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INTRODUCTION

In this paper, building on work of Wiles [Wi] and of Wiles and one of us (R.T.) [TW], we will prove the
following two theorems (see §2.2).

Theorem A. If E,q is an elliptic curve, then E is modular.

Theorem B. If p : Gal(Q/Q) — GLy(F5) is an irreducible continuous representation with cyclotomic
determinant, then p is modular.

We will first remind the reader of the content of these results and then briefly outline the method of proof.
If N is a positive integer then we let I'; (V) denote the subgroup of SLa(Z) consisting of matrices that
modulo N are of the form
1 =x
(07)

The quotient of the upper half plane by 'y (IV), acting by fractional linear transformations, is the complex
manifold associated to an affine algebraic curve Yi(INV),c. This curve has a natural model Yi(N),q, which
for N > 3 is a fine moduli scheme for elliptic curves with a point of exact order N. We will let X; (V) denote
the smooth projective curve which contains Y1 (N) as a dense Zariski open subset.

Recall that a cusp form of weight £ > 1 and level N > 1 is a holomorphic function f on the upper half
complex plane $ such that

e for all matrices

< Z Z ) € I'1(N)
and all z € ), we have f((az +b)/(cz +d)) = (cz + d)* f(2);
e and |f(2)|?(Im 2)* is bounded on $.

The space Si(N) of cusp forms of weight & and level N is a finite dimensional complex vector space. If
f € Si(N) then it has an expansion

1) =3 en(p)emins

n=1

and we define the L-series of f to be

L(f,s) =Y ealf)/n".
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For each prime p /N there is a linear operator T}, on Si(N) defined by

p—1

(FIT)(2) =p~ > f((z+0)/p) + P* (epz + d)~* f((apz + b) /(cpz + d))

=0
( ‘(’; Z ) € SLy(Z)

with ¢ = Omod N and d = pmod N. The operators T, for p/N can be simultaneously diagonalised on
the space Si(N) and a simultaneous eigenvector is called an eigenform. If f is an eigenform then the
corresponding eigenvalues, a,(f), are algebraic integers and we have ¢, (f) = a,(f)c1(f).

Let A be a place of the algebraic closure of Q in C above a rational prime ¢ and let Q, denote the
algebraic closure of Q, thought of as a Q algebra via . If f € Sp(N) is an eigenform, then there is a unique
continuous irreducible representation

for any

pra: Gal(Q/Q) — GL2(Qy)

such that for any prime p fNI, ps » is unramified at p and tr py x(Frob,) = a,(f). The existence of py » is due
to Shimura if & = 2 [Sh2], to Deligne if k > 2 [De] and to Deligne and Serre if ¥ = 1 [DS]. Its irreducibility
is due to Ribet if & > 1 [Ri] and Deligne and Serre if k¥ = 1 [DS]. Moreover p is odd in the sense that
det p of complex conjugation is —1. Also, ps » is potentially semi-stable at ¢ in the sense of Fontaine. We
can choose a conjugate of py y which is valued in GLQ(OEX), and reducing modulo the maximal ideal and
semi-simplifying yields a continuous representation

Py Gal(Q/Q) — GLa(F),
which, up to isomorphism, does not depend on the choice of conjugate of py .

Now suppose that p : Gq — GL2(Q,) is a continuous representation which is unramified outside finitely
many primes and for which the restriction of p to a decomposition group at ¢ is potentially semi-stable in
the sense of Fontaine. To p| Gal(@,/Q,) We can associate both a pair of Hodge-Tate numbers and a Weil-
Deligne representation of the Weil group of Qg. We define the conductor N(p) of p to be the product over
p # £ of the conductor of p|Ga1(§p /Q,) and of the conductor of the Weil-Deligne representation associated

0 plgag,/q,)- We define the weight k(p) of p to be 1 plus the absolute difference of the two Hodge-Tate
numbers of p|Ga1(6e /Q.)- 1t is known by work of Carayol and others that the following two conditions are
equivalent

o p~ py for some eigenform f and some place \|¢;
o p~ pg for some eigenform f of level N(p) and weight k(p) and some place AJL.

When these equivalent conditions are met we call p modular. It is conjectured by Fontaine and Mazur that
if p: Gq — GL2(Qy) is a continuous irreducible representation which satisfies

e p is unramified outside finitely many primes,
o o Gal(@,/Qu) is potentially semi-stable with its smaller Hodge-Tate number 0,
e and, in the case where both Hodge-Tate numbers are zero, p is odd;

then p is modular [FM].

Next consider a continuous irreducible representation p : Gal(Q/Q) — GLa(Fy). Serre [Se2] defines the
conductor N(p) and weight k(p) of p. We call p modular if p ~ p; , for some eigenform f and some place
Al We call p strongly modular if moreover we may take f to have weight k(p) and level N(p). It is known
from work of Mazur, Ribet, Carayol, Gross, Coleman and Voloch and others that for ¢ > 3, p is strongly
modular if and only if it is modular (see [Dil]). Serre has conjectured that all odd, irreducible p are strongly
modular [Se2].

Now consider an elliptic curve E,;q. Let pg ¢ (resp. pp ) denote the representation of Gal(Q/Q) on the
{-adic Tate module (resp. the /-torsion) of F(Q). Let N(FE) denote the conductor of E. It is known that
the following conditions are equivalent.
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(1) The L-function L(E,s) of E equals the L-function L(f,s) for some eigenform f.
(2) The L-function L(E, s) of E equals the L-function L(f, s) for some eigenform f of weight 2 and level
N(E).

(3) For some prime ¢, the representation pg ¢ is modular.

(4) For all primes ¢, the representation pg ¢ is modular.

(5) There is a non-constant holomorphic map X3 (N)(C) — E(C) for some positive integer N.

(6) There is a non-constant morphism X; (N (E)) — E which is defined over Q.
The implications (2) = (1), (4) = (3) and (6) = (5) are tautological. The implication (1) = (4) follows
from the characterisation of L(E, s) in terms of pg¢. The implication (3) = (2) follows from a theorem of
Carayol [Cal] and a theorem of Faltings [Fa2]. The implication (2) = (6) follows from a construction of
Shimura [Sh2] and a theorem of Faltings [Fal]. The implication (5) = (3) seems to have been first noticed
by Mazur [Maz]. When these equivalent conditions are satisfied we call E modular.

It has become a standard conjecture that all elliptic curves over Q are modular, although at the time this
conjecture was first suggested the equivalence of the conditions above may not have been clear. Taniyama
made a suggestion along the lines (1) as one of a series of problems collected at the Tokyo-Nikko conference
in September 1955. However his formulation did not make clear whether f should be a modular form or some
more general automorphic form. He also suggested that constructions as in (5) and (6) might help attack
this problem at least for some elliptic curves. In private conversations with a number of mathematicians
(including Weil) in the early 1960’s, Shimura suggested that assertions along the lines of (5) and (6) might be
true (see [Sh3] and the commentary on [1967a] in [We2]). The first time such a suggestion appears in print
is Weil’s comment in [Wel] that assertions along the lines of (5) and (6) follow from the main result of that
paper, a construction of Shimura and from certain “reasonable suppositions” and “natural assumptions”.
That assertion (1) is true for CM elliptic curves follows at once from work of Hecke and Deuring. Shimura
[Sh1] went on to check assertion (5) for these curves.

Our approach to Theorem A is an extension of the methods of Wiles [Wi] and of Wiles and one of us
(R.T., [TW]). We divide the proof into three cases.

(1) 1f pE,5‘Gal(6/Q(\/5)) is irreducible, we show that pg 5 is modular.
(2) U Ppslcaig/qvs) is reducible, but by s|q.iq/q(/=3) 15 absolutely irreducible, we show that pp. 3
is modular.
(3) If Pesleaq/qeyvs) is reducible and D s|c.iq/q( /=3)) is absolutely reducible, then we show that
E is isogenous to an elliptic curve with j-invariant 0, (11/2)3, or —5(29)3/2% and so (from tables of
modular elliptic curves of low conductor) is modular.
In each of cases 1 and 2 there are two steps. First we prove that pg , is modular and then that pg e is
modular. In case 1 this first step is our Theorem B and in case 2 it is a celebrated theorem of Langlands
and Tunnell [L], [T]. In fact, in both cases F obtains semi-stable reduction over a tame extension of Q, and
the deduction of the modularity of pg ¢ from that of p , was carried out in [CDT] by an extension of the
methods of [Wi] and [TW]. In the third case we have to analyse the rational points on some modular curves
of small level. This we did, with Elkies’ help, in [CDT].

It thus only remained to prove Theorem B. Let p be as in that theorem. Twisting by a quadratic

character, we may assume that ﬁ\Gal(63 /Qs) falls into one of the following cases (see §2.2).

(1) P is unramified at 3.

(2) p(I3) has order 5.

(3) p(I3) has order 4.

(4) p(I3) has order 12 and ﬁ|Gal(63/Q3) has conductor 27.

(5) p(I3) has order 3.

6) Dle.o is induced from a character y : Gal(Q;/Q3(v/—3)) — FJ such that xy(—1) = —1 and
Gal(@,/Qs) 3 25

X(V=3) = x(1+3v=3) = x(1 = 3v-3),
where we use the Artin map (normalised to take uniformisers to arithmetic Frobenius) to identify x
with a character of Qs(v/—3)*.



We will refer to these as the f = 1,3,9,27, 81 and 243 cases respectively.

Using the technique of Minkowski and Klein (i.e. the observation that the moduli space of elliptic curves
with full level 5 structure has genus 0, see for example [K1]), Hilbert irreducibility and some local computa-
tions of Manoharmayum [Man], we find an elliptic curve E/q with the following properties (see §2.2)

® Pps P
® D3 is surjective onto GLa(F3),
e and
(1) in the f =1 case, either Dy 3|7, ® Fg ~ wa ® w3 or

_ W o*
pE,3|13 ~ 0 1

w ok
3~ )
(3) in the f =9 case, pg 3|1, ® Fo ~ wy ® wj;

(4) in the f = 27 case,
— w ook
pE,3|Is ~ 0 1

_ 1 x*
pE,3|I3N 0 w

w *
Gal(Q/Qs) ~ \ o 1

. . —kerp . N cns
is non-split over Q5 " and is tres ramifié.

and is peu ramifié;

(2) in the f = 3 case,

PE,3

—_

and is tres ramifié;
(5) in the f = 81 case,

and is tres ramifié;

(6) in the f = 243 case,

PE,3

(We are using the terms trés ramifié and peu ramifié in the sense of Serre [Se2]. We are also letting w denote
the mod3 cyclotomic character and ws the second fundamental character I3 — F;, i.e.

wo(0) = o(V/3)/V/3 mod V3.

We will often use the equality w = w™! without further remark.) We emphasise that for a general elliptic
curve over Q with pg 5 = p, the representation pp 5 does not have the above form, rather we are placing a
significant restriction on E.

In each case our strategy is to prove that pg 3 is modular and so deduce that p ~ pp, 5 is modular. Again
we use the Langlands-Tunnell theorem to see that pg, 5 is modular and then an analogue of the arguments of
[Wi] and [TW] to conclude that pg 3 is modular. This was carried out in [Di2] in the cases f =1 and f = 3,
and in [CDT] in the case f = 9. (In these cases the particular form of pg 5|1, is not important.) This leaves
the cases f = 27, 81 and 243, which are complicated by the fact that E now only obtains good reduction
over a wild extension of Qg. In these cases our argument relies essentially on the particular form we have
obtained for pp 5|c.(q,/q,) (depending on pp5|r,). We do not believe that our methods for deducing the
modularity of pg 3 from that of pp 5 would work without this key simplification. It seems to be a piece of
undeserved good fortune that for each possibility for 5|7, we can find a choice for p E73|Ga1(63 /Qs) for which
our methods work.

Following Wiles, to deduce the modularity of pg 3 from that of pg 3, we consider certain universal defor-
mations of pg 5 and identify them with certain modular deformations which we realise over certain Hecke
algebras. The key problem is to find the right local condition to impose on these deformations at the prime
3. As in [CDT] we require that the deformations lie in the closure of the characteristic zero points which are
potentially Barsotti-Tate (i.e., come from a 3-divisible group over the ring of integers of a finite extension of
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Q3) and for which the associated representation of the Weil group (see for example Appendix B of [CDT])
is of some specified form. That one can find suitable conditions on the representation of the Weil group at
3 for the arguments of [TW] to work seems to be a rare phenomenon in the wild case. It is here we make
essential use of the fact that we need only treat our specific pairs (o 5,05 3)-

Our arguments follow closely the arguments of [CDT]. There are two main new features. Firstly, in the
f = 243 case, we are forced to specify the restriction of our representation of the Weil group completely,
rather than simply its restriction to the inertia group as we have done in the past. Secondly, in the key
computation of the local deformation rings, we now make use of a new description (due to C.B.) of finite flat
group schemes over the ring of integers of any p-adic field in terms of certain (semi-)linear algebra data (see
[Br2] and the summary [Brl]). This description enables us to make these computations. As the persistent
reader will soon discover they are lengthy and delicate, particularly in the case f = 243. It seems miraculous
to us that these long computations with finite flat group schemes in §7, §8 and §9 give answers completely in
accord with predictions made from much shorter computations with the local Langlands correspondence and
the modular representation theory of GL2(Qgs) in §3. We see no direct connection, but can’t help thinking
that some such connection should exist.
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the Université de Paris Sud for their hospitality. R.T. is grateful to the University of California at Berkeley
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Notation. In this paper ¢ denotes a rational prime. In §1.1, §4.1, §4.2 and §4.3 it is arbitrary. In the rest
of §1 and in §5 we only assume it is odd. In the rest of the paper we only consider ¢ = 3.

If F is a field we let F' denote a separable closure, F2P the maximal subextension of F which is abelian
over F' and G the Galois group Gal(F/F). If Fy is a p-adic field (i.e. a finite extension of Q,) and F’/F,
a (possibly infinite) Galois extension we let I /p, denote the inertia subgroup of Gal(F"/Fy). We also let
I, denote Iy ,f , Frobr, € G, /IF, denote the arithmetic Frobenius element, and Wg, the Weil group of
Fy, i.e. the dense subgroup of G'g, consisting of elements which map to an integer power of Frobz,. We will
normalise the Artin map of local class field theory so that uniformisers and arithmetic Frobenius elements
correspond. (We apologise for this convention, which now seems to us a bad choice. However we feel it is
important to stay consistent with [CDT].) We let O, denote the ring of integers of Fy, pg, the maximal
ideal of Op, and kg, the residue field Op,/pr,. We write simply G, for Gq,, I, for Iq, and Frob, for
Frobq,. We also let Q,» denote the unique unramified degree n extension of Q, in Gp. If k£ is any perfect
field of characteristic p we also use Frob, to denote the pth-power automorphism of k and its canonical lift
to the Witt vectors W (k).

We write € for the f-adic cyclotomic character and sometimes w for the reduction of € modulo £. We write
wy for the second fundamental character I, — F 5, i.e.

wa(o) = 0(51/“2_1))/61/(62_1) mod /(€=

We also use w and wy to denote the Teichmuller lifts of w and ws.

We let 1 denote the trivial character of a group. We will denote by V'V the dual of a vector space V.

If g: A — B is a homomorphism of rings and if X,gpec 4 is an A-scheme we sometimes write 9X for
the pullback of X by Specg. We adopt this notation so that 9(*X) = 9"X. Similarly if § : X — Y is a
morphism of schemes over A we will sometimes write 96 for the pullback of 6 by Specg.

By finite flat group scheme we always mean commutative finite flat group scheme. If Fj is a field of
characteristic 0 with fixed algebraic closure Fy we use without comment the canonical identification of finite
flat Fy-group schemes with finite discrete Gal(Fg/Fp)-modules, and we will say that such objects correspond.
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If R is an Dedekind domain with field of fractions F' of characteristic O then by a model of a finite flat F'-

group scheme G we mean a finite locally free R-group scheme G and an isomorphism i : G = G x F'. As

in Proposition 2.2.2 of [Ra] the isomorphism classes of models for G form a lattice ((G,4) > (§',4’) if there

exists a map of finite flat group schemes § — G’ compatible with ¢ and ') and we can talk about the inf and

sup of two such models. If R is also local we call the a model (G, ) local-local if its special fibre is local-local.

When the ring R is understood we sometimes simply refer to (G,4), or even just G, as an integral model of G.
We use Serre’s terminology peu ramifié and tres ramifié, see [Se2].

CONTENTS
Introduction 1
Acknowledgements. 5
Notation. 5
1. Types 7
1.1. Types of local deformations 7
1.2. Types for admissible representations. 8
1.3. Reduction of types for admissible representations. 10
1.4. The main theorems. 12
2. Examples and applications. 15
2.1. Examples. 15
2.2.  Applications. 17
2.3.  An extension of a result of Manoharmayum. 19
3. Admittance. 20
3.1. The case of 7. 20
3.2. The case of 7_1. 21
3.3. The case of 743. 21
3.4. The case of /. 21
4. New deformation problems. 21
4.1. Some generalities on group schemes. 22
4.2. Filtrations. 24
4.3. Generalities on deformation theory. 27
4.4. Reduction steps for Theorem 2.1.2. 28
4.5. Reduction steps for Theorem 2.1.4. 28
4.6. Reduction steps for Theorem 2.1.6. 29
4.7. Some Galois cohomology. 32
5. Breuil Modules. 34
5.1. Basic properties of Breuil modules. 34
5.2. Examples. 36
5.3. Relationship to syntomic sheaves. 38
5.4. DBase change. 39
5.5. Reformulation. 43
5.6. Descent data. 45
5.7. More examples. 46
6. Some local fields. 47
6.1. The case of Fy. 47
6.2. The case of F' ;. 48
6.3. The case of Fj. 48
6.4. The case of F’ ;. 49
6.5. The case of F}. 50
7. Proof of Theorem 4.4.1. 51
7.1. Rank one calculations. 51



7.2. Rank two calculations. 51

7.3. Rank three calculations. 54
7.4. Conclusion of proof of Theorem 4.4.1. 55
8. Proof of Theorem 4.5.1. 56
8.1. Rank one calculations. o7
8.2. Models for p. o8
8.3. Completion of proof of Theorem 4.5.1. 61
9. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3. 63
9.1. Rank one calculations. 63
9.2. Models for p. 64
9.3. Further rank two calculations. 70
9.4. Completion of the proof of Theorem 4.6.1. 73
9.5. Completion of the proof of Theorem 4.6.3. 74
9.6. Completion of the proof of Theorem 4.6.2. 76
10. Corrigenda for [CDT]. 7
References 78
1. TYPES

1.1. Types of local deformations. By an /-type we mean an equivalence class of two-dimensional repre-
sentations

T:I; — GL(D)

over Q, which have open kernel and which can be extended to a representation of Wgq,. By an extended
{-type we shall simply mean an equivalence class of two-dimensional representations

7' Wq, — GL(D')

over Q, with open kernel.
Suppose that 7 is an ¢-type and that K is a finite extension of Qg in Q,. Recall from [CDT] that a
continuous representation p of Gy on a two dimensional K-vector space M is said to be of type 7 if

(1) p is Barsotti-Tate over F for any finite extension F' of Q, such that 7|, is trivial;
(2) the restriction of WD(p) to I, is in 7;
(3) the character ¢! det p has finite order prime to £.

(For the definition of “Barsotti-Tate” and of the representation W D(p) associated to a potentially Barsotti-
Tate representation see §1.1 and Appendix B of [CDT].) Similarly if 7/ is an extended ¢-type then we say
that p is of extended type 7' if

(1) p is Barsotti-Tate over F for any finite extension F of Qy such that 7/|7, is trivial;

(2) WD(p) is equivalent to 7';

(3) the character e~ ! det p has finite order prime to £.
Note that no representation can have extended type 7" unless det 7’ is of the form x;x2 where x; has finite
order prime to £ and where o is unramified and takes an arithmetic Frobenius element to ¢; see Appendix
B of [CDT]. (Using Theorem 1.4 of [Br2], one can show that for £ odd one obtains equivalent definitions of
“type 77 and “extended type 7’7 if one weakens the first assumption to simply require that p is potentially
Barsotti-Tate.)

Now fix a finite extension K of Q; in Q,. Let O denote the integers of K and let k denote the residue
field of O. Let
p: Gy — GL(V)
be a continuous representation of G on a finite dimensional k-vector space V' and suppose that Endyq, V =
k. One then has a universal deformation ring Ry, ¢ for p (see, for instance, Appendix A of [CDT]).
7



We say that a prime ideal p of Ry, ¢ is of type T (resp. of extended type ') if there exist a finite extension
K’ of K in Q, and an O-algebra homomorphism Ry.o — K’ with kernel p such that the pushforward of the
universal deformation of p over Ry ¢ to K’ is of type 7 (resp. of extended type 7’).

Let 7 be an ¢-type and 7" an irreducible extended {-type. If there do not exist any prime ideals p of type
7 (resp. of extended type 7'), we define Re,o =0 (resp. R\%/o = 0). Otherwise, define Re,o (resp. R\L/),/o) to
be the quotient of Ry o by the intersection of all p of type 7 (resp. of extended type 7'). We will sometimes
write Ry, o (resp. R(/,,o) for Rl[/),o (resp. Ralo). We say that a deformation of p is weakly of type T (resp.
weakly of extended type ') if the associated local O-algebra map Ry,0 — R factors through the quotient
Re,o (resp. Re,/o)- We say that 7 (resp. 7') is weakly acceptable for p if either Re,o = 0 (resp. Re,lo =0) or
there is a surjective local O-algebra map O[X] — Re,o (resp. O[X] — R\?,,o)~ We say that 7 (resp. 77) is
acceptable for p if Rl[/),o # 0 (resp. R\[/),/o # 0) and if there is a surjective local O-algebra map O[X] — Re,o
(resp. O[X] — Ralo).

If K’ is a finite extension of K in Q, with valuation ring O’ and residue field &', then 0’ ®q Re,o (resp.
0’ ®o Re,lo) is naturally isomorphic to R‘[}@kk/ﬁ/ (resp. R\l;(/gkk/,(o')' Thus (weak) acceptability depends only
on 7 (resp. 7') and p, and not on the choice of K. Moreover 7 (resp. 7') is acceptable for p if and only if 7
(resp. 7') is acceptable for p ®y k'

Although it is of no importance for the sequel, we make the following conjecture, part of which we already
conjectured as conjecture 1.2.1 of [CDT].

Conjecture 1.1.1. Suppose that T is an {-type and 7' an absolutely irreducible extended f-type. A defor-
mation p : Gy — GL(M) of p to the ring of integers O’ of a finite extension K'/K in Q, is weakly of type T
(resp. weakly of extended (-type T') if and only if M is of type T (resp. of extended type T').

If 7 is a tamely ramified /-type then we expect that it is frequently the case that 7 is acceptable for
residual representations p, as in Conjectures 1.2.2 and 1.2.3 of [CDT]. On the other hand if 7 (resp. 7’) is
a wildly ramified ¢-type (resp. wildly ramified extended ¢-type) then we expect that it is rather rare that 7
(resp. 7') is acceptable for a residual representation p. In this paper we will be concerned with a few wild
cases for the prime ¢ = 3 which do turn out to be acceptable.

1.2. Types for admissible representations. ;From now on we assume that ¢ is odd. If F' is a finite
extension of Q we will identify F* with W2 via the Artin map. Let Up(£") denote the subgroup of GLa(Zy)
consisting of elements with upper triangular mod ¢” reduction. Also let Up(¢) denote the normaliser of Ug(¢)
in GLy(Qg). Thus Uo(¢) is generated by Uy(¢) and by

(1.2.1) wy = ( 2 _01 )

If 7 is an {-type, set U, = GLa(Zy) if 7 is reducible and U, = Uy(¥) if 7 is irreducible. If 7/ is an extended
{-type with 7’|, irreducible, set U, = Tj’o (€). In this subsection we will associate to an ¢-type 7 an irreducible
representation o, of U, over 6@ with open kernel, and to an extended ¢-type 7" with 7/|;, irreducible an
irreducible representation o, of U, over Q, with open kernel. We need to consider several cases, which we
treat one at a time.

First suppose that 7 = x1|;, ® x2|1, where each x; is a character of Wgq,. Let a denote the conductor of
X1/x2- If @ =0 then set

or =St ®(x1 o det) = St ®(x2 o det),
where St denotes the Steinberg representation of PGLo(Fy). Now suppose that a > 0. Let o, denote the
induction from Uy(¢*) to GLa(Zg) of the character of Uy(¢*) which sends

(o F ) aa@nales - #5m)

This is irreducible and does not depend on the ordering of y; and xo.
For the next case, let F' denote the unramified quadratic extension of Qy and s the non-trivial automor-
phism of F' over Q. Suppose that 7 is the restriction to I, of the induction from Wy to Wq, of a character
8



x of Wg with x # x®. Let a denote the conductor of x/x°, so that a > 0. Choose a character x’ of Wq,
such that XI|17VlFX has conductor a. If a = 1 we set

- = O(X'[w, ) @ (X © det),
where O(-) is the irreducible representation of GLo(Fy) defined on page 532 of [CDT].
To define o for a > 1 we will identify GL2(Z,) with the automorphisms of the Z,-module Op. If a is even
then we let o, denote the induction from O3 (14£%/20xs) to GLg(Z¢) of the character ¢ of O (1+£%/20ps),
where, for a € 0% and (8 € (1 +£/20ps),

p(aB) = (X[, x) (@)X (det ).

If @ > 1 is odd, then we let o, denote the induction from O (1 + ¢£@~V/20rs) to GLa(Z¢) of n, where 7
is the ¢ dimensional irreducible representation of O (1 + ¢(e=1/29s) such that 7}|O;(1+g<a+1>/2@Fs) is the
direct sum of the characters
af — (Xl xx") (@)X (det a3)

for « € OF and B € (14 £(97V/20s), where x” runs over the ¢ non-trivial characters of O} /Z, (1 + (OF).

Now suppose 7' is an extended type such that 7’|, is irreducible. There is a ramified quadratic extension
F/Qg and a character x of Wg such that the induction from Wr to Wq, of x is 7/ (see §2.6 of [G]). Let s
denote the non-trivial field automorphism of F' over Q, and also let pr denote the maximal ideal of the ring
of integers O of F. Let a denote the conductor of x/x?, so a is even and a > 2. We may choose a character
X' of Wgq, such that yx’ \;vlFX has conductor a. We will identify GLy(Q/) with the automorphisms of the Qy
vector space F. We will also identify Uy(¢) with the stabiliser of the pair of lattices p}l D Op. We define

o, to be the induction from F* (1 + p’}ms) to Up(¢) of the character o of F* (1 + p%ms), where

p(af) = (X'l xx")(@)x' (det af3),

with « € F* and 8 € (1 + paF/zs), where " is a character of F*/(0})? defined as follows. Let 1 be a
character of Qg with kernel Z,. Choose 8 € F'* such that for x € p}_l we have

[y ) (L + 2) = Y(trpyq, (62)).
We impose the following conditions which determine y”:
e " is a character of F*/(0})%
. XH|O§ is non-trivial;
e and
X'(~0(Npjq@)*?) = Y ¥(a*/Np/q,®),
TE€Z /L
where w is a uniformiser in Op.
Finally if 7 is an irreducible ¢-type, choose an extended /-type 7' which restricts to 7 on I, and set
Or = CT7'/|Uo(€)-
We remark that these definitions are independent of any choices (see [G]).
Recall that by the local Langlands conjecture we can associate to an irreducible admissible representation
7 of GL2(Qy) a two-dimensional representation WD(w) of Wq,. (See §4.1 of [CDT] for the normalisation
we use.)
Lemma 1.2.1. Suppose that 7 is an {-type and that 7' an extended (-type with 7'|;, irreducible. Suppose
also that w is an infinite dimensional irreducible admissible representation of GL2(Qy) over Q,. Then:

(1) o, and o, are irreducible.
(2) IfWD(n)|1, ~ T (resp. WD(w) ~ 7') then

Homy, (0, 7) = Q,

(resp.

Homy , (07, 7) = Q).

9



(3) If WD(m)|1, & 7 (resp. WD(w) 2 7') then
Homy_(o,,m) = (0)

(resp.
Homy , (o7, m) = (0)).

Proof. The case that 7 extends to a reducible representation of Wq, follows from the standard theory of
principal series representations for GL2(Qy). The case that 7 is reducible but does not extend to a reducible
representation of Wq, follows from Theorem 3.7 of [G]. The case of 7’ follows from Theorem 4.6 of [G].

Thus, suppose that 7 is an irreducible /-type and that 7 is an extension of 7 to an extended f-type. If §
denotes the unramified quadratic character of Wq, then 7/ % 7/ ® ¢ and so we deduce that

[o2% 7(1 Ori@s ~ O/ ® ((5 [e] det)

Thus o, |Q;< Uo () is irreducible. It follows that o is irreducible. The second and third part of the lemma for
7 follow similarly. O

1.3. Reduction of types for admissible representations. We begin by reviewing some irreducible
representations of GLy(Z¢), Uy(£) and Uy(€). Let o1, denote the standard representation of GLy(Fy) over
Fo. Ifn=0,1,....,¢0 — 1 and if m € Z/(¢ — 1)Z then we let 0, ,, = Symm"(01,0) ® det™. We may think
of 0y, as a continuous representation of GLg(Z,) over F,. These representations are irreducible, mutually
non-isomorphic and exhaust the irreducible continuous representations of GLy(Zy) over Fy.

If my,mo € Z/(¢ —1)Z we let o, denote the character of Uy(¢) over Fy determined by

( Z} Z ) — o d™m2.

These representations are irreducible, mutually non-isomorphic, and exhaust the irreducible continuous
representations of Uy (¢) over Fy.

