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1. Introduction

1.1. Motivation. Let E be an elliptic curve over a p-adic integer ring R, and assume that E has supersin-
gular reduction. Consider the 2-dimensional Fp-vector space of characteristic-0 geometric p-torsion points
in the associated 1-parameter formal group Ê over R. It makes sense to ask if, in this vector space, there is
a line whose points x are nearer to the origin than are all other points (with nearness measured by |X(x)|
for a formal coordinate X of Ê over R; the choice of X does not affect |X(x)|). Such a subgroup may or
may not exist, and when it does exist it is unique and is called the canonical subgroup. This notion was
studied by Lubin [Lu] in the more general context of 1-parameter commutative formal groups, and its scope
was vastly extended by Katz [K] in the relative setting for elliptic curves over p-adic formal schemes and for
analytified universal elliptic curves over certain modular curves. Katz’ ideas grew into a powerful tool in the
study of p-adic modular forms for GL2/Q.

The study of p-adic modular forms for more general algebraic groups and number fields, going beyond the
classical case of GL2/Q, leads to the desire to have a theory of canonical subgroups for families of abelian
varieties. (See [KL] for an application to Hilbert modular forms.) Ideally, one wants such a theory that
avoids restrictions on the nature of formal (or algebraic) integral models for the family of abelian varieties,
but it should also be amenable to study via suitable formal models (when available). In this paper we develop
such a theory, and our viewpoint and methods are different from those of other authors who have recently
worked on the problem (such as [AM], [AG], [GK], and [KL]). The theory in this paper (in conjunction
with methods in [KL]) has been recently used by K. Tignor to construct 1-parameter p-adic families of
non-ordinary automorphic forms on some 3-variable general unitary groups associated to CM fields.

Roughly speaking, if A is an abelian variety of dimension g over an analytic extension field k/Qp (with the
normalization |p| = 1/p) then a level-n canonical subgroup Gn ⊆ A[pn] is a k-subgroup with geometric fiber
(Z/pnZ)g such that (for k

∧
/k a completed algebraic closure) the points in Gn(k

∧
) ⊆ A[pn](k

∧
) are nearer

to the identity than are all other points in A[pn](k
∧
). Here, nearness is defined in terms of absolute values

of coordinates in the formal group of the unique formal semi-abelian “model” AR′ for A over the valuation
ring R′ of a sufficiently large finite extension k′/k. (See Theorem 2.1.9 for the characterization of AR′ in
terms of the analytification Aan, and see Definitions 2.2.5 and 2.2.7 for the precise meaning of “nearness”.)
In particular, Gn[pm] is a level-m canonical subgroup for all 1 ≤ m ≤ n. By [C4, Thm. 4.2.5], for g = 1 this
notion of higher-level canonical subgroup is (non-tautologically) equivalent to the one defined in [Bu] and
[G]. (Although the theory for n > 1 can be recursively built from the case n = 1 when g = 1, which is the
viewpoint used in [Bu] and [G], it does not seem that this is possible when g > 1 because it is much harder
to work with multi-parameter formal groups than with one-parameter formal groups.)

In contrast with the Galois-theoretic approach in [AM], our definition of canonical subgroups is not
intrinsic to the torsion subgroups of A but rather uses the full structure of the formal group of a formal
semi-abelian model AR′ . Moreover, since our method is geometric rather than Galois-theoretic it can be
applied at the level of geometric points (where Galois-theoretic methods are not applicable). If a level-n
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canonical subgroup exists then it is obviously unique and its existence and formation are compatible with
arbitrary extension of the base field. It is an elementary consequence of the definitions and a calculation
with formal groups (see Remark 2.2.10) that A admits a level-n canonical subgroup for all n ≥ 1 if and only
if A is ordinary in the sense that the abelian part of the semi-abelian reduction AR′ mod mR′ is an ordinary
abelian variety over R′/mR′ .

If dimA = 1 then by [C4, Thm. 4.2.5] a level-n canonical subgroup exists if and only if the “Hasse
invariant” exceeds p−p/pn−1(p+1). A basic theme in this paper is to prove properties of canonical subgroups
(such as existence and duality results) subject to a universal lower bound on the Hasse invariant, so let us
now recall how the Hasse invariant is defined in the p-adic analytic setting. Using the notation A, k′/k, and
AR′ as above, let AR′ = AR′ mod pR′. The relative Verschiebung morphism V : A

(p)

R′ → AR′ induces a Lie
algebra map Lie(V ) : Lie(A

(p)

R′ )→ Lie(AR′) between finite free R′/pR′-modules of the same rank. The linear
map Lie(V ) has a determinant in R′/pR′ that is well-defined up to unit multiple (and is taken to be a unit
if A = 0). The Hasse invariant h(A) ∈ [1/p, 1] ∩

√
|k×| is the maximum of |p| = 1/p and the absolute value

of a lift of det(Lie(V )) into R′. Since h(A) = 1 if and only if A is ordinary, the number h(A) is a measure of
the failure of the abelian part of AR′ mod mR′ to be ordinary. Work of Mazur–Messing ensures the identity
h(A∨) = h(A), with A∨ denoting the dual abelian variety (see Theorem 2.3.4).

A natural question is this: for g ≥ 1, is there a number h(p, g, n) < 1 so that if a g-dimensional abelian
variety A over an analytic extension field k/Qp satisfies h(A) > h(p, g, n) then A admits a level-n canonical
subgroup Gn? We are asking for an existence criterion that has nothing to do with any particular modular
family in which A may have been presented to us. The best choice for h(p, 1, n) is p−p/pn−1(p+1), but for
g > 1 it seems unreasonable to expect there to be a strict lower bound h(p, g, n) that is sufficient for existence
of a level-n canonical subgroup and is also necessary for existence. Thus, we cannot expect there to be a
“preferred” value for h(p, g, n) when g > 1.

We will prove the existence of such an h(p, g, n), but then more questions arise. For example, since
h(A∨) = h(A), can h(p, g, n) be chosen so that if h(A) > h(p, g, n) then the level-n canonical subgroup of A∨

is the orthogonal complement of the one for A under the Weil-pairing on pn-torsion? Also, what can be said
about the reduction of such a Gn into AR′ [pn]0 mod pR′, and for 1 ≤ m < n is Gn/Gm the level-(n −m)
canonical subgroup of A/Gm? Finally, how does the level-n canonical subgroup relativize in rigid-analytic
families of abelian varieties A → S (over rigid spaces S over k/Qp)? The method of proof of existence
of h(p, g, n) allows us to give satisfactory answers to these auxiliary questions, allowing the abelian-variety
fibers in families to have arbitrary and varying potential semi-abelian reduction type over the residue field
of the valuation ring. Berkovich spaces play a vital role in some of our proofs (such as for Theorem 1.2.1
below), so we must allow arbitrary k/Qp even if our ultimate interest is in the case of discretely-valued
extensions of Qp.

1.2. Overview of results. An abeloid space over a rigid space S over a non-archimedean field k is a proper
smooth S-group A→ S with connected fibers. Relative ampleness (in the sense of [C3]) gives a good notion
of polarized abeloid space over a rigid space, and we will use the (straightforward) fact that analytifications
of universal objects for PEL moduli functors over Spec k satisfy an analogous universal property for PEL
structures on abeloids in the rigid-analytic category.

The rigid-analytic families A→ S of most immediate interest are those that are algebraic in the sense that
A/S is a pullback of the analytification of an abelian scheme over a locally finite type k-scheme. However,
this class of families is too restrictive. For example, when using canonical subgroups to study p-adic modular
forms one has to consider passage to the quotient by a relative canonical subgroup and so (as in [Bu] and
[Kas]) there arises the natural question of whether such a quotient admits a relative canonical subgroup at a
particular level. In practice, if A→ S is the analytification of an abelian scheme then its relative canonical
subgroups (when they exist) do not generally arise from analytification within the same abelian scheme, and
so passage to the quotient by such subgroups is a non-algebraic operation. It is therefore prudent to enlarge
the class of families being considered so that it is local on the base and stable under passage to the quotient
by any rigid-analytic finite flat subgroup. The following larger class meets these requirements: those A/S for
which there exists an admissible covering {Si} of S and finite surjections S′i → Si such that A/S′i

is algebraic.
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We summarize this condition by saying that A/S becomes algebraic after local finite surjective base change
on S. (See Example 2.1.8 for the stability of this class under quotients by finite flat subgroups.)

