X ′

f∗(a). Thus, f∗(OZ[t,1/t]/Z[t]) is represented by f−1(Xa), so we conclude
that f−1(Xa) = X ′

f∗(a) = X ′. This says that f(X ′) ⊆Xa, which is absurd since f(x′) 6∈Xa.
Finally, we prove that when the functor from sober locally ringed spaces to locally ringed topoi is restricted

to either (i) schemes or (ii) locally Hausdorff objects then it is fully faithful. In view of Example 2.3.3, the
problem is to prove that if f, g : (X ′,O ′) ⇒ (X ,O) are maps between sober locally ringed spaces then in
both cases (i) and (ii) the set Hom(f̃ , g̃) is empty if f 6= g and is {id} if f = g.

Assume there is a natural transformation F : f̃ → g̃, so there is a natural transformation f∗ → g∗, or
equivalently g∗ → f∗. The latter implies that g−1(U) ⊆ f−1(U) for all open U ⊆ X , and the existence of
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F implies that the diagram

O(U)
f#

//

g#
%%LLLLLLLLLL O ′(f−1(U))

res

��
O ′(g−1(U))

commutes. Thus, to prove f = g it suffices to prove equality on underlying topological spaces. For x′ ∈X ′

we may compose with ({x′}, k(x′))→ (X ′,O ′) to reduce to the case that X ′ has a single point x′. We have
f(x′) ∈ U whenever g(x′) ∈ U , so g(x′) is in the closure of f(x′) and passing to the limit on U containing
g(x′) yields a commutative diagram

(3.1.1) Og(x′) //

g#

��

Of(x′)

f#

��
k(x′) k(x′)

in which the vertical maps are local. In the locally Hausdorff case, g(x′) = f(x′) since all points are closed.
In the scheme case the map Og(x′) → Of(x′) is the natural localization map, and by chasing kernel ideals
in (3.1.1) it follows that this localization map carries mg(x′) into mf(x′), so again f(x′) = g(x′). Hence, in
cases (i) and (ii) we have Hom(f̃ , g̃) is empty except when f = g. Since objects in the site associated to a
topological space have no nontrivial endomorphisms, it is clear that Hom(f̃ , f̃) = {id}. �

Example 3.1.2. By Example 2.1.7 (and the sufficiency of using representable F in Definition 2.3.4), the ringed
topos associated to any complex-analytic space is strictly henselian. Likewise, any morphism X ′ → X

between complex-analytic spaces induces a strictly henselian morphism over C. The functor X  X̃ from
the category of complex-analytic spaces to the bicategory of strictly henselian topoi over C is fully faithful,
due to Proposition 3.1.1.

To extend Proposition 3.1.1 to the case of algebraic spaces equipped with their étale topoi, let f :
(X ′,O ′)→ (X ,O) be a morphism of algebraic spaces and consider the associated étale sites (whose objects
may be either schemes or algebraic spaces; it will work the same either way). This includes the case of a
morphism of schemes equipped with their étale topologies. In particular, O ′ and O are strictly henselian. By
Example 2.1.7 and the sufficiency of using representable F in Definition 2.3.4, (X ,O)  X̃ét is a functor
from the category of algebraic spaces to the bicategory of strictly henselian topoi (equipped with strictly
henselian morphisms). In the spirit of Remark 2.3.1, we recall what this means: for any map of algebraic
spaces f : (X ′,O ′)→ (X ,O) we have an associated morphism of strictly henselian topoi

f̃ = (f∗, f∗) : X̃ ′
ét → X̃ét,

and if f ′ : (X ′′,O ′′)→ (X ′,O ′) is another such map of algebraic spaces then there is a specified isomorphism
between f̃ ′ ◦ f and f̃ ′ ◦ f̃ satisfying certain “associativity” conditions.

Theorem 3.1.3. The functor (X ,O)  X̃ét from the category of algebraic spaces to the bicategory of
strictly henselian topoi is fully faithful in the sense that (i) every morphism X̃ ′

ét → X̃ét as locally ringed
topoi is isomorphic to f̃ for a unique map of algebraic spaces f : (X ′,O ′) → (X ,O), (ii) Hom(f̃ , g̃) is
empty if f 6= g and consists of only the identity when f = g.

By Proposition 2.3.7, the morphisms of locally ringed topoi considered in this theorem are automatically
strictly henselian morphisms (in the sense of Definition 2.3.4).

Proof. For a map of algebraic spaces f : (X ′,O ′) → (X ,O) and an étale map U → X from an algebraic
space, f∗(U) is represented by U ′ := X ′ ×X U . Also, the map of algebraic spaces U ′ → U induced by f

has associated map Ũ ′ét → Ũét of ringed topoi that is induced by viewing them as respective subcategories
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of X̃ ′
ét and X̃ét. Hence, by taking U to be a scheme étale over X , if we can settle faithfulness when X is a

scheme then it will hold in general. Thus, to prove faithfulness we can assume X is a scheme, and then we
can assume X ′ is a scheme. We may likewise reduce to the case when X is affine. In this case f̃ uniquely
determines f (by evaluating O → f∗(O ′) on X ).

To settle faithfulness, we just have to prove that Hom(f̃ , g̃) is empty when f 6= g and is the identity when
f = g. If there is such a map then the same holds for the restricted functors on the underlying locally ringed
Zariski topoi, which forces f = g by Proposition 3.1.1. To prove that Hom(f̃ , f̃) has no non-identity elements
we may work étale-locally to again reduce back to the Zariski topos case which was settled by Proposition
3.1.1.

Now we prove full faithfulness, so choose a strictly henselian morphism F : X̃ ′
ét → X̃ét between the

associated strictly henselian topoi. The aim is to prove that F ' f̃ for some f , in which case we will call F
geometric. Consider an étale cover {Ui →X } by affine schemes, so {U i →X } is a cover of the final object
in the topos. Hence, {F ∗(U i)} is a cover of X ′. Let {U ′ij → F ∗(U i)}j∈Ji be a cover of F ∗(U i) with U ′ij a
scheme étale over X ′. Hence, {U ′ij}i,j is an étale cover of X ′ by schemes, so F is dominated by a collection
of strictly henselian morphisms Fij : (U ′ij)

∼
ét → (Ui)∼ét associated to the schemes U ′ij and Ui.

Assume we can settle full faithfulness in the case of schemes, with X affine (using the étale topoi). Thus,
for the schemes U ′ =

∐
ij U

′
ij and U =

∐
i Ui that are respectively étale covers of X ′ and X we thereby get

a map of schemes h : U ′ → U such that the diagram

Ũ ′ét

eh //

π

��

Ũét

��
X̃ ′

ét F
// X̃ét

commutes up to canonical equivalence (expressed in terms of descent theory with pullback sheaves). The
composite map Ũ ′ét → X̃ét across the top and right sides is geometric (as each step is geometric). By using
factorization through the left and bottom sides it follows from the established faithfulness that the resulting
map U ′ → X yields the same composition with both projections p′1, p

′
2 : U ′ ×X ′ U

′ ⇒ U ′. Hence, by étale
descent for morphisms of algebraic spaces, we obtain a morphism f : X ′ →X of algebraic spaces such that
there is an isomorphism ξ : f̃ ◦ π ' F ◦ π. But any object V ′ in X ′

ét is functorially determined by π∗(V ′)
equipped with the isomorphism p′1

∗(π∗(V ′)) ' p′2
∗(π∗(V ′)) satisfying the cocycle condition. It follows that ξ

descends to an isomorphism F ' f̃ , so F is geometric.
It remains to prove full faithfulness in the special case that X ′ and X are schemes equipped with the étale

topology and X is affine. By [SGA4, VIII, Prop. 6.1], the subobjects of the final object of the étale topos
of a scheme are precisely the functors represented by open subschemes (for the Zariski topology). Moreover,
by [SGA4, VIII, 7.9], the points of the étale topos of a scheme are naturally identified (up to isomorphism)
with stalk functors at the geometric points in the usual sense (i.e., separable closures of residue fields at
physical points, taken up to isomorphism). Under the natural bijection between points of the étale topos
(up to isomorphism) and physical points in the scheme case (applied to X ), it follows that for a strictly
henselian morphism f : X̃ ′

ét → X̃ét the induced map on geometric points arises from a uniquely determined
continuous map |f | : |X ′| → |X | between the topological spaces. In particular, since subobjects of the final
object of X̃ ′

ét are represented by open subspaces of X ′, U ′ := |f |−1(U) represents f∗(U) for any open subset
U ⊆ |X |.