If my,mg € Z/({ — 1)Z, a € F@X and m; # mso then we let Uf{ml mat},a denote the representation of
Uy (¢) over Fy obtained by inducing the character of Q, Uy () which restricts to o] on Upy(¢) and which

my,mo
sends —¢ to a. f m € Z/(¢{ —1)Z and a € FZ, then we let O’l{m}’a denote the character of Uy(¢) over Fy
which restricts to oy, ,,, on Up(£) and which sends wy to a. These representations are irreducible, mutually
non-isomorphic and exhaust the irreducible, finite dimensional, continuous representations of (70(6) over Fy.
We will say that a reducible ¢-type 7 (resp. irreducible ¢-type, resp. extended (-type 7 with irreducible
restriction to I;) admits an irreducible representation o of GLy(Z¢) (resp. Ug(£), resp. Uy(£)) over Fy, if o,
(resp. o, resp. o,/) contains an invariant (‘)Qe—lattice A and if ¢ is a Jordan-Hélder constituent of A @ Fy.
We will say that 7 (resp. 7, resp. 7') simply admits o if o is a Jordan-Holder constituent of A @ F, of
multiplicity one.
For each of the Fy-representations of GLy(Z¢), Up(¢) and Uy(¢) just defined, we wish to define notions of
“admittance” and “simple admittance” with respect to a continuous representation p : Gy — GLy(F,). Let
7 be a fixed continuous representation Gy — GLy(Fy).

o The representation oy, ,, admits p if either

ﬁ| N w;—fn—m(l-i-l) 0
I, 0 wgfnfm(@rl)

_ wl—m *
pllz ~ 0 w—n—m s

which in addition we require to be peu-ramifié in the case n = 0. (Note that o, ¢ admits 5 if and
only if the Serre weight (see [Se2]) of p¥ @ w is n + 2.)
o The representation oy, ., simply admits p if oy, ,,, admits p.
10

or



e The representation o, admits p if either

1—¢ i i
— Wy T 0
p|]z ~ meifémj
0 Wy

where {m;, m;} = {mi,ma} and m; > m,;, or

_ wl—m *
p|14 ~ 0 w2 )

;M2

or
_ wh=—m2 *
p|fe ~ 0 w—m .
(Note that oy,, ,,, admits p if and only if some irreducible constituent of Indgf(%zl) o m, admits
p-)
e The representation oy, ,,, with m; # my simply admits p if either
— wl—m *
p|12 ~ 0 w—m2
or
_ wl—m2 *
p|1£ ~ 0 w—ml N
e The representation O';n’m simply admits p if
7] wi—m *
PlI, 0 wm
is tres ramifié.
e The representation of,, .  with mi # mo admits p if either o}, .., or oy, ., admits p and if

(w™" det p)|wq, equals the central character of Oy mat,a- (Note that in this case o, .+ lvy0) =

/ / )
Uml,mz & Om2;m1 :

The representation O'/{ml ma},a With my # mo simply admits p if (w™! det P)lwq, equals the central

character of O'/{ml mat.a and either

_ wt—m *
P|I,4 ~ 0 w—m2 ’

_ wh=—ma *
p|1e ~ 0 w—™m .

e The representation af{m} . admits p if

or

— Oy admits p,
— (w™tdet P)lwq, equals the central character of af{m}ﬂ,

— and, if
_ wl=m *
p|Iz ~ 0 w-m

_ * *
P 0 w*mx

where x is unramified and sends Frobenius to —a.
(Note that U%m}’a|U0(g) =0l m)

m,m*

is tres ramifié, then

e The representation af{m} . Simply admits p if Uf{m} ., admits p.
11



We remark that the definition of “o admits the Cartier dual of p” might look more natural to the reader.
We are forced to adopt this version of the definition by some unfortunate choices of normalisations in [CDT].
We say that a reducible ¢-type 7 (resp. irreducible ¢-type 7, resp. extended {(-type 7/ with 7/|, irre-
ducible) admits a continuous representation p : Gy — GLo(Fy) if 7 (resp. 7, resp. 7') admits an irreducible
representation of GLa(Z¢) (resp. Ug(f), resp. Up(f)) over F, which in turn admits 5. We say that 7 (resp.
7, resp. ') simply admits p if
e 7 (resp. 7, resp. 7') admits a unique irreducible representation o of GLa(Zy) (resp. Up(¥), resp.
Uo(¢)) over Fy which admits 7,
e 7 (resp. T, resp. 7') simply admits o,
e and o simply admits p.
Note that the concept of “simply admits” is strictly stronger than the concept “admits”.

The starting point for this work was the following conjecture, of which a few examples will be verified in
§2.1.

Conjecture 1.3.1. Let k be a finite subfield of Fy, p : Gy — GLa(k) a continuous representation, T an
L-type and T’ an extended (-type with irreducible restriction to Iy. Suppose that det T and det 7’ are tamely
ramified; that the centraliser of the image of p is k; and that the image of T is not contained in the centre of
GL2(Qy).
(1) 7 (resp. ') admits b if and only if Rao # (0) (resp. Re’lo # (0)), i.e. if and only if there is a finite
extension K' of Qp in Q, and a continuous representation p : Gy — GLo(Of) which reduces to p
and has type T (resp. has extended type 7').
(2) 7 (resp. ') simply admits p if and only if T (resp. ') is acceptable for p.

We remark that to check if 7 or 7/ simply admits p is a relatively straightforward computation. On the
other hand to show that 7 or 7/ is acceptable for p is at present a non-trivial undertaking. (The reader who
doubts us might like to compare §3 with §4, §5, §6, §7, §8 and §9. All the latter sections are devoted to
verifying some very special cases of this conjecture.)

1.4. The main theorems. With these definitions, we can state our two main theorems. The proofs very
closely parallel the proof of Theorem 7.1.1 of [CDT].

Theorem 1.4.1. Let £ be an odd prime, K a finite extension of Qq in Q, and k the residue field of K. Let
p: Gq — GLy(K)

be an odd continuous representation ramified at only finitely many primes. Assume that its reduction
p:Gq — GLa(k)

is absolutely irreducible after restriction to Q(\/(—1)¢~1/2¢) and is modular. Further, suppose that

Pla, has centraliser k,

pla, is potentially Barsotti- Tate with £-type T,
T admits p,

and T is weakly acceptable for p.

Then p is modular.

Proof. Note that the existence of p shows that 7 is acceptable for p. Now the proof is verbatim the proof of
Theorem 7.1.1 of [CDT] (see §1.3, §1.4, §3, §4, §5 and §6 of that paper, and the corrigendum at the end of
this paper), with the following exceptions.

e On page 539 one should take Us, = U, Vs, = kero, and og; = 0.
e In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 of this paper, in addition to the results
recalled in §4 of [CDT].
e On page 546 replace “Setting S = T(p) U {r} ...” to the end of the first paragraph by the following.
(Again the key component of this argument is very similar to the main idea of [Kh].)
12



“Set S = T(p) U{r}; Us = [[,Us, where Ug, = Ui(p®) if p € T(p) and Uy, = Us,, oth-
erwise; Vg = [[, Vg, where V¢ = Ui(p®) if p € T(p) and Vg, = Vs, otherwise; and Ly =
Homouy, vy (M, H (Xvy, 0))[Ig]. Then T = SLy(Z) N (UsGLa(Z¢)) satisfies the hypotheses of
Theorem 6.1.1. Furthermore

H' (Yurcryzo), Fm) = HY(T, Ly, @ k)

as a ’f‘ls—module where M is the module for Us, = GL2(Z;) defined by the action of GLy(F,) on
L, ® k. Therefore mg is in the support of Hl(YUéGLZ(ZU, Fnr).

We now drop the special assumption on p|;, made in the last paragraph. Twisting we see that if
o is an irreducible representation of GLy(Z,) over F; admitting 5|, then

H' (Yo, gLy (z4), Fov Jms 7 (0).

Moreover if 7 is irreducible and if o’ is an irreducible representation of Uy(¢) over F, which admits
Plc, then we see using the definition of admits and Lemmas 3.1.1 and 6.1.2 of [CDT] that

H1<YU’57§UV)ms = Hl(YU’S GLz(Zg)»EF GL2(Zy) v)ms 7é (0)
IndUO(Z) o

It follows from the definition of admits and Lemma 6.1.2 of [CDT] that mg is in the support of
Hl(YUé, FHomo (M,,0)), 50 L's is non-zero. Using the fact that lemma 5.1.1 holds with Ug replacing
Us and oy replacing og and the discussion on page 541 we conclude that Ng is non-empty.”

|

Theorem 1.4.2. Let { be an odd prime, K a finite extension of Qq in Q, and k the residue field of K. Let
p:Gq — GLy(K)
be an odd continuous representation ramified at only finitely many primes. Assume that its reduction
p:Gq — GLa(k)
is absolutely irreducible after restriction to Q(\/(—1)¢=1/2¢) and is modular. Further, suppose that
e D|g, has centraliser k,
o pla, is potentially Barsotti- Tate with extended £-type 7',
o 7' admits p,
e and 7' is weakly acceptable for p.
Then p is modular.

Proof. The existence of p shows that 7’ is in fact acceptable for p. Again the proof now follows very closely
that of Theorem 7.1.1 of [CDT]. In this case we have to make the following changes. All references are to
[CDT] unless otherwise indicated.

e On page 539 one should take Us, = Up({), Vs,e = ker 07|y, ¢y and 05,6 = 0+ |yy(r)- One should also
define [75 to be the group generated by Ug and wy € GL2(Qy) and g to be the extension of g to
Us which restricts to o on U(f).

e In the statement of Lemma 5.1.1 one should replace Homy, (05, 7°°) by Homg_(7s, 7).

e In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 above in addition to the results recalled in
84 of [CDT].

e Because 7’ is acceptable for p, we know that det 7 of a Frobenius lift is ¢¢ for some root of unity
¢. Thus, o,/(¢%) = 1 for some s > 0. Hence, og factors through the finite group és = CNTS/Vsész,
where ¢ € GL3(Qq).

e In §5.3 choose My so that it is invariant for the action of (70 (Z)/VS’MSZ. Also, in the definition of Lg
replace Gg by és.

e In the proof of Lemma 5.3.1 replace Ug by (75 and og by og.

e Note that wy acts naturally on Ys and Fg. In Lemma 6.1.3 we should replace the group HC1 (Ys,Fs)
by H!(Ys,Fs)*=! and the group H'(Ys,Fs) by H'(Ys, Fg)we=1.

13



e Replace §6.2 with the proof of the required extension of Proposition 5.4.1 given below.
e On page 547 the isomorphism

H}(Ys,Fs) — Home (H'(Ys,Fs),0)

on line 6 is ’i‘ls [wy]-linear. In the next line one should not only localise at m but restrict to the kernel
of wy — 1. Because w? =1on Hl(YS7 Fs)m we see that the natural map

H'(Ys, Fs)n ™ — H'(Ys, Fg)m/(we = 1)
is an isomorphism, and so the map
LS — HOIH@ (Ls, O)
is also an isomorphism.
e On page 547 the groups H'(Ys,Fs) o» and H'(Ys,Fs/) o should be replaced by their maximal
S S
subgroups on which w, = 1. N B

e On page 549 one should also define V (resp. V1) to be the group generated by V; (resp. Vi) and
wy € GL2(Qy). Similarly define & to be 5y ® v,.%.

e In Lemma 6.4.1 replace Vy by Vo, Vi by Vi and o by o. In the proof of Lemma 6.4.1 also replace
g{w’} (resp. Usugr,y) by Ugrry (vesp. Usugrey) and o (vesp. oguqrey) by ogp vy (vesp.
O—SU{T‘,T’/})'

e On line 20 of page 550 M should be chosen as a model of g. This is possible because ker ¢ has finite
index in Vj, because in turn o, (¢*) = 1 for some s > 0. One should also set L; = H*(Yy,, Fpyv)Le=t.
On line 25, we must replace V; by V;. N

e In the proof of Lemma 6.4.2, one must replace Vi by V; and ¢ by o.

e In line 2 of the proof of Lemma 6.4.3, to see that L; is a direct summand of H!(Yy,,Fpv) as an
O[As]-module, one needs to note that H'(Yy,, Fprv)@e=! is a direct summand of H!(Yy,, Farv )m,
because w? =1 on H'(Yv,, Fpv )m-

e On line 12 of page 551 replace R(‘D/”g by R?,:g .

Proof of extension of Proposition 5.4.1 of [CDT]. Let © = ®peT(ﬁ) M,.
First suppose that 7 admits o with m; # mo and that Uf{ml ms},a 8dmits p. As in the proof of

{mi1,ma},a

Theorem 1.4.1 (especially §6.2 of [CDT] as modified above), we have
H' (Y}, Fov @ F (o w7 (0).

my,mo

On the other hand
Hl (Yi{,}7 ?@v & f_f(a/

mi,mo

2
wy;=a
)V)‘“'{r}
’we:l
’ )v) ’ .
{my1,ma},a’/ "My

Hl (Y{,}, ?@v & St(a/

)V)m/ mi,mo
H! (Y{r}, Fov ® EF(U

{r}

1

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that
H' (Y, Fpry )i # (0),

™y
so Ny = Ny # 0.
Next suppose that 7/ admits 0’{m}, . Which in turn admits p. Assume that p|g, is irreducible or peu
ramifié. By twisting we may reduce to the case m = 0. As in the proof of Theorem 1.4.1 (especially §6.2 of
[CDT] as modified above), we have

Hl(YU{T}GLz(Zz)v:}r@\/)m/{r} # (0).

Thus

2=~2
H! (Yu,,, Ly (Z0)s Fov ):ir}a # (0),

where @ is the Teichmiiller lift of a. Using the embedding

a+wp: Hl(YU{T}GLz(ZZ)a?@V) ®Qp — H' (Y}, Fev) ® Qu,
14



we deduce that -
Hl(Y{r},"J"@V)ﬂﬁa # (0),
and so

H! (Y{r}? Fov ® :‘F(U/{O}’a)v)zizl 7& (0)

Thus, using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that
H' Yy, Ty ) # (0),

™y
and so Ng = Nyy # 0.
Finally suppose that 7" admits of,,},, which in turn admits p, and that p|g, is reducible and tres ramifié.
By twisting we may reduce to the case m = 0. Note that p;, (Froby) = —a. As in the proof of Theorem 1.4.1
(especially §6.2 of [CDT] as modified above), we have

H' Yy, Fev)m , # (0).
Suppose that 7 is a cuspidal automorphic representation which contributes to HI(Y{T},?@v)m/{T}, so T is
a cuspidal automorphic representation of GL2(A) such that 7y, is the lowest discrete series with trivial
infinitesimal character, p, is a lift of p of type ({r},1), and hence of type (},1), and dim ﬂg‘)(é) =1. As
¢ 1 det p, has order prime to ¢, we see that w} acts on wg‘)(z) by the Teichmiiller lift of a®. As m, has a
Up (£)-fixed vector but no GLa(Z)-fixed vector, we see that 1 + Usw, ' = 0 on Wg‘)(e). On the other hand,

the eigenvalue of U, on W?O(Z) reduces to —a. Thus, wy acts on wg‘)(@
on H* (Y4, 3"@v)m/{r} by the Teichmiiller lift of a. We deduce that

Hl(Y{T}, Fov ® g(gé’o)v ):‘Uj{za # (O)
Using the definition of “admits” and Lemma 6.1.2 of [CDT], we see that
H' Yy, Ty )i # (0),

!
Miry

SO N@ = N{T} 7& 0. (]

by the Teichmiiller lift of a, so wy acts

2. EXAMPLES AND APPLICATIONS.

2.1. Examples. Now we will specialise to the case £ = 3. Fix an element ¢ € GLy(Z3) with ¢3 = 1 but
¢ # 1. The following definitions, which concern isomorphism classes of 2-dimensional representations into
GL2(Q3), do not depend on this choice. We will consider the following /-types. (These are in fact, up to
twist, a complete list of the wildly ramified types which can arise from elliptic curves over Qgs, or, in the
case of conductor 243, the extended types. We will not need this fact. Rather the justification for studying
these particular types can be found in §2.2. More detailed information about the fixed fields of these types
can be found in §6.)

e 71 corresponds to the order 3 homomorphism
Z; — Z3[C]"
determined by

-1 — 1

4 — (.
e 7_; corresponds to the order 3 homomorphism

Zs[V 1] — Zs[()"

determined by

V-1 — 1

4 — 1
1+3v/-1 — (.
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e 73 is the unique 3-type such that 73|; corresponds to the order 6 homomorphism

Q3(V3)
Zs[V3]* — Zs[(]"
determined by

-1 — -1
4 — 1

1+v3 — ¢

e 7_3 is the unique 3-type such that 7_g| Tq, (/=3 corresponds to the order 6 homomorphism

Zs[v—=3]" — Z3[(]"
determined by

-1 +— -1
4 — 1
143V/-3 — 1
1+v-3 — (.
For i € Z/3Z, we will also consider the unique extended 3-types 7/ whose restrictions to GQs( J=3) correspond
to the homomorphisms

Qs(V—=3)* — Qs(¢)*

determined by

VT3 o (=
-1 +— -1
(2.1.1) 4 — 1
14+3V=3 ~ ¢
1+v-3 — (b

Subsequent sections of this paper will be devoted to checking the following special cases of Conjecture
1.3.1.

Lemma 2.1.1. Suppose that p: G — GL2(F3) and

_ 1 =
p‘I:zN 0 w

is tres ramifié. Both 71 and T7_1 simply admit p.
Theorem 2.1.2. Suppose that p: G3 — GLa(F3) and

_ 1 =
p‘I:sN 0 w

is tres ramifié. Both 11 and 7_1 are weakly acceptable for p.
Lemma 2.1.3. Suppose that p: Gs — GL2(F3)

— w *
p‘IS ~ 0 1

is tres ramifié. Both 73 and T7_3 simply admit p.
Theorem 2.1.4. Suppose that p: G5 — GLa(F3) and

— w *
10‘13 ~ 0 1

is trés ramifié. Both 13 and T_3 are weakly acceptable for p.
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Lemma 2.1.5. Let i € Z/3Z. Suppose that p : G3 — GLy(F3) and

— w *
P 0 1

is trés ramifié. The extended 3-type 7/ simply admits p.
Theorem 2.1.6. Let i € Z/3Z. Suppose that p : G5 — GLy(F3) and

— w k
P 0 1

is trés ramifié. Then 7] is weakly acceptable for p.

We remark that in Theorems 2.1.2, 2.1.4 and 2.1.6 we could replace “weakly acceptable” by “acceptable”.
This can be shown by using elliptic curves to construct explicit liftings of the desired type. For Theorems
2.1.2 and 2.1.4 the results of [Man] suffice for this. For Theorem 2.1.6 a slightly more refined analysis along
the lines of §2.3 is required.

We also remark that it was Lemmas 2.1.1, 2.1.3, 2.1.5, and Conjecture 1.3.1 which originally suggested
to us that we try to prove Theorems 2.1.2, 2.1.4, and 2.1.6.

2.2. Applications. Conditional on the results stated in §2.1, which we will prove below, we prove the
following results.

Theorem 2.2.1. Any continuous absolutely irreducible representation p : Gq — GL2(F5) with cyclotomic
determinant is modular.

Proof. Choose an element ( € GLy(F5) with ¢ = 1but ¢ # 1. (The following classification will be
independent of the choice of {.) Then up to equivalence and twisting by a quadratic character, one of the
following possibilities can be attained.

(1) P is tamely ramified at 3.
(2) Pla, is given by the character

Q5 — F5(¢)
determined by '
3 — CC-CH
-1 — 1
— G

where i € Z/3Z.
(3) E‘GQ?’(\/—_I) is given by the character

Qs(V-1)* — F5(()*

determined by

3 — 2

v—1 — 1

4 — 1
1+3/-1 — (.

(4) ﬁ\GQS (va, 1S given by the character

Qs(V3)* — F5(0)"
determined by
V3 o T-T

-1 — =1

4 1
1+\/§ — Z



(5) ﬁ\gqs(m) is given by the character

determined by
]

V-3 ¢—¢
-1
4
143v-3
14+v-3

(6) Plaq, =s is given by the character
Qs(vV—-3)" = F;5(Q)~
determined by

- =1

V=3 — 1T
-1
4
1+3v-3
1++v-3

PITT]

where i € Z/3Z.
To see that one of these cases can be attained, use the following facts, all of which are easy to verify.

e A subgroup of GLao(F5) with a non-trivial normal subgroup of 3-power order is, up to conjugation,

contained in the normaliser of F5(()*. B B
e The intersection of SLa(F5) with the normaliser of ¢ in GLy(F'5) is generated by ¢ and an element

a such that a2 = —1 and aCa~t =¢
o If B € F5(C)*, det 8 =3, and afa~! = —f, then 8= +(C—C ).
In each case, we may choose an elliptic curve E} /q, such that the representation pp, 5 of G3 on E1[5](Qg)

is isomorphic to p|g, and such that the representation pp, 3 of G3 on E1[3](Q3) has the following form
(where we use the same numbering as above).

(1) We place no restriction on pp, 3.
(2) The restriction of pp, 3 to I3 has the form

1 =
0 w
and is tres ramifié. (Use Theorem 5.3.2 of [Man].)
(3) The restriction of pp, 3 to I3 has the form

1 =
0 w
and is tres ramifié. (Use Theorem 5.3.2 of [Man].)
(4) The restriction of pg, 3 to I3 has the form

w ok
0 1
and is tres ramifié. (Use §5.4 of [Man].)
(5) The restriction of pg, 3 to I3 has the form

woo*
0 1
and is tres ramifié. (Use §5.4 of [Man].)
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(6) Pp, s has the form

(51)

is trés ramifié and remains indecomposable when restricted to the splitting field of 5. (Use Corollary
2.3.2 below.)

In each case choose such an E; and fix an isomorphism « : F2 = F;[5](Q;), such that the Weil pairing on
E1[5] corresponds to the standard alternating pairing on F2, following the conventions in §1 of [SBT]. The
pair (E,«) defines a Qgs-rational point on the smooth curve denoted X5 in [SBT]. We can find a 3-adic
open set U C X5(Qs) containing (E1,«) such that if (Es,3) defines a point in U then F5[3] = E;[3] as
F3[Gs]-modules.

Using Ekedahl’s version of the Hilbert Irreducibility Theorem (see Theorem 1.3 of [E]) and the argument
of §1 of [SBT] we may find an elliptic curve E,q and an F5[Gq]-module isomorphism 3 of p with E[5](Q)
such that

e under 3, the standard alternating pairing on FZ and the Weil pairing on E[5] agree;
e the representation pp 3 of Gq on E[3](Q) is surjective onto Aut(E[3](Q));
e and (E, ) defines a point of U.

(See also §2 of [Man].)
Corresponding to the six types of p considered above, Proposition B.4.2 of [CDT] ensures that the repre-
sentation pg 3 of Gq on the 3-adic Tate module of E is
(1) either, up to quadratic twist, ordinary in the sense of Wiles [Wi] or potentially Barsotti-Tate of some
tamely ramified type;
) potentially Barsotti-Tate of type 71;
) potentially Barsotti-Tate of type 7_1;
) potentially Barsotti-Tate of type T3;
) potentially Barsotti-Tate of type 7_3;
)

In the first case, F is modular by Theorem 7.2.1 of [CDT]. In the other cases we will simply write 7 for
the type/extended type. We see that pp 3(G3) has centraliser F3 and the results of §2.1 show that 7 admits
pp.3 and that 7 is weakly acceptable for pg 5. Moreover ﬁE,3|Gal(6 /Q(V=3)) is absolutely irreducible and, by
the Langlands-Tunnell theorem (see [Wi]), modular. Thus by Theorems 1.4.1 and 1.4.2 we see that pg 3 is
modular. We deduce that E is modular, so p = pg 5 is modular. ]

Combining this theorem with Theorem 7.2.4 of [CDT] we immediately obtain the following corollary.

Theorem 2.2.2. Every elliptic curve defined over the rational numbers is modular.

2.3. An extension of a result of Manoharmayum. The following facts follow at once from [Man)],
particularly the classification given just before Theorem 5.4.2 of that paper. Consider elliptic curves E over
Qs with minimal Weierstrass equation Y2 = X3 + AX + B, where

A=B+3=0mod9,
S0 P 3 has the form ( Lg T ) and is tres ramifié. This leaves three possibilities for the equivalence class of

Pp.s- Fix ¢ in GLy(F5) with ZB =1 but { # 1. The action of Gq,(y=3) on E[5] (Qs) is via a representation
of the form

V=3 o~ 6C-C)
-1 - -1
4 — 1_
1+vV=3 —
14+3vV=3 — ¢,

1
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for some § = 1 and some i € Z/3Z. All nine possibilities for the pair (pg 3,4) satisfying these conditions
can arise for some such choice of A and B.

Lemma 2.3.1. With the above notation and assumptions, we have 6 = 1.

Proof. Let F = Q3(v/=3,3,a), where 32 = —/—3 and
a® + Ao+ B =9V-3.

F is a totally ramified abelian extension of Qz(1/—3) of degree 6, with uniformiser w = «/f. The change
of coordinates Y — w'®Y, X — w!®X + a shows that F has good reduction over F, and the reduction is
isomorphic to

Yi=X3-X -1
The arithmetic Frobenius of W therefore has trace 3 on E[5]. Since
NF/QS(\/—_3)(w) =+v—-3(1 — 3v/—3) mod 9v—3

we conclude that

w6 —¢ )¢ =3
so 6 =1. O

Twisting by quadratic characters we immediately deduce the following corollary.
Corollary 2.3.2. Let ps : Gg — GL3(F3) have the form

(5 1) (6 2)

and be trés ramifié. Let ps : Gz — GLa(F5) have cyclotomic determinant and restriction to Gq,(v=3) given
by a character

Qs(vV=3)" — F5(0)*

determined by

VB e -0
-1 - -1
4 — 14
1+V=3 = ¢
1+3V-3 — ¢,

for some i € Z/3Z. There is an elliptic curve E,q,, with E[3](Qs) ~ ps and E[5](Qs) ~ p5. In particular,
the action of I3 on TsE factors through a finite group and so E has potentially good reduction.

3. ADMITTANCE.

In this section we will check Lemmas 2.1.1, 2.1.3, and 2.1.5. We freely use the terminology introduced in
§1.2 and §1.3.

3.1. The case of 71. In this case o, is the induction from Up(9) to GL2(Z3) of a character of order 3. Its
reduction modulo a prime above 3 has the same Jordan-Hoélder constituents as the reduction modulo 3 of

Indg(?(g()zg) 1. Using Brauer characters, we see that the reduction modulo 3 of Indgggg 1 has Jordan-Holder

constituents o( o, 0 o and o7 ;. Thus, 71 admits 00,0, 02,0, 70,1 and o2 1, the latter two simply. Lemma 2.1.1
follows in this case.
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3.2. The case of 7_;. Let U denote the subgroup of GL3(Z3) counsisting of matrices

a b
(¢ 4)
with a = d mod 3 and b+ ¢ = 0 mod 3, so o,_, is the induction from U to GLa(Z3) of a character of order 3.
Upon reduction modulo a prime above 3 this will have the same Jordan-Hélder constituents as the reduction
modulo 3 of IndSLQ(Z3) 1. If ¢ denotes the non-trivial character of F3 and ¢ a character of F of order 4,
then this latter induction splits up as the sum of the representations of GL2(Z3) — GL2(F3) denoted 1, sp,,
and ©(¢) in §3.1 of [CDT]. By Lemma 3.1.1 of [CDT] we see that 7_; admits o¢, 02,1 and 0g 1, the latter
two simply. Lemma 2.1.1 follows in this case.

3.3. The case of 713. Let U denote the subgroup of GL2(Z3) consisting of matrices

a b
c d
with a = d mod 3 and ¢ = 0 mod 3. Then o,,, is the induction from U to Uy(3) of a character of order 3.

Upon reduction modulo a prime above 3 this will have the same Jordan-Hélder constituents as the reduction
modulo 3 of Indg"(g) 1. Thus, 743 simply admits o( 5 and o} ;. Lemma 2.1.3 follows.

3.4. The case of 7. Let x be the character of Q3(v/—3)™ as in (2.1.1). Let ¢ be a character of Qg with
kernel Zg and which sends 1/3 to ¢. If z € (3v/—3)Z3[v/—3] we have

x(1+z)= qp(trQS(\/jS)/QB(—x\/jZ%/&l)).

We deduce that if x” is the character used to define o,/ in §1.2, then x"(v—3) = (¢ — ¢HL
Let U denote the subgroup of GLy(Z3) consisting of matrices

a b
3c d
with @ = d mod 3 and b+c = 0 mod 3. Let U be the group generated by ws (see (1.2.1)) and U, so o,/ is the

representation of Uy(3) induced from a character of U which sends ws to 1 and has order 3 when restricted
to U. Thus, the Jordan-Hélder constituents of the reduction of o/ modulo a prime above 3 are the same as

Uo(3) 1.

the Jordan-Holder constituents of the reduction modulo 3 of Indﬁ

Let V denote the subgroup of GLy(Z3) consisting of matrices

(3 4)

with @ = d mod 3. Let V be the group generated by w3 and V', and let v denote the character of 1% /V which
sends w3 to —1. We have

Indg(l) ~1® Ind“jQSX 7

where 7 is a non-trivial character of V/U = (VQ3)/(UQ5). The reduction modulo a prime above 3 of
this (3-dimensional) representation has the same Jordan-Hoélder constituents as the reduction modulo 3 of
1®1®v. Thus, 7/ admits af{o} 1 Jf{l} 1 0%0} _, and O'/{l} _,, the latter two simply. Lemma 2.1.5 follows.

4. NEW DEFORMATION PROBLEMS.

In this section we begin the proof of Theorems 2.1.2, 2.1.4 and 2.1.6. One could approach this directly
by using the results of [Br2] to attempt to describe RY , (resp. R ). At least one of us (R.T.) thinks that
such an approach holds out more promise of attacking the non-acceptable case, and another of us (C.B.)
has indeed made several computations along these lines. However in the present case it seems to be easier
to proceed less directly.

To this end we will use ad hoc arguments to define deformation problems, which will be represented by
O-algebras S such that
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(] dlmk ms/(pK,m%) < 1
e and the map Ry,o — R{%O (resp. Ra/o) factors through S.

An important advantage of this approach is that to calculate mg/(px, m%) one need only work in the category
of finite flat group schemes killed by a prime. Breuil modules (see section §5) for finite flat group schemes
killed by an odd prime are significantly simpler than the general case (of prime power torsion). This is
particularly true when we also use descent data. On the other hand, to suitably define the new deformation
problems is rather delicate. That is what we will do in this section.

4.1. Some generalities on group schemes. In this section, and in §4.2, ¢ will again be an arbitrary
rational prime. Moreover R will denote a complete discrete valuation ring with fraction field F’ of charac-
teristic zero and perfect residue field k of characteristic £. We will let I' denote a finite group of continuous
automorphisms of R and we will let Fy denote the subfield of F’ consisting of elements fixed by I'. Thus
F'/Fy will be finite and Galois with group I". In our applications of these results it suffices to consider
the case where Fy is a finite extension of Qs (although we will occasionally pass to the completion of the
maximal unramified extension of F).

Lemma 4.1.1. Let G be a finite flat R-group scheme. Scheme theoretic closure gives a bijection between
subgroup schemes of G X F' and finite flat closed subgroup schemes of G.

(See for instance §1.1 of [Col.)

Lemma 4.1.2. Let §; and Gy be finite flat group schemes over R which have local-local closed fibre. Suppose
that G1 and Gy are the only finite flat R-group schemes with local-local closed fibre which have generic fibres
G1 x F' and Go x F' respectively. Suppose also that we have an exact sequence of finite flat R-group schemes

(0) — G1 — G — G2 — (0).
Then G is the unique finite flat R-group scheme with local-local closed fibre and with generic fibre G x F.