Let S be a rigid space over any non-archimedean extension k/Qp, with the normalization |p| = 1/p, and
consider abeloid spaces A→ S of relative dimension g ≥ 1 such that either:

(i) A/S admits a polarization fpqc-locally on S, or

(ii) A/S becomes algebraic after local finite surjective base change on S.

(In either case, descent ensures that the fibers As admit ample line bundles and so are abelian varieties.)
We prove that for any abeloid space A → S as in cases (i) or (ii) and for any h ∈ [p−1/8, 1) ∩

√
|k×| (resp.

h ∈ (p−1/8, 1] ∩
√
|k×|), the locus S>h (resp. S≥h) of s ∈ S such that the fiber As has Hasse invariant

> h (resp. ≥ h) is an admissible open, and that for quasi-separated or pseudo-separated S (see §1.4 for
the definition of pseudo-separatedness) the formation this locus is compatible with arbitrary extension on
k. (The intervention of p−1/8 has no significance; it is an artifact of the use of Zarhin’s trick in the proof,
and we shall only care about h universally near 1 anyway.) These properties of S>h and S≥h are not
obvious because in general (even locally on S) there does not seem to exist a rigid-analytic function H for
which s 7→ max(|H(s)|, 1/p) equals the fibral Hasse invariant h(As); to overcome this we use Chai–Faltings
compactifications over Zp and a result of Gabber (Theorem A.2.1) that is of independent interest.

The main result in this paper is:

Theorem 1.2.1. There exists a positive number h(p, g, n) < 1 depending only on p, g, and n (and not on
the analytic base field k/Qp) such that if A → S is an abeloid space of relative dimension g that satisfies
either of the hypotheses (i) or (ii) above and h(As) > h(p, g, n) for all s ∈ S then there exists a finite étale
S-subgroup of A[pn] that induces a level-n canonical subgroup on the fibers. Such an S-subgroup is unique,
and for quasi-separated or pseudo-separated S the formation of this subgroup respects arbitrary extension of
the analytic base field.

The idea for the construction of a level-n canonical subgroup in a g-dimensional abelian variety A with
Hasse invariant sufficiently near 1 (where “near” depends only on p, g, and n) is to proceed in three steps:
(I) the principally polarized case in any dimension (using a Chai–Faltings compactification and Berkovich’s
étale cohomology theory on the quasi-compact generic fiber of its p-adic formal completion), (II) the good
reduction case, which we study via the principally polarized case (Zarhin’s trick) and a theorem of Norman
and Oort concerning the geometry of Siegel moduli schemes Ag,d,N/Zp

for all d ≥ 1 (even d ∈ pZ), and (III)
the general case, which we study by applying the good reduction case to the algebraization of the formal
abelian part arising in the semistable reduction theorem for A (and by applying the principally polarized case
in dimension 8g to the abelian variety (A×A∨)4). The key geometric constructions occur in steps I and II, for
which it is accurate to say that canonical subgroups are built by analytic continuation from the ordinary case.
In step I we construct a strict lower bound hpp(p, g, n) ∈ (1/p, 1) that is sufficient in the principally polarized
case, and in step II we show that the strict lower bound hgood(p, g, n) = hpp(p, 8g, n)1/8 is sufficient in the
general case of fibral good reduction. Finally, in step III we prove that h(p, g, n) = max1≤g′≤g hgood(p, g′, n)
is a sufficient strict lower bound in general. A more detailed overview of the proof of Theorem 1.2.1 in the
case of a single abelian variety is given in §4.1 (and the relative case is treated in §4.3).

1.3. Further remarks. The reader may be wondering: since the definitions of level-n canonical subgroup
and Hasse invariant make sense for any p-divisible group Γ over the henselian valuation ring (the identity
component Γ0 provides both a Lie algebra and a formal group), why isn’t this entire theory carried out in the
generality of suitable families of Barsotti–Tate (BT) groups? There are many reasons why this is not done.
First of all, whereas an abelian variety over a non-archimedean field k determines a unique (and functorial)
semi-abelian formal model even when k is algebraically closed, this is not the case for BT-groups. Hence, if
the theory is to work over a non-archimedean algebraically closed field k/Qp then it seems necessary to specify
a relative formal model as part of the input data. However, one cannot expect to find relative canonical
subgroups that arise from such a choice of formal model (especially if we later try to shrink the rigid-analytic
base space) and so one would constantly be forced to change the formal model in an inconvenient manner.
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Even if we restrict to the case of a discretely-valued base field, there arises the more fundamental problem
that in a family of abelian varieties whose semistable reduction types are varying there is often no obvious
way to pick out a global formal BT-group with which to work. We want the relative theory for abelian
varieties to be applicable without restrictions on the fibral reduction type or the nature of formal models
for the rigid-analytic base space. It is also worth noting that for BT-groups one has no analogue of the
quasi-compact moduli spaces as required in the proof of Theorem 1.2.1. Having a quasi-compact base space
is the key reason that we are able to get a universal number h(p, g, n) < 1 in Theorem 1.2.1.

Let us now briefly summarize the contents of this paper. In §2.1 we recall some results of Bosch and
Lütkebohmert on semistable reduction over non-archimedean fields, and in §2.2 we use these results to
define canonical subgroups. In §2.3 we define the Hasse invariant and use the work of Mazur and Messing
on relative Dieudonné theory to show that the Hasse invariant is unaffected by passage to the dual abelian
variety. This is crucial, due to the role of Zarhin’s trick in subsequent arguments. The variation of the Hasse
invariant in families is studied in the polarized case in §3.1, and in §3.2 we use a theorem of Gabber to get
results in the analytified “algebraic” setting without polarization hypotheses. The technical heart of the
paper is §4.1–4.2. In §4.1 we construct level-n canonical subgroups in g-dimensional abelian varieties whose
Hasse invariant exceeds a suitable h(p, g, n) < 1 and we show that such canonical subgroups are well-behaved
with respect to duality of abelian varieties. The key geometric input is a result concerning the existence of
ordinary points on connected components of certain rigid-analytic domains in A an

g,d,N/Qp
, and the proof of

this result occupies §4.2. Roughly speaking, we prove that any polarized abelian variety with good reduction
over a p-adic field can be analytically deformed to one with ordinary reduction without decreasing the Hasse
invariant in the deformation process. Relativization and the relationship between level-n canonical subgroups
and the kernel of the n-fold relative Frobenius map modulo p1−ε for any fixed ε ∈ (0, 1) (when the Hasse
invariant exceeds a suitable hε(p, g, n) ∈ (h(p, g, n), 1)) are worked out in §4.3, where we also give a partial
answer to the question of how the level-n canonical subgroup and Hasse invariant behave under passage to
the quotient by the level-m canonical subgroup for 1 ≤ m < n.

As this work was being completed we became aware of recent results of others on the theme of canonical
subgroups for abelian varieties. Abbes–Mokrane [AM] (for p ≥ 3), Goren–Kassaei [GK], and Kisin–Lai [KL]
provide overconvergent canonical subgroups for universal families of abelian varieties over some modular
varieties over discretely-valued extensions of Qp, and Andreatta–Gasbarri [AG] construct p-torsion canonical
subgroups for families of polarized abelian varieties with good reduction. In §4.4 we compare our work with
these other papers, including consistency between all of these points of view (at least near the ordinary locus
on the base).

In contrast with our non-explicit bound “h > h(p, g, n)” that arises from compactness arguments, [AG]
and [AM] give explicit lower bounds in the case n = 1. Using notation as in §1.2, the problem of making
h(p, g, n) explicit can be reduced to the problem of making hpp(p, g′, n) explicit for abelian varieties with
good reduction and dimension g′ ≤ 8g over finite extensions of Qp. Our fibral definitions are well-suited to
the (non-quasi-compact) Berthelot rigid-analytification of the universal formal deformation of any principally
polarized abelian variety over a perfect field of characteristic p. The results in this paper ensure that an
h(p, g, n) that suffices for all such local families (even with just finite residue field) also suffices for global
rigid-analytic families of abelian varieties over any non-archimedean base field k/Qp. The problem of finding
an explicit h(p, g, n) is being investigated by Joe Rabinoff for his Stanford PhD thesis.