For any F ′ in X ′
ét

(f∗(F ′))(U) = Hom(U, f∗(F ′)) = Hom(f∗(U),F ′) = Hom(U ′,F ′) = F ′(U ′)

naturally in U . That is, the restriction of f∗(F ′) to XZar coincides with |f |∗(F ′|X ′Zar
). In particular, the

restriction of O → f∗(O ′) to XZar is a map of sheaves of rings

OXZar → |f |∗(O ′X ′Zar
).
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Since f is a map of locally ringed topoi, the argument in the proof of Proposition 3.1.1 shows that the
composite maps

OXZar,f(x′) → |f |∗(O
′
X ′Zar

)f(x′) → O ′X ′
Zar,x′

induced by the map of sheaves of rings on XZar are local for all x′ ∈ |X ′|. Thus, we have obtained a map
between the schemes X ′ and X as locally ringed spaces; call this map fZar.

This map of schemes (with their Zariski topologies) promotes in the evident manner to a strictly henselian
map X̃ ′

ét → X̃ét which coincides on underlying (ringed) Zariski topoi with the given f . Also, left-exactness
of f∗ implies that the unique f∗(X )→X ′ to the final object in X̃ ′

ét is an isomorphism. But for any affine
object

U = SpecA→ SpecR := X

in Xét, obviously X A/R = U . Thus, since f is a strictly henselian morphism, we have

f∗(U) = f∗(X A/R) = f∗(X )A/R X ′
A/R'

θX ,A/Roo

over A, naturally in U = SpecA. By the scheme case of Example 2.1.7, X ′
A/R is represented by the étale

X ′-scheme X ′ ⊗fZar,SpecR SpecA.
In other words, the functor f∗ coincides with pullback along the scheme morphism fZar on affine objects

in Xét. The affine objects are sufficient to compute the étale topos, so the given abstract morphism f and
the morphism f̃Zar define equivalent pullback functors. The functor f∗ is determined up to equivalence by
f∗ via adjointness, so we conclude that f on underlying topoi (ignoring ring objects) arises from a scheme
morphism which agrees with f on underlying ringed Zariski topoi. It remains to prove that the additional
data of the maps f#, (fZar)

#
ét : O ⇒ f∗O ′ coincide on Xét (and not merely on XZar).

For any affine étale U = SpecA→X and its pullback U ′ = X ′ ×X SpecA under the scheme morphism
fZar : X ′ →X , evaluation on U applied to f# : O → f∗O ′ (arising from f) defines a map of rings

A = O(U)→ (f∗O ′)(U) = Hom(U, f∗O ′)→ Hom(f∗(U),O ′) = O ′(U ′)

and we have to prove that this coincides with the canonical map. Let (f#)′ : f∗O → O ′ denote the map
adjoint to f#.

The identification of f∗(U) with U ′ is defined via the isomorphism θX ,A/R over A, so the desired com-
patibility of A-structures reduces to the commutativity of the diagram

(f∗O ′)(U) // O ′(f∗U)

O(U)

f#

OO

A

OO

in which the bottom side is a definition, the top side is adjunction, and the right side uses (2.3.1) with
F = U . An equivalent description in terms of U rather than U is the commutativity of the diagram

O(U)
f∗ //

f#

��

(f∗O)(f∗U)

(f#)′

��
(f∗O ′)(U) O ′(f∗U)

in which the bottom side is adjunction and the right side is the f∗U -evaluation of the map (f#)′ adjoint to
f#.

In more general categorical terms, if F∗ : C ′ → C is a covariant functor between two categories and
F ∗ : C → C ′ is a left adjoint, then we claim that for any objects X,Y of C and object Y ′ of C ′ equipped
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with a morphism h : Y → F∗Y
′ having adjoint h′ : F ∗Y → Y ′, the diagram

Hom(X,Y )

h

��

F∗ // Hom(F ∗X,F ∗Y )

h′

��
Hom(X,F∗Y ′) Hom(F ∗X,Y ′)

commutes (with bottom row equal to the adjunction bijection). We simply diagram chase using any f ∈
Hom(X,Y ). This is carried to h◦ f in the lower left term, and the adjunction along the bottom is computed
by applying F ∗ and composing with F ∗F∗ → id on Y ′. Since the top side carries f to F ∗(f), and F ∗ is
covariant, the problem thereby reduces to checking that the map h′ adjoint to h is the composite map

F ∗Y
F∗h→ F ∗F∗Y

′ → Y ′.

But this equality of maps is well-known general nonsense in the basic theory of adjointness. �

We now consider variants on Theorem 3.1.3 for non-archimedean analytic spaces. In contrast with Example
3.1.2, we will only assert a faithfulness result:

Lemma 3.1.4. Let k be a field complete with respect to a non-archimedean absolute value. For any k-
analytic Berkovich space X , the ringed topos (X̃ét,O) is strictly henselian. If f : X ′ → X is a k-analytic
morphism then the associated map f̃ between ringed topoi over k is strictly henselian. The resulting functor
from the category of k-analytic Berkovich spaces to the bicategory of strictly henselian topoi over k is faithful
in the sense of Definition 2.3.2.

If k has non-trivial absolute value then the same holds for rigid-analytic spaces over k equipped with their
Tate-étale topoi.

We do not know if full faithfulness holds.

Proof. The same argument as in the complex-analytic case in Example 3.1.2 (using Example 2.1.7) shows
that these topoi are strictly henselian and that all k-analytic maps between them induce strictly henselian
morphisms of ringed topoi over k. Thus, assigning the ringed topos (over k) for the étale site in the Berkovich
case and for the Tate-étale site in the rigid-analytic case defines a functor from these various categories of
k-analytic objects to the bicategory of strictly henselian ringed topoi (over k).

It remains to prove that this functor to the bicategory of strictly henselian ringed topoi (over k) is faithful.
Let f, g : X ′ ⇒X be k-analytic maps between either Berkovich spaces or rigid-analytic spaces (over k). We
have to prove that if Hom(f̃ , g̃) is non-empty then f = g and the only endomorphism of f̃ is the identity. A
“continuity” argument by contradiction (using f∗ and g∗ applied to functors represented by suitable “open”
subsets of X ) shows that if there is a map f̃ → g̃ then f and g must coincide on underlying sets of points.
Thus, f∗ = g∗, so the maps on underlying sets coincide.

To check equality of f and g as analytic morphisms, we can use the set-theoretic equality to reduce to the
case of affinoid X as follows. In the rigid-analytic case, for any admissible affinoid open V in X we observe
that there is a common preimage V ′ = f−1(V ) = g−1(V ), so f and g restrict to maps Ṽ ′ét ⇒ Ṽ ét between
full subcategories. Thus, composing with the inclusions V ′ ↪→X ′ allows us to replace X with each such V
and X ′ with the corresponding V ′. In the Berkovich case, a similar argument allows us to first reduce to the
case when X is Hausdorff, so k-analytic affinoid domains in X are closed. Then we work with k-analytic
affinoid domains V in X as follows. Although such a V is typically not étale over X , by [Ber2, 4.3.4] the
functor Ṽ ét → X̃ét is an equivalence onto the full subcategory of sheaves of sets on Xét with empty stalk
outside of |V |. (The statement of [Ber2, 4.3.4(ii)] is given in terms of abelian sheaves and vanishing stalks
away from a closed set, but the argument works verbatim using sheaves of sets and empty stalks outside of
a closed set.) Thus, for the common preimage V ′ = f−1(V ) = g−1(V ), the given morphism f̃ → g̃ restricts
to an morphism between the functors Ṽ ′ét ⇒ Ṽ ét on full subcategories induced by the respective k-analytic
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maps f, g : V ′ ⇒ V . Hence, we can replace (X ,X ′) with (V ,V ′) for varying V to reduce to the case when
X is affinoid.

Now that X is affinoid, we exploit that the given map f̃ → g̃ is one of morphisms of ringed topoi (over
k), not just as morphisms of topoi. It follows that O ⇒ f∗O ′ = g∗O ′ coincides on global sections. In view
of the universal property of affinoid spaces in both the rigid-analytic and Berkovich cases, we deduce that
f = g. The preceding reduction steps likewise imply that the only endomorphism of f̃ is the identity. �

Remark 3.1.5. If Y is any k-analytic Berkovich space, the set of (isomorphism classes of) points of Ỹét is
naturally identified with the underlying set |Y | of Y by assigning to each y ∈ Y the corresponding stalk
functor at a geometric point. The proof of this is very similar to the case of schemes [SGA4, VIII, 7.9]. The
properties which make the scheme proof carry over are: (i) k-analytic spaces are locally Hausdorff (hence
sober), (ii) étale k-analytic maps are open, (iii) an étale k-analytic map is finite étale locally on the source
and target, with the category of germs of finite étale covers of a pointed k-analytic space (X,x) naturally
isomorphic (via the formation of x-fibers) to the category of finite étale covers of Spec H (x), where H (x)
denotes the completed residue field at x [Ber2, 3.4.1]. This characterization of points does not seem to
significantly simplify any later proofs, nor help in addressing the full faithfulness aspect of Lemma 3.1.4.