Proof. Let G4 and G_ denote the maximal and minimal local-local models for § x F. The proof that these
exist follows the of Proposition 2.2.2 of [Ra] and uses the fact that the Cartier dual of a local-local finite
flat group scheme is local-local. We must show that the canonical map G4 — G_ is an isomorphism. The
scheme-theoretic closure of §; X F in Gy must be isomorphic to Gy (by uniqueness), so we have closed
immersions §; — G4 extending 3 x F — G1 x F. Similarly §1/G; must be isomorphic to Go. This gives
a commutative diagram with exact rows

0— G — G4+ — G —0
! ! !
0— G —- 6. — G =0

The vertical maps §1 — 91 and G2 — G2 induce isomorphisms on the generic fibre and hence are isomor-
phisms. This is because some power of them is the identity on the generic fibre and hence is the identity.
Working in the abelian category of fppf abelian sheaves over Spec R, the middle map must also be an
isomorphism. O

When G has f-power order, we will let D(G) denote the classical (contravariant) Dieudonné module of
G x k. Tt is a W (k)-module equipped with a Frobenius operator F and a Verschiebung operator V. We have
FV = VF = { and for all z € W (k), Fz = (Froby 2)F and Vz = (Frob, ' z)V.

If G is a finite flat R-group scheme, then by descent data for G over Fy we mean a collection {[g]} of group
scheme isomorphisms over R

[9]: G 7S
for g € ' such that for all g, h € I' we have
[gh] = (°[R]) o [g].

Note that this is not descent data in the sense of Grothendieck, since R/R! might be ramified. However,

Spec F’/ Spec Fj is étale, so by étale descent we obtain a finite flat group scheme (G, {[g]}) F, over Fy together
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with an isomorphism
(97{[9]})F0 X Fo F = G xR F'

compatible with descent data. We also obtain a natural left action of I" on the Dieudonné module D(G),
semilinear with respect to the W (k)-module structure and commuting with F and V. We refer to the pair
(G,{[g]}) as an R-group scheme with descent data relative to Fy. One defines morphisms of such objects to be
morphisms of R-group schemes which commute with the descent data. By a closed finite flat subgroup scheme
with descent data we mean a closed finite flat subgroup scheme such that the descent data on the ambient
scheme takes the subscheme to itself. Quotients by such subobjects are defined in the obvious way. Thus we
obtain an additive category with a notion of short exact sequence. Suppose that G is a finite flat Fy-group
scheme. By a model with descent data (or simply model) for G over R we shall mean a triple (G, {[g]}, %), where
(G,{[g]}) is an R-group scheme with descent data relative to Fy and where i : (G, {[g]})r, — G. Sometimes
we will suppress 4 from the notation. It is easy to check that isomorphism classes of models admitting descent
data for GG over R form a sublattice of the lattice of models for G,p over R. The following lemma follows
without difficulty from Lemma 4.1.1.

Lemma 4.1.3. Let F'/Fy be a finite Galois extension as above, and let (G,{[g]}) be a finite flat R-group
scheme with descent data relative to Fy. Base change from Fy to F’, followed by scheme theoretic closure,
gives a bijection between subgroup schemes of (G,{[g]})r, and closed finite flat subgroup schemes with descent

data in (S, {[g]})-

We let FF denote the category of finite flat group schemes over R and 3D/, the category of finite
flat group schemes over R with descent data over Fy. Let W (k)[F, V][] denote the (non-commutative)
W (k)-algebra generated by elements F, V and [g] for g € T satisfying

[gh] = [g][h] for all g,h € T

[g]F = Flg] and [g]V = V][g] for all g € T

FV = VF = ¢;

[9]z = (gz)[g] for all x € W(k) and g € T

Fx = (Frobyz)F and Vz = (Frob, ' 2)V for all € W (k).

If J is a two-sided ideal in W (k)[F, V][I'], we will let FDp//p, 5 denote the full subcategory of FDp/ /g,
consisting of objects (G, {[g]}) such that J annihilates D(§). If (G, {[g]}) is an object of IDp//p 5 and
if (H,{[g]}) < (S,{[g]}) is a closed finite flat subgroup scheme with descent data then (H,{[g]}) and
(5, {lg1})/ (¥, {lg]}) are again objects of FDp;p, 3.

Lemma 4.1.4. ForJ a two-sided ideal of the ring W (k)[F, V][['], choose objects (S1,{[g]}) and (S2,{[g]})
in FDpi g9 so that (S1,{[9]})r, = (G2, {[9]})r,- Let G denote the base change of this Fy-group scheme
to F', so G has canonical descent data relative to F'/Fy. Then the sup and inf of G1 and Go in the lattice
of integral models for G are stable under the descent data on G and with this descent data are objects of
gMDF//ij.

Proof. By uniqueness of the inf and sup, they are stable under the descent data on the generic fibre. It follows
from Raynaud’s construction of the inf and sup (Proposition 2.2.2 of [Ra]) in terms of subgroupschemes and
quotients of §; x Gy that the sup and inf are objects of FD g/ /5, 9. (]

Corollary 4.1.5. Let J be a two-sided ideal of the ring W (k)[F, V][I']. Let
(4.1.1) 0) — G — G — Gy — (0)

be an exact sequence of finite flat group schemes over Fy. Let (S1,{[g]}) and (G2, {[g]}) be objects of FD g/, 9
such that (G1,{[9]})r, = G1 and (G2,{[9]})r, = G2. Suppose that for all objects (3,{[g]}) of FDp /p, 3
with (G, {[9]})r, = G, the filtration on (G, {[g]}) induced by the filtration on G has subobject isomorphic to
(G1,{lg]}) and quotient isomorphic to (Gz2,{[g]}) (without any assumed compatibility with (4.1.1) ). Then
there is at most model for G in FDp:/p, g
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Proof. By Lemma 4.1.4, it suffices to prove that if (G4,{[g]},i+) and (G-, {[g]},i-) are two such models
with a morphism between them, then the morphism between them must be an isomorphism. In such a case
we have a commutative diagram with exact rows

0— G — 9+ — G —0
! ! l
0— GG — G- — G =0

The vertical maps §1 — 91 and G2 — G2 induce isomorphisms on the generic fibre and hence are isomor-
phisms. This is because some power of them is the identity on the generic fibre and hence is the identity.
Working in the abelian category of fppf abelian sheaves over Spec R, the middle map must also be an
isomorphism. O

4.2. Filtrations. We keep the notation and assumptions of the previous section. Let X be a finite non-empty
set of objects (G;,{[g]}) of FDp//p, (3,0 (Note the £ in the subscript (J,£), which denotes the two-sided
ideal generated by J and ¢.) Suppose that

(421)  Hom((S:. {[g]}). (Sy- {[g})) = Hom((S, {la]}) i (3. {[g]}) ) = { fnite feld ite
(in particular, the objects in ¥ are non-zero and pairwise non-isomorphic). By a X-filtration on a finite flat Fo-
group scheme G we mean an increasing filtration Fil/ G such that for all j the graded piece Fil! G/ Fil! ™! G is
isomorphic to (S;(;), {[9]}) F, for a (unique) (G;(;), {[g]}) € X. The following lemma is proved by the standard
Jordan-Holder argument.
Lemma 4.2.1. If G is a finite flat Fy-group scheme which admits a X-filtration and if H is a quotient or
subobject of G which admits a X-filtration, then any X-filtration of H can be extended to a X-filtration of
G. In addition, all S-filtrations of G have the same length and the same set of successive quotients (with
multiplicities).

We say that an object (G, {[g]}) of FDp//p, g is weakly filtered by X if there is some increasing filtration
Fil’ (G, {[g]}) of (S, {[g]}) by closed subobjects such that for all j, the graded piece

Fil/ (S, {[g]})/ Fi' (S, {[g]})
is isomorphic to an element of ¥. We say that an object (G, {[g]}) of FDp/ /g, g is strongly filtered by ¥ if
(G,{lg]}) is weakly filtered by ¥ and if for every 3-filtration of (G, {[g]})r, the corresponding filtration of
(G,{[g]}) satisfies

Fil/ (S, {[g]})/ FiV (S, {lg]})
is isomorphic to an element of ¥ for all j. The following lemma follows at once from the definitions and from
Lemma 4.2.1.
Lemma 4.2.2. (1) If (S, {lg]}) and (§',{[g]}) are objects of TD g/, 5 which are weakly filtered by ¥,

then (G, {[g]}) x (§',{[g]}) is also weakly filtered by X.

(2) Let (G,{[g]}) and (3',{[g]}) be objects of TD g p, 5 with (§',{[g]}) a closed subobject or quotient of
(G,{lg]})- Suppose that (G,{[g]}) is strongly filtered by ¥ and that (5',{[g]})F, admits a T-filtration.
Then (9',{[g]}) is strongly filtered by 3.

If any object of FDpv /g, 5 which is weakly filtered by X is strongly filtered by I, then we will let
IDpi /9,5 denote the full subcategory of Dy, 5 consisting of objects which are weakly (and there-
fore strongly) filtered by X.

Lemma 4.2.3. Suppose that any object of FD g g, 5 which is weakly filtered by ¥ is strongly filtered by
Y. Let G be a finite flat Fy-group scheme. If (S1,{[g]}) and (G2,{[g]}) are two objects of FDp: /g, 55 with
isomorphisms

ij: G —= (G {l91r
for 7 = 1,2, then there is a unique isomorphism

¢ (S1A{lg]}) — (S2,{lg1})
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such that on the generic fibre io = ¢ o iy.

Proof. Tt follows from Raynaud’s construction of sup and inf that the sup and inf of ((S1,{[g]}),%1) and
((G2,1{[g]}),i2) are again objects of FDp/ g g5. Thus we may suppose that there exists a map ¢ :
(S1,{lg]}) — (G2,{[g]}) such that on the generic fibre i = ¢ o i;. We will argue by induction on the
rank of G that ¢ is an isomorphism.

If (G1,{[g]}) is isomorphic to an element of ¥ then the result follows by our assumption on X.

If (S1,{[g]}) is not isomorphic to an element of ¥ then choose an exact sequence

(0) — (S11,{9}) — (S1.{9}) — (S12,{g}) — (0),
where (G11,{g}) and (S12,{g}) are weakly filtered by X. Let (G21,{[g]}) denote the closed subobject of
(G2, {lg]}) corresponding to (Su1, {[g]})r, and define (Sa2,{[g]}) = (52, {[g]})/(Sa1, {[g]}). Then we have a

commutative diagram with exact rows

0— S — Gi — G2 —0
! ! !

0— G291 — G — G —0

compatible with descent data, where the central vertical arrow is ¢ and where by inductive hypothesis the
outside vertical arrows are isomorphisms. Working in the abelian category of fppf abelian sheaves over
Spec R, we see that ¢ is an isomorphism. O

The following lemma and its corollary give criteria for the equivalence of the notions of being weakly
filtered by ¥ and of being strongly filtered by X.

Lemma 4.2.4. Fiz J and X as above. Suppose that for any pair of (possibly equal) elements (§',{[g]}) and
(§”,{[g]}) in X, the natural map

Extho,, o, (8" Ala]D) (9 Ala]}) — Exth, i, (8" {9]))r (3 {la]})m)

is injective. Then any object (G,{[g]}) of FD g kg, 5 which is weakly filtered by % is also strongly filtered by
.

Proof. For brevity, we say ‘weakly/strongly filtered’ rather than ‘weakly/strongly filtered by X’ since the
data X is fixed for the entire proof. Also, we omit the specification of descent data from the notation, but
it should not be forgotten.

Suppose G is weakly filtered. In order to prove that G is strongly filtered, we argue by induction on the
length of a X-filtration of G, this length being well-defined by Lemma 4.2.1. The case of length <1 is clear.
Otherwise, by the definition of being weakly filtered, there is a short exact sequence of finite flat R-group
schemes (with descent data relative to Fp)

0) —9 —§—5"—(0)

with §’ € ¥ and §” weakly filtered (and hence, by inductive hypothesis, strongly filtered). Let H be any
closed subgroupscheme of § (with compatible descent data relative to Fy) such that Hp, ~ G;, , for some
Gi, € ¥ and such that (§/H)p, admits a 3-filtration. We need to prove (in the category of finite flat group
schemes with descent data relative to F”/Fy) that

o H~G,,

e and G/H is weakly filtered.

If the composite map
g_( [N 9 s 9//
is zero, then H = G’ as closed subgroupschemes of § (with descent data) and likewise §/H = G” so we are
done. The interesting case is when the composite map is non-zero. The map Gy, r, = Hp, — G, is then non-
zero and therefore must be a closed immersion by the assumption (4.2.1) on ¥ and a devissage with respect
to a X-filtration of 9’190. We conclude that the map of generic fiber étale group schemes H x F' — G” x F’
is a closed immersion.
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Taking scheme-theoretic closures, we obtain a closed subgroupscheme H"” < §” (with unique compatible
descent data over Fj) fitting into a commutative diagram of group schemes with descent data

K i> g_(l/
! !
0—8— § — § —
in which the lower row is short exact, the vertical maps are closed immersions, and the top map H — H"
induces an isomorphism on generic fibers. By Lemma 4.2.1 we may extend Hg, — %, to a X-filtration
on §%, and so, because §” is strongly filtered by induction, we may extend H" < §” to a X-filtration. In
particular H" is isomorphic to an object in ¥ and §”/H" is strongly filtered.
Pulling back the short exact sequence
O—>9/—>9—>9//—>O
by H"” — G”, we get a diagram
H
l
0— ¢§ — 9><9uﬂ'f” — H'" =0
in which the row is a short exact sequence of fppf abelian sheaves and all of the terms are finite flat group
schemes (for the middle, this follows from the flatness of § — G”). Thus, this bottom row is a short exact
sequence of finite flat group schemes (with descent data). As Hg, = H, , the sequence

0— Gy — (6 xgn ), — 50, — 0
is split. In particular (G xg» H")p, and hence G xg» H" are killed by £. By the hypothesis of the lemma
0—-G —=GxgrH' = H"—0
is also split, i.e. we have an isomorphism
Gxgn H'2G xpgH"

such that § < G xg» H"” corresponds to injection to the first factor of §' xg H"” and § xgn H" — H"
corresponds to projection onto the second factor. By our hypotheses on ¥ we can find a morphism ¢ : H"” —
G’ extending

11 ~ !’ /1 PT /
FO%HF0%9FOX Fo—»gFo'
Then our closed immersion H <« G’ x p H"” factors as

I ] m G xp H".

As H — §' xgH" is a closed immersion « : H — H” must be a closed immersion and hence an isomorphism.
Thus H is isomorphic to an object in X.
Now we turn to the proof that G/H is weakly filtered. Since a : H — H” is an isomorphism, it is clear
that the natural map
Hxp G — G xgn H"
is an isomorphism, and hence that
HxprG — 9
is a closed immersion. Thus, the finite flat group scheme G/(H x §’) makes sense and the natural map
9/(9_( X 9/) — 9///:]_(://

is an isomorphism (as one sees by using the universal properties of quotients to construct an inverse map).
We therefore arrive at a short exact sequence

O — 9/ — 9/9_( — 9///9{// — O

(compatible with descent data). Since §”/H" is strongly filtered, as we noted above, and §’ € &, it follows
that G/H is weakly filtered. O
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Corollary 4.2.5. FizJ and ¥ as above. Suppose that ¥ = {(G,{[g]})} is a singleton. Suppose also that we
have a short exact sequence

(0) — (G, {lg]}) — (S {lg]}) — (G2, {lg]}) — (0)

in ID g p, 9, where for any i, j (possibly equal)

Hom((S:. {[a]}). (S, {[9]})) = Hom((Si. {lg}) . (5. {la]}) ) = { Site field i

and the natural map

(4.2.2) Bxtyn,, . o, (G {191} (S5 {l91)) — Bxtp,ic, 1 ((Si: {lg1D)m,, (S5, {91} m)

is injective. Then any object (3, {[g]}) of FDps/p, g which is weakly filtered by ¥ is also strongly filtered by
3.

Proof. As (H,{[g]}) is weakly filtered by X, it is weakly filtered by {(SG1,{[9]}), (S2,{[g]})}, and so by
Lemma 4.2.4 is strongly filtered by {(S1,{[g]}), (92,{l9]})}. Any Z-filtration of (3, {[g]})r, extends to
a (51, {[61}), (S, {[g]})}-filtration of (3, {[g]})r,, which in turn gives rise to a {(S1, {[g]}), (9, (g1}
filtration of (¥, {[g]}). By the injectivity of (4.2.2) we see that this yields a 3-filtration of (3(,{[g]}) that
induces to our chosen Y-filtration of (H, {[g]}) - O

4.3. Generalities on deformation theory. Again in this section ¢ denotes an arbitrary rational prime.
We let K denote a finite extension of Qg, O the ring of integers K, px the maximal ideal of O and k its
residue field. Note that k has a different meaning from the previous two sections. Let V' be a two dimensional
k-vector space and p : Gy — Autg(V) a continuous representation. Suppose that the centraliser of Gy in
Endg (V) is k. Let ¢ : Gy — O denote a continuous character such that (¢ mod px) = detp. Let 8(p)
denote the full subcategory of the category of finite length (discrete) O-modules with a continuous O-linear
action of Gy consisting of objects which admit a finite filtration so that each successive quotient is isomorphic
to V. Because Endyg,(V) = k, it follows from the usual Jordan-Hélder argument that §(p) is an abelian
category.

Let 8 be a full subcategory of $(p) stable under isomorphisms and which is closed under finite products,
8(p)-subobjects and 8(p)-quotients, and which contains V. We will consider the following set-valued functors
on the category of complete noetherian local O-algebras R with finite residue field k.

o Dy o(R) is the set of conjugacy classes of continuous representations p : Gy — GL2(R) such that
p mod mp is conjugate to p.

° D$7O(R) is the set of conjugacy classes of continuous representations p : Gy — GL2(R) such that
p mod mp, is conjugate to p and det p = 9.

° Df},o(R) is the set of conjugacy classes of continuous representations p : Gy — GLa(R) such that
p mod mp is conjugate to p and such that for each open ideal a C R the action p makes (R/a)? into
an object of 8.

. D%}g (R) is the set of conjugacy classes of continuous representations p : Gy — GL2(R) such that
P mod mp is conjugate to p, such that det p = 1, and such that for each open ideal a C R the action
p makes (R/a)? into an object of 8.

Each of these deformation problems is representable by objects which we will denote Ry ¢, R?, o> RSV;O and
Ra’g, respectively.
Recall that the following sets are in natural (k-linear) bijection with each other.

(mRv,o /(@K, m%v,o ))\/

The set of deformations of p to k[e]/(?).
Extyq, (V. V).
H'(Gy,adp).
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These bijections give rise to an isomorphism

(meVvﬁo/(@Kvmé%))v =~ H'(Gy,ad p),
as well as bijections between
(mas /(01 w3 )Y,

the set of deformations of p to k[e]/(¢?) which make (k[e]/(?))? into an object of 8,
Exti[gz]’S(V, V), i.e. Ext! in the category of discrete k[G¢])-modules which are also objects of 8.

e the subgroup H(Gy,adp) C H'(Gy,adp) corresponding to Ext,lg[cz]ys(v, V).
We will set HE(Gy,ad’p) = Hi(Gp,adp) N H' (Gy,ad” p), so that we get an isomorphism

(ngg/(@K7 m;&g))v = Hé (Gfa ado ﬁ)

4.4. Reduction steps for Theorem 2.1.2. We now begin the proof of Theorem 2.1.2. Making an unram-
ified twist we may suppose that p has the form

1 =
(62)
We may also suppose that O = Zs.

Let Fy = F| denote a totally ramified cubic Galois extension of Q3. Let F’; denote the unique cubic
extension of Q3(y/—1) such that F’,/Qs is Galois but not abelian, and let F_; denote a cubic subfield of
F',,so F',/F_; is unramified.

Let 811 denote the full subcategory 8(p) consisting of Z3[G3]-modules X for which there exists a finite
flat O -group scheme (S, {[g]}) with descent data for F,/Qs such that X = (G, {[91) qs(Qs) as a Z3[G3)-
module. By Lemma 4.1.3 we see that 841 is closed under finite products, subobjects and quotients. Using
Tate’s theorem on the uniqueness of extensions of 3-divisible groups from F; to Op;  (Theorem 4 of [T]),

we see that the map Ry,z, — Ry'z. factors through R:/‘Szi; Thus, Theorem 2.1.2 follows from the following

result which we will prove in §7.
Theorem 4.4.1. dim H}  (G3,ad’p) < 1.

4.5. Reduction steps for Theorem 2.1.4. We now begin the proof of Theorem 2.1.4. Making an unram-
ified twist, we may suppose that p has the form

w ok
0 1 )°
We may also suppose that O = Zs.
Let F 4 denote the degree 12 abelian extension of Q3(y/£3) with norm subgroup in Qsz(+/£3)* topolog-
ically generated by £3, 4 and 1 4 31/+3. Note that F';/Qs is Galois. We have an isomorphism

Gal(F/i3/Q3(\/i_3)) = CQ X CQ X 03.
Letvi e[ FlL,/Qs(vE3) be the unique element of order 2. (In later applications this will be the square of an
element of order 4 in Gal(F'4/Qs).) We also let Fi3 denote the fixed field of a Frobenius lift of order 2, so
Fi3/Qs is totally ramified.
We will let J15 denote the two-sided ideal of W (Fg)[F, V][Gal(F'.;/Qs3)] generated by
e F+V
e and [2] + 1.

Let 813 denote the full subcategory of 8(p) consisting of objects X for which we can find an object
(G,{lg]}) of FDp;,/Qs.3.5 such that X = (G, {[g]})q, (Q;) as a Z3[G3]-module. By Lemma 4.1.3, we see
that 843 is closed under finite products, subobjects and quotients.

Now choose a finite extension K/Qg and continuous map of rings f : Ry.z, — Q; such that the corre-
sponding representation p : G3 — GLy(Ok) is of type 7+3. Let G be the corresponding 3-divisible group
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over Qs. By Tate’s theorem (Theorem 4 of [T]), the base change of G to F 5 has a unique extension to a
3-divisible group G over O Fly- By the uniqueness of this extension, it is also equipped with descent data
{lg]} relative to F'3/Qs and with an action of Ok, compatible with the canonical structure on the generic
fibre.
Let 72 € Gal(Q3(v/=%3)*®/Qs(v/£3)) correspond to /£3. We will use the notation of Appendix B of

[CDT] (in particular WD and D’(G)), except that we will write F and F’ in place of ¢ and ¢’. Then

* WD(p)(1}) = -1,

e WD(p)(72), but not WD(p)(72), is a scalar,

e and det WD(p)(F2) = 3.
Thus WD(p)(73) = —3. Hence on D'(G) ® Q3 we have

* bil = WD(p)(yi) = -1,

e and (F')?> = [73] WD(p)(3, *) = —1/3.
We conclude that on D(G) we have

b [’YZ] = 717

o F2 =_3,

e and so F = -V.
In particular jig annihilates D(G) and for all m > 1 the map (f mod 3™) : Ryz, — Ox/(3™) factors

‘:(:3

through RV . Hence, the map Ry z, — R *3 factors through R and Theorem 2.1.4 follows from the

following result which we will prove in §8.
Theorem 4.5.1. dim HSiS(Gg,,ad p) <1.

4.6. Reduction steps for Theorem 2.1.6. We now begin the proof of Theorem 2.1.6. We may suppose
that O = Zs.

Let F! denote the degree 12 abelian extension of Qs(v/—3) with norms the subgroup of Qs(y/—3)*
topologically generated by —3, 4, 1+ 9y/—3 and 1 + (1 — 37)y/—3, where 7 is the unique lift of i to Z with
0 <17 < 3. Note that F!/Qjs is Galois. We identify

Gal(F{/QS(\/j)) = (y2) x (y3) X <7§>7

where 7, corresponds to v/—3 and has order 2, 73 corresponds to 1 — 3v/=3 and has order 3, and ~3
corresponds to —1 and has order 2. We also let F; denote the fixed field of {1,752}, so F;/Qs is totally
ramified.
We will let J; denote the two-sided ideal of W (Fy)[F, V][Gal(F]/Qs3)] generated by
e F+V,
o il+1,
o and ([33] = [r3 '])[e] — F-

We remark that the ideal J; is unchanged if we change our choice of /—3.
In §9 we will prove the following result (and explain the unusual looking notation).

Theorem 4.6.1. There are objects (G, {[9]})2,6), (G:{l9]})6,10), (G {l9]}) 2,100 and (G,{[g]})(6,6) in the
category FD s jq, 9, with the following properties.

(1) For (Ta 5) = (23 6)7 (Ga 10)7 (27 10) and (Ga 6); we have p = ((93 {[g]})(r,s))Qs (63) as Gg-modules.
(2) For (r,s) =(2,6), (6,10), (2,10) and (6,6) there is a short exact sequence in FDp:/q, 1,
(0) — (S1. {9l rs) — (G:Al91D ) — (G2, {l9]}) (r,s) — (0),

such that (31, {[9]})(r,s) and (S2,{[9]})(r,s) have order 3 and for all a,b € {1,2} (possibly equal) the
natural map

Extyo ., o o0 s (G {91 0ns)s (o A9 ) — Exctiyjaq,1((Sas {191 rs).Qs0 (G {91 r).00)
18 1njective.
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(3) If k/F3 is a finite field extension and if (S,{[g]}) is an object of FDp:/q, 9, with an action of k such
that (G, {[9]})q,(Q3) is isomorphic to p @ k, then for some (r,s) = (2,6), (6,10), (2,10) or (6,6)

the object (§,{[9]}) of FDry/qu, is weakly filtered by {(S1,{[9]}) (r.5): (G2, {[g]}) (1) }-
(4) For (r,s) = (2,6), (6,10) and (2,10) we have F =0 on D(G, ), while F # 0 on D(G))-

Note that for all a,b (possibly equal), we must have

0 ifa#b,
Horn( (S, (11}) 0 (S {191)r) = Hom (G Ia)) .20 5 (s rr) ={ 3, o Zp
For (r,s) = (2,6), (6,10), (2,10) and (6,6), we let 8; (, ;) denote the full subcategory of §(p) consisting
of objects X which are isomorphic to (3, {[g]})q, for some object (3, {[g]}) of FDrr Q1. {(S.{la1})r0)}-
By Lemma 4.2.2, Corollary 4.2.5 and Theorem 4.6.1 we see that 8; () is closed under finite products,
8(p)-subobjects and 8(p)-quotients. In §9 we will also prove the following two results.

Theorem 4.6.2. For (r,s) = (2,6), (6,10), (2,10) and (6,6) we have
dim Hg, (G3,ad’p) < 1.

Theorem 4.6.3. For (r,s) = (2,6), (6,10) and (2,10) and for any N > 1 there exists a continuous
representation

pn : Gq, — GL2(F5[[T])/(T™))
such that
e det py =,
e pnv = (SN, {[9]})Qs(Qs) for some object (Sn,{[g]}) of FDr/Qs,:,7),4(S4lg)1) ey} (Where (Ji, F)
denotes the two-sided ideal of W (Fy)[F, V][Gal(F!/Qs3)] generated by J; and F),
e and pmod (T2) 2 5 & K[[T]}/(T?).
(We are not asserting that py and Gy are independent of the choice of (r, s), though in fact we believe
that py is independent of this choice.)
JFrom these results we can easily draw the following consequence.

Corollary 4.6.4. For (r,s) = (2,6), (6,10) and (2,10) we have
€85 (rs) ~u
Ry z,"" = Fs[[T]].

Proof. By Theorems 4.6.2 and 4.6.3 we see that R:/’?Zij;’“s)/(?)) >~ F3[[T]] and that if R is an Artinian

quotient of R;SZ;T)/(?)) corresponding to a (necessarily unique, see Lemma 4.2.3) object (G,{[g]}) of

FDF/Qs,9:,3),4(S19] Doy} then F =0 on D(S).

Now suppose R is any Artinian quotient of R:}SZ:(T’S) which corresponds to an object (G, {[g]}) of the

category FDr//Qs.9, {(S.{lg)}) ey} LEE G = (S, {[g]})Q3 and consider the exact sequences
(0) — G[3] — G — 3G — (0)
and
(0) — 3G — G — G/3G — (0).
By Lemma 4.2.3, we have exact sequences
(S, {lgl}) — (5 {lgl}) — (0)

and

(0) — (K, {lg]}) — (S {lg]}) — (FA{lg]}) — (0)
in ?@F{/Qa73“{(9,{[!]]})(7”)} such that the composite
(9:A{lg]}) — (5 {lg]}) = (5, {lgl})
is multiplication by 3. In particular we have exact sequences

(0) — D(X) — D(9)



and
(0) — D(H) — D(§) — D(X) — (0),
such that the composite
D(G) —» D(X) — D(9)

is multiplication by 3. As F = =V =0 on D(H) we see that F and V factor through maps D(X) — D(G),
i.e. we can write F = 3F/ and V = 3V’ for some endomorphisms F’ and V' of D(G). Thus 3 = 9F'V’ equals
zero on D(§)/9D(9) and so D(X) = 0. We conclude that X = (0), so that 3G = (0) and 3R = (0).

Thus

€7Si, 8 5751', .8
Rv,zs( = Rv7z3( )/(3) = F3([T]].
O

We now modify the argument in §4.4. Choose a finite extension K/Qs and continuous map of rings
f: Ry.z, — Qg such that the corresponding representation p : G3 — GL2(Ok) is of extended type 7/. Let
G be the corresponding 3-divisible group over Q3. By Tate’s theorem (Theorem 4 of [T]) G has a unique
extension to a 3-divisible group G over Op/. By the uniqueness of this extension, § comes equipped with
descent data {[g]} relative to F/Qs and with an action of Ok, compatible with the canonical structure on
the generic fibre.

Let %o € Gal(Q3(v/—3)*/Q3(v/—3)) correspond to /—3. We will use the notation of Appendix B of
[CDT] (in particular WD and D’(G)), except that we will write F and F’ in place of ¢ and ¢’. Then

* WD(p)(7i) = —1,

o WD(p)(73) = -3,

o and WD(p)(32)(WD(p)(73) — WD(p)(3)*) = 3.
Thus on D'(§) ® Q3 we have

o [1i] = WD(p)(7i) = -1,

o (F)* =[] WD(p)(3, %) = ~1/3,

o and [y2)([s] - [5']) = 3F".
We conclude that on D(G) we have

o [yil=-1,

o F2 =3,

o and [12)([y '] — [s]) = 3F 1.
Hence also

e F=-V,

o and [12]([3s] = [5']) = F.