1.4. Notation and terminology. Our notation and terminology conventions are the same as in the pre-
vious paper [C4] that treats the 1-dimensional case. In particular, we refer to [C4, §1.3] for a discussion
of the notion of pseudo-separatedness. (A rigid-analytic map f : X → Y is pseudo-separated if its relative
diagonal factors as a Zariski-open immersion followed by a closed immersion; analytifications of algebraic
morphisms are pseudo-separated. This notion is introduced solely to avoid unnecessary separatedness re-
strictions on locally finite type k-schemes when we wish to consider how analytification interacts with change
of the base field.) An analytic extension K/k is an extension of fields complete with respect to nontrivial
nonarchimedean absolute values such that the absolute value on K restricts to the one on k.
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2. Abelian varieties over non-archimedean fields

Our first aim is to define a Hasse invariant h(A) ∈ [1/p, 1] ∩
√
|k×| for any abelian variety A over an

analytic extension k/Qp with |p| = 1/p. The definition rests on the semi-stable reduction theorem that
was proved in a suitable form by Bosch and Lütkebohmert over an arbitrary non-archimedean field k (e.g.,
|k×| may be non-discrete in (0,∞)). We first review some generalities for abelian varieties over arbitrary
non-archimedean fields in §2.1, and then we shall specialize to k/Qp in §2.2 and §2.3 where we define and
study canonical subgroups and Hasse invariants.

2.1. Polarization and semi-stable reduction. Let us begin by recalling some standard terminology in
the context of relative polarizations over an arbitrary non-archimedean field k.

Definition 2.1.1. Let S be a rigid-analytic space over k. An abeloid space over S is a proper smooth
S-group f : A→ S whose fibers are (geometrically) connected.

As with any smooth map having geometrically connected and non-empty fibers, the fiber-dimension of an
abeloid space is locally constant on the base. Thus, we will usually restrict our attention to abeloid spaces
with a fixed relative dimension g ≥ 1. For quasi-separated or pseudo-separated S, any change of the base
field carries abeloid spaces to abeloid spaces and preserves the Zariski-open loci over which the fibers have
a fixed dimension. Also, the standard infinitesimal-fiber and cohomological arguments for abelian schemes
[GIT, §6.1] carry over verbatim to show that the group law on an abeloid space is uniquely determined by
its identity section and that any S-map between abeloid spaces must respect the group laws if it respects
the identity sections. In particular, the group law is commutative.

By [L3, Thm. II], at the expense of a finite extension of the base field there is a uniformization theorem
for abeloid groups over any discretely-valued non-archimedean field k, from which it follows that if the base
field is discretely-valued and A → S is an abeloid S-group of relative dimension g then for any positive
integer n the map [n] is a finite flat surjection of degree n2g. Thus, in such cases (using [C3, §4.2]) the map
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[n] exhibits A as a quotient of A modulo the finite flat closed subgroup A[n]. According to [L3, Rem. 6.7]
the uniformization theorem for abeloids over a field (and so the preceding consequences) is almost certainly
true without discreteness restrictions on the absolute value, but there are a few technical aspects of the
proofs that have to be re-examined in such generality. In the case of abelian varieties, the uniformization
theorem has been fully proved without restriction on the non-archimedean base field; this result of Bosch
and Lütkebohmert is recalled as part of Theorem 2.1.9 below.

We shall only work with the multiplication maps [n] in cases when the fibers As are known to be abelian
varieties, and so we do not require the general rigid-analytic uniformization theorem for abeloid k-groups
over a non-archimedean field k. However, to avoid presumably artificial restrictions in examples and to
keep the exposition clean, we shall assume in all examples concerning torsion subgroups of abeloids that
the uniformization theorem is valid for any abeloid k-group over any non-archimedean base field k. This
presents no logical gaps for our intended applications of such examples in the case of abeloids whose fibers
are known to be abelian varieties (such as in all of our theorems that involve torsion subgroups).

Example 2.1.2. Let A→ S be an abeloid space and let G ⊆ A be a finite flat closed S-subgroup. The action
by G on A over S defines a finite flat equivalence relation on A over S, and we claim that the quotient A/G
exists as an S-abeloid space. That is, we want to construct a finite flat surjective map of abeloids A → A′

with kernel G. (By [C3, §4.2], such an A′ serves as a quotient and has all of the usual properties that one
would desire with respect to maps and base change.) A case of particular interest is when k is an analytic
extension field of Qp and A→ S is a pullback of the analytification of an abelian scheme A/S over a locally
finite type k-scheme, for then (after shrinking S appropriately) we shall show in §4.3 that there is a relative
level-n canonical subgroup Gn ⊆ A that is a finite étale closed subgroup. Such a Gn does not generally arise
from a subgroup scheme of the given algebraic model A/S , and for applications with modular forms it is
useful to form A/Gn over S.

To construct A/G over S, we may work locally on S and so we can assume that G has constant order
d. The map [d] : A → A is a finite flat covering that exhibits the source as a torsor over the target for the
action of the finite flat group A[d] (using the fpqc topology). In general, if X ′ → X is a finite flat map of
rigid spaces that is an fpqc torsor for the action by a finite flat X-group H and if H0 ⊆ H is a finite flat
closed subgroup (such as X ′ = A, X = A, H = A[d] ×S X, H0 = G ×S X) then the existence of the flat
quotient X ′/H0 follows by working over an admissible affinoid cover of X and using Grothendieck’s existence
results on quotients by free actions of finite locally free group schemes in the affine case [SGA3, V, §4]. This
procedure is compatible with products over S in the spaces and groups if everything is given in the category
of rigid spaces over a rigid space S. In this way we can construct A/G as a rigid space that is a finite flat
cover intermediate to [d] : A→ A, so it is S-proper because it is finite over the target A and it is S-smooth
with geometrically connected fibers because it has a finite flat cover by the source A. Since the natural
S-map (A×A)/(G×G)→ (A/G)× (A/G) is an isomorphism, we get the desired S-group structure on A/G
with respect to which the finite flat covering A→ A/G over S is a homomorphism with kernel G.

Definition 2.1.3. A correspondence between two abeloid spaces A,A′ ⇒ S is a line bundle L on A × A′
equipped with trivializations i : (e × 1)∗L ' OA′ and i′ : (1 × e′)∗L ' OA such that e′∗(i) = e∗(i) as
isomorphisms (e× e′)∗L ' OS .

Any two choices for the pair (i, i′) on the same L are uniquely related to each other via the action of
Gm(S) under which c ∈ Gm(S) carries (i, i′) to (c · i, c · i′), so each of i or i′ determines the other. It is
clear that L has no non-trivial automorphism that is compatible with either i or i′. In practice, we shall
refer to L as a correspondence without explicitly mentioning i and i′ (assuming such an (i, i′) exists and
has been chosen). If A′ = A then we call L a correspondence on A. A correspondence L on A is symmetric
if there is an isomorphism L ' σ∗L respecting trivializations along the identity sections, where σ is the
automorphism of A × A that switches the factors; the symmetry condition is independent of the choice of
pair (i, i′). The rigid-analytic theory of relative ampleness [C3] allows us to make the following definition:

Definition 2.1.4. A polarization of an abeloid space A → S is a symmetric correspondence L on A such
that the pullback ∆∗L along the diagonal is S-ample on A.



HIGHER-LEVEL CANONICAL SUBGROUPS IN ABELIAN VARIETIES 7

Ampleness in the rigid-analytic category is characterized by the cohomological criterion [C3, Thm. 3.1.5],
so by GAGA an abeloid space over Sp(k) admits a polarization if and only if it is an abelian variety. Moreover,
since relative ampleness is compatible with change in the base field [C3, Cor. 3.2.8], if S is quasi-separated
or pseudo-separated then polarizations are taken to polarizations under change in the base field.

Theorem 2.1.5. Let A → S be an abeloid space with identity e, and assume that A admits a relatively
ample line bundle locally on S. The functor T  Pice(AT ) classifying line bundles trivialized along e is
represented by a separated S-group PicA/S. This S-group contains a unique Zariski-open and Zariski-closed
S-subgroup A∨ that is the identity component of PicA/S on fibers over S. The S-group A∨ is abeloid and
admits a relatively ample line bundle locally on S, and the canonical map iA : A→ A∨∨ is an isomorphism
with i∨A inverse to iA∨ .

The formation of PicA/S and A∨ commutes with change of the base field when S is quasi-separated
or pseudo-separated, and each is compatible with analytification from the case of abelian schemes that are
projective locally on the base.