Now we summarize the conclusion of our preparations. First, we have shown that the natural map from
the category of algebraic spaces to the bicategory of strictly henselian topoi is fully faithful (in the sense of
Definition 2.3.2), and so likewise for the subcategories of objects over a base ring (such as C, or any field).
The same holds for the functor from the category of complex-analytic spaces to the bicategory of strictly
henselian topoi over C. Finally, for a field k complete with respect to a non-archimedean absolute value, the
category of k-analytic Berkovich spaces sits faithfully as a subcategory of the bicategory of strictly henselian
topoi over k, as does the category of rigid-analytic spaces over k when |k×| 6= 1.

3.2. Universal mapping property: complex-analytic case. Our main interest is a topos-theoretic
interpretation of analytification in the non-archimedean case, but it will simplify the presentation to first
work out the complex-analytic analogue. The definitions, statements of results, and especially methods
of proof will carry over to both the Berkovich and rigid-analytic cases. However, we will need to make
some modifications to account for extra difficulties in the non-archimedean setting (e.g., the abundance of
“non-classical” points in the Berkovich setting, and the lack of a general existence theorem for quotients
by separated étale equivalence relations in the rigid-analytic setting). The reader should not ignore the
complex-analytic case, since many of the arguments given in that case are specifically written to work for
non-archimedean spaces (and so will not be repeated there).

Inspired by the universal property which characterizes the analytification of schemes locally of finite type
over C, we are led to the following variant for algebraic spaces. Let X be a quasi-separated algebraic space
locally of finite type over C. Does there exist a complex-analytic space X an and a morphism i : (X an)∼ →
X̃ét of locally ringed topoi over C which is “final” among all such maps? That is, for any complex-analytic
space Z and morphism ϕ : Z̃ → X̃ of locally ringed topoi over C we demand that there is a unique map
f : Z →X an of complex-analytic spaces such that i ◦ f̃ is naturally isomorphic to ϕ. If such a pair (X an, i)
exists then X an is unique up to unique isomorphism and is functorial in X . Note that even if X is a
scheme, it is not obvious that its usual analytification satisfies this property!

As we reviewed in §1.1, in [CT, §2] a more geometric notion of analytifiability is defined in terms of étale
scheme charts: for an étale cover U → X by a scheme and the scheme R := U ×X U , does the analytic
étale equivalence relation Ran ⇒ U an admits a quotient in the category of complex-analytic spaces? The
discussion in [CT, §2] makes precise the sense in which X an := U an/Ran is then independent of the choice
of étale scheme cover and is functorial in X . (Strictly speaking, [CT, §2] consider only the non-archimedean
setting. However, it applies verbatim in the complex-analytic case, where it coincides with the definition
used in [Kn, Ch. I, 5.17ff].)

Definition 3.2.1. Let X be a quasi-separated algebraic space locally of finite type over C. It is analytifiable
in the sense of topoi if there exists a complex-analytic space X an and map of locally ringed topoi i : X̃ an →
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X̃ét over C such that (X an, i) satisfies the universal property as formulated above. If the analytic quotient
U an/Ran exists for an étale scheme chart R ⇒ U for X , then X is analytifiable in the sense of charts.

Analytifiability in the sense of charts is a tangible geometric property, whereas analytifiability in the sense
of topoi is a more “intrinsic” property. It is therefore natural to try to relate these notions, and this is the
aim of the remainder of this section.

First, due to lack of a reference, we digress to record a general lemma on points of the étale topos of an
algebraic space. Let X be a quasi-separated algebraic space. There is an associated topological space |X |
defined in two equivalent ways. The more concrete definition rests on the fact that every field-valued point of
X factors uniquely through a monic field-valued point [Kn, II, 6.2] (this is false without quasi-separatedness).
The latter are called atoms by Knutson, and |X | is the set of atoms of X (taken up to isomorphism). It
is equipped with the quotient topology from any étale scheme cover of X . Another definition is given in
[LMB, 5.5] which applies more broadly to quasi-separated Artin stacks (with separated diagonal), and it
uses an equivalence relation on “geometric points”; in the case of algebraic spaces it is naturally isomorphic
to Knutson’s construction. By [LMB, 5.7.2], |X | is sober. It defines the Zariski site XZar of X .

Lemma 3.2.2. Let X be a quasi-separated algebraic space. Assigning to each x ∈ |X | the stalk functor
associated to x = Spec k(x)s →X defines an bijection from |X | to the set of isomorphism classes of points
of X̃ét. The inverse is given by composition with the map X̃ét → X̃Zar.

Proof. Choose distinct x, x′ ∈ |X |. Since |X | is sober and x 6= x′, one of them is not in the closure of the
other. Thus, there is open subspace V in X containing one but not the other. Hence, precisely one of V x

or V x′ is empty, so the stalk functors at x and x′ are not isomorphic. This proves injectivity.
Now consider any point ϕ of the topos X̃ét. Its composition with X̃ét → X̃Zar is the stalk functor at

a unique point x ∈ |X | since |X | is sober. It remains to prove that the exact functor ϕ∗ : X̃ét → Set
is isomorphic to x∗ (equivalently, isomorphic to the functor of global sections of pullback to the strict
henselization of X at x). This is shown for schemes in the proof of [SGA4, VIII, 7.9], and the proof there
works verbatim for quasi-separated algebraic spaces because (i) for any affine schemes U ′ and U ′′ étale over
X , their maps to X are separated (as U ′ and U ′′ are separated) and the fiber product U ′×X U ′′ is a scheme,
(ii) exactly as for schemes, every field-valued point of X factors through a unique monic field-valued point,
and the latter points constitute |X |. �

Next we turn to the relationship between analytifiability in the sense of charts and in the sense of topoi for
quasi-separated algebraic spaces X locally of finite type over C. The following result provides an equivalence
between the two sense of analytification.

Theorem 3.2.3. Let X be a quasi-separated algebraic space locally of finite type over C.
(1) Assume there exists an analytification (X an, i) in the sense of topoi. Choose any étale scheme cover

π : U →X and consider the associated étale equivalence relation in schemes R := U ×X U ⇒ U .
Let U an and Ran denote the usual analytifications of the schemes U and R. Define the map
πan : U an →X an via the universal property of (X an, i) applied to

Ũ an = ˜(U an)ét
fπét→ Ũét → X̃ét,

and define δ : Ran → U an ×X an U an similarly.
The map πan is an étale cover and δ is an isomorphism. In particular, the quotient U an/Ran

exists and is identified with X an, so X is analytifiable in the sense of charts.
(2) Assume there exists an analytification X an of X in the sense of charts. If ∆X /C is affine (e.g., a

closed immersion) then there exists a morphism of locally ringed topoi i : X̃ an → X̃ét over C such
that (X an, i) is an analytification in the sense of topoi.

Proof. Throughout this proof, we use Proposition 2.3.7 without comment. For any finite local C-algebra
A, Sp(A) := Spec(A)an is a 1-point space with C-algebra of global functions A, so it is really Spec(A) by
another name. The algebraic and analytic étale sites of Spec(A) are likewise identified.
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The underlying set |X an| of X an is identified with the set of analytic maps Sp(C) → X an, and by
the universal property of (X an, i) the set of such maps is in natural bijection with the set of isomorphism

classes of strictly henselian C-maps ˜Sp(C)ét → X̃ét. By Theorem 3.1.3, this latter set is naturally identified
with the set of C-maps Spec(C) → X , so i naturally identifies |X an| with X (C) as sets. Hence, πan on
underlying sets is identified with π on C-points, so πan is surjective.

Choose u ∈ U (C) = |U an| and let x = π(u) ∈ X (C) = |X an|. For any finite local C-algebra A, we
wish to prove that the set of C-maps Sp(A) → U an lifting u is carried bijectively under πan to the set of
C-maps Sp(A) → X an lifting x. By the universal property of (X an, i), the latter set of maps is identified

with the set of (isomorphism classes of) strictly henselian C-maps ˜Sp(A)ét → X̃ét lifting x̃, so then applying
Theorem 3.1.3 identifies this with the set of C-maps Spec(A) → X lifting x. Likewise, the set of C-maps
Sp(A) → U an lifting u is identified with the set of C-maps Spec(A) → U lifting u. Since U → X is an
étale map carrying u to x, the desired bijection of A-points follows. This proves that πan is an étale cover.

A very similar argument shows that the natural map Ran → U an ×X an U an is a complex-analytic étale
bijection, hence an isomorphism. This settles part (1).