In particular J; annihilates D(9).
Thus (G[pk],{[g]}) is an object of FDps/q, s, such that (S[pxk],{[g]})q, corresponds to p @ O /pk.
By Theorem 4.6.1 we see that (Glpx], {[g]}) is weakly filtered by {(S1,{[9]})(rs), (G2, {[9]})(r,s)} for some
(r,s) = (2,6), (6,10), (2,10) or (6,6). We will prove (r,s) = (6,6). By Theorem 4.6.1 and Lemma 4.2.4,

(Slpxl; {[g]}) is strongly filtered by {(S1,{[9]})(r.s), (S2:{[9]})(r5)}- As (Slpx],{lg]})q, is filtered by p,
using Theorem 4.6.1, we see that (G[px], {[g]}) is weakly filtered by (3, {[g]})(r,s)- For all m > 1 we have

(Slox1/Slox "1 Algl}) — (Slexl, {lg]}).

so for all m > 1 the object (G[p%],{[g]}) is also weakly and hence strongly filtered by (G, {[g]}),s) for the
same (r,s). Thus, for all m > 1, the map (f mod p™) : Ry,z, — Ox+/(3™) factors through R;SZ;T) By

€,04,(6,6)

Corollary 4.6.4 we see that (r, s) = (6,6), so the map Ry,z, — R:}I’ZS factors through RV,SZ3
2.1.6 follows from Theorem 4.6.2.

and Theorem
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4.7. Some Galois cohomology. In this section we will begin the proofs of Theorems 4.4.1, 4.5.1 and 4.6.2.
We will let 8 denote one of the categories 811, 813 or 8; (. 5). We will let x = w in the cases 8§11 and x =1

otherwise. In all cases

_ Xw ok

’ ( 0 x )
is tres ramifié.

The maps w ® x — p and p — x induce a commutative diagram with exact rows and columns

(0)
) !
Exth, i (@ © X0 ® )

1
Exti, g, (7:0) —  Extpg(w® X, D)
1 l

(0) — Extpc 06X) — Extpe @:x) —  Ext g, (@ xx)-
We will let 6y denote the composite map
Exti, 0, (7, P) — Extija(w © X, X);
and 60 (resp. 6,,) the induced mapping
ker 6y — EXti“;;[Gg](X?X)
(resp.
ker 6y — Ext]l;g[Gs}(w ® X, w® X))
We will also let 6 (resp. 6,,) the induced mapping
ker 0 — Exty, 6, (x: X) — Exti, 7,06 X)

(resp.
ker g — Exti;B[GS](w QR X, w®x) — Ext%‘S[IS](w R X, w® X))
If we reinterpret our Ext-groups as cohomology groups and use the isomorphism 5" ~ p ® w, our diagram
becomes
(0)

!
Hl(Gg,Fg,)
!
HY(G3,adp)  — H'(G3,p0w®X)
! !

(0) — HI(G37F3) — HI(G37ﬁ®w®X) - Hl(G37w)'
Fix a basis of F3 so that p takes the form

w®x ok
0 X/

Then any extension of p by p in characteristic 3 may be represented by a matrix
P op
0o » )’

_( é1 912 1 _
¢= < P21 P22 ) € 2 (Gs,adp)

represents the class of this extension in EXt%\S[GS](ﬁ,ﬁ) =~ H'(G3,ad p). Moreover
o 0o([¢0]) = [¢p21] € H'(G3,w),

° if (ﬁgl =0 then 91([¢]) = [¢22} S Hl(Gg,F3) and 9w([q§}) = [(bll] S Hl(Gg,Fg),
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e and [¢] € H'(G3,ad’p) if and only if 0 = [¢11 + ¢a] € H' (Gs, F3).

In particular we have 8; = —6,, on H'(Gs3,ad" 5) N ker 6.
We have an exact sequence
(0) —p@x —ad’p— w— (0)

(5)— (0 )

where the first map sends
and the second map sends

Thus we get an exact sequence
(0) — H'(Gs,5® x) — H'(G3,ad"p) % H'(Gs,w)
and so we may identify H'(G3,ad’ 5) Nkerfy with H'(G3,7® x). We also have an exact sequence
(4.7.1) 0) —w—px —1—7(0),
which gives rise to an exact sequence
(0) — F3 — H'(G3,w) — H'(G3,p® x) — H'(G3,F3) — H*(G3,w).
If we identify H'(Gs,p ® x) with H'(G3,ad’ p) Nker 6 then the latter map H'(G3,p® x) — H'(G3, F3)
is identified with 6, = —6;.
Lemma 4.7.1. The sequence
(0) — F3 — H'(G3,w) — H'(G3,p @ x) — H'(I3,F3)
s exact.
Proof. The key point is that p is trés ramifié (compare with Proposition 6.1 of [Dil]). It suffices to show
that the composite
H'(Gw,,F3) — H'(G3,F3) — H?*(G3,w)
is injective. Suppose that # € H'(G3,F3) maps to zero in H?(G3,w), then by Tate duality « is annihilated
by the image of the map H°(G3,F3) — H'(G3,w) coming from the short exact sequence
0) —w—(Fex) ®w-—1-—(0)
Cartier dual to (4.7.1). As (p® x)¥ ® w is trés ramifié we see that the image of
H(G3,F3) — H'(G3,0) = Q5 /(Q3)°
is not contained in Z3 /(Z5)3. Thus
z € Hom(Qj /Z5 ,F3) = H'(Gp,,F3) C H'(G5,F3) = Hom(Q}, F3)
must be zero (see Proposition 3 of §1 of chapter XIV of [Sel]). g

Corollary 4.7.2. The maps

6, : H(Gs,ad’ p) Nker g — H'(I5, F3)
and

0., : H'(Gs,ad’ p) Nker g — H'(I3,F3)
have the same kernel and this has dimension 1 over Fs.

Theorems 4.4.1, 4.5.1 and 4.6.2 now follow from the following results, which we will prove later. One
advantage of these new formulations is that, with one exception, they refer only to Extg(p,7) and make
no mention of the determinant or ad’ s, concepts which we found tricky to translate into the language of
integral models.

Theorem 4.7.3. (1) 6 : Extéil (p,p) — H'Y(G3,w) is the zero map.
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(2) 0, : Exts_ (p,p) — H'(I3,F3) is the zero map.
(3) 0, : Hél(Gg,adO p) — HY(I3,F3) is the zero map.
Theorein 4.7.4. (1) 6 : Extéig (p,p) — Hl(G?”w) is the zero map.
(2) 0, : ExtéiS (p,p) — H'(I3,F3) is the zero map.
Theorem 4.7.5. Suppose that i € Z/3Z and (r,s) = (2,6), (6,10), (2,10) or (6,6).
(1) 0 : Extéi iy (PsP) — H'(G3,w) is the zero map.
(2) Either 0, : Extéiw,ﬂ)(ﬁ, p) — H(I3,F3) or 6 : Extéi,(w)(ﬁ, p) — H(I3,F3) is the zero map.
The deduction of Theorems 4.4.1, 4.5.1 and 4.6.2 from these results is immediate.

5. BREUIL MODULES.

In this section we recall some results from [Br2] (see also the summary [Brl]) and give some slight
extensions of them. Three of the authors apologise to the fourth for the title of this section, but they find
that the term “Breuil module” is much more convenient than “filtered ¢;-module”.

Throughout this section, £ will be an odd rational prime and R will be a complete discrete valuation ring
with fraction field F’ of characteristic zero and perfect residue field k of characteristic /.

5.1. Basic properties of Breuil modules. We will fix a choice of uniformiser = of R and let
Er(u) =u® — G (u)

be the Eisenstein polynomial which is the minimal polynomial of = over the fraction field of W(k), so
Gr(u) € W(k)[u] is a polynomial with unit constant term G.(0) € W(k)* (and degree at most e — 1). The
¢t power map on k[u]/uc’ is denoted ¢, and we define

(5.1.1) Cn = —¢(Gr(u)) € ([u]/u)*.

It is very important to keep in mind that these definitions, as well as many of the definitions below, depend
on the choice of the uniformiser 7.
The category of {-torsion Brewil modules (or “f-torsion Breuil modules over R”, or simply “Breuil modules”

or “Breuil modules over R”) is defined to be the category of triples (M, My, ¢1) where

e M is a finite free k[u]/u®*-module,

e M is a k[u]/u¢’-submodule of M containing u® M,

e ¢ : My — M is ¢-semilinear and has image whose k[u]/u®*-span is all of M.
(A morphism (M, My, ¢1) — (N, Ny,1) is a morphism f : M — N of k[u] /u®*-modules such that fM; C Ny
and 91 0 f = f o ¢y on My.) We define the rank of (M, My, ¢1) to be the rank of M over k[u]/u®. Breuil
modules form an additive category (not abelian in general) in the obvious manner and this category does
not depend on the choice of w. It is denoted ¢;—mod R OF ¢1—mod e The induced ¢-semilinear map of
k-vector spaces

@1 My JuM; — M /uM
is bijective (because it is onto and #M; /uMy = # My [u] < #M[u] = #M /uM). In particular, a map of
Breuil modules
(M7 Mh ¢1) - (M/) M/la ¢/1)
is an isomorphism if and only if the map M — M on underlying k[u]/u®-modules is an isomorphism.
Lemma 5.1.1. Suppose that
0-M ->M->M"—-0
is a complex of Breuil modules. The following are equivalent.
(1) The underlying sequence of k[u]/u®‘-modules is evact.
(2) The underlying sequence of k[u]/u®‘-modules is exact as is the sequence
0— M} — M; — M/ —0.
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(3) The complex of vector spaces
0—-M/u—M/u—-M"/u—0
15 exact.

Proof. The second statement clearly implies the first. The first implies the third as Breuil modules are free
over k[u]/u®. Tt remains to show that the third condition implies the second. Using Nakayama’s lemma and
the freeness of Breuil modules we see that

0-M ->M->M"—-0
is an exact sequence of k[u]/u®*-modules. Using the bijectivity of ¢, we see that the natural map
1My — My
is surjective modulo u and therefore is surjective. It remains to check that the inclusion of k[u]/u‘-modules
M) C ker(f1) is an equality. Since f; is compatible with f : M — M” via the inclusions M; € M, M7} € M”
and also via the maps ¢; and ¢/, it is obvious that ker(f;) C ker(f) = M’ and that ¢, (ker(f1)) C M’. Since
ker(f1) contains M}, which in turn contains u® M’, we see that (M, ker(f1), #1) is a Breuil module! Then
(M, M, 7)) — (M, ker(f1), ¢1) defined via the identity map on M’ is a map of Breuil modules which is an
isomorphism on underlying k[u]/u¢’-modules, so it must be an isomorphism of Breuil modules. This forces

ker(f1) = M. O
When the equivalent conditions of this lemma are met we call the sequence of Breuil modules
0—-M —-M—-M -0

exact.
For any Breuil module (M, My, ¢1), we define the Frobenius endomorphism ¢ : M — M by
1 (&
(5.1.2) Bm) = —on(um),

where ¢, is defined as in (5.1.1). Note that this depends on our choice of uniformiser.

Welet N : W(k)[[u]] — W (k)[[u]] denote the unique continuous W (k)-linear derivation satisfying Nu = u,
ie. N = u%. This operator “extends” to any Breuil module. More precisely, we have the following lemma.
Lemma 5.1.2. Let M be an object of gbl—modR. There is a unique additive operator N : M — M (the
monodromy operator) satisfying the three conditions:

(1) N(sz) = N(s)x + sN(z), s € k[u]/u, x € M,

(2) Nopy =¢oN on My,

(3) N(M) C uM.
Moreover, any morphism of Breuil modules M — M’ automatically commutes with N.
Proof. Let’s start with unicity. Recall we have an isomorphism k[u]/u’ Okfut)juer P1(M1) = M ([Br2],
2.1.2.1). Suppose there are two operators N and N’ satisfying (1), (2) and (3) above, so A = N — N’ is
E[u] /u*-linear and satisfies A¢; = ¢pA and A(M) C uM. Thus,

Aj1(My) = $AM) € p(uM) € uM,
s0 AM) = A(k[u] /u® @ppueypuer 91(M1)) C M. Tterating Agy (M) C ¢A(M) C u” M so AM) € uf’M,
and so on. As u®* =0, we get A = 0. For the existence, let No = N ® 1 on
k] /u® @ppurypuee ¢1(M1) =~ M,
and note Ny satisfies Ny(sz) = N(s)x + sNy(z). Call a derivation of M any additive operator satisfying this
relation and define successive derivations of M by the formula
Njt1(s @ ¢1(x)) = N(s) ® p1(x) + s¢(N;(x)),
for j > 0. Note that N;;, is well defined by the following observations.
o N(u‘s) =uN(s) and N;(uz) = ux + ulN;(z) imply that Nji1(u’s ® ¢1(x)) = Njt1(s ® ¢1(uz)).
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o If $1(z) = 0then z € u°M (see (1) of Lemma 2.1.2.1 of [Brl]) and so N;(z) € u*M and ¢(N;(z)) = 0.

As No(M) C uM, we have (N;11 — N;)(M) C u?’"'M, so N; = Njyq for j > 0. This N; satisfies (1), (2)
and (3). O

The reason for introducing Breuil modules (and putting the factor c¢;! in the definition of ¢) is the
following theorem.

Theorem 5.1.3. (1) Given the choice of uniformiser w for R there is a contravariant functor M, from
finite flat R-group schemes which are killed by £ to gbl—modR and a quasi-inverse functor G .

(2) If G is a finite flat R-group scheme killed by £, then S has rank € if and only if M (G) has rank r.
(3) If G is a finite flat R-group scheme killed by £, then there is a canonical k-linear isomorphism

D(SG) ®k,Frob, k= Mz (G)/uMx(9).
Under this identification, F ® Frob, corresponds to ¢ and V ® Frob[1 corresponds to the composite

Ve : M /aM %5 My fuMy — M JudM.

(4) If
O—)S/—>9—>9H—>O

1s a diagram of finite flat group schemes over R which are killed by ¢ and if
0 — Mx(G") = M (G) = MA(S') — 0

18 the corresponding diagram of Breuil modules, then the diagram of finite flat group schemes is a
short exact sequence if and only if the diagram of Breuil modules is a short exact sequence.

Proof. See §2.1.1, Proposition 2.1.2.2, Theorem 3.3.7, Theorem 4.2.1.6 and the proof of Theorem 3.3.5 of
[Br2]. In 3.3.5 of [Br2] it is shown that M;(G)/uM,(G) can be k-linearly identified with the crystalline
Dieudonné module of § x k. In 4.2.14 of [BBM] the crystalline Dieudonné module of § x k is identified with
D(S) ®k,rrob, k. The equivalence of the two notions of exactness can be deduced from the compatibility of
M, with Dieudonné theory, from Lemma 5.1.1, and from the fact that a complex of finite flat group schemes
over R is exact if and only if its special fibre is exact (see for example Proposition 1.1 of [delJ]). g

5.2. Examples. For 0 < r < e an integer and for a € k>, define a Breuil module M(r,a) by
o M(r,a) = (k[u]/u)e,
o M(r,a); = (k[u]/u‘)u"e,
e ¢1(u"e) = ae.
It is easy to check that ¢; is well defined (and uniquely determined by the given conditions). We will refer

to e as the standard generator of M(r,a) and write §(r,a) for G (M(r,a)). The following lemma is easy to
check.

Lemma 5.2.1. (1) Any Breuil module of rank 1 over k[u]/u®t is isomorphic to some M(r, a).
(2) There is a non-zero morphism M(r,a) — M(r',a’) if and only if v > r, v = rmod ¢ — 1 and
aja’ € (KX)=1. All such morphisms are then of the form e — bufC"="/(=De/ where b= = a/a’.
(3) The modules M(r,a) and M(r',a’) are isomorphic if and only if r = ' and a/a’ € (k*)*~L, or
equivalently if and only if there are non-zero morphisms M(r,a) — M(r',a’) and M(r',a’) — M(r, a).
(4) If we order the M(r,a) by setting M(r,a) > M(r',a’) if there is a non-zero morphism M(r' a') —
M(r,a), then the set of isomorphism classes of M(G)’s as G runs over models of a fized finite flat
F'-group scheme G of order € is well ordered.
) On M(r,a) we have Ne =0, so N o¢; =0.
) §(r,a) is étale (resp. multiplicative) if and only if r = e (resp. r = 0).
) §(0,1) = py and G(e, —Gr(0)) =2 Z/lZ.
) The Cartier dual of G(r,—G(0)) is (e — r,1).
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Proof. The first three parts are easy computations. For the fourth part note that two finite flat group
schemes G and G’ of order £ over R have isomorphic generic fibres if and only if there is a non-zero morphism
G — G or ¢ — G. The fifth part is another easy computation and the sixth part follows on computing the
Dieudonné module using Theorem 5.1.3.

By 3.1.2 of [Br2] we see that the affine R-algebra of the group scheme attached to M(r,a) is

T "a

Gr(m)
where @ is a lift of a to W(k). This has constant generic fiber if and only if —w¢~"a/G,(7) € F’ is an
(¢ — 1)"" power. This occurs if and only if 7 = emod £ — 1 and —a/G,(0) € k is a (¢ — 1)** power. Thus
M(e, —G(0)) corresponds to the étale group scheme Z/¢Z over R.

Next, we show that the group scheme G corresponding to the Breuil module M(0, 1) is isomorphic to .
By using the relation between Breuil modules and Dieudonné modules (see Theorem 5.1.3) we see that the
Dieudonné module of the closed fiber of G is isomorphic to the Dieudonné module of the closed fiber of p,.
This forces § = 1y, since we may consider Cartier duals and observe that a finite flat R-group scheme G is
étale if and only if its special fibre is étale, and then §18.5.15 of book IV, of [EGA] may be used.

This establishes the seventh part. The final part follows from parts four and seven. O

RIX]/(X* +

X,

Now suppose that 0 < r, s < e are integers and choose a,b € k*, f € u™*Or+s=)E[y] /u’. We can define

an extension class
(0) — M(s,b) — M(s,b;7, a5 f) — M(r,a) — (0)

in qbl—modR by
M(s, b7, a; f) = (k[u]/u)e @ (k[u] /u)e,
M(s,b; 7, a; f)1 = (u'e,u"e’ + fe),
¢1(ue) = be and ¢1(u"e + fe) = a€,
the standard generator of M(s, b) maps to e,
e maps to 0 and e’ maps to the standard generator in M(r, a).

The following lemma is also easy to check.
Lemma 5.2.2. (1) Any extension of M(r,a) by M(s,b) in ¢1—mod , is isomorphic to M(s, b;r,a; f)
for some f € umaxOrts=e)k[y] /uct.
(2) Two such extensions M(s,b;r,a; f) and M(s,b;r,a; f') are isomorphic as extension classes if and
only if
f'—f=u*h— (b/a)u"h*
for some h € k[u]/u®, in which case one such isomorphism fizes e and sends ' to € — (b/a)h‘e.
We remark that f € u™@*(Or+s=€) o] /uct is required so that M(s, b;r,a; f)1 D u M(s, b;r,a; f). We will
write G(s, b;r,a; f) for G-(M(s,b;7, a; f)).
We will also need some slight extensions of these results to allow for coefficients. To this end let k'/F, be
a finite extension linearly disjoint from k and write k’k for the field ¥’ ®p, k. For 0 < r < e an integer and
for a € (K'k)*, define a Breuil module, M(k’; r, a), with an action of k" by
b M(k/; r,a) = ((klk)[u]/uez)ea
o M(K';7a)1 = (K'K)[u]/ut)u"e,
o ¢1(u"e) = ae.
We will let ¢ denote the automorphism of k'k[u], which is the identity on k&’ and which raises elements of
K[u] to the ¢! power. The following lemma is easy to check.

Lemma 5.2.3. (1) Any Breuil module with an action of k' which is free of rank [k' : k] over k[u]/u®*
is isomorphic to some M(K';r, a).
(2) There is a non-zero morphism M(k';r,a) — M(K';7',ad") if and only if ' > v, ' =r mod £ — 1 and
aja’ € ¢(b)/b for some b € (K'k)*. All such morphisms are then of the form e — bt =)/(E=1g/,
where b € (K'k)* and ¢(b') /b = a/d'.
(3) The modules M(K';r,a) and M(K';7’,a’) are isomorphic if and only if r = r' and a/a’ € ((K'k)*)?~L.
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(4) On M(K';r,a) we have Ne =0 and so N o ¢ = 0.
(5) Gx(M(K';7,a)) is étale (resp. multiplicative) if and only if r = e (resp.r = 0).
Now choose 0 < 7, s < e integers, a,b € (k'k)*, and f € u™a*(Or+5=¢)(k/k)[u] /u®’. We define an extension
class
(O) - M(klv S, b) - M(k/7 S, b7 T, a; f) - M(kla T, a‘) - (O)

in ¢1—mod , with an action of k' by
M(K's 5,05,a; f) = (K'F)[ul /u)e & ((K'k)[u] /u)e’,
M(K';s,bir,a; f)1 = (ue,u"e’ + fe),
¢1(u’e) = be and ¢1(u"e + fe) = a€’,
the standard generator of M(k'; s, b) maps to e,
e maps to 0 and €’ to the standard generators in M(k’;r, a).

Then the following lemma is easy to check.
Lemma 5.2.4. (1) Any extension of M(K';r,a) by M(K"; s,b) in ¢1—mod , with a compatible action of

k' is isomorphic to M(k'; s,b;7, a; f) for some f € u™xOr+s=¢) (kL) [u] fut.

(2) Two such extensions M(k'; s, b;r,a; f) and M(K'; s,b;r,a; f') are isomorphic (as extensions) if and
only if
f'=f=vuh—(b/a)u"¢(h)
for some h € (K'k)[u]/uc’, in which case one such isomorphism fives e and sends €' to e’ —(b/a)¢(h)e.
We will write G(k';r,a) and G(K'; 7, a; s,b; f) for G (M(K';7,a)) and G (M(K';r, a;s,b; f)) respectively.

5.3. Relationship to syntomic sheaves. Let us first recall some of the notations of [Brl] and [Br2].

ie

Let Spf(R)syn be the small f-adic formal syntomic site over R, S the f-adic completion of W (k)[u, “+ien,
S, = 8/¢"S, E,, = Spec(S,) and for any X € Spf(R)syn:

Of«:jrs (:{) = HO((xn/En)criSv OBET,,/En)
where X,, = X xg R/{" is viewed over E, via the thickening (Spec(R/{™) — En,u — m). It turns out 05%
is the sheaf of S,-modules on Spf(R)syn associated to the presheaf (cf. the proof of Lemma 2.3.2 in [Br2]):

DP . DP
(5:3.1) X = (WalB)t) @m0, 00 Wa(T(E1,02,))) = (WalB)ul /u®") @10, ) W (T (1, 02,)) )

Here, the subscript “¢™” means we twist by the n'" power of the Frobenius when sending W, (k) to W,, (k)[u]
and the exponent “DP” means we take the divided power envelope with respect to the kernel of the canonical
map:

W (k)[u] @gn w, () Wi (L(X1,0x,)) - — [(%,,0x,)
s(u) ® (woy ..oy Wp—1) = s(m) (W + et )
where 1; is a local lifting of w;, these divided powers being required to be compatible with the usual divided

powers ;({x) = %mi (i.e. we take the divided power envelope relative to the usual divided power structure
on the maximal ideal of W;,(k)). Note that the latter map induces a canonical surjection of sheaves of
Sy-modules on Spf(R)gyn:

05 % — O,

where O, (X) = I'(X,, 0%, ). We denote by g5 the kernel of this surjection. For any n, let ¢ : S,, — S, be
the unique lifting of Frobenius such that ¢(u) = u and ¢(%-) = u'" The sheaf O is equipped with the

7! 7! n,m
crystalline Frobenius ¢, which is also induced by the map s(u) ® (wo, ..., wn—1) — ¢(s(u)) @ (W, ..., wE_;) on
the above presheaf (5.3.1). (Here ¢ on W,,(k)[u] is Frobenius on W, (k) and takes u to u’.) Since ¢ divides
p(x) —at, we get ¢(J5E) C LSS for all n, so we can define an Sy-linear ¢ = %|8;:er€ by the usual “flatness”
trick (see §2.3 of [Br2]). Let N : S, — S, be the unique W, (k)-linear derivation such that N (u) = u and
N(vi(u®)) = eutry;—1(u®) = iev;(u®). Finally define:
N : Ol — 0
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to be the unique W, (k)-linear morphism of sheaves which on the presheaf (5.3.1) is given by N (v;(3_ s®@w)) =
(3" N(s) @ w)yi—1(>. s ® w). Note that No¢ =Llpo N, so Nog¢; =¢oN on Joris,

Let G be a finite flat group scheme over R, which is killed by ¢. Viewing G as a formal scheme over R,
it is an object in Spf(R)syn. Viewing it as a sheaf of groups on Spf(R)syn, its associated Breuil module is
defined as:

(1) Mn(g) = Homsheaves of groups(97 O?f.—s) ®S1 k[u]/uezv

(2) MTF<9)1 = image of Homsheaves of groups(97 if:rs) ®s, k[u]/ueé in MW(9)7

(3) ¢1 is induced by ¢; ® ¢,
where the Sj-module structures are induced by the compatible Sy actions on 0§72 and 572 (see §3.2 and
§2.1.2.2 of [Br2]). Here S; — k[u]/u’ is the surjection that sends u to u, v;(u¢) to v;(u®) for i < I and
~i(u®) to 0 for ¢ > [.

We record for future reference the following straightforward observation.

Lemma 5.3.1. If we denote by A (resp. pr;, i € {1,2}) the coproduct (resp. the two projections)
G Xspec(r) 9 — G,
then for any sheaf of commutative groups F on Spf(R)syn we have:
Homgheaves of groups(9; F) = {x € F(§) | (A" — pr] — pr3)(z) = 0}.
The operator N on Of"%* induces an operator N on Homgpeaves of groups(9, O5), hence on M (§).

Lemma 5.3.2. The above operator N on M (G) coincides with the operator N defined in Lemma 5.1.2.

Proof. By unicity in Lemma 5.1.2, we only have to prove that N satisfies N(M;(G)) C uM,(G), since the
other conditions are automatically satisfied. It’s enough to prove that N(¢1(x)) = (¢ o N)(z) € uM,(G) for
any © € Mx(§)1. But u®~“¢o N =0 on 0§ because it is so on (k[u] ® I'(X1, O%,))”". Thus one also has
u ¢ o N =0 on Homgroups(S, 0572), hence on M (§). This implies ¢ o N(Mx(5)) C u*Mx(G) C uM(9)
since M, (G) is free over k[u]/u®’. O

5.4. Base change. In this section we will examine the relationship of the functor M with two instances of
base change. First we consider unramified base change.

Let &’ be a perfect field of characteristic £ which is an extension of k and R’ = R @y () W(k'). Choose
7' =7 ® 1 as uniformiser in R’. If X € Spf(R)syn, let X’ = Spf(R’) Xgpe(r) X and define:

0572 (%) = 07733 (%) and 3577 (X) = 3730 (%),
As in the proof of 2.3.2 of [Br2], we have that (‘)f:ff/ is the sheaf on Spf(R)syn associated to the presheaf:
DP
X o (Walk)lul ©gmaw, ) WalD(X5, 02,)))
DP
= (Walk)] @m0y WK @1 T(%1,02,))
Define S), as S, but with k¥’ instead of k. There is a canonical isomorphism of sheaves:
0% @5, S = 077 @w, oy Walk) = 0773
coming from the obvious isomorphism:
(W (K[l /u") @ w ) Wi (D(X1, 02,)) = (W () [ul /u") @ g w, ey Wi (K @1 T(%1, Ox,)
and one casily sees it induces an isomorphism J&% @y, (k) Wy (k') = 3. Moreover, we have the following
obvious lemma.
Lemma 5.4.1. The diagram of sheaves on Spf(R)syn:
B8 Sw. i Walk) = 30
- L aes o1l
0% Ow, ) Wa(K') —  OFF
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s commutative.

Using the identification from §5.3, Lemma 5.3.1 and Lemma 5.4.1 (for n = 1), together with obvious
functorialities, we obtain after tensoring by k[u]/u® the following corollary.

Corollary 5.4.2. Let G be a finite flat group scheme over R, which is killed by £. Let k' /k be an extension
of fields with k' perfect and let 7' = 7@ 1, a uniformiser for R' = R @y ) W (k). Then there is a canonical
isomorphism in the category ¢17m0dR

(M (9) @1 ', M (91 @4 K, 61 @ 0) = (M (), Mr(§)1, 61 )

compatible with composites of such residue field extensions.

We will now turn to the case of base change by a continuous automorphism ¢ : R = R. For any
s =S wiut € W(E)[[u]], let @s =3 g(w;)u* and (Ps = 3 ¢(w;)u?, where g and ¢ act on W (k) through
their action on k. Choose Hy(u) € W (k)[[u]] such that g(r) = mHy(m). Notice that H,(u) € W(k)[[u]]*.
Define g : W (k)[[u]] = W (k)|[u]] by §(3Swiw') = 3= g(wi)u’ Hy(u)".
Lemma 5.4.3. There is a unique element 4t(u) € W (k)[[u]] such that, if 4¢ is defined by 4¢(> wiu') =
22 o(wi) (u (1 + Lyt(u)))’, one has Go 4¢ = dog.

Proof. One has to solve in W (k)[[u]]:
L 69w () = (Hy(u) ) @ Hy(u)

(where the two sides clearly belong to 1 + (W (k)[[u]]). As Hg(u) € W(k)[[u]]*, there is a unique K, €
ulW (k)[[u]]* such that Kg(u)H,(K4(u)) = u, so we have

L 9t) = (Hy (K ) ™) O H, (5, ().