Proof. The functor PicA/S is a sheaf on any rigid space over S, so we may work locally on S. Hence, we can
assume that A admits a closed immersion into PN

S . It is a consequence of the compatible algebraic and rigid-
analytic theories of Hilbert and Hom functors that a finite diagram among rigid-analytic spaces projective
and flat over a common rigid space can be realized as a pullback of the analytification of an analogous finite
diagram of locally finite type k-schemes. (See [C3, Cor. 4.1.6] for a precise statement.) Thus, there exists a
locally finite type k-scheme S and an abelian scheme A → S equipped with an embedding into PN

S such
that its analytification pulls back to A→ S along some map S → S an. By the rigid-analytic theory of the
Picard functor [C3, Thm. 4.3.3] we thereby get the existence of PicA/S compatibly with analytification, and
the algebraic theory for abelian schemes provides the rest. �

If A is an abeloid space that admits a polarization locally on S (so all fibers are abelian varieties), then
Theorem 2.1.5 provides an abeloid dual A∨ that admits a polarization locally on S and is rigid-analytically
functorial in A. A polarization on such an A corresponds to a symmetric morphism of abeloid spaces
φ : A → A∨ such that the line bundle (1, φ)∗(P) on A is S-ample, where P is the Poincaré bundle on
A × A∨. By the algebraic theory on fibers it follows that φ is finite and flat with square degree d2. This
degree (a locally-constant function on S) is the degree of the polarization. When d = 1 we say φ is a principal
polarization.

Corollary 2.1.6. Let f : A→ S be an abeloid space equipped with a degree-d2 polarization φ. Locally on the
base, (A/S , φ) is a pullback of the analytification of an abelian scheme equipped with a degree-d2 polarization.

Proof. The polarization is encoded as a symmetric finite flat morphism φ : A→ A∨ with degree d2 such that
L = (1, φ)∗P is S-ample, so an application of the rigid-analytic theory of Hom functors [C3, Cor. 4.1.5]
and the “local algebraicity” as in the proof of Theorem 2.1.5 gives the result. (The only reason we have to
work locally on S is to trivialize the vector bundle f∗(L ⊗3).) �

Example 2.1.7. Let N ≥ 3 be a positive integer not divisible by char(k), and let Ag,d,N/k be the quasi-
projective k-scheme that classifies abelian schemes of relative dimension g equipped with a polarization of
degree d2 and a basis of the N -torsion. The separated rigid space A an

g,d,N/k, equipped with the analytification
of the universal structure, represents the analogous functor in the rigid-analytic category over k; this follows
by the method used to prove Theorem 2.1.5 because this analogous functor classifies objects having no non-
trivial automorphisms. Note in particular that the formation of this universal structure is compatible with
change in the analytic base field. If R is the valuation ring of k and N ∈ R× then the formal completion
A ∧

g,d,N/R along an ideal of definition of R has Raynaud generic fiber that is a quasi-compact open in A an
g,d,N/k

[C1, 5.3.1(3)] and classifies those degree-d2 polarized abeloids with trivialized N -torsion such that the fibers
have good reduction in the sense of Theorem 2.1.9 below.

Example 2.1.8. Suppose that A → S is an abeloid space admitting a polarization locally over S and that
G ⊆ A is a finite flat S-subgroup. All fibers are abelian varieties, and by Example 2.1.2 we get an abeloid
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quotient A′ = A/G equipped with a finite flat surjection h : A→ A′. The norm operation from line bundles
on A to line bundles on A′ preserves relative ampleness (by GAGA and [EGA, II, 6.6.1] on fibers over S),
so A′ admits a polarization locally over S.

Consider the weaker hypothesis that A→ S becomes algebraic after local finite surjective base change on
S (in the sense defined in §1.2). It is equivalent to assume that the abeloid A → S acquires a polarization
after local finite surjective base change on S. Indeed, necessity is standard (see Lemma 3.2.1), and sufficiency
follows from the proof of Corollary 2.1.6 because if T ′ → T is a finite surjection between rigid spaces and
F ′ is a vector bundle on T ′ then F ′ is trivialized over the pullback of an admissible open covering of T ; cf.
[EGA, II, 6.1.12]. If A acquires a polarization after local finite surjective base change on S and G ⊆ A is
a finite flat S-subgroup, then the fibers As are abelian varieties and the S-abeloid quotient A/G acquires a
polarization after local finite surjective base change on S.

The following non-archimedean semi-stable reduction theorem avoids discreteness restrictions on the ab-
solute value.

Theorem 2.1.9 (Bosch–Lütkebohmert). Let A be an abelian variety over k. For any sufficiently large finite
separable extension k′/k (with valuation ring R′) there exists a quasi-compact admissible open k′-subgroup
U ⊆ Aan

k′ and an isomorphism of rigid-analytic k′-groups ι : U ' Arig
R′ where AR′ is a topologically finitely

presented and formally smooth Spf(R′)-group that admits a (necessarily unique) extension structure

(2.1.1) 1→ T→ AR′ → B→ 1

as topologically finitely presented and flat commutative Spf(R′)-groups, with T a formal torus and B a formal
abelian scheme over Spf(R′).

The quasi-compact open subgroup U and the Spf(R′)-group AR′ (equipped with the isomorphism ι) are
unique up to unique isomorphism and are uniquely functorial in Ak′ , as are T and B. There exists a unique
abelian scheme BR′ over Spec(R′) (with generic fiber denoted B over k′) whose formal completion along an
ideal of definition of R′ is isomorphic to B, and this abelian scheme is projective over Spec(R′) and uniquely
functorial in Ak′ . Moreover, the analogous such data

(2.1.2) 1→ T′ → A′R′ → B′ → 1

exist for A∨k′ , say with B′R′ the algebraization of B′, and B′R′ is canonically identified with B∨R′ in such a
manner that the composite isomorphism BR′ ' (B′R′)

′ ' (B′R′)
∨ ' B∨∨R′ is the double-duality isomorphism.

Proof. See [BL2, §1, §6]. �

The completion functor from abelian schemes over Spec(R) to formal abelian schemes over Spf(R) is
fully faithful, due to three ingredients: GAGA over k, the full faithfulness of passage to the generic fiber
for abelian schemes over a normal domain [F, §2, Lemma 1], and the uniqueness of smooth formal group
models [BL2, 1.3]. Thus, identifying BR′ and B′R′ as dual abelian schemes in Theorem 2.1.9 is equivalent to
identifying B and B′ as dual formal abelian schemes, or the k′-fibers B and B′ as dual abelian varieties over
k′. Such an identification is part of the constructions in the proof of Theorem 2.1.9. It is natural to ask for an
intrinsic characterization of this identification by describing the induced duality pairing B[N ]×B′[N ]→ µN

over k′ for all N ≥ 1. We address this matter in Theorem A.3.1; it is required in our study of how canonical
subgroups interact with duality for abelian varieties.

Example 2.1.10. Suppose that A admits a semi-abelian model AR over the valuation ring R of k. By [F,
§2, Lemma 1], AR is uniquely functorial in A. The formal completion ÂR of AR along an ideal of definition
of R is a formal semi-abelian scheme over Spf(R) and there exists a canonical quasi-compact open immersion
of k-groups iA : Ârig

R ↪→ Aan [C1, 5.3.1(3)]. Hence, in Theorem 2.1.9 for A we may take k′ = k and then
the pair (AR, ι) is uniquely identified with (ÂR, iA). Also, the associated formal torus and formal abelian
scheme arise from the corresponding filtration on the reduction of AR modulo ideals of definition of R (using
infinitesimal lifting of the maximal torus over the residue field [SGA3, IX, Thm. 3.6bis]).
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We say that A as in Theorem 2.1.9 has semistable reduction over k′ and (by abuse of terminology) we
call AR′ the formal semi-abelian model of A/k′ (even though its generic fiber inside of Aan

k′ is a rather small
quasi-compact open subgroup when T 6= 1). If T = 1 (resp. B = 0) then we say A/k′ has good reduction
(resp. toric reduction).

Example 2.1.11. In the discretely-valued case, there is a well-known criterion of Serre: for N ≥ 3 with
N ∈ R×, an abelian variety A/k has semistable reduction if A[N ] is split by a finite extension k1/k that is
unramified (in the sense that the valuation ring R1 of k1 is finite étale over R). This criterion holds without
discreteness conditions on the absolute value, as we now explain. By Zarhin’s trick (A×A∨)4 is principally
polarized over k, and over k1(ζN ) it acquires an N -torsion basis. By results of Faltings and Chai (as we shall
review in the proof of Theorem 3.1.1), the moduli scheme A8g,1,N/Zp

equipped with the universal abelian
scheme over it may be realized as a Zariski-open subscheme of a proper Zp-scheme Y equipped with a semi-
abelian scheme G→ Y that is quasi-projective. Hence, by the valuative criterion, (A×A∨)4/k1(ζN ) extends to
a quasi-projective semi-abelian scheme over the valuation ring R1[ζN ] of k1(ζN ). This semi-abelian scheme
is unique and is functorial in its generic fiber by [F, §2, Lemma 1], so since R1[ζN ] is a finite étale extension
of R we may use Galois descent to descend the semi-abelian scheme to R. (The descent is effective due to
quasi-projectivity.) Hence, (A×A∨)4 is the generic fiber of a semi-abelian scheme G over R.

