
Units on product varieties

1. Introduction

The purpose of this note is to prove a very interesting result of Rosenlicht, in a generalized form as is
stated without proof in 4.1, VIII, SGA7:

Theorem 1.1. Let X and Y be geometrically connected and geometrically reduced schemes locally of finite
type over a field k, and assume X(k), Y (k) 6= ∅. Every unit on X × Y is a product of pullbacks of a unit on
X and a unit on Y . Equivalently, the sequence of groups

1 → k×
δ→ Gm(X)×Gm(Y ) → Gm(X × Y ) → 1

is short exact, where δ(c) = (c, 1/c).

Actually, even this version from SGA7 can be generalized: the hypotheses concerning existence of k-
rational points can be dropped. This will be treated in §4; the real work will be to first prove Theorem
1.1. Before we prove the theorem, we illustrate it in two ways: Rosenlicht’s original application to group
varieties, and the necessity of a hypothesis concerning nilpotents in the statement of the theorem. Rosenlicht’s
application was:

Corollary 1.2. Let G be a smooth connected group scheme over a field k, and let f : G → T be a k-scheme
map to a torus. If f(e) = 1 then f is a group morphism.

Proof. Since G(k) is non-empty, G is geometrically connected over k. We may therefore extend scalars to an
algebraic closure so that k is algebraically closed. We then have T ' Gr

m for some r > 0, so by composing f
with members of a basis of the character group of T we can assume T = Gm. The meaning of the corollary
in this case is that if u is a unit on G and u(e) = 1 then u(gg′) = u(g)u(g′). Since (g, g′) 7→ u(gg′) is a unit
on G × G, by the theorem we get u(gg′) = u1(g)u2(g′) for some units u1 and u2 on G. Hence, by setting
g′ = e and then g = e we get u = c1u1 and u = c2u2 where c1 = u2(e) ∈ k× and c2 = u1(e) ∈ k×. This
yields u(gg′) = cu(g)u(g′) where c = 1/c1c2. Evaluating at g = g′ = 1 gives c = 1. �

To show the necessity of a hypothesis concerning nilpotents, let A = k[x, y]/(x2, xy) with k any field. Let
X = Y = Spec(A); this is the gluing of an extra tangent vector onto the origin of the affine y-line (so X
and Y are even generically smooth: A[1/y] = k[y, 1/y]). Since Ared = k[y], clearly every unit in A has the
unique form c(1 + c′x) with c ∈ k× and c′ ∈ k. As groups, this gives A× = k× × k. By writing

A⊗k A = k[x, y, x′, y′]/(x2, xy, x′
2
, x′y′),

the subgroup of (A⊗k A)× generated by units of the two tensor factors is the group of elements

b(1 + cx)(1 + c′x′) = b(1 + cx + c′x′ + cc′xx′).

But the entire unit group of A⊗k A clearly consists of elements of the form

b(1 + cx + c′x′ + c′′xx′)

with unique b ∈ k× and c, c′, c′′ ∈ k. Taking cases with c′′ 6= cc′ gives “extra” units. For example, the unit
1 + xx′ is such an “extra” unit.

Rosenlicht proved the Corollary 1.2 without Theorem 1.1, instead using some group-theoretic consider-
ations resting on ideas in §3 below (with Weil-style language that somehow encoded Lemma 3.1). Hence,
though he never stated Theorem 1.1, it is not unreasonable to credit the result to him.

2. Reduction steps

To prepare for the proof of Theorem 1.1, we make some preliminary observations. If we pick x0 ∈ X(k)
and y0 ∈ Y (k), then Theorem 1.1 is equivalent to the identity

(1) u(x, y) = u(x, y0)u(x0, y)u(x0, y0)−1
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on X × Y . Indeed, such an identity certainly implies Theorem 1.1, and if u(x, y) = uX(x)uY (y) for units
uX and uY on X and Y respectively then u(x0, ·) = uX(x0)uY and u(·, y0) = uY (y0)uX , so u(x, y) =
u(x, y0)u(x0, y)(uX(x0)uY (y0))−1. Since uX(x0)uY (y0) = u(x0, y0), we get the desired identity. Of course,
whether or not (1) holds is unaffected by extension of the base field. Hence, to prove Theorem 1.1 it suffices
to treat the case when k is algebraically closed.

It is also enough to prove (1) over opens X ′×Y ′ for quasi-compact connected opens X ′ ⊆ X and Y ′ ⊆ Y
around x0 and y0 respectively, so it is harmless to assume that X and Y are of finite type. Note also that if
{U, V } are connected opens covering X then U∩V 6= ∅ since X is connected, and so upon choosing x0 ∈ U∩V
and working with (1) it is enough to separately treat the problem on U × Y and V × Y . Hence, since we
have the flexibility to choose whatever x0 and y0 we please (in our present setup over an algebraically closed
base field), it follows from connectivity considerations and induction on the size of an open affine covering
that it is enough to handle the case when X and Y are affine. (The crux is that if {U1, . . . , Un} is an open
cover of X by connected affines with n > 1 then we can relabel so that V = U2 ∪ · · · ∪ Un is connected.
This amounts to the elementary fact that any finite connected graph with at least two vertices must have a
vertex such that removing it and all edges touching it leaves a connected graph.) More generally, it suffices
to handle the case when X and Y are quasi-projective.