For any object M of ¢1—modR, define 3¢, : My — M by the following formula:
(5.4.1) 991 () = d1(x) + 4t (u)N (1 ()

where NN is as in Lemma 5.1.2.
For any X € Spf(R)syn, let 9X = Spf(R) X - gpe(ry X and define:

O (9(%X) = 0777 (%) and 3779 (X) = T3 (7).
Then Of:ff’(g ) is the sheaf on Spf(R)syn associated to the presheaf:
DP
X o (W)l @gnw, ) Wa(D(7%1,001,)))
DP
= (Wal®)[t] @4 wis s Wa (R 85,0 T(X1,01,)))

w€t i wettd

Let g : S, — Sy, be the unique ring isomorphism such that g(w;“+—) = g(w;) “5—
1 > 0. There is a canonical isomorphism of sheaves:

cris ~ cris
On,ﬂ ®Sn,§ Sﬂ - On,‘n’ ,(g)
coming from the obvious g-semi-linear isomorphism:

(Wa (k) [u) /u™") @ w1y Wa(D(X1,02,)) = (Wa(k)[ul/u") @gnw, 1) Wi (R @7 T(X1, 0x,))
$® (W0, .vey Wr—1 — 9(s) ® (1 ®@wg, ..., 1 @ wy_1)

Hy(u)*+ for 0 < j <e,

and one easily sees it induces an isomorphism J5% ®sg, 5 Sp = geris(9)
Define : S, — S, as in Lemma 5.4.3 and define:
g
. (OCris cris
g¢ . On;n' - On,?r
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to be the unique morphism of sheaves which is induced by ¢¢(71:(>°s ® w)) = (> 40(s) @ ¢(w)) on
the presheaf (5.3.1) (see §5.3 and note that this is well defined). Since 4¢(J5%) C LOS%, we can define

n,m
o1 = Llgerss.
Lemma 5.4.4. The diagram of sheaves on Spf(R)syn:
3T @5, 80 > daw?
] g9, Q¢ é1
0 ®g,.4 5, = a9

is commutative. Moreover we have on Jo**:

= /1 ! i Nt
vy :Z< og(1 +€ gt(U))) Wo(bl

where N is defined as in §5.3.

Proof. By working modulo /"1, i.e. with ffﬁﬂ and 4¢, and looking on the above presheaves, it is completely
straightforward. O

Let G be a finite flat group scheme over R which is killed by ¢. Note that thanks to Lemma 5.3.2 and the
formula for ;¢, in Lemma 5.4.4, the operator M ()1 — Mx(9) induced by the map 4¢, : J&'ss — O is
precisely the operator denoted 4¢, earlier in this section (see (5.4.1)). Using this, together with Lemma 5.3.1,
Lemma 5.4.4 (for n = 1) and obvious functorialities, we obtain, after tensoring by k[u]/u®, the following
corollary.

Corollary 5.4.5. Let g: R — R be a continuous automorphism.

(1) Let G be a finite flat group scheme over R, which is killed by £. Then there is a canonical isomorphism
in the category (blfrnodR:

(W (9) @gug e Kl /0, Nen (§)1 Dy g Kl g, © 6) = (M (99), Ma(P)1,61 )

(2) If f: § — G is a morphism of finite flat R-group schemes killed by ¢ and M (f) is the corresponding
morphism in (bl—modR, then M (f) also commutes with the 4¢, and there is a commutative diagram
mn ¢1—modR:

Ma(9') Ongutyuetg B[l /uet) "B M(G) @ppuguer.g (elul /uc’)
vl I
Mo (99") M= M(9G).

(3) If g1, 92 are two continuous automorphisms of R and if we choose the unique Hy,q, € W (k)[[u]] such
that gagi = g2 o g1 on W (k)[[u]], then on
(Ve (G) O et gy Klul /1) @) puet gy Klul /1 = M (S) @ppu) et gagy Klul /u,

one has g,(g, 0 ® ¢) ® ¢ = g9, ® (b'
Corollary 5.4.6. Let G be a finite flat group scheme over R, which is killed by £. To give a morphism of
schemes [g] : § — G such that the diagram of schemes

s 2L g
! 1
Spec(R) Specls) Spec(R)
is commutative and the induced morphism G — Spec(R) X 4 spec(r) G 95 an morphism of group schemes over
R, is equivalent to giving an additive map g : Mz (G) — Mz (G) such that both of the following hold.
(1) For all s € k[u]/u®® and x € M(9), g(sx) = g(s)g(x).
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(2) g(M=(9)1) T Mx(9)1 and ¢p10G=go ¢1 + g(gt(u))go N o ¢1 with 4t as in Lemma 5.4.8 and N as
in Lemma 5.1.2.

Proof. Note that the last condition is equivalent to ¢; 0 g = go 4¢,. The first two conditions are equivalent
to giving a morphism g : M;(9G) — M,(9) in ¢;—mod > Which is equivalent to the last two by Corollary
5.4.5. O

Finally we make some computations that concern the dependence of the above compatibilities on the
choice of Hy(u). Let f(u) be an element of (k[u]/u); = u®(k[u]/u®) and define, for any M in ¢1—mod ,,
the additive map 1¢ : ¢1(M;) — M via

where N is as in Lemma 5.1.2. Using k[u]/u®* Opfu]juct P1(M1) = M, we extend 1 to all of M by the
formula:

lf(uix) =u'(1+ f(u))zlf(:c)
for © € ¢1(My). If € My, one checks that:

1y(d1(u'e)) = u15(¢1(2)) = 1 (u"61(x))
so 1 is well defined. Moreover, it is clear that 1(M;) C M;. Let

~

1, : cris cris
e Wy 1,7

be the unique isomorphism of sheaves coming from the semi-linear isomorphism of presheaves:

(k[u] /u) ®,r T(X1,0x,) = (k[u]/u) @4k (T(X1, Ox,)
s(u) ® (wo, oo, Wp—1) — o s(u(l+ f(u))) @ (wo, .oy Wp—1)

(see 5.3.1).
Let G be a finite flat group scheme over R killed by ¢ and recall that

Mﬂ"(g) = Homsheaves of groups(ga O(lzfjrs) ® k[u]/ud'

Lemma 5.4.7. The operator 15 on M (§) is induced by the operator 1y on Offf;‘s.

Proof. One can check that the operator 1; on fff,s satisfies 15 o ¢1 = ¢1 + log(1 + f)N o ¢1 where N
is defined as in §5.3 and log(1 + f) is the usual expansion of log in S;, which makes sense because of the

assumption that u®|f and because of the divided powers ~;(u®) = “Z—e, After tensoring with k[u]/u®, we get
1;=1+ (Zf;ll #f(u)l)N on ¢1(Mx(5)1) which clearly implies the two 1¢’s are the same. O

Let g = 1 and choose Hy(u) = 14 f(u) for some f € Er(u)W (k)[[u]] (see the start of §5.1 for the definition
of Ex(u)). Recall from Corollary 5.4.5 that we have a canonical isomorphism M (G) @[y juee 5 (k[u] /u) =
M, (99).
Lemma 5.4.8. The map 1 is the composite Mz (G) = M (9G) = M (G) where the first map is the one
in Corollary 5.4.5 and the second comes from the obvious isomorphism G = 9G. In other words, once
Hy(u) = 1+ f(u) has been chosen, 15 : M (G) — M(G) is the map corresponding to the identity 1g : § —
under the equivalence of Corollary 5.4.6.

The proof is straightforward by looking at the usual presheaves and using Lemma 5.4.7. We remark that

14 is not necessarily the identity even though 1g is. However, with f = 0, 1 is the identity.
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5.5. Reformulation. In this section, we will reformulate Corollary 5.4.6.

Lemma 5.5.1. There is a unique element t,(u) € W (k)[[u]] such that if ¢, is defined by ¢,(> wiu') =
S p(wi) (U (1 + Lt y(u))i, one has Go ¢ = ¢y037.

Proof. One has to solve in W (k)[[u]]:
ul Hy(u)® = u (1 + g () Hy(u (1 + ftg(u))).

As Hy(u) € W(k)[[u]]*, there is a unique L, € uW (k)[[u]]* such that L,(uHg(u)) = u. Applying Ly to
u= Kgy(u)Hy(K4(u)) (cf. the proof of Lemma 5.4.3), we get Ly(u) = K (u). We must solve:

DKy (u' Hy(u)")
ut ’

14 ltg(u) =
(]

Lemma 5.5.2. There is a unique Ag(u) € 1+ uW (k)[[u]] such that if Ny = A¢N, then Nyjog = go N.
Similarly, there is a unique gA(u) € 1 +uW (k)[[u]] such that if (N = jAN, then go ¢N = N og. Moreover,
Nyogy=1Lpg0 Ny and ¢N o 43¢ =Lgpoy4N.

Proof. Since N is a derivation, so is AN for any A € W (k)[[u]]. One has to solve A\g(u)N(uHy(u)) = uHg(u)
and A (uH, (u)) = 14+ YH) which amounts to:

Hg(u)
= S

where K, is as in the proof of Lemma 5.4.3. The commutation relations with the Frobenius follow from
Nogp=LlpoN, pgog=go¢p, Nyog=goN,gosp=¢og, go,N =N og and the fact g is bijective on
W (k) [[u]]- 0

We also denote by (N = jAN and N, = A\;N the corresponding derivations on k[u]/ u®®. For any object
M of (;51—modR7 define ¢1,4 : M1 — M by the formula:

P1,9(x) = h1(x) + tg(u)N(d1(x))

where N is as in Lemma 5.1.2, and we recall that we defined 3¢, in (5.4.1). One checks that ¢y 4(u®) =
991 (u®) = ¢1(u®) = cx (see (5.1.1)). Note that we also have ¢y 409 = goy4¢,, Nyog =goN, go,¢, = ¢107,
go 4N = Nogin klu]/uct.
Lemma 5.5.3. Let M be an object of (bl—modR, then there is a unique operator N, : M — M satisfying
the three conditions:

(1) Ny(sz) = Ny(s)x + sNy(z), s € k[u]/u¢’, x € M,

(2) Ngo1,4(x) = dgNg(x), x € My where ¢4(y) = iébl,g(uey) ifyeM,

(3) Ny(M) C uM.
The same statement holds for ¢N, 4¢, and 4¢1.

Proof. The proof is the same as for Lemma 5.1.2; using the fact we still have isomorphisms
Klul fu” @pueyuee 1,9(M0) = M
(resp. with 43¢, replacing ¢1,4). a

Lemma 5.5.4. For M an object of ¢1—modR, Ng = AgN and ¢N = AN where Ny, 4N are as in Lemma

5.9.8, Ay, g\ as in Lemma 5.5.2 and N as in Lemma 5.1.2.
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Proof. By unicity of Ny, one has to check A\jN satisfies the three conditions of Lemma 5.5.3. The first and
last are obvious. Note that N¢i(u°z) = ¢N(u°z) = 0 so ¢1 4(ux) = ¢1(u°x), which implies ¢ = ¢4 on M
(¢4 is as in Lemma 5.5.3). One computes:

Ag(u)N) o g1y = Ag(u)(1+ N(ty(u)))po N

$g0 (Ag(u)N) = (d)))‘g(ue)(b oN.

But the equality IV, o ¢g(u) = lppg 0 Ny(u) in W (k)[[u]] (from Lemma 5.5.2) yields

Ag(u) (L + N(tg(u))) = Dy (uf) € €W (k)[[u]].
We thus get (AgN) 0 ¢1,4 = ¢g 0 (AgN) hence condition (2). For 4N, the proof is completely similar. O

Lemma 5.5.5. Let M be an object of ¢1—mod , and g : M — M be an additive map such that for all
s € k[u]/u®* and x € M, g(sz) = g(s)g(z ) and g(Ml) CM. Ifgogs = ¢1 409, then go N = Ny og.
Similarly, if 109 =go 4¢,, then Nog=go,N.

Proof. We prove the first case, the other one being the same. As in the proof of Lemma 5.1.2, we define
Ny.0s Ny1,..., with N, = N, ; for i large enough, using k[u]/u’ Okfut]juct P1,9(M1) 5 M. It is enough to
show go N; = N, ; og for all 4. Suppose go N;_1 = N, ;1 0§ and let s € k[u]/u®* and x € M;, then:

Ny,ig(s01(x)) = Ny,i(g(s)01,4(9()))
= Ng(9(5)1,4(9(x)) +9(5)P1,4Ng,i-1(9(2))

1,4(9
= g(N(s)¢1(x)) +9(5)P1,49(Ni-1(x))
= gN(s)o1(x)) + g(s¢1(Ni-1(x)))
= gNi(so1(2)),
so go N; = Ny ; o g by linearity. One easily checks by a similar computation that Ny o g = go No, hence
the result follows by induction. O

Lemma 5.5.6. Let M be an object of ¢1—modR and g : M — M an additive map such that for all
s € klu]/u¢® and x € M, G(sz) = g(s)g(x) and g(My) C My. Then the following two conditions are
equivalent:

(1) ¢1 O/g\: god +§A(gt(u))§ON0 ¢1

(2) andgogr =¢10g+tg(u)yNogiog.

Proof. One has to show ¢y 0 g = go 4¢, is equivalent to go ¢1 = ¢1 407g. We prove (1) = (2), the other
case being the same. On M, we have go ¢ = ¢ o g, because ¢ = ¢4 = 4¢, as in the proof of Lemma 5.5.4.
By Lemmas 5.5.4 and 5.5.5, we have go N = §(g)\_1)N og. Thus we get from (1), using N¢1 = ¢N,

godr = 6107 —Glet ()G Au) ") Nogiog.
Playing the same game over Wy (k)[[u]] with the relation ¢ 0 g = go ¢ + g(4t(u))g o N o ¢, which is easily
checked to hold in Wa(k)[[u]], we again end up with o = ¢og—G(,t(u))g(,A(w) 1) Nogog in Wa(k)[[u]].
But we also have in Wa(k)[[u]] the equality:
gog= ¢0§+tg(U)NO¢°§~
Thus —g(,t(w))g(,A(u) 1) = t,(u) in k[u]/u, so relation (2) holds. O

We can now derive the variant of Corollary 5.4.6 which we will use.
Corollary 5.5.7. Let G be a finite flat R-group scheme killed by ¢. Let g : R = R be a continuous
automorphism, choose Hy(u) € W (k)[[u]] such that g(m) = nHy(n) and define § : k[u]/u®® — k[u]/u® by
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G(Bwu’) = Sg(w;)u'Hy(u)'. To give a morphism of schemes [g] : § — G such that the diagram of schemes

s 2L g
! 1
Spec(R) Specls) Spec(R)

is commutative and the induced morphism G — Spec(R) X g spec(r) 9 15 an morphism of group schemes over
R, is equivalent to giving an additive map g : My (G) — M (G) such that both of the following hold.
(1) For all s € k[u]/u®’ and x € M(3), g(sx) = g(s)g(x).
(2) M (9)1) C M (9)1 and go ¢1 = (1 +ty(u)N) o ¢1 07, with t; as in Lemma 5.5.1 and N as in
Lemma 5.1.2.
Moreover, [g] is an isomorphism if and only if g is. Assume these are isomorphisms. Choose Hy-1 such that

g/—\l(u) =g (u) on W(k)[[u]], i.e. Hy-1(u) =9 "(u)/u. Then the map 57—\1 that corresponds to [g]~! is
equal to G—1. Also, if g1, go are two automorphisms of R and if we choose Hy, ,Hg, as above, then [g1] o [go]

corresponds to g o g1 provided we choose Hg,q, such that g2(g1(u)) = uHg,g, (u).

Proof. The equivalence is clear thanks to Corollary 5.4.6 and Lemma 5.5.6. The fact that [g1] o [g2] corre-
sponds to gs o g1 is automatic using Corollary 5.4.5 and the functor § — M, (S). Applying this to g1 = ¢
and go = g~ !, we see that 1g = [g] o [g] ™! corresponds to g/—\1 0g. But by Lemma 5.4.8, 1 corresponds to
1 with f defined by (g/*\l 0g)(u) =u(l+ f) in W(k)[[u]]. We see that f =0 and that 1 is the identity on

M, (G). Thus g=1 =g~ on M, (9). O

5.6. Descent data. Assume now that R is endowed with a continuous left faithful action of a finite group
I'. Then I' becomes the Galois group of the fraction field F’ of R over some subfield. For each g € T', choose
Hy(u) € W(k)[u] so that g(m) = mHgy(nm), with the one condition that H;(u) = 1. Recall from Lemma 5.5.1
that this uniquely determines elements t,(u) € W (k)[[u]] such that

ul Hy(u)® = u(1 + g () Hy (u (1 + £tg(u))).
Moreover for any pair g1, g2 € I, there is obviously a unique fg, 4,(u) € Ex(u)W (k)[[u]] such that

G1092(u) = g1 o g2(u(l + fg, 9. (w)))-
If M is an object of ¢y —mod ,, then we will denote by 14, 4, the unique k-linear map M — M such that for
x € M; we have

e 1, 4 (01(x)) = (1 + (Zf;ll (G2l fo1.90 (u)l)N) (¢1(x)), where N is as in Lemma 5.1.2;

o and 1y, 4, (u'd1(2)) = u' (1 + fg, 9, (1)) 1, g, (91 (2)).
(See §5.4 where we denoted 14, 4, by 17, )
Suppose that G is a finite flat R-group scheme. Recall that by descent data on G for I' we mean isomor-
phisms of finite flat group schemes

l9]: G =75
for g € I', such that
[gh] = (?[h]) © [9]
for all g,h € T. Equivalently we may think of [g] as a map of schemes § — G over g* : Spec R — Spec R
which induces an isomorphism of group schemes § — 9G. In this picture the compatibility condition simply
becomes
lgh] = [hllg]-
Theorem 5.6.1. Suppose that G is a finite flat R-group scheme killed by £. Fiz Hy(u) as above for all g € T.
(1) To give descent data on G relative to T is equivalent to giving additive bijections g : M (G) — M (G)
for all g € T so that g takes M (G)1 into Mr(G)1 and:
e gwu'm) = g(w)(uHy(u))'g(m) for m € M(5), w € k,
4 /g\o ¢1 = (1 + tg(u)N) o ¢1 O/g\ on Mﬂ'(g)l;
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e lp=1andgiogs=gig201g g,-

(2) The above equivalence is functorial in G and is compatible with classical Dieudonné theory in the
following sense: if the action {G}ger on Mx(G) corresponds to descent data {[g]} on G, then the
g-semilinear map D([g]) induced on the contravariant Dieudonné module D(G) and the g-semilinear
map g mod u induced on M, (G)/uM;(G) are compatible via the isomorphism of Theorem 5.1.3.

Proof. Part (1) is a consequence of Corollary 5.5.7, Lemma 5.4.8 and the choice H; = 1. The functoriality in
(2) follows from Corollary 5.4.5, and the last statement there comes from 9(G x k) = 9G x k, the functoriality
of the isomorphism in Theorem 5.1.3, and the reduction modulo u of Corollary 5.4.5. |

Suppose that 7 € R'. Then we may take H,(u) = 1 for all g € I'. With this choice we see that t,, = 0,
for.9o =0and 1,4, 4, = 1for all g1, go € I'. In this case to give bijections g : M;(G) — M- (9) as in the lemma
is equivalent to giving an R-semilinear I'-action on M, (G) which commutes with u and ¢; and preserves
M (9)1. Thus (ML (9)F, M, (G)}, 1) is a Breuil module over R' from which we can recover M, (G) by
tensoring with W (k) over W (k'). In other words, étale descent for group schemes translates in the obvious
manner for Breuil modules if we choose 7 to be I'-invariant.

To build an action of I" on § using Theorem 5.6.1, the conditions g1 o0 go = G162 © 14, 4, are not very
convenient to check in practice since there are too many of them. It is useful to have the following variant.
Choose d € Z~( and a group surjection 6 : I'y — T", where I'y is the free group on d generators =i, ..., V4.
The group I'q still acts on R (via its quotient I') and for each i € {1,...,d}, choose elements H,,(u) €
W (k)[[u]] such that wH.,(m) = ~;(7). This determines isomorphisms 7; on W (k)[[u]] and k[u]/u®® and, by
composition, isomorphisms 7 for all v € T'y. Note that if v € ker(f), then H,(u) = u(1 + f,(u)) for some
fv € Ex(uw)W(k)[[u]]. For such ~y, denote by 1., the unique k-vector space endomorphism of any object M of
(bl—modR such that for x € M; we have

o1, =1+ (Zf;ll %fy(u)i)N on the image of ¢1,

o and 1, (u'¢1(2)) = u'(1 + f,(u))"1,(¢1(2)),
where N is as in Lemma 5.1.2. (See §5.4, where we denoted 1, by 1y .) Let R be a subset of ker(f) such
that ker(0) is the smallest normal subgroup of T'y containing R.
Corollary 5.6.2. With the above notation, to give descent data on G for T is equivalent to giving additive
bijections ¥j : M (G) — M (9) for j € {1,...,d} so that ¥; takes M (9)1 into M(G)1 and:

o fzj(wuim) = 7;(w)(uH,, (u))“@A(m) form € M (G), w € k,

e Yj0p1 =1+t (u)N)op1o7; on Mz (9)1,

o ify =7 € R, where iy € {1,...,d}, ny € Z, and iy # ij41 for 1 < j < m, and if we

define 5y =7t o--- o™, then 5 = 1,.

Proof. Straightforward from Corollary 5.5.7 and Lemma 5.4.8. O

We define a category ¢1DDF,/(F/)F of Breuil modules with descent data for T' in the obvious way. This

category is additive but not necessarily abelian. We call a complex in ¢ DD, ezxact if the under-

(F)F

lying complex in ¢ —modR is exact. In the natural way, we extend M, to a functor from FDp//(prr to
DDy prye-

5.7. More examples. In this section we will determine the possible descent data on a rank one Breuil
module. Let I' be as in section §5.6.

Lemma 5.7.1. Suppose that G is a finite flat R-group scheme of order ¢ and that its generic fibre admits
descent data over (F')'. Then there is unique descent data on G over (F')' extending any choice of descent
data on G x F' over (F")''. If M(G) 2 M(r,a) and if v € T satisfies y(r)/m = 1 mod (), then

(e) = Hy(w) 7/ e,

where H.(u)~"/(=1) denotes the unique (£ — 1)t" root of H,(u)~"" in k[u]/u®* with constant term 1.
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We remark that since Aut(M(r, a)) = (Z/€Z)* by consideration of the geometric generic fibre, the choice
of isomorphism M (G) = M(r, a) does not matter.

Proof. We first claim two such finite flat group schemes § and §’ have isomorphic generic fibres if and only
if there is a non-zero morphism § — G’ or § — §. By Lemma 5.2.1 we see that if G is a finite flat F’-
group scheme then the lattice of models for G over R is well ordered. Suppose all the integral models are
G; < ... < G,. For v € T, any isomorphism [y] : G = 7G must then induce isomorphisms [y] : §; = 7G; for
all i = 1,...,n. The first part of the lemma follows.

Let M = M(r,a), so M is a free k[u]/u®“-module of rank 1 with the usual basis element e. The submodule
M, is spanned by u"e and ¢1(u"e) = ae. From Theorem 5.2.1, we have N o ¢; = 0, which implies that

yop1=¢107.

For v € I'1, H,(0) = 1 mod 4. Clearly
7 :cu'e — cu'H,(u)7(e)

is a bijection if and only if J(e) = & e for some unit &, € (k[u]/u)*. Evaluating 5 o ¢j = ¢} o7 on the
element u"e € My, we get

& = H’y(“)réfg
in k[u]/u’. Thus,

gry — €,YH,;TZ/(£71)

for some unit e, € F.

Since Breuil module descent data always induces a k-linear action of the inertia group on the k-vector
space M /uM and in this case dimy M /uM = 1, the action of the element v of ¢-power order on M /uM
must be trivial. Thus €, = 1. O

6. SOME LOCAL FIELDS.

In order to apply the methods of §5, we need some more explicit information about the fields F” introduced
in §4. In this section we will collect this essentially elementary information. In each case we will give an
explicit description of the Galois group Gal(F’/Qgs). This is needed to carry out the delicate Breuil module
calculations in subsequent sections. We will also specify a uniformiser = of F’ and partially calculate the
following polynomials and power series (depending on our choice of 7).

e G(u) € W(kp/)[u] a polynomial of degree at most e(F’/Qs) — 1 such that = has minimal polynomial
uF'/Q3) — 3G(u) over Qs.

e ¢r = —G(u)? mod (3,u?(F'/Qs)),

e For v € Gal(F’/Qj3), the unique polynomial H,(u) € W (kp:)[u] of degree at most e(F’/Qs) —1 such
that (m)/m = Hy(m).

o In some cases power series ¢, and f, ./ as in §5.6.

6.1. The case of F]. Recall that 7; corresponds to the order 3 homomorphism
Z; — GL2(Qs)

is determined by
-1 — 1
4 — <7
where det ¢ = 1 and ¢® = 1 but ¢ # 1. Recall also that F| = F} is any totally ramified cubic Galois extension
of Q3. We may take F| = I} = Qga[n], where 7 is a root of X3 — 3X? + 3. One may check that the other
roots of X3 —3X? + 3 are 72 — 2m and 3 + 7 — 72, so Gal(F{/Q3) is generated by one element 3, which
sends 7 to 72 — 27 and satisfies v§ = 1. Also, 7 is a uniformiser for FY, so
o G(u) =u?—1,
o ¢, =1—ubmod (3,u?),
o Hy (u)=u—2.
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6.2. The case of F’ ;. Recall that 7_; corresponds to the order 3 homomorphism

Zs[vV-1]* — GL2(Qy)
determined by

v-1 — 1
4 — 1
14+3v-1 — (,

where det ¢ = 1 and ¢ = 1 but ¢ # 1. Recall also that F” ;/Qs(y/—1) is the unique cubic extension such that
F’,/Qs is Galois but not abelian and that F_; is any cubic subfield. We may take F_; = Q3(7w) and F’ | =
F_1(v/—1), where 7 is a root of X3 —3X?2+6. The other roots of X3 —3X2+6 are (v/—172—7+3(1—/—1))/2
and (—y/—172 — 7 +3(1++/—1))/2. Thus, Gal(F”,/Q3) is generated by two elements v, and 73 defined by
Y2(m) = m,

(/D) = VT,

13(m) = (VT2 — 7+ 3(1 — V=T)) /2

and y3(v/—1) = v/—1.

We have 73 = 73 = 1 and Y273 = 7372, and 7 is a uniformiser for £’ ;. Thus

o G(u) =u® -2,

o ¢, =—1—ubmod (3,u%),

® H’Y'z(u) =1,

o H(u)=((vV-1-1Du*+ 3 —vV-1)u—2)/4

6.3. The case of Fj. Recall that 73 is the unique 3-type such that 73 corresponds to the order 6

‘IQs(\/E)
homomorphism
Z5[V3]* — GLa(Qy)
determined by
-1 — -1
4 — 1

1+v3 — ¢,
where det ¢ = 1 and ¢ = 1 but ¢ # 1. Recall also that F} is the degree 12 abelian extension of Qs(v/3) with
norm subgroup in Qz(v/3)* topologically generated by 3, 4 and 1+ 3v/3. We also let 7 denote the unique
element of I 1 /Qs(V3) of order 3 and we let F3 denote the fixed field of some Frobenius lift of order 2.

We claim that Fi = Q3(v/3)(v/—1, , 3) where a is a root of X®—~3X+3 and 3 a root of X2—+/3. To verify
this, set I = Q3(v/3)(vV—1,, ). We must check that F”'/Q3(v/3) is abelian and that Npojqy vz ')
contains 3, 4, and 1+3+/3. To see that F""/Q3(1/3) is abelian, note that if a is one root of X®—3X +3 then the
other roots are (2v/3a2 — (—3v/34++v/—5)a—4v/3)/2v/=5 and (—2v/3a2 — (3v/34++/—5)a+4v/3) /2/—5 (where
for definiteness we choose v/—5 € 1+ 3Z3). Note that Ny, q, (3 (a/B) =3 and N, q, (5 (1 +a) = 54.

Note that Gal(F}/Qs(v/3)) is generated by three commuting elements 7o, 77 and 73 of respective orders
2, 2 and 3. They may be defined by

o YoV/—1=—V—1, 78 = and y2a = a;

e 13V-1= V-1, 9i8=-f and o =«

o y3v/—1=+/—1, 736 = B and 30 = (—2v/30? — (3v/3 + vV=5)a + 4V/3)/2/=5.
Choose an element v € Ir;/q, — Ter1u(v3) Then 72 € (73,73). As yy3y~ 1
of v so that 72 € (77). As 7V/3 = —/3 we see that v8 = +v/—1f, so 72> = 77. We will rename ~ as 7,4 and
suppose it chosen so that 43 = v/—18. Thus, Gal(F}/Qs3) is generated by elements 73, v3 and -4 satisfying

2 _ .3 4

® Y =73=N4 )
Y273 = 7372,1
VaV2 = V2V
and 7473 = 7374-

= 42 we may alter our choice
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The element 7 is the unique element of I F1/Qs(v/3) of order 2 and hence coincides with our previous definition.
The element - is a Frobenius lift of order 2 and so we may take F5 to be its fixed field, i.e. F5 = Qgs(n),
where m = a/( is a uniformiser for F}. (We are not asserting that 72 equals the element denoted 75 in
section 4.) One can check that
y3(m) /7 =1 + 7% mod 7.
Note also that (va,74) projects isomorphically to the quotient of Gal(F4/Qs) by the wild inertia subgroup.
We conclude
G(0) =1,
= —1 mod (3, u),
2(“) =1,
4(“) = _\/jla
,(u) =1+ u? mod (3,u?),
g = fog =0for g,¢" € (v2,71).

> mmmS

6.4. The case of F’ ;. Recall that 7_3 is the unique 3-type such that 7_ corresponds to the order

6 homomorphism

3|IQ3<¢?3>

Z3[V=3]" — GLa(Q;)
determined by
-1 +— -1
4 — 1
1+3v/-3 — 1
1+V=3 — ¢
where det ¢ = 1 and ¢ = 1 but ¢ # 1. Recall also that F’ ; is the degree 12 abelian extension of Qz(y/—3)
with norm subgroup in Q3(y/—3)* topologically generated by —3, 4 and 1 + 3y/—3. We also let 42 denote
the unique element of I', ,q, (/=3 of order 3 and we let F"_3 denote the fixed field of some Frobenius lift of
order 2.

We claim that F’ 5 = Q3(v/—3)(v—1,,38) where « is a root of X3 — 4 and 8 a root of X2 + /—3.
To verify this, set F” = Q3(v/=3)(v/—1,a,3). Then F”/Q3(y/—3) is abelian and so we must check that
Npinjqqy=s)(F")* contains —3, 4, and 1+ 3v/—3. But note that we have the identities Nprqyv=s) (@ —
D/8) = 8, Npwjquy=5)(0) = 4* and Ny, =51~ B) = (1 + V3)°.