Let k′/k, AR′ , and A′R′ be as in Theorem 2.1.9 for A, so by Example 2.1.10 the formal completion G
of G along an ideal of definition of R descends (AR′ × A′R′)

4. By functoriality, the self-map of (A × A∨)4

that projects away from a single A-factor uniquely extends to a self-map f : G → G and hence a self-map
f : G→ G. Since fR′ is the self-map of (AR′ × A′R′)

4 that projects away from the corresponding AR′ -factor,
A = ker f is a formal semi-abelian scheme because it acquires such a structure within GR′ after the finite flat
extension of scalars to R′. The quasi-compact k-subgroup Arig ⊆ Grig ⊆ (Aan × (A∨)an)4 is identified with
an open subgroup of a factor Aan because there is an analogous such identification after extension of scalars
to k′. Since A = ker f is the formal completion of ker f , it follows that ker f is a semi-abelian R-group with
k-fiber A.

2.2. Canonical subgroups. Let k be an analytic extension field over Qp, and normalize the absolute value
by the condition |p| = 1/p.

Definition 2.2.1. An abelian variety A over k is ordinary if the formal abelian scheme B as in (2.1.1) has
ordinary reduction over the residue field of k′.

Clearly the property of being ordinary is preserved under isogeny, duality, and extension of the analytic
base field. In particular, A is ordinary if and only if A∨ is ordinary. It would be more accurate to use the
terminology “potentially ordinary,” but this should not lead to any confusion.

Example 2.2.2. If B = 0 (potentially purely toric reduction) then A is ordinary. The reader may alternatively
take this to be an ad hoc definition when B vanishes.

Fix an abelian variety A over k with dimension g ≥ 1 and a choice of k′/k as in Theorem 2.1.9. Let
ÂR′ denote the formal completion of the Spf(R′)-group AR′ along its identity section. The Lie algebra of
AR′ is a finite free R′-module of rank g, and upon choosing a basis we may identify ÂR′ with the pointed
formal spectrum Spf(R′[[X1, . . . , Xg]]) whose adic topology is defined by powers of the ideal generated by the
augmentation ideal and an ideal of definition of R′.

For any positive integer n, the pn-torsion AR′ [pn] has a natural structure of finite flat commutative R′-
group that is an extension of B[pn] by T[pn]. The AR′ [pn]’s are the torsion-levels of a p-divisible group
AR′ [p∞] over the henselian local ring R′, and so there is an identity component AR′ [p∞]0. Since R′ is p-
adically separated and complete, the formal group ÂR′ coincides with the one attached to AR′ [p∞]0 (via
[Me, II, Cor. 4.5]). In particular, the Lie algebra Lie(AR′) = Lie(ÂR′) functorially coincides with the Lie
algebra of AR′ [p∞].

The local-local part AR′ [p∞]00 of AR′ [p∞] coincides with the local-local part of the p-divisible group of B.
Hence, if we run through the above procedure with A∨ in the role of A then the corresponding local-local
part A′R′ [p

∞]00 of the p-divisible group of the associated formal semi-abelian model A′R′ over R′ is canonically
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identified with B′[p∞]00, where B′ is as in (2.1.2), and this is canonically isomorphic to the p-divisible group
B∨[p∞]00 ' (B[p∞]00)∨ = (AR′ [p∞]00)∨ that is dual to AR′ [p∞]00.

The geometric points of the generic fiber of the identity component AR′ [pn]0 = ÂR′ [pn] are identified with
the integral pn-torsion points of the formal group ÂR′ with values in valuation rings of finite extensions of k′.
Hence, as a subgroup of A[pn](k) this generic fiber is Galois-invariant. By Galois descent, we may therefore
make the definition:

Definition 2.2.3. The unique k-subgroup in A[pn] that descends (AR′ [pn]0)k′ is denoted A[pn]0.

Despite the notation, A[pn]0 depends on A and not just on A[pn]. For later reference, we record the
following trivial lemma:

Lemma 2.2.4. The k-subgroup A[pn]0 is independent of the choice of k′. We have #A[pn]0 ≥ png, with
equality for one (and hence all) n if and only if A is ordinary. If equality holds then A∨ is ordinary and so
A∨[pn]0 also has order png for all n ≥ 1.

Definition 2.2.5. The size of a point x of ÂR′ valued in the valuation ring of an analytic extension of k′ is
size(x) def= maxj |Xj(x)| < 1 for a choice of formal parameters Xj for the formal group ÂR′ over R′.

This notion of “size” is independent of the choice of Xj ’s, and so it is Galois-invariant over k. For any
0 < r < 1, let A[pn]0≤r ⊆ A[pn]0 denote the k-subgroup whose geometric points are those for which the
associated integral point in ÂR′ has size ≤ r; this k-subgroup is independent of the choice of k′/k.

Lemma 2.2.6. If n ≥ 1 and 0 < r < p−1/pn−1(p−1) then A[pn]0≤r is killed by pn−1.

Proof. For the case n = 1, pick a geometric point x = (x1, . . . , xg) in A[p]0. Choose j0 such that |xj0 | =
size(x). The power series [p]∗(Xj) has vanishing constant term and has linear term pXj . By factoring [p]
over R′/pR′ through the relative Frobenius morphism [SGA3, VIIA, §4.2-4.3], we have

(2.2.1) [p]∗(Xj) = pXj + hj(X
p
1 , . . . , X

p
g ) + pfj(X1, . . . , Xg)

with hj a formal power series over R′ having constant term 0 and fj a formal power series over R′ with
vanishing terms in total degree < 2. Evaluating at x,

(2.2.2) 0 = Xj0([p](x)) = ([p]∗(Xj0))(x1, . . . , xg) = pxj0 + hj0(x
p
1, . . . , x

p
g) + pfj0(x1, . . . , xg).

Assume x 6= 0, so xj0 6= 0. The final term on the right in (2.2.2) has absolute value at most |px2
j0
| < |pxj0 |,

so the middle term on the right in (2.2.2) has absolute value exactly |pxj0 | = |xj0 |/p. This middle term
clearly has absolute value at most |xj0 |p, so |xj0 |/p ≤ |xj0 |p. Since |xj0 | > 0, we obtain |xj0 | ≥ p−1/(p−1).
But |xj0 | = size(x), so we conclude size(x) ≥ p−1/(p−1) for any nonzero p-torsion geometric point x. Hence,
A[p]0

<p−1/(p−1) = 0.

Now we prove that A[pn]0≤r is killed by pn−1 if 0 < r < p−1/pn−1(p−1), the case n = 1 having just been
settled. Proceeding by induction, we may assume n > 1 and we choose a point x ∈ A[pn]0≤r with r <

p−1/pn−1(p−1). We wish to prove [p]n−1(x) = 0. If x has size < p−1/(p−1) then [p]n−1(x) ∈ A[p]0
<p−1/(p−1) =

{0}. Hence, we can assume x has size at least p−1/(p−1). Under this assumption we claim size([p]x) ≤ size(x)p,
so [p](x) ∈ A[pn−1]0≤rp with rp < p−1/pn−2(p−1), and thus induction would give [p]n−1(x) = [p]n−2([p]x) = 0
as desired. It therefore suffices to prove in general that for any point x of ÂR′ with value in the valuation
ring of an analytic extension of k′ such that size(x) ≥ p−1/(p−1), necessarily [p](x) has size at most size(x)p.
Letting xj = Xj(x), we can pick j0 so that |xj0 | = size(x) ≥ p−1/(p−1). Our problem is to prove that the
absolute value of [p]∗(Xj) at x is at most |xj0 |p for all j. Upon evaluating the right side of (2.2.1) at x, the
first term has absolute value |xj |/p ≤ |xj0 |/p ≤ |xj0 |p, the middle term has absolute value at most |xj0 |p,
and the final term has absolute value at most |xj0 |2/p ≤ |xj0 |/p ≤ |xj0 |p. Thus, we get the desired upper
bound on size([p]x) when x has size at least p−1/(p−1). �
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Definition 2.2.7. For n ≥ 1, a level-n canonical subgroup in A is a k-subgroup Gn ⊆ A[pn]0 such that its
geometric fiber is finite free of rank g = dimA as a Z/pnZ-module and such that

Gn = A[pn]0≤r = {x ∈ A[pn]0 | size(x) ≤ r}
for some r ∈ (0, 1).