Now we consider part (2), so assume X is analytifiable in the sense of charts: U an → X an is an étale
cover which is a quotient by the equivalence relation Ran. In particular, the category (X an)ét is equivalent
to the category of objects in (U an)ét equipped with descent data relative to Ran ⇒ U an. Thus, using étale
descent for sheaves of sets, the pullback component of the strictly henselian map of ringed topoi over C
corresponding to the composite map of sites

U an → Uét →Xét

canonically through a functor between topoi (ignoring ring objects) i∗ : X̃ an = ((X an)ét)∼ → (Xét)∼.
The construction of i∗ via descent implies that it is left exact and provides a map of ring objects i′ :

i∗OXét → OX an . To construct i∗, for F in X̃ an let F ′ and F ′′ denote the respective pullbacks of F to
Ũ an and R̃an. Let

p : Ũ an → Ũét → X̃ét, q : R̃an → R̃ét → X̃ét

denote the canonical maps, and likewise for π1, π2 : R̃an ⇒ Ũ an. Using the canonical isomorphisms

π∗1F ′ ' F ′′ ' π∗2F ′

for F in X̃ an, we get a pair of maps p∗F ′ ⇒ q∗F ′′ defined by

p∗F
′ → p∗πj∗π

∗
jF
′ = q∗π

∗
jF
′ ' q∗F ′′

for j = 1, 2. Defining i∗ : X̃ an → X̃ét by

i∗F := ker(p∗F ′ ⇒ q∗F
′′),

it is easy to check that i∗ is right adjoint to i∗.
The triple i = (i∗, i∗, i′) is a map of ringed topoi over C, and it follows from the descent construction of

(i∗, i′) that i is strictly henselian. We claim that (X an, i) is an analytification in the sense of topoi. Consider
a complex-analytic space Z and a strictly henselian morphism ϕ : Z̃ → X̃ét over C. We need to prove that
there exists a unique map of complex-analytic spaces f : Z → X an such that ϕ is equivalent to i ◦ f̃ . First
we establish the uniqueness of f .

Given such an f , to prove its uniqueness we first check that f is uniquely determined on underlying sets.
For any z ∈ Z, f(z) ∈ X an gives rise to a point of the topos X̃ an (i.e., a stalk functor), and composing
this point with i∗ yields the point ϕ(z) of X̃ét since ϕ is equivalent to i ◦ f̃ . Since ϕ(z) does not involve
f , it suffices to check that if two physical points x, x′ ∈ X an satisfy (i∗)x ' (i∗)x′ as functors on X̃ét then
x = x′. By the descent construction of i∗, if we choose u, u′ ∈ Ũ an over x, x′ respectively, then (i∗)x = (p∗)u
and (i∗)x′ = (p∗)u′ . The points u0, u

′
0 of Ũét obtained from u and u′ satisfy (π∗ét)u0 ' (π∗ét)u′0 as points

of X̃ét. Thus, the C-valued (hence monic) points π(u0) and π(u′0) of X coincide, by Lemma 3.2.2, so
(u0, u

′
0) ∈ (U ×U )(C) lies in U ×X U = R.



22 BRIAN CONRAD

Under the map U an ×U an → U ×U , (u, u′) is carried to the C-point (u0, u
′
0) of R. But the preimage

of R in U an ×U an is Ran due to the universal property of analytification of locally finite type C-schemes,
so (u, u′) ∈ Ran. Hence, the points x, x′ ∈ X an coincide, as desired. This completes the proof that any
analytic morphism f : Z → X an satisfying i ◦ f̃ ' ϕ is determined on underlying sets. For the uniqueness
of f as an analytic map it therefore remains to show that f#

z : OX an,f(z) → OZ,z is uniquely determined for
each z ∈ Z. Since ϕ ' i ◦ f̃ as strictly henselian maps of ringed topoi, we have a commutative diagram of
local maps

OXét,ϕ(z)
ϕ#
z //

i#

��

OZ,z

OX an,f(z)

f#
z

::ttttttttt

between local noetherian rings. The map along the left induces an isomorphism between completions, so f#
z

is uniquely determined and hence so is f (if it exists).
Beware that to prove that f exists, the uniqueness does not formally permit us to work locally on Z for

existence, since there is an isomorphism ambiguity in the universal property. In our eventual construction
of the desired analytic map f : Z → X an and equivalence ξ : ϕ ' i ◦ f̃ , the non-canonical choice of étale
scheme cover π : U → X will play a key role in the construction of ξ. To establish the existence of (f, ξ),
we will use the hypothesis that X has affine diagonal. The key is:

Lemma 3.2.4. For any étale map V = SpecA → X from an affine scheme, ϕ∗(V ) is represented by an
étale separated analytic map V → Z.

Proof. By left exactness of ϕ∗ we have ϕ∗(X ) = Z (preservation of final objects), and we can choose an
analytic étale map π : Z ′ → Z such that there exists an epimorphism s : Z ′ → ϕ∗(V ). In Z̃ we have

(3.2.1) Z ′ × ϕ∗(V ) = Z ′ ×s,ϕ∗(V ),p1 (ϕ∗(V )×Z ϕ∗(V )) = Z ′ ×s,ϕ∗(V ),p1 ϕ
∗(V ×X V )

Since X has affine diagonal and V = SpecA is affine, it follows that V ×X V is also affine, say SpecB,
and B is an étale A-algebra via either of the projections V ×X V ⇒ V . For specificity, we make B into an
A-algebra using the first projection (due to the appearance of this projection in (3.2.1)).

The definitions of A and B imply V B/A = V ×X V , so the strictly henselian property of ϕ implies

ϕ∗(V ×X V ) = (ϕ∗(V ))B/A.

By Proposition 2.1.8 applied to F := ϕ∗(V ), we obtain from (3.2.1) the isomorphism

Z ′ × ϕ∗(V ) ' Z ′B/A
where the right side rests on the “map” Z ′ → SpecA over C defined by the composition

Z ′
s→ ϕ∗(V )→ SpecA

whose second step corresponds to the C-algebra map

(3.2.2) A = Hom(V ,OX )→ Hom(V , ϕ∗OZ) = Hom(ϕ∗(V ),OZ).

By Example 2.1.7, Z ′B/A is represented by an analytic space étale over Z ′ and hence étale over Z.
We have proved that the object Z ′×ϕ∗(V ) in Z̃ is representable, and the projection Z ′×ϕ∗(V )→ ϕ∗(V )

is an epimorphism since s is. For Z ′′ := Z ′×ZZ ′ either of the maps Z ′′ ⇒ Z ′ make Z ′′ a covering of ϕ∗(V ), so
by replacing Z ′ with Z ′′ above we see that Z ′′×ϕ∗(V ) in Z̃ is also represented by an analytic space étale over
Z. But Z ′′ × ϕ∗(V ) is the fiber square of Z ′ × ϕ∗(V )→ ϕ∗(V ), so we conclude that ϕ∗(V ) is the quotient
of an étale equivalence relation in analytic spaces étale over Z. This quotient is represented by an étale
analytic space over Z provided that the diagonal of the equivalence relation is a topological embedding (due
to the criterion in [Gr, Prop. 5.6]), and then it is moreover separated over Z if the diagonal of the equivalence
relation is a closed immersion. It therefore suffices to prove that the map ϕ∗(V )→ ϕ∗(V )× ϕ∗(V ) in Z̃ is
relatively representable in closed immersions.
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Since Z ′ → ϕ∗(V ) is an epimorphism, so ϕ∗(V ) has empty stalks away from the open image of the étale
map Z ′ → Z, and analytic étale descent is effective for closed immersions, it is equivalent to prove that the
Z ′-map

Z ′ × ϕ∗(V )→ Z ′ × (ϕ∗(V )× ϕ∗(V ))
between representable sheaves on Zét is a closed immersion. This map is a section to either of the evident
projections over Z ′, so it suffices to prove that the representing object Z ′B/A for Z ′×ϕ∗(V ) ∈ Z̃ is separated
over Z ′. By construction of Z ′B/A and the universal property of analytification of affine C-schemes of finite
type, Z ′B/A = Z ′ ×Spec(A)an Spec(B)an (where Z ′ → Spec(A)an arises from the map Z ′ → Spec(A) over C
associated to the C-algebra map A→ Z ′ constructed above). This is visibly separated over Z ′. �

Let ϕ∗(V ) denote the analytic space representing ϕ∗(V ) as in Lemma 3.2.4. If {V α = SpecAα →X } is
an étale cover by affines, right exactness of ϕ∗ implies that {ϕ∗(V α)} is an étale cover of Z since ϕ∗(X ) = Z.
The essential point in the construction of the desired f : Z →X an and especially the equivalence ξ : ϕ ' i◦f̃
is to show that if V = SpecA → X is étale and admits a factorization through π : U → X then there is
an analytic map fV : ϕ∗(V )→X an and an equivalence ξV from i ◦ f̃V to the composite map

ϕ̃∗(V )→ Z̃
ϕ→ X̃ét

(in the bicategory of strictly henselian topoi over C) such that (fV , ξV ) is functorial in V over X . The
functorial aspect will then be applied to globalize and solve the original problem for Z. (The pair (fV , ξV ) is
precisely a solution to our original factorization problem with Z replaced by ϕ∗(V ), so fV will be uniquely
determined. The key issue is to arrange ξV to be functorial in V .)