Note that Gal(F}/Qz(v/—3)) is generated by three commuting elements 2, 3 and 73 of respective orders
2, 2 and 3. They may be defined by

o 1oV—1= V-1, pf = and yaa = o;

e V=T = V=1, 4 = —f and nda =

e 13V —1=+v—1, 138 =3 and y3a = (-1 — vV=3)ar/2.
Choose an element v € I/ _/q, — IFL3/Q3(¢T3)’ s0 72 € (v3,7v3). As yy3y~
of v so that 42 € (v2). As vv/—3 = —/—3 we see that 73 = +v/—13, so 42 = 72. We will rename 7 as
44 and suppose it chosen so that v43 = /—13. Thus, Gal(F}/Q3) is generated by elements 72, 3 and 4
satisfying

e =1=9=1

® Y273 = 7372,1

® Y4V2 = V2Vy

e and Y473 = Y374-
The element ~3 is the unique element of I F',/Qs(v=3) Of order 2 and hence coincides with our previous

1= 42, we may alter our choice

definition. The element 7- is a Frobenius lift of order 2 and so we may take F_3 to be its fixed field, i.e.
F_3 = Qs(m), where m = o/ is a uniformiser for F’ ;. (We are not asserting that v2 equals the element
denoted 73 in section 4.) One can check that

y3(m) /7 =1+ 7% mod 7.
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Note also that {y2,v4) lifts tame inertia.
We conclude

G(0) = -1,

cr =1 mod (3,u),

Hy,(u) =

H,,(u) = *\/j

H,, (u) =1+ u? mod(3 u?),
tg = fg.g =0 for g,g" € (72,74)-

6.5. The case of F/. Here ¢ € Z/3Z and we will let 7 denote the unique lifting of ¢ to Z with 0 <7 < 3.
Recall that 7/ is the unique extended 3-type whose restrictions to GQg( V=3) correspond to the homomorphism

Qs(vV=3)" — GL2(Qy)

determined by

V3 — (¢
-1 — -1
4 +—— 1
14+3V=-3 +— ¢
1+v-3 — ¢,

where det ¢ = 1 and (3 = 1 but ¢ # 1. Recall also that F! is the degree 12 abelian extension of Qz(y/—3)
with norms the subgroup of Qs(v/—3)* topologically generated by —3, 4, 1 + 9v/—3 and 1 + (1 — 37)v/—3.
We let 2, 73 and 73 denote the elements of Gal(F!/Q3) which correspond respectively to v/—3, 1 — 3v/—=3
and —1.

We claim that F! = Q3(v/-3)(v/—1,«, ) where « is a root of X3 — 3(1 + 37) and 3 a root of X2 +
v/—3. To verify this, set F” = Q3(v/—3)(v/—1,q, 3), so F”/Q3(/—3) is abelian and we must check that
N qy(v=3)(F")* contains —3, 4, 1+ 9v/—3, and 1 + (1 — 37)v/—3. But note that Ny, q, /=3 (a/B) =

N 1qys(v=s (B(V=3=a)/a) = (1+vV=3+31)/(1+31)* =1+ (1 — 37)v/~3 mod 9.
Note that 77 is an element of I F//Qs(v=3) Of order 2, 72 # 72 but also has order 2, and 73 is an element
of I'r/q,(y=3) of order 3. Thus,
e 13V-1= V-1 7if=-f and o =«
o vo/—1=—y/—1and ya =
e 13v/~1=v~Tand 733 =f.
Moreover y/—3 is a norm from Qz(v/—3)(a, 3), because /3 has norm /—3(1 + 37)?, so
* 12(8) =6
The determination of y3(c) is more delicate. Let § be a root of X3 — (1+3y/=3), so § = 1+ +/—3u where
pis a root of Y3 —/=3Y? — Y + 1. Thus Q3(v/—3)(8)/Q3(1/—3) is unramified and

Frobs(8)/5 = (14 v 35%)/(1 + V) = (~1 + v_3)/2 mod 3.
The norms from Q3(v/—3)(6)* to Qz(v/—3)* are generated by Z3[v/—3]* and 3y/—3. The norms from

Qs(v—-3)(a)* to Q3(v/—3)* are generated by 1+ 9Z3[v/—3], 1 + (1 — 3i)v/—3, 4, —1 and +/—3. The norms
from Qs(v/—3)(cr,d)* to Q3(v/—3)* are generated by 1 + 9Z3[v/—3], 1 + (1 — 3i1)v/—3, 4, —1 and 3v/-3.

Thus
(73, Frobz) €  Gal(Qs(v=3)(a)/Qs(v=3)) x Gal(Q3(v/~3)(9)/Qs(v~3))
=~ Gal(Qs(V-3)(a,0)/Qs(v~-3))
corresponds to v/—3(1—3v/—3) € Q3(v/—3)*. As da has norm to Q3(1/—3) the product of (v/=3(1—3y/—3))?
and —(1+37)(143v/=3)/(1—3v/—3)?, we conclude that (s, Frobs) fixes da. Thus v3(a)/a = 6/ Frobs(8) =
(=1 —+/=3)/2. In other words
o y3(a) = (=1 —+/=3)a/2.
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Choose an element v € Ip//q, — Ipr/q,(y=3)- Then v? € (v3,93). As yy37! = 42 we may alter our

choice of 7 so that 42 € (73). As yv/—3 = —/=3 we see that 73 = +/—13 and so 42 = ;. We will rename
~ as 74 and suppose it chosen so that v40 = v/—18. Thus, Gal(F]/Qs3) is generated by elements 72, v3 and
4 satisfying

e =v=7r=1,
® Y27y3 = 73’72,1
® ViY2 =V2Vy

e and Y473 = ’)/32)’74
The element ~y, is a Frobenius lift and it has fixed field F; = Qs(7), where 7 = o/ is a uniformiser for F.
One can check that
v (m)/m = —(1F (1+30)*x%)/2.
We conclude
G(u) = —(1+ 37)4,
cr = 1 mod (3,u35),
HW (U) =1,
() = —V/T,
Hﬁl(u) =1 F u® mod 3,
t%ﬂ(u) = —1 Fu® mod (3,u'?),
tg = fg,g =0 for g,9" € (2,7),
f,\/gil,’ygil(u), f,yg)ilﬁg;l (u) = 0 mod (37 u12).

7. PROOF OF THEOREM 4.4.1.

In this section we will keep the notation of §4.4 and either §6.1 or §6.2 (depending if we are working with
81 or 8_1). We will set 6 = £1 in the case of 811. We will write F' for Fy; and F’ for F/ ;. If G (resp. M) is
a finite flat O p-group scheme (resp. Breuil module over Op) we will write §’ (resp. M) for the unramified
base change to Opr.

7.1. Rank one calculations. We recall from Lemma 5.2.1 that the only Op-models for (Z/3Z),r are
§(3,9) = (Z/3Z),0, and 5(1,6), and the only Op-models for (u3),/p are G(0,1) = (u3)/0, and §(2,1). In
each case, by Lemma 5.7.1, the base change to O admits unique descent data over Qs compatible with the
canonical descent data on the generic fibre of Z/3Z (resp. u3) over Q3. We will refer to this descent data
as the standard descent data on these finite flat group schemes.

7.2. Rank two calculations.

Lemma 7.2.1. The group of extensions of M(2,1) by M(1,8) over O is parametrised by ¢ € Fs. The
Breuil module M(1,6;2,1;¢) corresponding to c is free of rank two over Fa[u]/u® with a basis {e1,e,} such
that

o My = (uey,u’e, + ce1),

o ¢1(uey) = der, ¢1(u’e, +cer) = e,

e N(e1) =0, N(e,) = cubey.
The standard descent data on M(2,1)" and M(1, )" extends uniquely to descent data on M(1,6;2,1;¢)’. The
corresponding representations Gs — GLao(F3) are of the form

w ok
0 1
and are peu ramifié. Any such peu-ramifié extension arises for a suitable choice of c.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. Next, we compute N

on M = M(1,0;2,1;¢). (We will not in fact need the result of this computation of N, but the calculation

is given here as a representative sample of calculations needed later in more complicated settings.) By the
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last part of Lemma 5.2.1, N(e;) = 0 and N(e,) = ge; for some g € Fz[u]/u’ divisible by u. In Fs[u]/u®
we compute

Cr = _d)(Gﬂ'(u)) = _(u2 - 5)3 = _UG + 67
so

Using the defining properties of N, we compute in F3[u]/u®
N(e,) = No¢i(ue, +cep)
= ¢oN(u’e, + cer)
= ¢(_U29w + UQN(ew))

= ﬂ(fusew +u°N(ey,))
= ?(—ug(u%w + cey) + cu’e; +u°Ney,))

1 3
= =(cu’e
o (cuer)
since u’N(e,,) € u® M = u? - M C u*M; and the Frobenius-semilinear ¢; must kill u3 M;. Thus,

coub 6
€] = Ccu eq.

N(e,) = @(cu2 uep) = cciﬁ%(uel) =

To see existence and uniqueness of the descent data on M(1, d; 2, 1; ¢)’ compatible with the standard descent
data on M(1,6)" and M(2,1)" we will work on the side of finite flat group schemes. Because §(1,4;2,1;¢)’ is
the unique extension of §(1,¢)" by §(2, 1)’ with generic fibre §(1,6;2,1;¢)’ x F’ (by Lemma 4.1.2), uniqueness
reduces to the corresponding questions on the generic fibre, which follows from the injectivity of

HY(G3,w) — H' (Gpr,w).

For existence it suffices to exhibit a continuous representation Gz — GL2(F3) of the form

(5 1)

which is peu ramifié but not split, with restriction to G corresponding to a local-local finite flat O p-group
scheme §. By Theorem 5.3.2 of [Man] we can find an elliptic curve F/q, such that E[3] furnishes the desired
example. This also proves the final two assertions of the lemma. |

Lemma 7.2.2. Suppose that ﬁl is a totally ramified abelian cubic extension of Qs and suppose that G is
a local-local finite flat O -group scheme killed by 3 such that § x Fy is an extension of Z/3Z by ps. Then

g X0, Fl =G Xq, f‘l for some finite flat Qs-group scheme G.

Proof. As in the proof of the last lemma we see that M, (G) = M(1,1;2,1;¢) for some ¢ € F3. As the only
action of Gal(F}/Qg3) on a one dimensional F3-vector space is trivial, we see that each such ¢ gives a class
in H' (G, .w) which is invariant by Gal(F1/Qs). But

H' (Gy,w) = H' (G, w) /),
and so the lemma follows. O

Lemma 7.2.3. The group of extensions of M(1,8) by M(2,1) over Op is isomorphic to the group of linear
polynomials ¢ + c'u in Fslu]. The Breuil module M(2,1;1,6; ¢+ c'u) corresponding to ¢ + c'u is free of rank
two over Fs[u]/u® with a basis {e,, e} such that
e M(2,1;1,8; ¢+ cu)y = (uey,uer + (c+ cu)ey),
o ¢1(u’e,) =e,, ¢1(ue; + (c+ cu)e,) = dey,
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Each M(2,1;1,5;c+ cdu) admits unique descent data compatible with the standard descent data on M(1,6)’
and M(2,1)". As ¢, vary over F3 the corresponding descent to Qg of the generic fibre of G- (M(2,1;1,8;c+
du)’) runs over all 9 extensions of us by Z/3Z. The corresponding representation of Gs is peu ramifié if
and only if ¢ = 0.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The uniqueness of
the descent data on M(2,1;1,6; ¢ + c'u)’ follows from Lemma 4.1.2 and the injectivity of H(G3,w™!) —
H'(Gpr,w™) as in the proof of Lemma 7.2.1. Note that Frobenius vanishes on the Dieudonné module of
G(2,1;1,8; ¢+ c'u) if and only if ¢ = 0. Thus the lemma will follow if for each 3-torsion extension G of us3
by Z/3Z over Q3 which is trés ramifié, we can find a finite flat O p-group scheme § such that

e the generic fibre of G is isomorphic to G x F,

e the closed fibre of G is local-local

e and Frobenius is not identically zero on D(G).

The splitting field of G contains a cube root of 3v for some v = 1 mod 3, where the three choices of v mod 9
correspond to the three choices of trés ramifié p. The calculations in §5.3 of [Man] give explicit additive
reduction elliptic curves F and E’ over Q3 with E[3] ~ E’[3] ~ G, where E acquires good supersingular
reduction over the non-Galois cubic ramified extension

Qs[X]/(X° — 3X +20),

with 2 = 1+ 3v, and E’ acquires good supersingular reduction over the abelian cubic ramified extension of
Q3 with norm group generated by 3v mod (Q;)3 The appropriate § are provided by the 3-torsion on the
Néron models of E or E' over Op. O

Corollary 7.2.4. Suppose that G is a finite flat Op-group scheme and that {[g]} is descent data on §' =
G x Op such that (§,{[g]})qs(Qs) corresponds to p. Then

ML (G) 2 M(2,1;1,0; ¢+ c'u)
for some ¢, € F3 with ¢ # 0.

Proof. From the connected-étale exact sequence and its dual we see that § x F3g must be local-local. The
corollary now follows from Lemma 7.2.3 and the discussion of §7.1. ]

Lemma 7.2.5. The group of extensions of M(1,5) by M(1,0) over Op is isomorphic to the group of linear
polynomials b+ b'u in Fslu]. The Breuil module M(1,8;1,08;b+b'u) corresponding to b+ b'u is free rank two
over Fs[u] /u® with a basis {e,e'} such that

o M(1,0;1,6;b4+bu); = (ue,ue’ + (b+ bu)e),

o ¢1(ue) = de, ¢p1(ue’ + (b+b'u)e) = de’,
This extension splits over an unramified extension if and only if b = 0. If F'/Qg is non-abelian, then any
descent data on M(1,—1;1,—1;b+ b'u)’ compatible with the standard descent data on M(1,—1)" satisfies

—

Foe = e,72¢ =€, 75 (e) = Hﬁl(u)?’e, vE(e) = Hﬁl(u)ge' +hgi(u)e
where
oyt
ho#1(0) = bHﬁl(O).

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The computation of
which of these split over an unramified extension follows from Lemma 5.2.2 and Corollary 5.4.2.

Now suppose that F’/Qs is non-abelian. By Lemma 5.7.1, the only issue is to compute h.,(0). Since
(0) = 1 mod 3, by evaluating the congruence

30 ¢) = @) oy3 mod uM(1, —1;1, —1;b + b'u)’
on ue’ + (b+ b'u)e and comparing constant terms of the coefficients of e on both sides we get

i’m(w)?) |U:O = h’Ya (0)3 - bH’lYg (0)3 = h’YS (0)3 + bH’le (0)

H

3

u

h’Y3 (O> = h73 (0)3 + b (
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in Fy, where we have used the equality H,(0)* = —1 mod 3 (see §6.2).

In other words h.,(0) is a root of T% — T + bH!_(0) = 0. Since H/_(0)> = —1, we must have h.,(0) =
—bH!_(0) + a for some a € F3. Since v2(H,(u)) = H,_ys—l(u) and v2(hq, (u)) = h,ygl(u) are forced by the
identity v2(7) = 7, we see that h- (0) = —bH;,1 (0) 4+ a for the same a € F3. The identity

3
P ovstod = ¢y mod uM(1,—1;1,—1;b+ b'u)
then implies h,(0) + - (0) =0, so a =0. O

Lemma 7.2.6. The group of extensions of M(2,1) by M(2,1) over O is isomorphic to the group of quadratic
polynomials vanishing at 0, (b+ b'u)u, in Fs[u]. The Breuil module M(2,1;2,1; (b+ b'u)u) corresponding to
(b+ b'u)u is free rank two over Fslu]/u® with a basis {e,e'} such that

o M(2,1;2,1; (b + bu)u); = (u’e,u?e’ + (b+ b'u)ue),

o ¢1(u’e) =e, ¢1(u?e’ + (b+ b'u)ue) = €,
This extension splits over an unramified extension if and only if b = 0. If F'/Qs is non-abelian, then any
descent data on M(2,1;2,1; (b+ b'u)u) compatible with the standard descent data on M(2,1)" satisfies

Ta(e) = Hoy(u)’e, Fa(e’) = Hog(u)°€ + hoy(u)e
where
oy (0) = —bH!, (0).
The sign in h.,(0) = —bH’_(0) will be very important in §7.4. The proof of this lemma is essentially the
same as that of Lemma 7.2.5, but we repeat it anyway.

Proof. The classification of extensions of Breuil modules follows from Lemma 5.2.2. The computation of
which of these split over an unramified extension follows from Lemma 5.2.2 and Corollary 5.4.2.

Now suppose that F’/Qs is non-abelian. By Lemma 5.7.1, the only issue is to compute h.,(0). Since
H,,(0) =1 mod 3, by evaluating the congruence

y3 0 ¢} = ¢} 0oF3 mod uM(2,1;2,1; (b + bu)u)
on ue’ + (b+ b'u)e and comparing constant terms of the coefficients of e on both sides we get
1—H,(u))®
) o (00 = DL (0 = oy 00 4 02, 0

h’Y3 (O) = h73 (0)3 +b ( U
in Fy, where we have used the equality H/_(0)* = —1 (see §6.2).

In other words h(0) is a root of T% — T + bH!_(0) = 0. Since H! (0)> = —1, we must have h,(0) =
—bH! (0) + a for some a € F3. Since 72(H,,(u)) = H,YB—I(U> and ya(hy, (u)) = hv3—1(u) are forced by the

identity y2(m) = 7 we see that o (0) = fbH;_l (0) + a for the same a € F3. The identity
3

P05t 0@y = ¢h mod uM(2,1;2,1;b + b'u)
then implies h,(0) + oo (0) =0, so a =0. O

7.3. Rank three calculations.
Lemma 7.3.1. Suppose that G is a finite flat group scheme over Op which is killed by 3. Suppose that there
is a filtration by closed finite flat subgroupschemes G4 C Go C G such that G = G(1,9), G2/91 = G(2,1)
and /92 =2 G(1,6). Suppose finally that So X, F' descends to Qs in such a way that it is a trés ramifié
extension of us by Z/3Z. Then

§/91 = 5(2,1) ® §(1,0)

compatibly with the extension class structure.

Proof. Let M = M (9) and N = M;(5/G1). Using Lemmas 7.2.1 and 7.2.3 we see that we can write
o M= (Fs[u]/u’)e; & (Fs[u]/u’)e, & (Fs[u]/u’)eq,
o My = (uei,u’e, + bej,ue| + (c+ c'u)e, + fer)
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for b, c,¢’ € F3 with ¢ # 0 and with f € Fz[u]/u®. It suffices to show b = 0. Since we must have u M C My,
we see that
(c+ cu)(u’e, + ber) — u?(ue)| + (c + du)e, + fe1) +ude) = (be +bc'u — u?fle; € M, .

The Breuil module N is spanned as a F3[u]/u’-module by e; and e,, so by Lemma 7.2.1 u must divide
be + bc'u —u?f. As ¢ # 0 we must have b = 0, as desired. O

Combining this with Lemma 7.2.1 and the injectivity of H'(G3,w) — H'(Gp/,w) we get the following
corollary, which is also the first part of Theorem 4.7.3.
Corollary 7.3.2. The natural map

0o : Extéil(ﬁ,ﬁ) — HY(G3,w)

1S zero.

7.4. Conclusion of proof of Theorem 4.4.1. Consider first the case of F}. We still have to explain why
0, : H3 (Gs,ad’ p) — H'(I3,F3)

is zero. Suppose z € Hg (G, ad” %) does not map to zero in H' (I3, F3).

By our hypothesis on = we may choose a totally ramified abelian cubic extension 131 /Qgs such that x
restricts to zero under the natural map H'(Gs,ad’p) — Hl(Gﬁ17F3). Then the image of = under the
natural map H'(G3,ad’5) — Hl(Gﬁl,ﬁ ® w) is the image of some = € Hl(Gﬁl,w) under the natural map
Hl(Gﬁl,w) — Hl(Gﬁl,ﬁ ® w). The element ¥ parametrises a finite flat Fy-group scheme H which is an
extension of uz by Z/3Z and which is a subquotient of the restriction to G 7, of the extension of p by itself
paramitrised by z. It follows that H has a finite flat model H /05 (see Lemma 4.1.1) and the special fibre of

H must be local-local (if T = 0 then the extension of p by itself parametrised by = splits over Fy and this is
clear, while if T # 0 we would otherwise get a contradiction from the connected-étale sequence). By Lemma
7.2.2, we may therefore lift 7 to H'(G3,w). Using the commutative diagram

Hl(Gg,W) — Hl(G3,ﬁ®w)
res | | res
Hl(GE,w) — Hl(Gﬁl,ﬁ@@w)

and noting that the right hand vertical map is injective we conclude that
S Hél(Gg,adOﬁ) C H' (G3,p®w)

is in the image of H'(G3,w) — H'(G3,p ® w), a contradiction with the hypothesis that even the image of
x in H'(I3,F3) is non-zero.
Now consider the case F’ = F’; which is nonabelian over Qs. We must show that

0, : Extg_ (p,p) — H'(I3,Fs)

is zero.
An element = € Ex‘céf1 (p, p) gives rise to a finite flat Op_,-group scheme § killed by 3 and descent data
{lg]} for F1/Q3 on §' = G xo,, F’y, such that (§,{[g]})q, corresponds to the extension of p by itself
—1

classified by z. Let N denote the Breuil module for G and let N’ = N ® Fg. According to Lemmas 7.2.1,
7.2.3,7.2.5, 7.2.6 and 7.3.1 we see that we can write

N = (Fs[ul/u)e, @ (F[u]/u’)er @ (Fs[ul/u’)e, @ (F3[u]/u’)e]
with
(7.4.1) Ni = (u’e,,ue; + (¢ + du)ey,,u’el, + (au + d'u?)e,, ue| + (c + cu)e/, + (b + b'u)e; + he,,)

where h € F3[u]/u® is some polynomial and where a,a’,b,b',c,¢’ € F3 with ¢ # 0 (as p is tres ramifié). By
Lemma 7.2.6 what we must show is that a = 0.
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Note that H._(0) # 0 in Fg by §6.2. By Lemmas 5.7.1 and 7.2.1, the action 73 is determined by
’%(ew) = H’YS (u)Gewa ’%(el) = H’)’s (u)gel + Gvs (u)e:w ’%(e;) = H’Ya (U)Ge:u + h737w(u)ewv

’%(e;) = H’Ys (u)3el1 + Grs (u)eiu + h’VaJel + G’Ys (u)ew,

where g, (u), G, (u) € Fo[u]/u® and h.,, and h., 1 are as in Lemmas 7.2.6 and 7.2.5 respectively.
Due to the requirement 43(N}) € N7, we must have

33 (uel + (c+ cu)el, + (b+ b'u)e; + h(u)e,) € N7,
and this element is obviously equal to

(UH,Y3)(H,?;3611 + 9’73ec/u + h’Ya»lel + G’YSew) + (C—l— CIUH’Y3)(H6 el + h737wew)+

Y3 W

—|—(b + bIUHva)(H$3e1 + g'ygew) + h(uH’Ya)Hggew'

We now try to express this as a linear combination of the generators of N} listed in (7.4.1), while working
modulo (u3N',u’e,) C N}. Using that H,,(0) = 1 in Fg and h(uH,;) = h(u) mod u?, we arrive at the
expression

c((1 = Hyy)/u) + grs

H,, (ue| + (c+ du)el, + (b+bu)e, + he,) + < ) (u?e!, + (au + a'u?)e,)

u
1 - H’Ys /
+ | Hyyhyy 1 + b — (uer + (c+ cu)ey) + Fy, (u)ey,
where
F’Ys (u) = UH’YsG’Ys + (c + C/UH’Ys)h’Ys,w + (b + bIUH’Ys)g’Ys + h(u)(l - H’Ys)

—(a+d'u)(c(l = Hy,)/u+gy3) = (¢ + Cu) (Hyshyy 1+ b((1 = Hyy) /u))

in Folu]/u’. In particular, ¢(1 — H,,(u))/u + g,, = O0mod u and F,,(u) = 0mod u?. The condition
c((1—H,y,)/u) + gy, = 0 mod u can be reformulated as

s (0)= CH’/yg (0).

Since F, (u) = 0 mod u?, we have to have F,,(0) = 0. But a direct calculation using g,,(0) = cH/_(0)
and the definition of F,, gives

Fy,(0) = 0+ hyy w(0) + bg45(0) + 0 = 0 = (hyy 1 (0) = bHZ,(0)) = €(Pas,0(0) = hyy 1(0) — DH(0)),
so the non-vanishing of c¢ forces
hyaw(0) = hag,1(0) = bH, (0).
Lemmas 7.2.6 and 7.2.5 give us the values
g o (0) = —aH, (0), oy 1(0) = —bH], (0).

Thus (—a + b)H!,(0) = bH! (0), and so a = 0. This completes the proof of Theorem 4.7.3 and hence of
Theorem 4.4.1.

8. PROOF OF THEOREM 4.5.1.

In this section we will keep the notation of §4.5 and either §6.3 or §6.4 (depending if we are working with
83 or §_3). We will set 6 = £1 in the case of S+3 (so that ¢, = § mod (3,u). Note the signs. We will write
F for Fy3, F' for Fi 5 and J for Jy5. If § (resp. M) is a finite flat O p-group scheme (resp. Breuil module
over Or) we will write §' (resp. M) for the base change to Op.
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8.1. Rank one calculations. We remark that with our choice of polynomials H,(u) in §6.3 and §6.4, any

object M in nglDDF,/Q3 has an action of (y2,74) (via 72 and 74, the action of 2 being Frobs-semilinear).

Also, since 3 and 72 commute, H,, = 1 and H%ﬂ(u) € Z3[u], we see that 3, must commute with 75 by
Corollary 5.6.2.

We recall from Lemma 5.2.1 that the only models for (Z/3Z) , over O are §(r, ) for r = 0,2,4,6,8,10, 12
with §(12,0) = (Z/3Z),0,., and the only models for (u3),r over Op are G(r,1) for r = 0,2,4,6,8,10,12
with G(0,1) = (u3),0,. In each case, the base change to Or/ admits unique descent data over Qs such
that descent of the generic fibre to Qa is Z/3Z (resp. p3). (See Lemma 5.7.1.) We will write G;.; (resp.
G;..,) for the corresponding pair (§(r,8) x O+, {[g]}) (vesp. (5(r,1) x Op,{[g]})). We will also let M.,
(resp. M'TW) denote the corresponding object of ¢1 DD . In particular, for x = 1 or w, the underlying

—

F'/Qs
Fyo[u]/u?®-module has the form (Fg[u]/u®¢)e, with e, the standard generator, though we write e rather
than e, if x is understood.

We have the following useful lemma.

Lemma 8.1.1. Let 0 <r < e =12 be an even integer. The descent data on M;’l 1s determined by

’?\2(6) =e, ’%(e) = _(_\/jl)T/Ze’ ,Yétl(e) — vail(u)73r/2e’

and the descent data on M;W is determined by

Ble)=e. File) = (—v 1), 73 () = H.ss(u) e,
In particular, v = —1 on D(S'.,) if and only if v2 = —1 on D(S’. ) if and only if r = 2, 6 or 10.
4 7,1 4 rw

Proof. Certainly 42(e) = e. We have already seen in Lemma 5.7.1 that descent data must exist in each case,
so our task is to compute the unique units &,,,&,,+1 € (Fo[u]/u®%)* so that

%(e) = 57487 73i1(e) = £—y\3ile

corresponds to generic fiber descent data for the mod 3 cyclotomic or trivial character on G3. The case of
y3%! follows from Lemma 5.7.1.
;From the condition

Yao ¢y (u'e) = ¢) oTa(ue)
we get &, (u) = (—v/~1)", so
6 (1) = 4~V

The non-zero morphisms M, ; — M;2 ; are given by e — +q3(12-7)/2

M,.., are given by e — Fu®/2e. Thus, it suffices to check that Jie = e on M}, ; and Y4e = e on Mg, ,. In
both cases we have shown that J3e = +e and so we only need to check that 4 = 1 on D(G151) and D(S ,)-
That is, we have to show that the Op/-group scheme maps Z/3Z — 7(Z/3Z) and pz — "pus arising from
the canonical generic fibre descent data induce the identity on the special fibres. This is easy. O

e and the non-zero morphisms Mg, —

Lemma 8.1.2. Let M be an object of ¢1—mod , corresponding to a finite flat group scheme G and let {[g]}
be descent data on §' = G x Op relative to Qs. Assume that (S, {g})q, can be filtered so that each graded

piece is isomorphic to Z/3Z or uz and so that the corresponding filtration of (M, {g}) in ¢1DDF,/Q3 has

successive quotients of the form M;j,x,- with r; € {2,6,10} and x; € {1,w}. Theny3 =1 on M’ JuM’ and
there exists a basis {e;} of M over Fslu]/u®® so that for all j

® €y € ¢1 (M1)7

e e; is an eigenvector of the Fo-linear map 43 on M,

e e; lies in the part of the filtration of M' which surjects onto Mlm and this surjection sends e; onto

Xi
the standard basis vector e of M;’nxj' over Fgu]/uS.
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Proof. Since v acts linearly on M’ /u M and (v7)? = 1, the action of 73 must be semisimple. The eigenvalues
of v2 are all equal to —1, so necessarily 77 = —1 on M’ /uM'.
We now argue by induction on the number of Jordan-Holder factors in the generic fiber, the case of length

1 being clear. Thus, we can assume we have a short exact sequence in ¢1 DD F Qs

0N ->M —-M,  —0,

so the lemma is known for N’. We just have to find ey € ¢;(M;) mapping onto the standard basis vector
e in M, such that eg is an eigenvector of 7. Since ¢} (M}) — ¢} ((M].)1) is a surjective map of Fo-
vector spaces which is compatible with the semisimple Fg-linear endomorphism 74 on each side, we can find

e}, € ¢} (M}) mapping onto e with e/ an eigenvector of 7y, say J4(e)) = (v/—1)*'e}. Since

PO PN N F1 +1_

Ja072(eh) =F2 073 (€)) = 2 (V1" €p) = V=1 Fa(ep),
the element ey = (1/2)(ef, + J2(ef))) maps to e and is an an eigenvector for 3,. Also, ey € ¢} (M}) is
Fo-invariant and J» commutes with ¢/, so ey € @1 (My). O

8.2. Models for p.
Proposition 8.2.1. There exists a unique object (§',{[g]}) of TDps/q,9 such that (§',{[g]})q, corre-
sponds to p. If we set (M(p)',{g}) = M«(5',{[g]}) then (M(p)’,{g}) is an eatension of My, by M}y, in

¢1DDF,/Q3. Moreover Frobenius is not identically zero on D(S').

Proof. Let (§',{[g]}) be an object of FDp//q, 5 such that (3, {[g]})q, corresponds to p, and set (M', {g}) =
M, (9,{[g]})- As in the discussion following Theorem 5.6.1, we have canonically M' ~ Fg ®p, M for a Breuil
module M over Op, with 45 acting as v ® 1. By Lemma 8.1.1, there is a short exact sequence of Breuil
modules over O

0— M(s,0) > M —M(r,1) =0
with 7, s € {2,6,10} and this is compatible with descent data after base change to Op in the sense that we
obtain an exact sequence

0—-M,, =M =M., —0

compatible with descent data. Because p is tres ramifié, it follows that p|q,, is non-split, so the sequence

0— M(s,0) > M — M(r,1) =0
is non-split.