For such a Gn and 1 ≤ m ≤ n the subgroup Gn[pm] is a level-m canonical subgroup. In concrete terms,
if K/k is an algebraically closed analytic extension then a level-n canonical subgroup is a subgroup of png

points in A[pn](K) that are “closer” to the identity (in A(K)) than are all other points in A[pn](K) (and
we also impose an additional freeness condition on its Z/pnZ-module structure). An equivalent recursive
formulation of Definition 2.2.7 for n > 1 is that the subgroup has the form A[pn]0≤r for some r ∈ (0, 1) and
has order png with pn−1-torsion subgroup that is a level-(n− 1) canonical subgroup. In [C4, Thm. 4.2.5] it
is shown that if g = 1 then Definition 2.2.7 is equivalent to another definition used in [Bu] and [G].

The following lemma is trivial:

Lemma 2.2.8. A level-n canonical subgroup is unique if it exists, and the formation of such a subgroup is
compatible with change in the base field. If such a subgroup exists after an analytic extension on k then it
exists over k.

In view of the functoriality of AR′ in Ak′ , level-n canonical subgroups are functorial with respect to
isogenies whose degree is prime to p. In particular, if two abelian varieties over k are related by an isogeny
of degree not divisible by p then one of these abelian varieties admits a level-n canonical subgroup if and
only if the other does. The restriction that the isogeny have degree prime to p cannot be dropped, as is clear
even in the case g = 1 [K, Thm. 3.10.7(1)].

An immediate consequence of Lemma 2.2.6 is that a level-n canonical subgroup must uniformly move out
to the edge of the formal group as n→∞:

Theorem 2.2.9. If 0 < r < 1 and A[pn]0≤r is a level-n canonical subgroup then r ≥ p−1/pn−1(p−1) = |ζpn−1|
for a primitive pnth root of unity ζpn .

Remark 2.2.10. In the ordinary case the subgroup A[pn]0 = A[pn]0≤p−1/pn−1(p−1) has order png, so it is the
level-n canonical subgroup in A[pn]. Hence, if A is ordinary then there exists a level-n canonical subgroup
in A for all n ≥ 1. Conversely, if there exists a level-n subgroup Gn in A for all n then A must be ordinary.
Indeed, suppose A is not ordinary but has a level-1 canonical subgroup G1, so by Lemma 2.2.4 the group
A[p]0(k) contains a point x0 not in G1. By Theorem 2.2.9 for level 1, size(x0) ∈ (p−1/(p−1), 1). For n ≥ 1
such that A has a level-n canonical subgroup Gn (so Gn[p] is a level-1 canonical subgroup and so equals
G1) we have x0 6∈ Gn, so the size of every point in Gn is strictly less than size(x0). By Theorem 2.2.9 we
conclude size(x0) > p−1/pn−1(p−1), so we get an upper bound on n:

n < 1 + logp

(
logp(size(x0)−1)−1

p− 1

)
∈ (1,∞).

We do not impose any requirements concerning how a level-n canonical subgroup Gn in A should interact
with the duality between A[pn] and A∨[pn] (e.g., is (A[pn]/Gn)∨ ⊆ A∨[pn] a level-n canonical subgroup of
A∨?), nor do we require that its finite flat schematic closure (after a finite extension k′/k) in AR′ [pn]0 reduces
to the kernel of the n-fold relative Frobenius on AR′ mod mR′ . In Theorem 4.1.1 and Theorem 4.3.3 we will
show that there is good behavior of Gn with respect to duality (resp. with respect to the n-fold relative
Frobenius kernel modulo p1−ε for an arbitrary but fixed ε ∈ (0, 1)) when the Hasse invariant of A (see §2.3)
is sufficiently near 1 in a sense that is determined solely by p, g = dimA, and n (resp. p, g, n, and ε). We
do not know if A∨ necessarily admits admits a level-n canonical subgroup whenever A does.

Remark 2.2.11. The formation of canonical subgroups is not well-behaved with respect to products or duality
in general, but this is largely an artifact of Hasse invariants far from 1. We shall give counterexamples in
Example 2.3.3.
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2.3. Hasse invariant. Let A be an abelian variety over k as in §2.2, and let k′/k and AR′ be as in Theorem
2.1.9. Let G be the mod-pR′ reduction of the p-divisible group AR′ [p∞] over R′, so we have a Verschiebung
morphism VG : G (p) → G over Spec(R′/pR′) and on the Lie algebras this induces an R′/pR′-linear map

Lie(VG ) : Lie(G )(p) → Lie(G )

between finite free R′/pR′-modules of the same rank g; it is an isomorphism if and only if VG is étale,
which is to say that the identity component of G is multiplicative. That is, this map is an isomorphism
if and only if A is ordinary in the sense of Definition 2.2.1. Up to unit multiple, there is a well-defined
determinant det(Lie(VG )) ∈ R′/pR′. We let aAk′ ∈ R

′ be a representative for det(Lie(VG )) ∈ R′/pR′, so aAk′

is well-defined modulo p up to unit multiple and therefore the following definition is intrinsic to A over k:

Definition 2.3.1. The Hasse invariant of A is h(A) = max(|aAk′ |, 1/p) ∈ [1/p, 1] ∩
√
|k×|.

Obviously h(A1×A2) = max(h(A1)h(A2), 1/p), h(A) is invariant under isogenies with degree prime to p,
and h(A) = 1 if and only if A is ordinary. Definition 2.3.1 recovers the notion of Hasse invariant for elliptic
curves in [C4].

Example 2.3.2. With notation as in Theorem 2.1.9, let B = (BR′)k′ be the generic fiber of the algebraization
of B. We have h(A) = h(B) because (2.1.1) induces an exact sequence of p-divisible groups and hence of Lie
algebras (and the Verschiebung on the R′/pR′-torus T mod pR′ is an isomorphism). Note that this reasoning
is applicable even if B = 0 (that is, A has potentially toric reduction).

Example 2.3.3. Let E and E′ be elliptic curves with supersingular reduction such that h(E), h(E′) ∈
(p−p/(p+1), 1) and h(E) > (ph(E′))p. By [K, Thm. 3.10.7(1)] each of E and E′ admits a level-1 canonical
subgroup but all p-torsion from E has smaller size than all nonzero p-torsion from E′. Hence, A = E × E′
admits a level-1 canonical subgroup G1, namely G1 = E[p], but this is not the product of the level-1 canon-
ical subgroups of E and E′. Also, (A[p]/G1)∨ ⊆ A∨[p] is not the level-1 canonical subgroup of A∨ since A
is principally polarized and G1 is not isotropic for the induced Weil self-pairing.

There are two reasons why we do not consider the failure of formation of canonical subgroups to commute
with products and duality (as in Example 2.3.3) to be a serious deficiency. First of all, our interest in
canonical subgroups is largely restricted to the study of abelian varieties with a fixed dimension and so
it is the consideration of isogenies rather than products that is the more important structure to study in
the context of canonical subgroups. Second, if we require Hasse invariants to be sufficiently near 1 in a
“universal” manner then the compatibilities with products and duality are rescued. More specifically, it
follows from Theorem 4.1.1 that for any fixed n, g, g′ ≥ 1 there exist h(p, g, n), h(p, g′, n) ∈ (1/p, 1) such that
if A and A′ are abelian varieties with respective dimensions g and g′ over any k/Qp and the inequalities
h(A) > h(p, g, n) and h(A′) > h(p, g′, n) hold then both A and A′ admit level-n canonical subgroups Gn and
G′n and moreover Gn × G′n is a level-n canonical subgroup in A × A′. Since h(A), h(A′) ≥ h(A × A′), by
taking h(A×A′) to be close to 1 we force h(A) and h(A′) to be close to 1. Theorem 4.1.1 also ensures that
(A[pn]/Gn)∨ is the level-n canonical subgroup of A∨ when h(A) is sufficiently near 1 (where this nearness
depends only on p, g, and n).

Our aim is to prove the existence of a level-n canonical subgroup in A when h(A) is sufficiently close
to 1, where “sufficiently close” only depends on p, dimA, and n, and we wish to uniquely relativize this
construction in rigid-analytic families. Zarhin’s trick will reduce many problems to the principally polarized
case, provided that h(A∨) = h(A) (as then h((A×A∨)4) = h(A)8 when h(A) > p−1/8). Thus, we now prove:

Theorem 2.3.4. For any abelian variety A over k, h(A) = h(A∨).