Fix an étale object h : V = SpecA→ X for which there is an X -map j : V → U . Thus, we obtain an
analytic map πan ◦ jan : V an → X an. This map is independent of the choice of j. Indeed, if j′ : V → U
is another X -map then the pair (j, j′) defines an X -map V → U ×X U =: R whose projections recover
j and j′, so we get an analytic map V an → Ran whose composites with πan

1 , πan
2 : Ran ⇒ U an recover jan

and j′an. Since the maps πan ◦ πan
1 and πan ◦ πan

2 from Ran to U an/Ran =: X an coincide, the independence
of πan ◦ jan with respect to the choice of j is proved. Thus, it is well-posed to define han := πan ◦ jan, and
the independence of j implies that han is functorial in V over X .

By (3.2.2) we get a C-algebra map A → O(ϕ∗ V ), which in turn defines an analytic map ϕ∗(V ) →
(SpecA)an = V an due to the universal property of analytification for schemes locally of finite type over C.
We now check that the resulting diagram of strictly henselian morphisms over C

(3.2.3) ϕ̃∗(V )

��

//
Ṽ an

ghan //
X̃ an

i

��

Z̃ ϕ
// X̃ét

commutes up to a specific equivalence ξV which is canonical in h : V →X .
Upon choosing an X -map j : V → U , the definition of i∗ in terms of the étale chart R ⇒ U for X

implies (by consideration of pullback functors) that the diagram of strictly henselian morphisms over C

ϕ̃∗(V ) //

""EE
EE

EE
EE

Ṽ an //

��

Ũ an //

��

X̃ an

i

��
Ṽ ét

// Ũét
// X̃ét

commutes up to a specific equivalence which is canonical in the choice of j : V → U (where the left triangle
in the diagram uses the universal property of V an and the definition of the map of locally ringed spaces
ϕ∗(V ) → SpecA = V over C underlying the construction of the diagonal arrow). Exactly as in our proof
that han is independent of j, if we drop the appearance of the two U -terms in the diagram then we obtain
canonicity in V →X (i.e., independence of j) for the equivalence expressing commutativity of the resulting
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diagram of strictly henselian morphisms of topoi because any two X -maps V ⇒ U are obtained from the
projections of a map V → U ×X U = R with R a C-scheme locally of finite type and X an := U an/Ran.

To complete our analysis of (3.2.3) for a fixed étale V = SpecA → X which factors through U → X ,
we prove the commutativity (up to a specific equivalence functorial in V → X ) of the diagram of strictly
henselian morphisms over C

(3.2.4) ϕ̃∗(V ) //

��

Ṽ ét

��

Z̃ ϕ
// X̃ét

We will first consider the situation on underlying topoi (ignoring ring objects) by canonically identifying the
composite pullback functors in both directions.

The category ϕ̃∗(V ) is identified with the slice category over ϕ∗(V ) inside of Z̃, so pulling back along
the bottom and left in (3.2.4) carries F ∈ X̃ét to ϕ∗(V ) ×Z ϕ∗(F ) = ϕ∗(V ×X F ). But V ×X F is
the pullback of F along the right side, so commutativity of the diagram of topoi (3.2.4) up to a specific
equivalence (canonical in V → X ) is reduced to canonically identifying pullback along the top with the
functor G  ϕ∗G into the slice category over ϕ∗(V ). This problem is easily reduced to the case of G
represented by an affine (necessarily étale over V = SpecA), in which case it follows from the hypothesis
that ϕ is strictly henselian.

Finally, letting g : ϕ̃∗(V )→ X̃ét denote the composite map of underlying topoi either way around (3.2.4),
we check that the two resulting maps OXét ⇒ g∗Oϕ∗(V ) of ring objects over C coincide. It suffices to compare
the maps when evaluating on affines V ′ = SpecA′ étale over X , and since ϕ∗(V )×Zϕ∗(V ′) = ϕ∗(V ×X V ′)
with V ×X V ′ also affine (as ∆X /C is affine), the problem reduces to one of functoriality: we claim that for
an arbitrary étale map W = SpecB →X from an affine, the associated map B → OZ(ϕ∗(W )) as in (3.2.2)
is functorial in W →X . (This functoriality is applied to the first projection V ×X V ′ → V ′ over X .) Such
functoriality is immediate from naturality of ϕ# : OX → ϕ∗OZ on Xét and functoriality of the adjunction
between ϕ∗ and ϕ∗.

We have solved the existence problem for each ϕ∗(V ) in place of Z, where h : V → X is any étale
map from an affine such that h factors through U over X , and by uniqueness the resulting analytic maps
fV : ϕ∗(V ) → X an all arise from a common analytic map f : Z → X an. The equivalence ξV : ϕ|

ϕ̃∗(V )
'

i ◦ f̃V was constructed to be functorial in V over X (not just V over U ), so the canonical isomorphisms
ϕ∗(V )×Z ϕ∗(V ′) ' ϕ∗(V ×X V ′) with affine V ×X V ′ allow us to use étale descent with pullback functors
to globalize the ξV to an equivalence ξ : ϕ ' i ◦ f̃ as we let V vary through an affine étale cover of U (e.g.,
a Zariski affine open covering). �

3.3. Universal mapping property: non-archimedean case. Let k be a field complete with respect to a
non-archimedean absolute value, and let X be a quasi-separated algebraic space locally of finite type over k.
We use [CT, §2] to define the concepts of analytifiability in the sense of charts for both Berkovich k-analytic
spaces and rigid-analytic spaces over k (assuming |k×| 6= 1 in the latter case), similarly to Definition 3.2.1.
By [CT, 2.3.5] and its easier k-analytic variant, these properties are preserved under any extension of the
ground field (respecting the absolute value).

We also define the notion of analytifiability in the sense of topoi in both the Berkovich and rigid-analytic
cases similarly to the complex-analytic case in Definition 3.2.1: in the Berkovich (resp. rigid-analytic) case

we use the étale topos (resp. Tate-étale topos) Zét and require that i : ˜(X an)ét → X̃ét satisfies the expected
universal property relative to maps ϕ : Z̃ét → X̃ét of locally ringed topoi over k. (Such ϕ are strictly henselian
morphisms, by Proposition 2.3.7.) In the case of k-schemes X locally of finite type, the analytification X an

in the sense of locally ringed spaces over k as in [Ber2, 2.6] is characterized by a universal property among
good k-analytic spaces (considered as locally ringed spaces over k). So there is some work to be done even



UNIVERSAL PROPERTY OF NON-ARCHIMEDEAN ANALYTIFICATION 25

in the scheme case, and we carry this out now to streamline later arguments when X is just an algebraic
space.

Proposition 3.3.1. Let X be a scheme locally of finite type over k, and X an its good analytification in
the sense of good k-analytic Berkovich spaces. Let i : ˜(X an)ét → X̃ét be the map of locally ringed topoi
induced by the morphisms of sites (X an)ét → Xét defined by analytification of schemes. Then (X an, i) is
an analytification in the sense of topoi.

The rigid-analytic case (when |k×| 6= 1) is similar but easier, so we leave that case to the reader.

Proof. The idea of the proof of the desired universal property of (X an, i) is to systematically adapt the
proof of Theorem 3.1.3, except we have to make some modifications to address technical issues such as the
intervention of non-good spaces Z and the fact that inclusions of affinoid domains are generally not étale in
the k-analytic case.

Let Z be a k-analytic Berkovich space equipped with a morphism ϕ : Z̃ét → X̃ét of locally ringed topoi
over k. We claim there exists a unique k-analytic map f : Z → X an such that i ◦ f̃ ' ϕ. By Proposition
2.3.7, i and ϕ are strictly henselian. Since étale k-analytic maps are open, subobjects of the final object
Z in Z̃ét are represented by open subspaces of Z (the proof for schemes in [SGA4, VIII, Prop. 6.1] carries
over verbatim to the k-analytic case). To prove uniqueness of f , we can argue exactly as in the proof of
faithfulness in Theorem 3.1.3 to reduce to the case when X = SpecA is affine (with its étale topology), and
then we can compose with inclusions from k-analytic affinoid domains in Z to reduce to the case when Z is
k-affinoid and hence good. Then the map f : Z → X an is uniquely determined by the induced k-algebra
map A → O(Z) due to the universal property of the map of locally ringed spaces X an → X relative to
good k-analytic spaces, yet A→ O(Z) is precisely ϕ] on global sections with ϕ ' i ◦ f̃ .