We first show that we must have (r, s) = (2,10). Since p is self-dual, in order to prove (r,s) = (2,10) we

may use Cartier duality (and Lemma 5.2.1) in order to reduce to the case where r + s < e = 12. We will

first rule out cases with r > s and then the case (r,s) = (2, 6).
By Lemmas 8.1.1 and 8.1.2, we can write

M = (Fa[u]/u®®)e; @ (F3[u]/ut)e/,, My = (u®ej,u"e., + hey)
for some h € F3[u]/u3% so that
o1 (u®er) = dey, ¢1(u"e, + hey) =el,
and
Fa(er) = —(=vV=1)"?e1, Au(el,) = (—V-1)""?¢l,
Recall from Lemma 5.2.2 that the ‘parameter’ h gives an isomorphism of abstract groups

(F3[u]/u®)/{u’t — 6u"t3|t € Fa[u]/u®0} ~ Ext}i)ﬁmodp (M(r, 1), M(s,9)).

It is easy to see that
F4(M7) S M, Faody = ¢y 071 on My
if and only if J4(u"el, + he;) € M) and J4(e,) = ¢} o J4(u"e/, + hey), or equivalently

(V=1)"2h(u) = —(=V=1)*/*h(=V=Tu) mod u'***.
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This says exactly that
(8.2.1) j=2—(r+s)/2mod4

for any j < 12 + s with a non-zero u’ term appearing in h.
If (r,s) = (6,2) this would force h = 0 mod u?, yet {u?t — §ubt3|t € F3[u]/u®®} contains all multiples of
2

u-, so

)

0— M(2,6) =M — M(6,1) =0
is split, a contradiction.
When (r,s) = (10,2) or (r,s) = (2,2) we see that h = h(0) mod u?, yet

u(Fa[u]/u®%) C {u’t — su"t3|t € Fs[u]/u®},
so the choice of e/, may be changed in order to arrange that
heFs
(though making this change of basis of M may destroy the ‘diagonal’ form of 74). Since
0— M(s,0) > M — M(r,1) =0

is non-split, necessarily h # 0, so by rescaling €/, it can be assumed that h = 1. Then Vy(e],) = e; mod uM
(by Theorem 5.1.3) and

(b(ei;) = _(5/Cﬂ)u3(12—7-—s)e1 = _u3(12—7-—s)e1 mod uM.

This forces r + s = 12. In particular, (r,s) = (2,2) is ruled out.
For (r,s) = (10,2), a splitting of the generic fiber p|F is induced by the Breuil module map

M(0,1) = M
defined by
e — ue, +udfe; = uS(u'%), +e1) + (uf — u®)u’e,
where f € Fslu]/u3 satisfies f2 —§f = u® (i.e., f = —0u® — u'®, and a constant ¢ € F3 can even be added

to this if 6 = 1). But p|g,, must be non-split, so this rules out (r,s) = (10,2).

The remaining case with r > s is (r,s) = (6,6). In this case {u’t — du"t?|t € F3[u]/u*} contains all
multiples of 4. But we have j = 0 mod 4 for all j < 12 + s = 18 such that a non-zero 1/ term appears in
h, so again (at the expense of possibly making the J4-action non-diagonal) we may assume

h=c+du
for some ¢, € Fs. Writing Ju(e),) = (vV/—1)el, + h,,(u)er, the commutativity of 74 and ¢} amounts to

hy, = —06h3,, 50 hy,(u) = bv/—6 for some b € F3. The condition Jj(el,) = e/, forces b = 0, so 4 still has

diagonal action. This analysis shows that the map of Fs-vector spaces
EXtéBIDDF,/(23 (Mé,wa j\/[/6,1) - EXt};&lfmodF (M(G, 1)> M(67 6))

has at most a 2-dimensional image. If ¢/ + ¢ = 0, then the Breuil module map
Fog ® M(0,1) — M’
defined by
e — cou'e; +u(ube + (c+ dut)ey),

gives a splitting of the corresponding representation of Gps. Thus the image of
(8'22) EXt(liJlDDF,/QS (M/G,w’ Mé,l) - EXt%‘g[GF/] (17 w)

is at most one dimensional and, because p|g,, is non-split, the pair (¢, ¢’) corresponding to a model of p
satisfies ¢’ 4 dc¢ # 0.
At this point, we treat the cases 6 = +1 separately. Consider first the case 6 = 1. We must have
Ys(er) = Hy,(u) e, Fs(el,) = Hyy(u) ", + hyy(u)er,
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where h.,(u) € Folu]/u3® lies in F3[u]/u®0 because 93 commutes with 7. Evaluating 73 o ¢} = ¢} o
43 mod uM' on uSe/, + (c + c'u*)e; € M) and using our knowledge of H.,(u) mod 3, we arrive at

hag (0) = 8(hyy (0)° + (e + ),
which is impossible for k., (0) € F3 with § = 1 because ¢+ ¢ = ¢+ 0 € F3.
Now let us turn to the case § = —1, still in the case (r,s) = (6,6). In this case Extll;S[Gg](l,w) —
Ex‘c]lg‘3 (¢ p](1;w) s injective and so by (8.2.2) we see that the image of

EXt@FVQS (Mé,uﬂ Mg,l) - EXti?3[G3] (17 w)

is at most one dimensional. Thus to exclude the case (r,s) = (6,6) and 6 = —1, it suffices to show that this
image contains the peu ramifié line (as p is trés ramifié). By Proposition 5.2.1 of [Man], there is an elliptic
curve E;Qa which has supersingular reduction over Qz(v/—1, 3), with P+ 3 anon-split, peu ramifié extension
of 1 by w. The representation pg. 3|ps is non-split (again because H'(G3,w) — H'(Gpr,w) is injective in the
§ = —1 case). Let N’ be the Breuil module corresponding to the 3-torsion on the Néron model of E’ xq, F',
so N’ admits descent data {g’} via the universal property of Néron models. The filtration of p induces a

short exact sequence in ¢1 DD F Qs

0— Mgy — N {G'}) = M, — 0
for some even a,b with 2 < a,b < 10. The Néron model of E' xq, Q3(/—1, 8) has local-local 3-torsion, and
the induced local-local integral models G, and G1 of the diagonal characters w|Q3( J=1.8) and 1|Q3( J=1.8)
must be the unique local-local models (uniqueness follows from Corollary 1.5.1 of [Ra]). Moreover, Corollary
1.5.1 of [Ra] makes it clear that base change to O takes the order 3 group schemes G, and G; to the
integral models that lie in the middle of the well-ordered sets of integral models of w|z and 1|p/. Tt follows
that a = b = 6, so the map

1 1
EXt¢1DDF’/Q3 (MIG)U,M MIG,I) — EXth[G3] (1, CU)

indeed hits the peu ramifié line.
We next exclude the case (r,s) = (2,6). As a first step, we check that there is at most one possibility for
the underlying Breuil module M (ignoring the extension class structure) if (r,s) = (2,6). We can write

M = (F3[u]/u®®)e; @ (F3[u]/u®)el,, M; = (ubey,u’e, + hei)

w?

for some necessarily non-zero h € Fs[u]/u3® with

(;51(11,661) = 561, qﬁl(uze; —+ hel) = e;
and

Yaler) = —v—ler, Fu(e))=—v—le.
The combined conditions 74(M;) € M} and ¢} o074 = 74 0 ¢} on M} are equivalent to

h(u) = —h(—v/—1u) mod u'®.
Since {ubt—u?t3|t € F3[u]/u3} contains ub —u? and all multiples of u°, we may change €, (at the expense
of possibly losing the diagonal form for 7,) so that h = cu? for some ¢ € F3. Since h is necessarily non-zero,
we may rescale to get h = u?, so there is indeed at most one possibility for the underlying Breuil module M
when (r,s) = (2,6).
Again we treat the cases 6 = +1 separately. Consider first the case § = —1. We have seen above that

there is an extension g = (N, {g'}) of M%w by Mg)l in p1DD corresponding to a non-split, peu
ramifié extension of 1 by w. Pulling back € ¢ by a non-zero map

Mj — MG
in ¢1DDF,/Q3 given by e — +u’e, we get an extension €36 of My, by Mg 4 in ¢1 DD

F'/Qs

F/Qs corresponding

to a non-split, peu ramifié extension of 1 by w. The underlying Breuil module of €5 ¢ must be isomorphic to
Fg ®@p, M for our uniquely determined M (with h = u?). By the injectivity of H'(G3,w) — H'(Gp/,w) in
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the § = —1 case, we conclude that Fg ®g, M cannot admit descent data giving rise to a tres ramifié element
in Ext%S[GS](l,w). This rules out the case (r,s) = (2,6) and § = —1.

Now turn to the case (r,s) = (2,6) and § = 1. We will show that with the Breuil module M constructed
above (with i = u?), the Breuil module M' = Fg @, M does not admit descent data relative to F’/Qs
(with 72 = 2 ® 1, without loss of generality). One checks that N(e;) = N(el,) =0, so

w
Nog; =0.
We must have
Ys(e1) = Hoy(u)"er, As(el,) = Hoyy(u) ), + hoy (u)er
for some h.,, € Folu]/u3®. As usual, since J3 and 7> must commute, we have h., € Fs[u]/u3¢. The condition
A3(M}) € M/ is equivalent to

2el +u’e;) e MY,

As(u
which amounts to
By, (u) = H;SB —H;SQ = 0 mod u?,
)
hy, —H2+ H°
Ya(u’e, +u’er) = Hoyy(u) ' (u’e], + u’er) + ( L ;ﬁl B ) HZ ule;.

As N o ¢1 = 0, we have
Az 0 @) = ¢} o3

on M}. Evaluating this identity on u?e/, + u?e; € M; gives

hay — HZ3 + HZ*\"
h73 — H“G/S . 3 V3 V3 7

uA
80 h, is a cube. Thus, h,, = u®g,, for some g,, € Fa[u]/u®.
Since H? =1+ u® mod u'?, we compute

H,Ygg — H,Y;?’ = 45 mod u'?,

B \3
hyy = H~6/3 . ((ﬁ) +u6> mod u”

s (0)= s (0)3 +1
in F3. This is absurd. This rules out all possibilities for (7, s) aside from (r,s) = (2,10). Uniqueness now
follows from Corollary 4.1.5.
;From Theorem 5.4.2 of [Man] and Proposition B.4.2 of [CDT] we see that there is an elliptic curve E/q,
such that E[3](Q3) = 7 and pg 3 has type 743. Let € denote the Néron model of E xq, F' over Op/. By the

Néron property of €9, we see that £[3°°] has descent data over Q3. As in §4.5 we see that J annihilates

the Dieudonné module of £[3°°] x Fg. Thus M(p)" = M, (€[3]) in (;51DDF,/Q3 and it follows that Frobenius

is non-zero on D(9'). O

SO

and

8.3. Completion of proof of Theorem 4.5.1.

Lemma 8.3.1. Let (§',{[g]}) be the unique object of FDpr/q, 9 such that (§',{[g]})q
Set (M(p)',{g}) = M~(9,{lg]})- The natural map of groups

(M) {gh), (), {}) — Exty,pp,, . Mo M),

3

s corresponds to p.

E 1
Xt¢1DDF

'/Q

using pushout by (M(p)'.{g}) — My, and pullback by Mo — (M(p)',{g}), is zero.
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Proof. Let (JT/[/, {g}) represent a class in Ext(lz,lDD ) (M), {g}), M(p)’, {g})) and let (M, {G}) be its
T=———F'/Q3
image in Exté)lDD L (M1, M5 ). By Lemma 5.2.2, M’ = Fg ® M with 7 = 42 ® 1 and
Qs : :

M = (F3[u]/u’®)e, @ (Fslu]/u*t)e], M; = (u’e,,u'’e] + (c + cu)ey),
with ¢, ¢’ € F3. Also,
o1(u’ey) = ey, ¢1(u'le] + (c+ cu)e,) = del,
and
Talew) = —vV—Tey, Falel) = V=lef +hy,(u)es
for some h.,, € Folu]/u3°.
The properties 74(M}) € M} and 74 0 ¢} = ¢} 074 on M) amount to
d=0, hy = —5h?7’4u24,
80 ho, = 0. If ¢ =0 then N o ¢ =0, s0 33 0 ¢} = ¢} 0753 on M]. From this we readily see that (M, {g}) is
split in MF,/QS, as desired.
Now assume ¢ # 0; we will deduce a contradiction. Consider the rank three Breuil module with descent
data

o~ ~/ —~ o~
N, {g}) = (W, {g})/(Mio,1. {9},
where M/, — M(p) — M. Then N has an ordered basis {e., €], e/, } with respect to which
Ny = (u’e,,u'’e] + e, u’el, + he| + (b4 Vu)e,)

for some b, b’ € Fg and h = a + a’'u* + a""u® € Fyg[u]/(u3%) defined modulo {u'’t — §u%t3} (see 8.2.1). Since
our base field F’ has absolute ramification degree 12, Ny contains

ut?el, = u'’(u?e/, + he| + (b + b'u)e,) — h(u'®e) +e,) + (h — u'®(b +b'u))e,.

JFrom the list of generators of Ny, it is not difficult to check that in the above expression for u'?e/, € Ny,
2

u* must divide the coefficient of e,,. Thus a = 0.
We must have N /{e,) = M(p)’. Since a = 0, M(p) has basis {e},e/,} and
M(P)1 = (u'%e],u?el, + (a'u + a"ud)e}).
Since ¢; for M(p) satisfies
61(u16]) = def, (e, + (a'u’ +a"u)e}) = e,
it follows immediately that ¢ = 0 mod uM(p), which (using Theorem 5.1.3) contradicts Proposition 8.2.1. [
Corollary 8.3.2. The natural map
0o : Extg,,(p,p) — H'(G3,w)
18 2€ro.

Theorem 4.7.4, and hence Theorem 4.4.1, now follow from the first case of the following lemma. We
include the second case to simplify the proof.

Lemma 8.3.3. The maps of groups
1 1 1 1
EXtmDDF,/QS (Mo, Mig1) — Extp,ig,(1,1), Eth&lDDF,/QS (M5, My ) — Extg, g, (w,w)
have images inside the line of extension classes that split over an unramified extension of Qs.

Proof. Since
HY(G3,Z/3) — H"(Gp,Z/3)
is injective and induces an isomorphism between the subgroups of unramified classes, it suffices to check that

1 1 1 1
EXt¢1DDF,/Q3 (Mip1, Mg 1) — EX%rmodF(ly 1), EthleDF . (M5, M5 ) — EthSlfmodF (w,w)
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have images consisting of elements split over an unramified extension of F'. By Cartier duality it suffices to
consider only the second map.

Consider a representative (M', {g}) of an element in Ext(lz,1 DD M5, M, ). Lemma 5.2.2 ensures
- : :

/Q3 (
that we can write

M = (Fs[u]/u*)e, @ (F3[u]/u*®)el,, M1 = (u’e,, u’e, + hey)
for some h = ¢+ cu + ¢"v? with ¢, ¢/, ¢’ € F3 and

b1 (u’e,) = e,, ¢1(u’el, +he,)=¢e,.

We have
Ya(ew) = —V—le,, Fa(el,) = _\/__19; + hy, (w)ew
for some h.,, € Fo[u]/u®%, and the condition 74(M}) C M} is equivalent to
h(u) = —h(—v/—1u) mod u?,
so ¢ = ¢ = 0. The Breuil module extension class M over Op (ignoring d_escent data) therefore only depends
on the parameter ¢’ € F3. We then have a splitting F3 ®p, M(2,1) — F3 ®p, M determined by
e— ae, +e€,

where a € Fg satisfies a® = a + ¢’. ]

9. PROOF OF THEOREMS 4.6.1, 4.6.2 AND 4.6.3.

In this section we will keep the notation of §4.6 and §6.5. We will write F for F;, F’ for F} and J for J;.
If G (resp. M) is a finite flat O p-group scheme (resp. Breuil module over Or) we will write §’ (resp. M')
for the base change to Op.

9.1. Rank one calculations. We remark that with our choice of polynomials Hy(u) in §6.5, any object M

in o1 DD FQs has an action of (7a,7v4) via 72 and 74. (The action of 75 is Frobs-semilinear). Since 3 and

72 commute and H_ 41 (u) € Zs3[u] we see that 7, must commute with v (see Corollary 5.6.2).

By Lemma 5.2.1, the only models for (Z/3Z), over O are §(r, 1) forr = 0,2,4,6,8,10, 12 with §(12,1) =
(Z/3Z),0,, and the only models for (u3),p over O are §(r,1) for r = 0,2,4,6,8,10,12 with §(0,1) =
(13)/0,- Lemma 5.7.1 ensures that the base changes to O/ admit unique descent data over Qs such that
descent of the generic fibre to Q3 is Z/3Z (resp. p3). We will write G ; (resp. §;. ) for the corresponding
pair (§(r,1) X0, Op,{[g]}) (resp. (§(r,1) X0, O, {[g]})). We will also let M;.; (resp. M;.,,) denote the
corresponding object of ¢1 DD

—

F'/Qs’
We have the following useful lemmas, for which the proofs are identical to the proofs of Lemmas 8.1.1
and 8.1.2.

Lemma 9.1.1. Let 0 <r < e =12 be an even integer. The descent data on M, 1 is determined by

Bie) = e, Tile) = ~(—V7I) e, 73 (e) = H ()" e

and the descent data on M, is determined by
5ie) = e File) = (—V=I)"%e, 1E(e) = H, () /e,

In particular, v§ = —1 on D(S,1) if and only if v = —1 on D(§,.,) if and only if r =2, 6 or 10.
Lemma 9.1.2. Let M be an object of ¢1—mod . corresponding to a finite flat group scheme G and let {[g]}

be descent data on §' = G xo, Op over Qs. Assume that (S',{g})q, can be filtered so that each graded
piece is isomorphic to Z/3Z or uz and so that the corresponding filtration of (M, {g}) in (;SlDDF,/Q3 has
successiwe quotients of the form M/Tj’xj with rj € {2,6,10} and x; € {1,w}. Theny3 = -1 on M’ JuM and
there exists a basis {e;} of M over Fs[u]/u®% so that for all j
* e € p1(My),
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e e; is an eigenvector of the Fg-linear map Y1 on M,
e e; lies in the part of the filtration of M which surjects onto M;’waj and this surjection sends e; onto
the standard basis vector e of M;’;hXj over Fg[u] /u®S.

9.2. Models for p. Recall that we are assuming that p has the trés ramifié form

w ok
0 1)’
and is not split over F’. We will let (/§1DDF,/Q3 5 denote the full subcategory of ¢1.DD

objects M’ for which the ideal J acts trivially on (M'/uM’) @, Frobs Fo-

Proposition 9.2.1. Suppose that (M, {g}) is an object of ¢1DDF,/Q3 5

F Qs consisting of
such that (M, {g})q, is an exten-
sion of Z/3Z by us. Then we have an exact sequence

(0) — M, — M — M, — (0)

with (r,s) = (2,6), (6,10), (2,10) or (6,6). Moreover we can write M' = M @, Fg with 72 = 1 @ Frobs,
where M has an F3[u]/(u3%)-basis {e1,e],} with e; the standard basis element of M(s,1) and e/, mapping to
the standard basis element of M(r,1). More precisely we have the following exhaustive list of extension class
possibilities, all of which are well-defined. (N denotes the monodromy operator described in Lemma 5.1.2.)

(1) (r,s) = (2,6): The natural map

EXt;leD (M/Q,va%,l) - EXti‘g[Gg](lvw)

F'/Qg,9

is an isomorphism, with elements parameterized by pairs (c,c1) € F% corresponding to

M, = (uley,u’el, + cu’er), ¢1(uler) =eq, ¢1(ue, +cu’e;) =€,
(so N o ¢1 =0) with
'/7\4(91) =V —181, 34(9;) = -V _le:Ju
vil(er) =e1, 15l(e,) = (1 +u'®)(e], £ c1uley).
The pairs with ¢ = 0 are the ones which generically split over F'. In all cases ¢ = 0 mod uM.

(2) (r,s) = (6,10): The natural map
(MIG,(.«J’ j\'/[llo,l) - EXt%?‘g [G3] (1’ w)

is an isomorphism, with elements parameterized by pairs (c,c1) € F3 corresponding to

1
EXtMF//QB,g

M = (u'leq,ule, + cue;), ¢1(u'ler) =e1, ¢1(ule, + cube;) = e
(so N o ¢y =0) with
Juler) = V—ler, Au(e)) = vV—le,
vile) = 1 Fu'®e;, vil(e)) =€, + ciue;.
The pairs with ¢ = 0 are the ones which generically split over F'. In all cases ¢ = 0 mod uM.

These cases are Cartier dual to the (2,6) cases above.
(3) (r,s) =(2,10): The natural map

Extg, pp (M 0y, Mig1) — Extpg gy (1, w)

F'/Qs,9
is an isomorphism, with elements parameterized by pairs (c,c1) € F2 corresponding to
My = (u'%y,u’e, + cuber), ¢1(u'ler) =e1, d1(u’el, +cu’er) = e,
(so N o ¢y =0) with
Ju(er) = vV—Tlei, Au(e)) = —v~le[,
iler) = (1 Fu'®)er, 73 (el) = (1 £ u'¥)(el, + cru'?e).

The pairs with ¢ = 0 are the ones which generically split over F'. In all cases ¢ = 0 mod uM.
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(4) (r,s) =(6,6): The natural map

EXt¢1DDF,/Q ) (MG, MG 1) — Exctip, gy (1, w)

is an isomorphism, with elements parameterized by pairs (c,c’) € F% corresponding to
M, = (ubey,ulel, + (c+ cu)er), ¢1(uley) =er, ¢1(ulel, + (c+ ut)e)) =€,
(it is easily checked that N(e1) =0 and N(el,) = c/u’e;) and
Faler) = —v—Tey, Fu(el) = V-lel,

_ C/u30)e1

il(er) = e1, yil(el) =€, + (e T u'?

In particular, ¢ =0 mod uM if and only if c=0

In the first three cases, the peu ramifié condition on a class in Ext]l_;~3[G3] (1,w) is equivalent to the vanishing
of c1. In the fourth case it is equivalent to the vanishing of c.

Proof. By Lemma 9.1.1 we have an exact sequence
(0) — My — M — M, — (0)
with 7, s € {2,6,10}. As usual
My = (u®er,u"€e, + hey).

In the cases (r,s) = (2,2) and (6, 2) as in the proof of Proposition 8.2.1 we may take h = 0. We will show
that in the case (r, s) = (10, 2) we also have h = 0. Following the proof of Proposition 8.2.1 we may suppose
that h € F3. Without loss of generality we can take h = 1 and look for a contradiction. Again following the
proof of Proposition 8.2.1 and using

M; = (u’e,u'’e, + e;)
we find that ¢e/, = —e; mod uM. Also

—

73%1 er = (1£u"®)e
'y?)ile’ = (1Fxu®)e, +hii(u)e;

for some hii(u) € Folu]/(u3®), which must actually lie in Fa[u]/(u3®) (using, as usual, the fact that 7 and
~3 commute). Thus

—e; = ¢el,
%w—% 72)(e(,)

(7
(Y3 =73 )(e )
(h1(0) — h_1(0))e; mod uM’.

The inverse linear maps ’ygﬂ on M’ /uM’ have matrices

( (1) hﬂ:ll(o) )

with respect to the basis {ey, e/, }, so that h_1(0) = —h1(0). Thus ~1(0) = 1. On the other hand evaluating
3¢} = ¢ A3 mod uM’ on u'’e/, + e; and comparing coefficients of e; gives h1(0) = 0, a contradiction.
Thus if any case (r,2) arlses, the underlying Breuil module must be a split extension

M = (Fa[u]/(u*®))er @ (Fa[u]/(u*®))el,, My = (u? e, u” €,)
p1(u’er) = ey, p1(u"e,) = e,
(so N o ¢y =0), with
Fae1 = ey, Yok, = €,
Jse1 =V —le1, Asel, = (—\/——1)r/29;-
We also have —
Fley = Hoo(u)Per 1Elel, = H,n(u) /%], + hia(u)er
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for some hy; € F3[u]/(u®). Since N o ¢ = 0 we have 7' ¢} = ¢}~72' on M}. Evaluating this on u"e/, and
comparing coefficients of e gives hyq(u) = u3(r_2)hi1(u)3H,Y§d(u)3r. This forces hyi(u) = 0if r # 2. If
r =2 it forces h4i(u) = c41(1 4+ u'®) for some cyy € F3. We will show ¢_; = ¢; = 0. Indeed, evaluating the
congruence
¢ = (T332 — 75 '92) mod uM’
on e/, gives
0=¢(e,) = (c; —c_1)e; mod uM’

so that ¢_1 = ¢;. On the other hand the congruence

Y391 = 175 " mod uM’

()05 )= (7 ) (3 %)

in My(F3), 80 c.1 = —cy. Thus c_1 =¢; =0 and hyy =0 for r = 2 as well. Thus for r = 2, 6, and 10 the
Breuil module with descent data M’ is split, so 5 is split, a contradiction.

This rules out the possibilities (2,2), (6,2) and (10, 2). Using Cartier duality we can also rule out (10, 10)
and (10,6). We are left with the four possible pairs (r, s) as asserted in the proposition and must determine
which possibilities arise in each case.

Next consider the case (r,s) = (2,6). Using the same analysis as in the (r,s) = (2,6) case in Proposition
8.2.1, we find that the possibilities for the Breuil module M are the ones in the statement of the proposition
(and N o ¢y = 0 is easy to check), though we only know that

Juler) = —v—ler, a(e;,) = —v—1le, + hy,(u)es
for some h.,, (u) € Fg[u]/u¢. The conditions

F4(M7) S M), FJao¢) =¢io0qs on M

gives

are equivalent to

3
h., =0mod u*, h,, = — <%> .

The solutions to this are h,, = av/—1uS for a € F3. Replacing €/, by €/, + au®e; preserves our standardized
form but makes h., = 0:

Ya(er) = —v—lei, Fu(e}) = —v—lej,.
The wild descent data must have the form
(e = e, a3(el) = (L u'®)el, + hii(u)er
for some hyq € Folu]/u3¢. The conditions
% (M) CMY, 95t el =¢ro9iT on MG

(recall N o ¢y = 0) are equivalent to

ud

I 3
hiy =0mod u*, hyp = (1+u'®) ( il) ,
whose solutions are
hy1 = ci1u6(1 + u18)
for some c11 € F3. Since N o ¢1 = 0, we have
vt onFlogh = ¢,
SO

C_1 = —C1.
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Using Lemma 5.2.2 and Corollary 5.6.2, we see that all of these possibilities are well-defined. We also
see that J annihilates M/uM ® Fg. It is straightforward to check that generic splitting over F’ (which is
equivalent to generic splitting over F') is equivalent to ¢ = 0, and that such splitting is compatible with
descent data (i.e., descends to Qs) if and only if ¢ = ¢; = 0. For dimension reasons, the map on Ext!’s is
therefore an isomorphism.

Now consider the case (r,s) = (2,10). Here we have

M; = (u'lei,u’e, + hey)
for some h € Fz[u]/u3%, with
b1 (uer) = ey, ¢1(u’e, +hey) =¢e,
and
Ya(er) = vV—lei, Fu(e)) = —v-le,.
In order that
:7\4(Ml1) c Mllv :7\4 o Qsll - ¢/1 074 on Mlla
it is necessary and sufficient that
h = h(—v/—1u) mod u*?.
But {u!'% — u?#3|t € F3[u]/u?®} is spanned by u!® — u!t, w!? — 48 w!'t —v® w!'® — v? and all multiples of
ul®, so we may suppose

(9.2.1) h=c +cdu* + cub,

for some ¢”, ¢, c € F3, at the expense of possibly losing the diagonal form of 7.
The monodromy operator satisfies

N(e1) =0, N(e,)=(c"u® —cu'®+c"u*)e.
Since the wild descent data must take the form
vl e) = (1Fu®)er, 12l(el) = (1+u'®)el, + hyrer
for some hyy € Folu]/u3®, we compute
v/gﬁ(uQe; + hey) = H%l (u)(1 £ u'®)(u’e, + hey) + fr1(uw)er,
where
(9.2.2) fei(u) = —hH%l (u)(1 £ u'®) + u2H%1hil + (LF u')h(uH ).

Thus, in order that 7/3;1 (M]) € M/, it is necessary and sufficient that fi satisfies
f+1 =0 mod w'°.
Using (9.2.1) and Hp =17 u% mod 3, this amounts to
(9.2.3) hiy = £c"u* mod u®.
However, N o ¢1(M;) C u® M, so
;35 o ¢y = ¢ o;gi\l mod u® M’

when evaluated on Mj. This gives

Since h.; is a cube modulo 48, by (9.2.3) we must have ¢’ = 0, and so N o ¢; = 0 mod u'8 M. Thus, 75
and ¢} commute modulo u'® M’ when evaluated on M7, so we get

_ f:|:1 ’ 18
(924) h:l:l = (W mod u s

and hiq is a cube modulo u'8.
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On the other hand, with ¢’ = 0, we see from (9.2.3) that
hii =0 mod u®.
Because h4; is a cube modulo u!'®, so we get the slight improvement
hy1 =0 mod u°.
Combining this with the vanishing of ¢”, we deduce from (9.2.2) that fi; = £c’u!® mod u'!, so by (9.2.4)

hiq1 = +¢ mod .

This forces ¢ =0, so N o ¢y = 0. Thus, 75" and ¢} commute on M}, so

fer)®
hil - (W .

in Fg[u]/u3®. Using h = cu® this becomes (via (9.2.2))

her = (1£u'®) (E)B
u8 ’
SO
hi1 = Cilulg(l + ulS)

for some c41 € F3. As before, we get c_1 = —c3.
Now we “diagonalise” 74. Since we have

Ya(er) = vV—ler, Aule,) = —V—le, + hy, (u)er
for some h.,, € Folu]/u3®, the conditions
Fa(M}) S MY, Faod) =¢hoFs on M)
are equivalent to

h 3
h., =0 mod u®, h%(uj;) :

which is to say
hy, = av/—1ut?

for some a € F3. Replacing €/, by e/, + au'?e; then puts us in a setting with a = 0. Thus all extensions
have the form asserted in the proposition. It is easy to check that in each case J annihilates (M/uM) ®@ Fy.

Pushout by the non-zero map ngl — M/lo,l in ¢ DDF,/Q3 induced by e — uSe takes our (2,6) examples
to our (2,10) examples (compatibly with the labelling of parameters ¢, ¢; as in the statement of the proposi-
tion). Thus all 9 possibilities for (¢, ¢;) do occur and we get an isomorphism of Ext!’s as asserted. Moreover,
generic splitting over F’ (which is equivalent to generic splitting over F') is equivalent to ¢ = 0, and such
splitting is compatible with descent data (i.e., descends to Qg) if and only if ¢ = ¢; = 0.