Let k′/k be a finite extension as in Theorem 2.1.9, and let R′ be the valuation ring of k′. Since B′ in
Theorem 2.1.9 is isomorphic to B∨, by Example 2.3.2 it suffices to prove Theorem 2.3.4 for (BR′)k′ rather
than for A. Thus, we may formulate our problem more generally for the p-divisible group Γ of an arbitrary
abelian scheme X over R′/pR′: we claim that the “determinant” of Lie(VΓ) coincides with the “determinant”
of Lie(VΓ∨) up to unit multiple, where the dual p-divisible group Γ∨ is identified with the p-divisible group
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of the dual abelian scheme X∨ and we write VΓ and VΓ∨ to denote the relative Verschiebung morphisms. In
other words, we claim that both determinants generate the same ideal in R′/pR′. This is a special case of:

Theorem 2.3.5. Let Γ be a p-divisible group over an Fp-scheme S. The locally principal quasi-coherent
ideals det(Lie(VΓ)) and det(Lie(VΓ∨)) in OS coincide.

Proof. The first step is to reduce to a noetherian base scheme. This is a standard argument via consideration
of torsion-levels, as follows. The cotangent space along the identity section for a p-divisible group Γ over
an Fp-scheme is identified with that of any finite-level truncation Γ[pn] for n ≥ 1 [Me, II, 3.3.20], and this
truncation “is” a vector bundle over S whose formation commutes with base change; the same holds for Lie
algebras of such truncations. The relative Frobenius morphism F : Γ→ Γ(p) is an isogeny, so its kernel Γ[F ]
is a finite locally free commutative subgroup of the level-1 truncated BT-group Γ[p] and moreover it is the
kernel of the relative Frobenius for Γ[p]; the same holds for Γ∨ in the role of Γ. Hence, by working locally
on S we can descend Γ[p] to a level-1 truncated BT-group Γ′1 over a locally noetherian base (again denoted
S) such that the Frobenius-torsion subgroups in Γ′1 and (Γ′1)

∨ are finite locally free S-groups. By [Me,
II, 2.1.3, 2.1.4] both Γ′1 and (Γ′1)

∨ have relative cotangent spaces and Lie algebras that are vector bundles
whose formation commutes with base change. Our problem may therefore be formulated in terms of Lie(VΓ′1

)
and Lie(V(Γ′1)

∨) for such a descent Γ′1 of Γ[p] over a locally noetherian Fp-scheme S′. It suffices to solve this
reformulated problem after base change from such an S′ to every affine scheme Spec(C) over S′ with C a
complete local noetherian ring having algebraically closed residue field. (Of course, we just need to treat one
such faithfully flat local extension C of each local ring on S′.) We may and do endow the equicharacteristic
C with a compatible structure of algebra over its residue field. By a theorem of Grothendieck [Ill, Thm. 4.4],
the level-1 truncated BT-group Γ′1 over C may be realized as the p-torsion of a p-divisible group over C
(whose dual has p-torsion given by (Γ′1)

∨). Hence, it suffices to solve the original problem for p-divisible
groups Γ over S = SpecC with C a complete local noetherian k-algebra having residue field k, where k is a
perfect field with characteristic p.

It is enough to treat the case of the universal equicharacteristic deformation of the k-fiber Γ ⊗C k. The
universal equicharacteristic deformation ring is a unique factorization domain (even a formal power series
ring over k), so to check an equality of principal ideals in this local ring it suffices to work locally at the
height-1 primes. Also, by a calculation in Cartier theory [R, Lemma 4.2.3], the generic fiber of the universal
equicharacteristic deformation is ordinary. Hence, we are reduced to the case when S = Spec(R) for an
equicharacteristic-p discrete valuation ring R such that the generic fiber of Γ is ordinary.

The two maps
Lie(VΓ) : Lie(Γ(p))→ Lie(Γ), Lie(VΓ∨) : Lie(Γ∨,(p))→ Lie(Γ∨)

between finite free R-modules are injective due to generic ordinarity, and so each map has finite-length
cokernel. The determinant ideals for these two maps are given by the products of the invariant factors for
the torsion cokernel modules. For any linear injection T between finite free R-modules of the same positive
rank, the linear dual T ∗ is also injective and the torsion R-modules coker(T ) and coker(T ∗) have the same
invariant factors. Thus, it suffices to prove that the cokernels of Lie(VΓ) and Lie(VΓ∨)∗ are canonically
isomorphic as R-modules. Such an isomorphism is provided by the next theorem. �

Theorem 2.3.6. Let Γ be a p-divisible group over an Fp-scheme X. The OX-modules coker(Lie(VΓ)) and
coker(Lie(VΓ∨)∗) are canonically isomorphic.

Proof. The theory of universal vector extensions of Barsotti–Tate groups [Me, Ch. IV, 1.14] provides a
canonical exact sequence of vector bundles

0→ Lie(Γ∨)∗ → Lie(E(Γ))→ Lie(Γ)→ 0

on X, where E(Γ) is the universal vector extension of Γ and E ∗ denotes the linear dual of a vector bundle
E . The formation of this sequence is functorial in Γ and compatible with base change on X, so by using
functoriality with respect to the relative Frobenius and Verschiebung morphisms FΓ and VΓ of Γ over X and
using the identities V ∨Γ = FΓ∨ and F∨Γ = VΓ∨ (via the canonical isomorphism (Γ(p))∨ ' (Γ∨)(p) and [SGA3,
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VIIA, §4.2-§4.3]) we get the following commutative diagram of vector bundles in which the rows are short
exact sequences:

(2.3.1) 0 // Lie(Γ∨,(p))∗ //

0=Lie(FΓ∨ )∗

��

Lie(E(Γ(p)))

Lie(E(VΓ))

��

// Lie(Γ(p))

Lie(VΓ)

��

// 0

0 // Lie(Γ∨)∗ //

Lie(VΓ∨ )∗

��

Lie(E(Γ))

Lie(E(FΓ))

��

// Lie(Γ)

Lie(FΓ)=0

��

// 0

0 // Lie(Γ(p),∨)∗ // Lie(E(Γ(p))) // Lie(Γ(p)) // 0

The vanishing maps in the upper-left and lower-right parts of (2.3.1) yield a natural complex

(2.3.2) 0→ Lie(Γ(p))→ Lie(E(Γ))→ Lie(Γ(p),∨)∗ → 0

whose formation commutes with base change and which fits into the vertical direction in the following
commutative diagram that is exact in the horizontal direction:

Lie(Γ(p))

��

Lie(VΓ)

&&LLLLLLLLLL

0 // Lie(Γ∨)∗ //

Lie(VΓ∨ )∗ &&NNNNNNNNNN
Lie(E(Γ)) //

��

Lie(Γ) // 0

Lie(Γ(p),∨)∗

Granting the exactness of (2.3.2) for a moment, we can conclude via the elementary:

Lemma 2.3.7. If

M ′

��

f1

""EE
EE

EE
EE

N 2
//

f2 ""EE
EE

EE
EE

M //

��

N 1

M ′′

is a commutative diagram of sheaves of modules such that the vertical and horizonal subdiagrams are short
exact sequences, then coker(f1) and coker(f2) are naturally isomorphic.

Proof. The map M � coker(f1) kills M ′ and so uniquely factors through a map M ′′ � coker(f1) that kills
image(f2) and so induces a map φ : coker(f2) � coker(f1). We similarly construct a map ψ : coker(f1) �
coker(f2), and the composites φ ◦ ψ and ψ ◦ φ are clearly equal to the identity. �

It remains to prove that (2.3.2) is short exact. Since this is a three-term complex of finite locally free
sheaves, it is equivalent to check the short exactness on geometric fibers over X. The formation of (2.3.2)
is compatible with base change on X, so we may assume X = Spec(k) for an algebraically closed field k of
characteristic p. Under the comparison isomorphism between classical and crystalline Dieudonné theory for
p-divisible groups G over k [MM, Ch. 2, Cor. 7.13, §9, Thm. 15.3], there is a canonical k-linear isomorphism
Lie(E(G)) ' Dk(G∨)⊗W (k) k ' Dk(G∨[p]) with Dk denoting the classical contravariant Dieudonné functor
and W (k) denoting the ring of Witt vectors of k. (The classical Dieudonné theory used in [MM] is naturally
isomorphic to the one constructed in [Fo, Ch. III].) Hence, (2.3.1) can be written as an abstract commutative
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diagram of k-vector spaces (with short exact sequences in the horizontal direction):

0 // t∗
Γ∨,(p)

//

0

��

Dk(Γ(p),∨[p])

Dk(V ∨
Γ[p])

��

β // tΓ(p)

Lie(VΓ)

��

// 0

0 // t∗Γ∨ //

Lie(VΓ∨ )∗

��

Dk(Γ∨[p])

Dk(F∨Γ[p])

��

// tΓ

0

��

// 0

0 // t∗
Γ(p),∨ α

// Dk(Γ(p),∨[p]) // tΓ(p) // 0

where we write tH to denote the tangent space to a p-divisible group or finite commutative group scheme H
over k and we write t∗H to denote its linear dual. Since V ∨Γ[p] = FΓ∨[p] and F∨Γ[p] = VΓ∨[p], we may respectively
identify the top and bottom maps in the middle column with the k-linearizations of the semilinear F and V
maps on the classical Dieudonné module Dk(Γ∨[p]).