Next, we pass to the irreducible case as follows. If X is reducible, say with irreducible components
X1, . . . , Xn, then (again using that a finite connected graph with at least two vertices has a non-disconnecting
vertex) we can relabel if necessary so that Z = X2 ∪ · · · ∪Xn (with its reduced structure) is connected; by
connectivity of X we must have X1 ∩ Z 6= ∅. Hence, if Theorem 1.1 is known for the pairs {X1, Y } and
{Z, Y } then by choosing x0 ∈ X1∩Z we see that the desired identity (1) on X×Y does hold upon restriction
to X1 × Y and Z × Y . By reducedness, we therefore get the identity on X × Y as well. In this way, we can
induct on the number of irreducible components of X without changing Y so as to reduce to the case when
X is irreducible. Repeating the argument again with the roles of X and Y switched, we can reduce to the
case when both X and Y are irreducible.

The verification of (1) can be checked after pullback along surjective maps from varieties covering X and
Y , so via normalization we can assume that X and Y are also normal. Hence, we may finally assume that
we are in the case that there are open immersions X ⊆ X and Y ⊆ Y into projective normal varieties.
Likewise, X × Y is open in the projective product variety X × Y that is also normal (as k is algebraically
closed). The idea is to study units by considering orders along codimension-1 irreducible components (if any
exist!) of X −X in X, Y − Y in Y , and X × Y −X × Y in X × Y .

3. Study of divisors at infinity

Using notation as above, let {Xi}i∈I and {Yj}j∈J be the codimension-1 irreducible components comple-
mentary to X in X and to Y in Y respectively; either or both of these collections may be empty. The
codimension-1 irreducible components complementary to X × Y in X × Y are the Xi × Y ’s and X × Yj ’s.
By normality and projectivity of X × Y , we therefore get an exact sequence

(2) 1 → k× → Gm(X × Y ) → ZI ⊕ ZJ

where the final map is built from orders along each Xi×Y and each X×Yj . (If I = J = ∅ then Gm(X×Y ) =
k×, so there is nothing to do.)

The key to everything is compatibility of pole-order and generic specialization:

Lemma 3.1. Choose nonzero f ∈ O(X × Y ). There is a Zariski-dense open U ⊆ Y such that for all
y ∈ U(k) we have f |X×{y} 6= 0 and

ordXi×Y (f) = ordXi(f |X×{y})

for all i. Likewise, there is a Zariski-dense open V ⊆ X such that for all x ∈ V (k) we have f |{x}×Y 6= 0 and

ordX×Yj
(f) = ordYj

(f |{x}×Y )

for all j.



3

Both U and V may depend on f .

Proof. By irreducibility and symmetry, it suffices to find a U that works for X1. Since X is normal, its
smooth locus has complement in X with codimension at least 2. Thus, the codimension-1 subvariety X1 has
smooth locus meeting that of X, whence we can find a smooth open W ⊆ X around the generic point η1 of
X1 such that W ∩ X1 is smooth and is cut out by a global function t on W . Hence, p∗1(t) on W × Y cuts
out X1 × Y in X × Y near the generic point of X1 × Y .

Let n = ordX1×Y (f), so p∗1(t)
−nf is a unit on an open P ⊆ X × Y around the generic point of X1 × Y .

Let U ⊆ Y be the open image of P in Y , and let U = U ∩ Y . For y ∈ U(k) we then have that the regular
function t−nf |X×{y} on X is a unit on the nonempty open P ∩ (X ×{y}) in X ×{y} = X that contains η1.
This forces f |X×{y} to be nonzero on X × {y} = X with order n along X1 ⊆ X −X. �

Consider a unit u on X × Y , and let V ⊆ X and U ⊆ Y be associated to u as in Lemma 3.1, so for
x0 ∈ V (k) and y0 ∈ U(k) the units uX = u|X×{y0} and uY = u|{x0}×Y on X and Y satisfy

ordXi×Y (u) = ordXi(uX), ordX×Yj
(u) = ordYj (uY )

for all i ∈ I and j ∈ J . Consider p∗X(uX) ∈ k(X × Y )×. This is a unit on X × Y , so it is a unit near
the generic point of each X × Yj , and by Lemma 3.1 it has order along each Xi × Y equal to ordXi(uX)
(since p∗X(uX) restricted to any X × {y} = X is uX). Likewise, p∗Y (uY ) is a unit on X × Y , so it is a
unit near the generic point of each Xi × Y , and it has order along each X × Yj equal to ordYj

(uY ). Thus,
the unit u · p∗X(uX)−1 · p∗Y (uY )−1 on X × Y has order 0 along every codimension-1 irreducible component
complementary to X×Y in X×Y . Using the exactness of (2), we conclude that u·p∗X(uX)−1 ·p∗Y (uY )−1 ∈ k×.
Hence, u is a product of a nonzero scalar and pullback of units from X and Y . Absorbing the scalar into
either of these latter two units concludes the proof of Theorem 1.1.