To prove the existence of f , we can argue exactly as in the proof of Theorem 3.1.3 to reduce to the case
when X is affine and Z is Hausdorff. Hence, for any closed k-analytic domain Y in Z, Ỹét → Z̃ét is an
equivalence onto the full subcategory of objects with empty stalks over Z − Y (as we noted near the end of
the proof of Lemma 3.1.4). This applies with Y any k-affinoid domain in Z. The following lemma for gluing
étale sheaves along k-analytic domains allows us to reduce to the case when Z is k-affinoid (and hence good)
by the same argument used to reduce to the case that X ′ is a scheme in the proof of Theorem 3.1.3.

Lemma 3.3.2. Let Z be a Hausdorff k-analytic space, and {Zi} a collection of closed k-analytic domains
in Z such that any point z ∈ Z has a neighborhood covered by finitely many Zi. For any F in Z̃ét,
let Fi = F |Zi ∈ Z̃i,ét and let θji : Fi|Zij ' Fj |Zij be the evident isomorphism of étale sheaves over
Zij = Zi ∩ Zj. Then F  ({Fi}, {θji}) is an equivalence from Z̃ét to the category of étale sheaves on the
Zi equipped with “descent data”.

Proof. By considering maps of stalks, faithfulness is clear and the proof of full faithfulness together with
essential surjectivity is easily reduced to the case when {Zi} is finite. Then for any étale U → Z, with Ui
the preimage of Zi, for any ({Fi}, {θij}) define

F (U) := {(si) ∈
∏

Fi(Ui) | θji(si) = sj}.

This is clearly an étale sheaf on Z, and there is are evident maps θi : F |Zi → Fi over Zi,ét (adjoint to
the maps F → (ηi)∗(Fi), where ηi : Zi → Z is the inclusion). It is easy to check that θji ◦ θi = θj over
(Zi ∩ Zj)ét, so provided that each θi is an isomorphism it follows from consideration of stalks that we have
inverted the given functor and so have established the required equivalence of categories.

To prove that each θi is an isomorphism, it suffices to check on stalks at each z ∈ Z. More generally, if
η : Y → Z is the inclusion of a closed k-analytic domain and G is an étale sheaf on Y then we claim that
η∗G has empty stalk outside of the closed set η(Y ) and that the natural map (η∗G )η(y) → Gy is bijective for
all y ∈ Y . The former is obvious and the latter is shown in the proof of [Ber2, 4.3.4(i)]. �

Now we have arranged that Z is good (even k-affinoid). Since subobjects of Z in Z̃ét are represented by
open subspaces, ϕ gives rise to a map of locally ringed spaces ϕZar : Z → X over k by the same procedure
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used in the proof of Theorem 3.1.3 to construct the map denoted there as fZar. By the universal property
of X an among good k-analytic spaces, there is a unique k-analytic map ϕan

Zar : Z → X an which, viewed as
a map of locally ringed spaces over k, recovers ϕZar after composition with the map of locally ringed spaces
X an →X over k. We have to check that ϕ ' i◦ϕ̃an

Zar as maps between strictly henselian ringed topoi over k.
Such an isomorphism merely as maps of topoi is deduced from the strictly henselian property of ϕ, exactly as
in the proof of Theorem 3.1.3 (using the Berkovich case of Example 2.1.7 in place of the scheme case). The
further comparison at the level of ring objects over k goes exactly as near the end of the proof of Theorem
3.1.3, using that a k-map of locally ringed spaces from a good k-analytic space to an affine k-scheme of finite
type is uniquely determined by the induced map on global sections of structure sheaves. �

Exactly as in the complex-analytic case, over k analytifications in the sense of topoi are naturally functorial
in the algebraic space. (Functoriality for analytifiability in the sense of charts is [CT, 2.2.3].) By [CT, §4.2],
if X is separated then it is analytifiable in the sense of charts for both the Berkovich and rigid-analytic cases
over k, and in the Berkovich case X an is good (and strictly k-analytic). Before stating the non-archimedean
version of Theorem 3.2.3, we discuss some useful compatibility properties of topos-theoretic analytification
with respect to locally closed immersions. (The reason for interest in this point is that the algebraic space X
admits a locally finite stratification by locally closed subspaces which are schemes. This will be crucial for
overcoming difficulties created by the abundance of “non-classical” points on Berkovich k-analytic spaces.)

Suppose that in the Berkovich sense there exists an analytification (X an, i) in the sense of topoi. We
claim that if Z →X is a locally closed immersion then an analytification (Z an, i′) in the sense of topoi also
exists, and in a natural manner Z an is a locally closed subspace of X an for the analytic Zariski topology (in
the sense of being a closed subspace of a Zariski-open subspace). To see this, it suffices to separately treat
the case of closed immersions and open immersions into X .

Let Z ↪→ X be the closed immersion corresponding to a coherent ideal I on X , and consider the
ideal sheaf I an in OX an that is generated by the image of i∗(I ) → i∗(OX ) → OX an . Since I is locally
of finite presentation and i∗ is exact, i∗(I ) is locally of finite presentation over i∗(OX ). Hence, I an is
coherent, so its zero space in X an makes sense. By the universal property of X an, for any k-analytic space
Z a k-analytic map f : Z → X an factors through the zero space of I an if and only if the composite map
i ◦ f̃ : Z̃ét → X̃ét factors through the fully faithful functor Z̃ét ↪→ X̃ét; the resulting map Z̃ét → Z̃ét is easily
seen to be strictly henselian and unique up to equivalence (since étale sheaves of sets on a closed k-analytic
subspace are precisely those on the ambient k-analytic space with empty pullback over the complementary
open subspace; see [Ber2, 4.3.4(ii)] for the analogue with abelian sheaves, whose proof adapts to sheaves of
sets.

By consideration of structure sheaves, we conclude that the zero space of I an in X an serves as an
analytification Z an of Z in the sense of topoi. A simpler version of the same argument shows that X an−Z an

is an analytification of X −Z in the sense of topoi. Combining the two, we see that the formation of X an

“commutes” with passage to locally closed subspaces of X .
Here is our main result.

Theorem 3.3.3. Let X be a quasi-separated algebraic space locally of finite type over k.
(1) If there exists an analytification (X an, i) in the sense of topoi for k-analytic Berkovich spaces then

X an is an analytification of X in the sense of charts, precisely in the same manner as in the
complex-analytic case in Theorem 3.2.3(1).

(2) Assume there exists an analytification X an of X in the sense of charts for k-analytic Berkovich
spaces. If ∆X /k is affine (e.g., a closed immersion) then there exists a strictly henselian morphism
i : X̃ an → X̃ét over k such that (X an, i) is an analytification in the sense of topoi.

(3) If X is separated and |k×| 6= 1 then its analytification in the sense of charts for rigid-analytic spaces
is an analytification in the sense of topoi for rigid-analytic spaces, exactly as in part (1).

The interested reader can easily verify from our construction of i below that it recovers the maps of ringed
topoi (over k) used in [CT, §3.3] to discuss relative GAGA and comparison morphisms for coherent sheaves
in the rigid-analytic case.
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Proof. Our argument will be a modification of the one used in the complex-analytic case, adapted to the
special features of non-archimedean analytic spaces. Curiously, although (1) is much easier than (2) in the
complex-analytic case due to the identification of |X an| with X (C), in the k-analytic case (1) will require
more work because (i) X an typically has far more points than X even when X is a scheme, and (ii) the
proof of the complex-analytic analogue of (2) will work essentially unchanged for k-analytic spaces.

Proof of (1). Consider an étale scheme cover π : U → X and define the scheme R = U ×X U . The
problem is precisely to prove that the canonical map πan : U an →X an is an étale cover and that the natural
map Ran → U an ×X an U an is an isomorphism.

Lemma 3.3.4. The map πan is surjective and quasi-finite.

We refer the reader to [Ber2, 3.1] for the notion of quasi-finiteness for k-analytic morphisms f : Y ′ → Y ,
and note that by [Ber2, 3.1.10] this property near a point y′ ∈ Y ′ is equivalent to y′ being isolated in
f−1(f(y)) and lying in the relative interior Int(Y ′/Y ) (see [Ber2, 1.5.4]).