Using Cartier duality and the case (r, s) = (2,6), we see that in the case (r,s) = (6,10) the map of Ext'’s
is an isomorphism. It is easy to check that the objects in our asserted list of 9 possibilities for (r, s) = (6, 10)
are well-defined and that pullback by the non-zero map Ml27w — M/&w induced by e — uSe takes these to
our (2,10) examples (compatibly with the labelling of parameters ¢, ¢1).

Finally, we turn to the case (r,s) = (6,6). Choosing a basis with respect to which 74 has a diagonal
action, the conditions

(9.2.5) Fa(M1) S My, Fao¢h =¢107s on M
are equivalent to
h(u) = h(—v/—1u) mod u'®.
Since {u®t — u%t3|t € F3[u]/u®®} consists of multiples of u”, we may change €/, to get

h=c+cdu*
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for some ¢, ¢’ € F3, with

’/7\4((31) = _\/__1617 64(6(141) = \/__16414) + h‘74 (u)el
for some h., € Folu]/u®. Feeding this into (9.2.5) we get h,, = —h2 , so h,, = /—1a for some a € F3.
Replacing €/, by €/,—ae; returns us to the setting with ‘diagonal’ 74-action and preserves the standardizations
we have made so far.

It is easy to compute N(e)) = c'u®’e; (and we know N(e;) = 0). The ‘wild’ descent data is

’Ygil(el) = ey, ’Y;Ll(e:u) =e, +hiie

for some hiy € Folu]/u®®. Using the congruence for tozr in §6.5, the identity

Fodl =1+t N)ogiord

on M) amounts to the condition
h _ h3 /12 /. 30
+1=hiFCcu ™ —cu,
whose solutions are
hj:l =cy :FCIU12 _ C/USO

for some ¢4 € F3. The identity

fygd o'y?:fl =1 mod uM’
implies c_; = —c1. Thus

—
/

~Vye(e,) =de,) = —ce; mod uM’, (307 — 73 Aa)(e.,) = —cre; mod uM’.

Thus J annihilates (M/uM) ®@r, Fg if and only if ¢; = c.
By Lemma 5.2.2 and Corollary 5.6.2, it is easy to see that all of these objects are well-defined. The kernel
of

(9.2.6) Exthpp (Mg M) = Exth, g, (1)

/Q3,
consists of pairs (¢, —c), where generic splittings are induced by any of the (non-zero) Breuil module maps

M(0,1) - M
defined by
e ule + (eu’ + cu)e; = u(c+ u?é)ule; +ud(ubel, + (c — cu')e)
with ¢ € Fg. Thus, the pairs (¢, ¢’) corresponding to the p which are split over F' (or equivalently, split over
F') are exactly those for which ¢+ ¢/ = 0. The map

1 (M, MG 1) — EXtiﬂg[Gg](lvw)

'/Qsz,9

1
EXt¢1DDF

is therefore injective, because the splitting given above respects descent data if and only if ¢ = ¢; = 0.
It remains to establish which of the given extensions of Breuil modules correspond to peu ramifié extensions
of Z/3Z by us over Q3. We noted above that the maps among the ExtélDD ’s in the (2,6), (6,10), (2,10)
PLEZ R Qs

cases induced by pushout/pullback along e — uSe are compatible with the parameterization by pairs (¢, c1).

With a little more care, one checks that the maps
1 / / 1 / / 1 / /
EXtd:lDDF,/QS , (M, Mg 1) EXt(leDF,/QSJ(MG,w7M6,1) — Eb’(t(anDF,/Q3 J(MG,wvmlo,l)

induced by e — uSe send the pair (c,c’) in the middle to the pair (¢ + ¢/, c) on either end (to construct the

necessary commutative diagrams of short exact sequences in the two cases, use the maps

(e,,e1) — (uSe, — cer,er), (e,,e1)— (e, +cer,ule)

respectively). This reduces us to checking the (6, 6) case.

By Corollary 2.3.2, the two tres ramifié extensions, p; and p,, of 1 by w which are non-split over F arise
from elliptic curves, Ey and Es, over Qs for which pp, 3 is potentially Barsotti-Tate with extended type 7;
(see §6.5). Let G; denote the 3-torsion in the Néron model of E; over Op. From the universal property of
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Néron models we see that §; = G; X, Op inherits descent data {[g]} over Q3. By the same argument used
at the end of §4.6 we see that (G, {[g]}) is an object of (;51DDF,/Q3 5~ Moreover we see that F # 0 on D(§;).
Since all non-(6, 6) cases above have ¢ = 0 mod uM, by the parts of Proposition 9.2.1 which we have already
proved we see that M (5}, {[g]}) is an extension of Mg ,, by Mg ; and correspond to a pair (¢,¢’) with ¢ # 0
(since F # 0) and ¢+ ¢ # 0 (by our analysis of (9.2.6), since p; is not-split over F'). Hence M, (9, {[g]})
and M (G5, {[g]}) must correspond in some order to the lines ¢’ = 0 and ¢ = ¢’ in F3.

As a non-split peu ramifié extension of 1 by w remains non-split over F’, we see that the peu ramifié line
in

1 ~ 1
EXtMF’/Qg,J (MIG,Q.H j\V/[/G,l) == EXtF3[G3] (1; w)

cannot correspond to ¢+ ¢’ = 0. By the above analysis it cannot correspond to ¢ =0 or ¢ — ¢’ = 0. Thus it
must correspond to the remaining line ¢ = 0. O

The properties of ¢ in the cases listed in Proposition 9.2.1 make it clear that the (6,6) case there is
“different”. We will see further manifestations of this difference later.

9.3. Further rank two calculations.
Lemma 9.3.1. For (r,s) = (2,6), (6,10) and (2,10) we have

Exty,pp,, . VM) = (0).

Q3.7

Proof. The (6,10) case follows from the (2,6) case by Cartier duality. Thus, we assume r = 2, s € {6,10}.
Let (M, {g}) be such an extension. By Lemma 8.1.2, (M, {g}) arises from a Breuil module over O of the
form
M = (Fa[u]/u>®)e, @ (F3[u]/u36)e}, M, = (u’e,,u’e) + he,)
with
1 (ue,) =e,, ¢1(u’e) + he,) =€,
and
Falew) = —V—Tey, Fa(e}) = —(—v-1)"?e,
where h € F3[u]/u?S.
The combined conditions
Fa(My) S My, Fao¢h = ¢ oFs on M
are equivalent to
(vV=1)*2h(u) = (V=1)h(—v—=1u) mod u**.
Treating the cases s = 6 and s = 10 separately, we conclude from Lemma 5.2.2 that we may change €/ so
that h = 0 when s = 6 and h € F3 when s = 10. As a result of this change, we only have

Fa(ew) = —V=Tew, Fa(e}) = —(—vV=1)""%e} + h,, (w)e..
However, with h € F3 when s = 10 and h = 0 when s = 6, the condition
Jao ¢y =010 on M

forces h,, = fu3(5*2)h?y4, so that in fact h,, = 0 after all.

When h = 0, so M is split in ¢1 —mod (compatibly with 44 on M), and it is easy to check (using N = 0)
that the ‘wild’ descent data fy/Si\l must also be diagonal, so we have the desired splitting in ¢; DD , Qs

It remains to consider the case (r,s) = (2,10) with h = ¢ € F3. It is easy to compute

N(e,) =0, N(e}) = —cu*e,,.
The wild descent data must have the form
5 ew) = (1 u)eu, 131(eh) = (1F ul¥)ef + hire,

with hyy € Folu]/u?S.
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It is straightforward to check that v3'(M}) € M}, and then the condition
%t ody = (1+tgN)odf oy
on M gives
hiy = +cu? + A3 (1 F u'®) + cu®.

The unique solution to this is
hiy = c(xu'? + u30).

—

Thus Y372 — 73 ‘J2 = 0 mod u, while ¢(e}) = —ce,, mod u. This forces ¢ = 0. With ¢ = 0 we obviously have
only the split extension class. |

Lemma 9.3.2. The natural map

EXt@ (M;S,lv Mg,w) - EXt%:3 [Gs] (w, ]_)

F'/Q3,9
is an isomorphism, with elements parametrised by pairs (c,c’) € F3 corresponding to
M = (F3[u]/u*)e, ® (F3[u]/u™)ej, My = (u®e,,u’€] + (c+ul)ey),
where
b1 (ube,) = e, ¢1(ule) + (c+ut)e,) =e), N(e,) =0, N(e})=cu*e,
and the descent data is
Falew) = V—ley, Fule) = —V—1el,

13 (ew) = eu 1 (€]) = € + (e F Lul? — e,

Proof. The proof is identical to the proof of the case (r,s) = (6,6) in Proposition 9.2.1, except v/—1 is
everywhere replaced by —/—1 and when we study splitting we give M(0, 1) the descent data for the trivial
mod 3 character (which amounts to using 74(e) = —e rather than ,(e) = e). O

Lemma 9.3.3. Forr € {2,10}, the maps

1 1
EXt¢1 DDF//Q3 (M;,wv M:”,w) - EXth [G3] (w7 w)

and
EXt};leDF,/Qg (M1, M5 4) — EXti“s[Gg](l» 1)

are injective and have image consisting of the 1-dimensional space of classes which split over an unramified
extension of Qs.

Proof. The cases r = 10 follow from the cases r = 2 using Cartier duality. Thus we suppose r = 2. We treat
only the case of M’Q’w, the case M’Q’I being exactly the same except that —v/—1 replaces v/—1 everywhere.

Let (M',{g}) represents an element in EXttlinDDF,/QS (M5, M5,,). Lemma 8.1.2 ensures the existence of

an ordered F3[u]/u3¢-basis e, €/, of M such that
M, = < QQW,UQG(/U + hew>7 ¢1(u2ew) = €y, ¢1(u2e11 + hew) = e:u
with
34(%) = —v-le,, :)74(6:;) =V _1eL//J'
Carrying out the usual calculation,
(9.3.1) (M) SMY, ¢ oqs=As0¢) on M
if and only if
h = —h(—v/—1u) mod u'*.

Combining this with Lemma 5.2.2, we may change €/, so that h = cu?, with ¢ € F3, at the expense of

possibly losing the diagonal form of 34. But with h = cu? and J4(e],) = —/—1€/, + h,, (u)e,,, the conditions
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(9.3.1) imply h, = —h2,, and so h.,(u) = (v/=1)a for some a € F5. Then 7§ = 1 forces a = 0, so 7 still
has diagonal form.
It is easy to check that N(e/,) =0,s0 N o (;51 = 0. Thus, we must have

(9.3.2) Yogl =¢lors!
on M. Since the wild descent data has to be of the form

vil(e,) = 1t u'®e,, 7i'(e) = (1+u'®)e, + hije,
for some hy; € Fiu]/u3®, evaluation of (9.3.2) on u” u?e!, + cu? ew € My gives hy = (1 + u'®)hd,, so

hi1 = c41(1 + u'®) for some ci; € F3. The relation 75 074 0t o 74( ') =€, forces c11 = 0.

We now have described all possibilities in terms of the single parameter ¢ € F3, and it is straightforward
to use Corollary 5.6.2 to check that all of these examples are in fact well-defined. Generic splittings over
unramified extension of Q3 correspond to the maps

F3 ®@p, M(0,1) — F3 ®p, M
given by
e — au’e, +u(u’el, + cu’e,),
where a € F3 satisfies a® = a + c¢. Such generic splittings can be defined over Q3 (i.e. without extending the
residue field) if and only if ¢ = 0. O

Lemma 9.3.4. (1) The map of groups
1 1
EX'%sl/:)DF,/QS (M1, Mg 1) — Extp,(c,(1,1)

s an isomorphism.

Explicitly, the group EXt(:;lDDF,/QS (Mg’l,ngl) is parameterized by pairs (c,c') € F% correspond-
g to

M = (F3[u]/u®)e; ® (Falu]/u®)e], My = (ulei,u’e] + (cu® + dub)ey),
with
o1 (uber) = eq, ¢1(ube] + (cu® + ul)e;) =€), N(ey) =0, N(e|) = —cu’le
and descent data
/’}74(91) =V _]-eh 374(ell) =V _1ell7
vl(er) =e1, 7i'(e)) =€) + c(dub +u'® — u? £ u)e;.

The classes in Extixs [GB](L 1) which split over an unramified extension of Qs correspond to the pairs

with ¢ = 0.
(2) The map of groups

EXt@F//% (Mg,w, M’67w) — Ext%;S (G (w,w)
8 an isomorphism.
Ezplicitly, the group EXt@F,/Qg (M., MG.,) is parameterized by pairs (c, ') € F§ correspond-
g to
M = (Fa[u]/u*®)e, @ (F3[u]/u*®)e,,, My = (ule,,u’e], + (cu® + cu’)e,),
with
b1 (ule,) = ey, ¢1(ule, + (cu® + uble,) =€, N(e,) =0, N(e,)=—cu’le,
and descent data
Aalew) = V—-ley, Fu(el,) =V-1el,

vil(ew) = ew, 15l(el) = e, +c(xu’ £ u'® —u? £ u¥)e,,.
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The classes in Ext%a[GS] (w,w) which split over an unramified extension of Qs correspond to the pairs
with ¢ = 0.

Proof. We treat the first part of the lemma; replacing v/—1 with —/—1 throughout gives the proof of the
second part.
As usual, we can find an ordered Fju]/u®6-basis ey, €] of M so that

My = (uler,u’e] + hei), ¢1(uer) =ei, ¢1(ule] +he) = e,

and J4(e;) = —v/—1ley, Ja(e})) = —v/—1e}|. The conditions J4,(Mj) € M} and 94 o ¢} = ¢} 0o J4 on M
amount to
h(u) = —h(—v/—1u) mod u'®.
Since {ut — uSt3|t € F3[u]/u3®} consists of multiples of u”, we can change the choice of €} so that
h = cu® + c/u®

for some ¢, ¢’ € F3, where we may a priori lose the diagonal form of 7,. But the same kind of calculation as
in Lemma 9.3.3 shows (e}) = —v/—1e} + ay/—1e; for some a € F3, so the condition 7} = 1 forces a = 0
(i.e. A4 still has diagonal action).

It is straightforward to compute the asserted formula for N, and then the wild descent data can be
computed exactly as in our previous computations of wild descent data; this yields the formulas

vil(er) = e1, 75(e)) = e} + (ca1 + c(Fub +u® - £ 4%0))ey,
where c11 € F3. Modulo u, the linear action of 73i1'y4'y3ﬂﬁ sends e} to €] —ci1eq, but 7:;‘:1’74’}/5‘:172 =1, s0
ce = 0 for e = 1. Thus, we obtain the asserted list of possibilities. The well-definedness of these examples
follows from Lemma 5.2.2 and Corollary 5.6.2. _
It is easy to see that there is a non-zero map F3 ®p, M(0,1) — F3 @p, M if and only if ¢ = 0, in which
case such non-zero maps are precisely those induced by
e — au’e; + ud(ube) + uley),

where a € F3 satisfies a® = a + ¢/. The verification that ¢ = ¢/ = 0 corresponds to being in the kernel of our
map of Ext!’s is now clear, since X3 = X + ¢ has a solution in Fj5 if and only if ¢ = 0. O

9.4. Completion of the proof of Theorem 4.6.1. Everything in Theorem 4.6.1 is now clear except for
the third assertion, to the proof of which we now turn. Let (G, {[g]}) be as in the third part of that theorem.
We may suppose that §' = G x ¢, O/ for some §,¢,.. The filtration on p ®p, k gives a filtration

(0>—)9w—>9—>91—)(0),
which is compatible with the descent data over Q3. According to Lemma 5.2.3 we have M, (G,) =
M(k;ry, fo) and Mo (G1) = M(k;r, f1) for some 0 < 71,7, < 12 and some fi, f, € k[u]/u36. We will
let x denote either 1 or w. In particular M, (Gy)1 = v"xM(Gy) for x = 1,w. From this one can conclude

that if 3 is an subquotient of G, then M, (H); = ™M (H). Quite generally, for any Breuil module M
over Op with M; = " M and any short exact sequence of Breuil modules

0-M —-M-—->M" -0,

we must also have

M) =u" M, M} =u"M".
Indeed, M — M" is a surjection taking M; onto M7, so the assertion for M” is clear. Since M’ is a
F3[u]/u3¢-module direct summand of M and

My =M NM; =M Nu” M,
the assertion for M’ is likewise clear. We conclude that (M, (Sy)’, {g}) admits a filtration with successive
quotients M;x,x' Thus 7, € {2,6,10}.

Consider a fixed surjection of F3[G3]-modules

PRk —p.
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This gives rise to a finite flat O p-group scheme H with descent data on H' = H x O/ over Q3 corresponding
to p and an epimorphism
§—H
compatible with descent data. Consider the commutative diagram
0— M;(Hi) — M;(H) — M;(H,) —0
! ! !
0 - Mﬂ'(gl) i Mw(g) - M‘n’(gw) - 0

where the top row corresponds to the non-split filtration of p. The middle vertical map is an isomorphism
of the source onto a F3[u]/u3¢-module direct summand of the target, so the left vertical map is as well,
because an injection of F3[u]/u3¢ into a free F3[u]/u*6-module must be an identification with such a direct
summand (consider torsion). This forces M (H1)' = M;., ; and so, by Proposition 9.2.1, we see that r1 # 2.
Repeating the analogous argument applied to a submodule p C p ® k one sees that r, # 10.

Thus (9, {[g]}) is weakly filtered by {Gs 1, Srw} for (r,s) = (2,6), (6,10), (2,10) or (6,6), as desired.

9.5. Completion of the proof of Theorem 4.6.3. Write Ay for F3[[T]]/(TV). For (r,s) = (2,6),
(6,10) and (2,10), we will define a Breuil module My, s) over Op and descent data {g} for Gal(F"/Qz3)
on M’N’(T,S) = My, (r,s) @F; Fg such that My (. o) and (MG\/,(T,S)V {g}) have compatible actions of Ax (and
2 = 1 ® Frobs). More specifically set ¢ = 2, 6 or 8 according as (r,s) = (2,6), (6,10) or (2,10). Viewing p
as an extension class, it corresponds to a particular pair (c,c;) € F2 in Proposition 9.2.1. Fix these values.
Motivated by the idea of deforming the formulae in Proposition 9.2.1, we are led to define

Nix oy = (Anlul/u*)er & (An[ul/i*)el,, (M)t = (%1, ", + (e + Thu'er)
with
o1 (usel) =e, ¢1 (ure; + (C + T)utel) = efu.

It is straightforward to check that No¢; =0 on My (,5). We may define Ay-linear descent data on M/N’(T’S)
by setting 72 = 1 ® Frobs and using the following formulae.

(1) When (r,s) = (2,6), set
Faler) = —V—lei, Au(e),) = —V-1e[,

vil(er) =er, 75l(e,) = (1 +u'®)(e], £ c1uley).
(2) When (r,s) = (6, 10), set
Ja(er) = V—ley, qule)) = V-1lel,

vit(er) = (LF u®er, 75 (e),) = (e, £ cruley).
(3) When (r,) = (2,10), set

Aa(er) = vV—1ler, Fu(e),) = —v—1e,

vt (e) = 1F u'®)er, 13 '(el,) = (1 £ u'®)(el, £ cru'?er).
It is readily checked that this defines an object of qleDF,/Q3 g

(Sﬁvy(m), {lg]}) be the corresponding finite flat Op-group scheme and finite flat Op/-group scheme with

descent data.
If 1 < M < N then we have a short exact sequence in ¢y DD

with an action of Ay. Let Gy () and

F'/Qs,9

(0) - M/I\/I,(r,s) - M?V,(r,s) - M?V—M,(r,s) - (0)7
where the first map is induced by multiplication by T™~M. The case M = 1 shows that
(Sn,r9): {91} Qs /T(Sn.(rs), {9} Qs
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corresponds to p. Thus we get a surjection of Ay [G3]-modules A% — 9N7(T,s)(63), which must in fact be an
isomorphism (count orders). Thus (S, (rs), {[9]})q, defines a deformation py () of p to A%,. For N > 2
we have py ;.5 mod T2 & py ;. o).

We also have an exact sequence

(0) — M, ®r, Ax — My (.50, {9}) — M., ®p, Ay — (0)

in DD from which we obtain an exact sequence of Ax[G3]-modules

F'/Qs’
(0) — Xy — py — X1 — (0).

Note that X; = Fév and X, 2 F;3 (w)N as F3[G3]-modules. Moreover, this sequence must split as a sequence
of Ay-modules. (Use, for instance, the kernel of py(c) — 1 for any o € G3 — GQs(\/—_S)') Thus X; = Ayn
and X, & Ay (w) as Ay[G3]-modules, so det py = w.

Finally, we must check that the exact sequence

0) —p—p2—p—(0)
is not split. We have maps of Breuil modules

fl : Ms,l B MQ,(T,S)

e —— €

and
fa: MZ,(r,s)
€1
Te1

/

€y

Te'

w
compatible with descent data. These give rise to maps

OOOOg

[T

Fiips—1

and

such that the composites

and

are NoN-zero.
To check that
(0) — 75— ps — 75— (0)
is non-split, it suffices to check that
(9.5.1) (0) — w — ker f{/Im f5 — 1 — (0)

is non-split. However ker f;'/Im f; corresponds to an object (N', {g}) of ¢1 DD satisfying

F'/Q3,9
N = (Folu]/u™)(Ter) @ (Fo[u] /u*®)el,, Ny = (u’(Ter),u"e], +u'(Ter))
with
¢1(u’(Ter)) = (Ter), di(ue, +u'(Ter)) = e,
By Lemma 5.2.2, the sequence of Breuil modules with descent data

is not split. This sequence recovers (9.5.1) under generic fibre descent, so by Proposition 9.2.1
(0) — w — ker f{/Im f; — 1 — (0)

is not split.
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9.6. Completion of the proof of Theorem 4.6.2. Suppose first that (r,s) = (2,6), (6,10) or (2,10). By
Lemma 9.3.1
6o : Extéiy(m) (5, p) — H'(G3,w)
is the zero map. Lemma 9.3.3 then tells us that if » # 6 then
51 : EXtéi,(r,s) (ﬁ, ﬁ) — H! (13, F3)
is the zero map; while if s # 6 then
gw : EXt}Si,(ns) (ﬁa ﬁ) - Hl(IBv F3)
is the zero map. Thus Theorem 4.7.5, and hence Theorem 4.6.2, follows in these cases.

Now consider the case (r,s) = (6,6). Choose z € Héi ©.0) (Gs,2d°P). Let G denote the corresponding
rank 81 finite flat Op-group scheme with descent data {[g]} on § = G X@, Op,. Set M = M,(G). Let
H C G denote the closed subgroup scheme (with descent data) corresponding to the kernel of the map
(9, {l9]})q; — p — F3 and let N = M, (H). Then N has Fs[u]/u¢-basis e, ], e/, with respect to which

N; = (uSe,,,ube] + (b+ Vut)e,,ube, + (c + dut)e| + fe.,),

where b, V', c,c’ € F3, f € F3u]/u%, and ¢; sends the indicated generators of N; to e,, e}, e/, respectively.
Also, the descent data has the form

:)/\4(9‘,_,) =V _1ew7 /7\4(61) =V _169_? 24(6410) =V —16:0 + h"/4(u)ew

for some h.,, € Fo[u]/u3¢, and

vl (en) = e, 15l(e)) =€) + (b — b (£u'? +u0))e,, vil(e)) =€, + (£c— ¢ (£u'? +u®0))e) + hise,,
where hy € Folu]/u3¢. Also, as p is trés ramifié, we see that ¢ # 0 by Proposition 9.2.1 and Lemma 9.3.4.
The requirement that u'2 N C N; forces N; to contain
u?el, = uS(ulel, + (c + du)e) + fe,) — (c+ cut)(ube| + (b+bu)e,) + (b + b'u')(c + dut) — fu)e,,
so N1 must contain (b + b'u?)(c + ut)e,. As c # 0 we get (b+ b'u*)e, € N1, and since e, u*e, & N1, we
must have b = ¥’ = 0. We conclude that the natural map
90 : EXtéi,(gﬁ) (pv ﬁ) - Hl(G37 W)

is the zero map.

Let us further analyse N. Replacing €/, by e/, + t3e, for t € F3[u]/u3® causes f to be replaced by
f—uSt3 45t and otherwise leaves our standardized form unchanged (except that h~, and ht; may change).
Using a suitable choice of such ¢, we may assume f has degree at most 6. On the other hand,

Fa(uel, + (c+cut)el + feu) = —V=1(ue), + (c+cut)e) + few) + (V=1(f(u) + f(—v~1u)) — u’hs, (u))es,
so A4(N}) € N if and only if
fu) + f(—v—1u) = 0 mod u®,

which forces

f= asu? + agu®

for some asg, ag € F3. ;From the wild descent data formulae derived in the proof of Lemma 9.3.4 we also see
that hyq = 0 mod uS.
Now M has an ordered basis ey, e, €], €/, with respect to which

(9.6.1) M; = (uSey,ule, + (c + du')er, ube] + hey,ube, + (c + cu')e| + (azu® + agu®)e, + gei),

where g, h € F3[u]/u3® and ¢; sends the indicated generators of M; to e, ey, €}, e/,. If we try to expand
out u'?e/, as a linear combination of the indicated generators of My, we find that

u'?el, = ((c + dut)h + cazu®)e; mod M; .
It follows that u'?e/, € M; if and only if

(c+ du*)h + cazu® = 0 mod u®.
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Since p is trés ramifié, the last part of Proposition 9.2.1 tells us that ¢ # 0. Thus, u'?e/, € M, if and only if
h = —apu? mod ub. We can now use Lemma 9.3.4 to see that the wild descent data action is determined by

vit(er) = e1, 7i'(ew) = ew + (e —(Fu'? +u®))er, 7i'(e]) =€} + fiier

(with fi; = 0 mod u®), and

75 (el) = e, + (Fe — ¢ (Fu'? +u™))e] + hire, + grien

where g+ € Folu]/u3® and hyy = 0 mod uS.
We must have

(9.6.2) 'y/?)i\l(ufse; + (c+ dut)el + (agu? + agu®)e,, + g(u)e;) € M},
and this expression is easily computed to equal
uﬁHf;il (e, 4 (e - (£u'? +u0))e] + here, + grier) + (c+ c’u4H%1)(e’1 + fr1e1)
+(a2u2H33i1 + a6u6H$3i1)(ew + (e — (Fu'? + u?))er) + g(uH%‘il)el.
Remembering that (uSe;,u'2M') C M7, (9.6.2) becomes
uS(el, + ce}) + (c+ c’u4H%1)e’1 + (a2u2H%1 + agu®)e, + azcu’e; + g(u)e; € M.
Using the explicit generators of M; given in (9.6.1) and recalling that h = —asu? mod u, this simplifies to
+aseu’e; € M/l .

Thus ascu? is divisible by u%, so ay = 0.
The image of the class x in Ext]l;s[Gg] (w,w) under 6,, corresponds to a finite flat O p-group scheme with
Breuil module M, free of rank two over F3[u]/u3® with basis e, e/,, and with

(M)1 = (uey, ubel, + agule,),

where ¢ sends the indicated generators of (M )1 to e, and €/, respectively. According to the proof of Lemma
9.3.4 this implies that the image of the class x in Ext%g[GB] (w,w) is split over an unramified extension of Qs.
Thus,

5(4 : EXtéi,(e,e) (ﬁv p) - Hl(‘[3a FS)
is the zero map. This completes the proof of Theorem 4.7.5, and hence of Theorem 4.6.2.

10. CORRIGENDA FOR [CDT].

We would like to take this opportunity to record a few corrections to [CDT].

e Page 532, line -6: “The semisimplicity of o, follows from that of o1” is false and should be deleted.

This assertion was not used anywhere in the rest of the paper.

Page 537, line 7: replace GLy(C) by GL2(R).

Page 538, line -10: replace “of type (S,7)” by “such that p|g, is of type 7 and p is of type (S, 7)”.

Page 539, lines 18-20: replace each w; by n; and each ws by 7,.

Page 541, line 14: replace each of the three occurences of A by A®°.

Page 544, line -6: “the discrete topology on V,” should read “the ¢-adic topology on M,”.

Page 545, part 4 of Lemma 6.1.2: V' should be assumed to be a normal subgroup of V.

Page 546, line 1: We should have noted that the key component of this argument is very similar to

the main idea of [Kh].

e §6.2: There are two significant errors in this section. The assertion “I" = SLy(Z) N Ug satisfies the
hypotheses of Theorem 6.1.1” is false and Hom(L,, k) should be L, ®k. The argument of this section
can be repaired by making the following changes.
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— Page 546, lines 5 and 6: Replace “Setting S = T'(p)U{r}, we find that the group I = SLy(Z)NUg
satisfies the hypotheses of Theorem 6.1.1.” by “Set S = T'(p) U {r}; Ug = [],Ug, where
Ug, = Ui(p) if p € T(p) and Ug,, = Us,, otherwise; Vg = [[, Vg, where Vg, = Ui(p®)
if p € T(p) and Vg, = Vs, otherwise; and Ly = Homeu, vy (Me, H' (Xyy, 0))[Ig]. Then
I' = SLy(Z) N U§ satisfies the hypotheses of Theorem 6.1.1.”

— Page 546, lines 7-13: Replace Ys by Yy, Hom(Ly, k) by L, @k, Ms by M, Fs by Faome (11,,0)
and LS by L{S’

— Page 546, line 13: Replace “ and Ng is non-empty.” by “. Using the fact that lemma 5.1.1
holds with Ug replacing Ug and oy replacing og and the discussion on page 541 we conclude
that Ng is non-empty.”

e Page 549, line -15: Replace Uy, 1y, by Ugry p-
e Page 549, line -11: Replace Ug/Uj ¢ by Vo/Vi.
e Page 552, line 4: The assertion is false in the case ¢ > 5. It can be corrected by adding “and

J(E) # 1728 mod ¢ (which is true if, for instance, E has potentially supersingular reduction and
£=1mod 4)” after “if £ > 5".

e Page 554, line 11: replace “jg €” by “F is isogenous to an elliptic curve with j-invariant in the set”.
e Page 554, line 11: replace 5(29)3/2° by —5(29)3/25.
e Page 554, line 17: replace the paremthetical comment “(and j = 5(29)3/2%)” by “(and isogenous to

one with j-invariant —5(29)3/2°)”.

e Page 554, line -5: replace p by ¢ and g by p.
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