4. Further generalization

In this final section, we somewhat weaken the assumptions in Theorem 1.1:

Theorem 4.1. Let X and Y be non-empty geometrically connected and geometrically reduced schemes locally
of finite type over a field k. The sequence of groups

1 → k×
δ→ Gm(X)×Gm(Y ) → Gm(X × Y ) → 1

is short exact, where δ(c) = (c, 1/c). In particular, every unit on X × Y is a product of pullbacks of a unit
on X and a unit on Y .

Some connectivity assumption is necessary, as we see by taking X and Y to be disjoint unions of copies of
Spec k. It is not enough to assume connectivity alone, as it clear by taking X = Y = Spec k′ for a non-trivial
finite Galois extension k′/k. (Indeed, then (k′ ⊗k k′)× =

∏
g∈G k′

× with G = Gal(k′/k), and a unit (cg)g

with c1 = 1 then comes from k′
× × k′

× if and only if cg = g(c′)/c′ for some c′ ∈ k′
×. That is, g 7→ cg has to

be a 1-cocycle. In particular, each cg ∈ k′
× has norm 1. By treating finite fields separately, there are always

elements with norm distinct from 1.)
Let us now explain the left-exactness of the sequence. Say uX and uY are units on X and Y respectively

such that p∗X(uX) = p∗Y (uY ) on X × Y , where pX and pY are the standard projections from X × Y to its
factors. We seek to prove uX ∈ k× (so then also uY ∈ k×). We first observe that k has no non-trivial
extension fields within the ring O(X). Indeed, otherwise the structure map X → Spec k factors through
Spec k′ → Spec k where k′/k is a non-trivial extension, so geometric connectivity forces k′/k to be purely
inseparable. But then X ⊗k k′ is faithfully flat over the non-reduced one-point scheme Spec(k′ ⊗k k′), so
X ⊗k k′ is everywhere non-reduced; this contradicts the hypothesis that X is geometrically reduced over k.
By generic smoothness we can find a finite separable extension k′/k such that Y (k′) 6= ∅, so the pullback
of uX to X ⊗k k′ = X ′ is equal to uY (y0) ∈ k′

× for y0 ∈ Y (k′). Hence, uX satisfies a monic irreducible
polynomial f over k inside O(X) (as it does so in O(X ′)), so uX lies in a subfield k[t]/(f) ⊆ O(X). Such a
subfield must equal k, so uX ∈ k×.
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Having established left-exactness in general, we turn to the more interesting matter of exactness on the
right, which is to say that any unit u on X × Y has the form p∗X(uX)p∗Y (uY ) for units uX and uY on X and
Y respectively. Let k′/k be a finite Galois extension such that X(k′), Y (k′) 6= ∅, so Theorem 1.1 applies to
X ′ = X ⊗k k′ and Y ′ = Y ⊗k k′ over k′. Thus, uk′ on X ′ ×Spec k′ Y ′ has the form p∗X′(u′1)p

∗
Y ′(u′2) for some

units u′1 and u′2 on X ′ and Y ′ respectively. By Galois equivariance, for every g ∈ G = Gal(k′/k) we then
have

p∗X′(g(u′1))p
∗
Y ′(g(u′2)) = g(uk′) = uk′ = p∗X′(u′1)p

∗
Y ′(u′2).

Hence, p∗X′(g(u′1)/u′1) = p∗Y ′(u′2/g(u′2)). This forces g(u′1)/u′1, u
′
2/g(u′2) ∈ k′

× for all g ∈ G. Hence, we
get functions G ⇒ k′

× defined by g 7→ g(u′1)/u′1, g(u′2)/u′2 that are 1-cocycles. By Hilbert’s multiplicative
Theorem 90, we get c′1, c

′
2 ∈ k′

× such that g(u′j)/u′j = g(c′j)/c′j , so u′1/c′1 is G-invariant on X ′ and u′2/c′2
is G-invariant on Y ′. But G-invariant units on X ′ and Y ′ are precisely pullbacks of units on X and Y
respectively, so we obtain units u1 and u2 on X and Y such that the units p∗X(u1)p∗Y (u2) and u on X × Y

have ratio whose pullback to X ′ ×Spec k′ Y ′ is in k′
×. This forces the ratio on the geometrically connected

and geometrically reduced X × Y to lie in k×.