Proof. Since X is a quasi-separated locally noetherian algebraic space, it has a locally finite stratification in
reduced locally closed subschemes. By Lemma 3.2.2 the underlying topological space |X | naturally coincides
with the set of points of X̃ét, so for any x ∈X an the point x∗ ◦ i∗ of X̃ét corresponds to a point i(x) ∈ |X |.
Thus, there is a locally closed subscheme Y in X such that i(x) ∈ |Y | inside of |X |. The preceding
construction of Y an inside of X an shows that i(x) ∈ Y implies x ∈ Y an. But Y is a scheme, so Y an

coincides with the usual analytification of Y (by Proposition 3.3.1). Since UY := U ×X Y → Y is an étale
scheme cover, analytification yields an étale cover of k-analytic spaces [Ber2, 2.6.2, 2.6.8, 3.3.11]. Thus, x
lifts to a point u ∈ (U ×X Y )an. Under the closed immersion of this latter analytification into U an, the
image of u is carried by πan onto x. This proves the surjectivity of πan.

Consideration of zero spaces of coherent sheaves implies (πan)−1(Y an) = (UY )an, so πan has quasi-finite
fibers over Y an since the map UY → Y of locally finite type k-schemes is étale and hence locally quasi-finite
(so its analytification is quasi-finite [Ber2, 3.1.7]). Thus, to prove that πan is quasi-finite at the points of
πan−1(x) it suffices to show that all such points lie in the relative interior of U an over X an. Since UY

is Zariski-open in a closed subspace of U , the same holds after analytification. Hence, by [T, Cor. 4.6],
Int(U an/X an) meets (UY )an in Int((UY )an/Y an). But this latter relative interior equals (UY )an since
UY → Y is a map of locally finite type k-schemes. Hence, πan is quasi-finite at all points. �

Since πan is quasi-finite in the k-analytic sense, by [Ber2, 3.2.8, 3.3.10] the locus of points of U an near
which it is étale is Zariski-open. A non-empty Zariski-closed set in the good and strictly k-analytic U an

must contain points u whose completed residue field is k-finite, so to prove that πan is étale it suffices to
work at points with k-finite completed residue field. Fix such a point x ∈ X an. The universal property of
(X an, i) applied to Z := M (R) for local k-finite R implies that the quasi-finite k-analytic space πan−1(x)
is identified with π−1(x)an. Hence, the étale property of π reduces the task of proving that πan is étale to
verifying that at all points u ∈ πan−1(x), the quasi-finite πan is flat at u in the sense of [Ber2, 3.2.5]. But
using k-finite artinian points allows us to apply the universal property of (X an, i) to verify that for any
k-affinoid domain V := M (A) ⊂ X an through x and V -finite k-affinoid domain V ′ := M (B) ⊂ πan−1(V )
through u, the finite map Spec(B)→ Spec(A) is formally étale at the maximal ideal corresponding to u. It
follows by further shrinking of V ′ around u that πan is étale at every u over x, so (by varying the k-finite x)
πan is étale. This finishes the proof that πan is an étale cover.

To complete the proof of (1), we have to show that the natural map δ : Ran → U an ×X an U an is an
isomorphism. This map is a monomorphism since R → U × U is a monomorphism (and monicity for a
k-morphism between locally finite type k-schemes is preserved under analytification, due to its equivalence
with the relative diagonal being an isomorphism). But δ is a U an-map between k-analytic spaces étale over
U an, so δ is étale. A k-analytic étale monomorphism is an isomorphism onto its open image (as we see by
proving triviality of the completed residue field extensions and using [Ber2, 3.4.1]), so δ is an open immersion.
To prove it is surjective, we pick x ∈X an and check the surjectivity of δ on x-fibers as follows. By the same
stratification trick as in the proof of Lemma 3.3.4, we find a locally closed subscheme Y ⊂X through i(x)
and can then replace R ⇒ U with its pullback over Y to reduce to the known case when X is a scheme.
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Proof of (2). Choose an étale scheme cover π : U → X and assume that X an := U an/Ran exists
(where R = U ×X U ). Exactly as in the complex-analytic case, we construct a strictly henselian k-

morphism i : ˜(X an)ét → X̃ét. By using the existence of quotients by separated étale equivalence relations
for k-analytic spaces [CT, 4.2.2] in place of the appeal to [Gr, Prop. 5.6] in the complex-analytic case (in the
proof of Lemma 3.2.4), the only aspect of the proof of (2) in the complex-analytic case which does not carry
over verbatim to the k-analytic case is the verification of uniqueness of a k-analytic map f : Z →X an such
that i ◦ f̃ : Z̃ét → X̃ét is equivalent to a specified k-morphism. But to prove uniqueness we can compose
with the inclusion of k-analytic affinoid domains in Z to reduce to the case when Z is affinoid, hence good.
Since X an is also good, the k-analytic map f is then uniquely determined by the underlying map of locally
ringed spaces over k [Ber2, 1.5.2ff], so it suffices to show that f is determined on underlying sets and on
local stalks of the structure sheaves.

The formation of the analytification X an in the sense of charts is compatible with passage to locally
closed immersions Y ↪→ X (due to the observations about closed and Zariski-open immersions at the end
of Example 2.1.1). Hence, we can use Lemma 3.2.2 and the stratification trick to reduce the uniqueness of
f on underlying sets to the case when X is a scheme (with Z a good k-analytic space). But then we can
compute X an using the obvious chart U = X , so X an has the expected universal property among good
k-analytic spaces and thus f is unique in such cases. This proves the uniqueness of f on underlying sets in
general.

To prove the uniqueness of f#
z : OX an,f(z) → OZ,z, since OZ,z is noetherian it suffices to check uniqueness

modulo powers of some proper ideal. Once again choosing a locally closed subscheme Y in X through ϕ(z),
we can then use the infinitesimal neighborhoods of Y in X to reduce to the case when Xred is a scheme.
But then X is a scheme [Kn, III, Thm. 3.3], and we just saw that the k-analytic map f is unique when X
is a scheme.

Proof of (3). Assume |k×| 6= 1. Since X is assumed to be separated, there exists a Berkovich analyti-
fication X an,Ber in the sense of charts and it is a Hausdorff (even separated and good) strictly k-analytic
space. By construction in [CT], the analytification of X in the sense of charts for rigid-analytic spaces
over k is the rigid-analytic space X an,Ber

0 associated to X an,Ber under the fully faithful functor X  X0

from Hausdorff strictly k-analytic spaces to quasi-separated rigid-analytic spaces as in [Ber2, 1.6.1]. The
argument near the end of [CT, §4.3] shows that the map U an,Ber

0 → X an,Ber
0 admits local sections for the

Tate-étale topology, so U  U0 defines a map of ringed sites (X an,Ber
0 )ét → (X an,Ber)ét. The resulting map

i0 of ringed topoi is easily seen to be strictly henselian (this amounts to Example 2.1.7 being compatible
with the functor U  U0), so

irig
def= i ◦ i0 : (X an,Ber

0 )∼ét → X̃ét

is a strictly henselian morphism over k.
Consider a map ϕ0 : (̃Z0)ét → X̃ét of locally ringed topoi over k (so ϕ0 is strictly henselian, by Proposition

2.3.7), with Z0 a rigid-analytic space over k. We must prove there is a unique rigid-analytic map f0 : Z0 →
X an,Ber

0 such that irig ◦ f̃0 ' ϕ0. By [CT, Ex. 2.3.2], |X an,Ber
0 | is identified with the set of closed points of

|X | and completed stalks of the structure sheaves of X an,Ber
0 and X at such matching k-finite points are

naturally identified. Thus, the uniqueness of f0 is proved very similarly to the complex-analytic case except
that we have to work throughout with points valued in finite extensions of k (as a substitute for C-valued
points). The proof of existence of f0 is identical to the complex-analytic case once we verify the analogue of
Lemma 3.2.4 in the rigid-analytic case. The only subtlety in this is that there is no rigid-analytic analogue of
the general existence theorem for quotients by separated étale equivalence relations for k-analytic Berkovich
spaces [CT, 4.2.2] (which served as a substitute for the much easier complex-analytic quotient result used in
the proof of Lemma 3.2.4), so we need to look more closely at the specific rigid-analytic quotient problem
for the Tate-étale topology which arises in the rigid-analytic version of the proof of Lemma 3.2.4.

For the purpose of constructing the required quotient we may work locally on Z, so we can assume
Z = Sp(R) for a strictly k-affinoid algebra R. Then the separated étale quotient problem is easily identified
with the “underlying rigid-analytic counterpart” of a separated étale quotient problem in k-analytic Berkovich
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spaces over M (R) (using Berkovich analytification of some affine k-schemes of finite type). Hence, we can
apply the separated étale quotient existence theorem in the Berkovich setting and then pass to underlying
rigid-analytic spaces to get the required quotient for the Tate-étale topology with rigid-analytic spaces. (Here
we use the argument at the end of [CT, §4.3] to get the required sections locally for the Tate-étale topology
so as to ensure we really have constructed a quotient for that topology.) �

Appendix A. Affinoid points of algebraic spaces

Let k be a field complete with respect to a non-archimedean absolute value. This appendix addresses
the definition and bijectivity of a certain natural map X (A) → X an(Sp(A)) for strictly k-affinoid A and
separated X locally of finite type over k when |k×| 6= 1, a problem which arose in §1.1. It will be convenient
to use the algebraic space XA over SpecA, so we first address the notion of relative analytification for
algebraic spaces. This is reviewed for schemes in §A.1, extended to the case of algebraic spaces in §A.2.
It is then applied to the problem of relating X (A) and X an(Sp(A)) in §A.3 (as well as a Berkovich space
analogue).

A.1. Review of relative analytification for schemes. Let X be an A-scheme locally of finite type. In
the unpublished [Kö] there is developed a theory of “relative analytification” X  Xan valued in the category
of rigid-analytic spaces over Sp(A) when |k×| 6= 1 and A is strictly k-affinoid. In [Ber2, §2.6] (generalizing
[Ber1, §3.4–§3.5] for A = k) the same procedure is explained for good k-analytic Berkovich spaces (allowing
|k×| = 1, and not requiring A to be strictly k-affinoid). The idea is identical to the case A = k, namely that
algebraic affine n-space over SpecA analytifies to analytic affine n-space over Sp(A) (or over M (A) in the
Berkovich case), and appropriate use of closed immersions and gluing takes care of the rest. As a trivial but
useful example, (SpecA)an = Sp(A) in the rigid-analytic case (and it is M (A) in the Berkovich case). There
is a characterization in terms of a universal mapping property over A, akin to the “classical” case A = k.

Example A.1.1. Assume |k×| 6= 1, and let A→ B is a map of strictly k-affinoid algebras. For any scheme X
locally of finite type over A, by applying the universal property of analytification to the composite map of
locally ringed G-spaces (XB)an → XB → X over A, we obtain a canonical analytic map

(XB)an → Xan ×Sp(A) Sp(B)

which is easily prove to be an isomorphism.
The special case B = A/mn for maximal ideals m in A and n ≥ 1 enables us to get a handle on the

infinitestimal structure of Xan. In particular, if x ∈ X is a closed point (so x is closed in a fiber of
X → SpecA over a closed point, since A is Jacobson) then OX,x → OXan,x induces an isomorphism on
completsions.

All of the familiar properties of this functor in the case A = k (such as behavior under fiber products
and open immersions, and preservation of properness, étaleness, and smoothness) carry over with the same
proofs for general A; see [Ber2, 2.6.9] for the Berkovich case. Also, the GAGA theorems hold in this setting.
This was proved in [Kö] in the rigid-analytic case (also see [C2, Ex. 3.2.6] for an alternative proof), and in
[Ber1, §3.4–§3.5] in the case of (good) Berkovich spaces. The main aspects of GAGA in the relative setting
over an affinoid are exactly as in the situation over C, namely isomorphisms for higher direct images of
coherent sheaves, and functorial equivalences between categories of coherent sheaves (from which GAGA
correspondences for closed immersions and morphisms are deduced exactly as Serre did over C in [Se]).

Example A.1.2. Using the relative analytification functor, we get a natural map of sets X(A)→ Xan(Sp(A))
(and X(A) → Xan(M (A)) in the Berkovich case); this is functorial in X and A. As an important special
case, if X is locally of finite type over k, we get a natural map of sets

X(A) = (XA)(A)→ (XA)an(Sp(A)) = (Xan × Sp(A))(Sp(A)) = Xan(Sp(A))

that is functorial in X and A.
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A.2. The case of algebraic spaces. The entire development of analytification via quotients of étale
schemes charts in [CT] carries over verbatim to the relative setting over an affinoid. To be precise, if
X is an algebraic space locally of finite type over a strictly k-affinoid algebra A (with |k×| 6= 1) and R ⇒ U
is an étale scheme chart for X , then R and U are locally finite type A-schemes. Thus, we can form the
étale equivalence relation Ran ⇒ U an in relative analytifications and hence the quotient sheaf U an/Ran for
the Tate-étale topology on the category of rigid-analytic spaces over Sp(A).

We call X analytifiable if this sheaf is represented by a rigid-analytic space over Sp(A), in which case
the representing object is canonically independent of the choice of R ⇒ U and is naturally functorial in
X ; the arguments for this as given in [CT, §2.2] when A = k are entirely formal and so work as written in
the general case. In the special case dimA = 0 (equivalently, A is k-finite), we may naturally identify the
relative analytifications of X over A and over k (ultimately due to the special case X = SpecA).

The argument for compatibility with change of the ground field in [CT, 2.3.5] carries over to prove that
if A → B is a map of k-affinoid algebras and X is analytifiable over A then XB is analytifiable over B
and naturally (XB)an ' X an ×Sp(A) Sp(B). Likewise, the entire discussion of properties of the relative
analytification functor for analytifiable algebraic spaces as in [CT, §2.3] carries over without change. The
main theorem in [CT] remains true in the relative setting:

Theorem A.2.1. If X is a separated algebraic space locally of finite type over A then X an exists. The same
is true for analytification in the sense of k-analytic Berkovich spaces, allowing |k×| = 1 and not requiring A
to be strictly k-affinoid.

Proof. By the same argument as at the end of [CT, §4.3], the rigid-analytic case is reduced to the k-analytic
Berkovich case. The main existence theorem for quotients in [CT] is for the k-analytic quotient of any
separated étale equivalence relation (including preservation of goodness and strict k-analyticity under the
formation of the quotient). In the relative setting, the analytified equivalence relation is of this type, so the
required quotient exists (and inherits an M (A)-structure by the universal property of such quotients in the
k-analytic category). �

As a special case, proper algebraic spaces over SpecA are always analytifiable, and the relative GAGA
theorems carry over with the same proofs for such algebraic spaces, exactly akin to the arguments used in
the scheme case; see [CT, §3.3].

Example A.2.2. The procedure in Example A.1.2 also carries over: if Y is a separated algebraic space locally
of finite type over A then we get a natural map Y (A) → Y an(Sp(A)). As a special case, for a separated
algebraic space X locally of finite type over k we get a natural map X (A)→X an(Sp(A)) by using relative
analytification for Y = XA.

A.3. Comparison of A-valued points. Now we come to the main purpose of this appendix:

Proposition A.3.1. Assume |k×| 6= 1. For any strictly k-affinoid algebra A and separated algebraic space
Y locally of finite type over A, the natural map Y (A)→ Y an(Sp(A)) is bijective. In particular, A′  Y (A′)
is a sheaf for the Tate-fpqc topology on affinoid A-algebras, and if X is a separated algebraic space locally
of finite type over k then the natural map X (A)→X an(Sp(A)) as in Example A.2.2 is bijective.

The same holds in the Berkovich case using M (A), allowing |k×| = 1 and not requiring A to be strictly
k-affinoid.

The Tate-fpqc topology is defined in [CT, §2.1].

Proof. We give the argument in the rigid-analytic case; the Berkovich case goes the same way. By using
suitable quasi-compact Zariski open subspaces V of Y (e.g., containing the image of any two A-maps
SpecA ⇒ Y , or for which V an contains the image of an A-map Sp(A) → Y an), we may assume that Y is
quasi-compact, and hence of finite type. The Nagata compactification theorem for separated maps of finite
type between algebraic spaces was recently proved (see [CLO], as well as forthcoming work of D. Rydh and
Temkin–Temkin), so there is an open immersion Y ↪→ Y into a proper algebraic space over SpecA. We will
show that the result for Y implies the result for Y , and then handle the proper case using relative GAGA.
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Let Z be the closed complement Y − Y with the reduced structure, so likewise Z an is the reduced
analytic set in Y

an
complementary to the Zariski-open subspace Y an. Thus, Y (A) is identified with the set of

f ∈ Y (A) such that f−1(Z ) is empty, and similarly Y an(Sp(A)) is identified with the set of F ∈ Y
an

(Sp(A))
such that F−1(Z an) is empty. In the special case F = fan, we have F−1(Z an) = f−1(Z )an. But it is obvious
that analytification preserves the property of being empty or not, so the desired bijectivity result for Y is
reduced to the same for Y .

We may now assume that Y is proper over SpecA. By relative GAGA applied to closed subspaces,
Z 7→ Z an is a bijection between closed immersions into Y and closed immersions into Y an. Thus, it remains
to check that if Z is an analytifiable (quasi-separated) algebraic space of finite type over SpecA then the
structure map f : Z → SpecA is an isomorphism if and only if its analytification fan : Z an → Sp(A) is
an isomorphism. This equivalence when A = k is [CT, 2.3.1] for the property of being an isomorphism, and
the same proof works in the relative setting. (For the case of interest, we can give a more direct proof of
the interesting implication: by the Jacobson property of SpecA and semi-continuity of fiber dimension, the
proper f is quasi-finite and hence finite. The case of finite f is trivial.) �
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