From the lower-left part of the diagram we get an abstract k-linear injection α(p−1) : t∗Γ∨ ↪→ Dk(Γ∨[p])
onto a subspace containing the image of the semilinear Verschiebung operator V on Dk(Γ∨[p]). Likewise,
we get an abstract k-linear surjection β(p−1) : Dk(Γ∨[p]) � tΓ through which the semilinear Frobenius
operator F on Dk(Γ∨[p]) factors. Since ker(V ) = im(F ) on Dk(Γ∨[p]), due to Γ∨[p] being the p-torsion
of a p-divisible group, our exactness problem with (2.3.2) is thereby reduced to proving two things: (i)
the inclusion im(V ) ⊆ t∗Γ∨ inside of Dk(Γ∨[p]) is an equality, and (ii) the Frobenius-semilinear surjection

tΓ � im(F ) is injective. These conditions respectively say dim(im(V )) ?= dim Γ∨ and dim(im(F )) ?= dim Γ.
If h denotes the height of Γ then h = dimk Dk(Γ∨[p]), so

dim(im(V )) = dim(kerF ) = h− dim(im(F )), dim Γ + dim Γ∨ = h,

whence the two desired equalities are equivalent. We check the second one, as follows. Classical Dieudonné
theory provides a canonical k-linear isomorphism t∗G ' Dk(G)/im(F ) for any finite commutative p-group G
over k [Fo, Ch. III, Prop. 4.3], so taking G = Γ∨[p] gives dim tΓ∨[p] = h− dim(im(F )). But tΓ∨[p] = tΓ∨ , so

dim(im(F )) = h− dim tΓ∨ = h− dim Γ∨ = dim Γ.

�

3. Variation of Hasse invariant

Let k/Qp be an analytic extension field, and A → S an abelian scheme over a locally finite type k-scheme.
Fixing h ∈ (1/p, 1] ∩

√
|k×|, we wish to study the locus of points s ∈ S an for which h(A an

s ) ≥ h.

3.1. The polarized case. In the polarized case, we can consider a situation that is intrinsic to the rigid-
analytic category:

Theorem 3.1.1. Let k/Qp be an analytic extension field, and let A → S be an abeloid space over a rigid-
analytic space over k. Assume that A/S admits a polarization fpqc-locally on S.

For any h ∈ (p−1/8, 1] ∩
√
|k×| the loci

S>h = {s ∈ S |h(As) > h}, S≥h = {s ∈ S |h(As) ≥ h}
are admissible opens in S and their formation is compatible with base change on S and (for quasi-separated
or pseudo-separated S) with change of the base field, and the same properties hold for S>p−1/8

. The map
S≥h → S is a quasi-compact morphism, and for any h ∈ [p−1/8, 1) ∩

√
|k×| the collection {S≥h′}h<h′≤1 is

an admissible covering of S>h (where we require h′ ∈
√
|k×|).

The locus S≥1 = {s ∈ S |h(As) = 1} is the ordinary locus for A→ S. These are the points such that the
semi-abelian reduction of As over the residue field of a sufficiently large finite extension of k(s) has ordinary
abelian part. The intervention of p−1/8 in Theorem 3.1.1 is an artifact of our method of proof (via Zarhin’s
trick).
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Proof. The formation of the sets S>h and S≥h is clearly compatible with base change on S, so by fpqc descent
theory for admissible opens and admissible covers [C3, Lemma 4.2.4, Cor. 4.2.6] we may assume A/S admits
a polarization with some constant degree d2. By the relativization of Zarhin’s trick [Mil, 16.12], (A× A∨)4

is principally polarized over S. For all s ∈ S such that h(As) > p−1/8 we have h((A × A∨)4s) = h(As)8 by
Theorem 2.3.4, so by replacing A with (A × A∨)4 we may suppose that A is principally polarized at the
expense of replacing p−1/8 with 1/p in the bounds on h under consideration. Fix N ≥ 3 not divisible by p.
Working étale-locally, we may assume A[N ] is split. Hence, by Example 2.1.7 it suffices to treat the universal
family over A an

g,1,N/k provided that we work with 1/p rather than p−1/8.
We shall first consider the case k = Qp, and so we now restrict attention to h ∈ pQ with h ∈ [1/p, 1].

Consider the universal abelian scheme over the Zp-scheme Ag,1,N/Zp
. By [CF, IV, 6.7(1),(3); V, 2.5, 5.8],

this extends to a semi-abelian scheme G→ Y over a proper flat Zp-scheme Y in which Ag,1,N/Zp
equipped

with its universal abelian scheme is a Zariski-open subscheme. On Qp-fibers, we get a proper rigid space Y an
Qp

over Qp that contains A an
g,1,N/Qp

as a Zariski-open subspace, and we get a smooth Y an
Qp

-group Gan
Qp

whose
restriction over A an

g,1,N/Qp
is the universal principally-polarized abeloid space of relative dimension g with

full level-N structure. We now let Ag,1,N denote Ag,1,N/Qp
.

Let G→ Y be the p-adic completion of G→ Y , so by Zp-properness of Y we get a canonical identification
Yrig = Y an

Qp
and a canonical isomorphism of Grig onto an admissible open subgroup of Gan

Qp
[C1, 5.3.1(3)]. By

Example 2.1.10, the restriction of Grig over the Zariski-open A an
g,1,N ⊆ Y an

Qp
is an open subgroup and for each

point x ∈ A an
g,1,N ⊆ Y an

Qp
= Yrig the fiber of G over the corresponding valuation ring (“integral point” of the

proper formal scheme Y) is the unique formal semi-abelian model of the abelian variety Gx as in Theorem
2.1.9. This construction is compatible with arbitrary analytic extension on Qp because Raynaud’s theory of
formal models is compatible with extension of the base field.

We can cover Y by formal open affines Spf(R) on which the Lie algebra of the formally smooth Y-group G
is free. For such R, up to a unit in R/pR we get a well-defined determinant for the semi-linear Verschiebung
on the Lie algebra of G mod pR. Pick a representative hR ∈ R for this determinant. Over the admissible
open locus where the admissible open Spf(R)rig in Yrig = Y an

Qp
meets A an

g,1,N , the function max(|hR |, 1/p)
is well-defined (independent of choices, including hR) and computes the Hasse invariant of the fibers of the
universal abeloid space. Moreover, since such opens Spf(R)rig constitute an admissible cover of Yrig = Y an

Qp
,

we see that for any h ∈ (1/p, 1] ∩ pQ (resp. h ∈ [1/p, 1) ∩ pQ) the locus (A an
g,1,N )≥h (resp. (A an

g,1,N )>h) of
fibers with Hasse invariant ≥ h (resp. > h) is an admissible open in A an

g,1,N whose formation commutes with
arbitrary extension on Qp, and (via the crutch of the rigid-analytic functions hR for varying R) similarly for
any k/Qp with

√
|k×| replacing pQ. The desired quasi-compactness and “admissible covering” properties in

the theorem are likewise clear. �

Recall [Ber2, 1.6.1] that there is an equivalence of categories between the full subcategory of quasi-
separated rigid spaces S over k that have a locally finite admissible affinoid covering and the category of
paracompact strictly k-analytic Berkovich spaces. For such S the formation of the loci S>h and S≥h is
compatible with passage to Berkovich spaces in the following sense:

Corollary 3.1.2. Let A → S be as in Theorem 3.1.1, and assume that S is quasi-separated and admits a
locally finite admissible affinoid covering.

(1) For any h ∈ (p−1/8, 1] ∩
√
|k×| (resp. h ∈ [p−1/8, 1) ∩

√
|k×|) the quasi-separated admissible open

S≥h (resp. S>h) admits a locally finite admissible affinoid cover, as does A.
(2) The associated map of Berkovich spaces (S>h)Ber → SBer (resp. (S≥h)Ber → SBer) is an open

immersion (resp. strictly k-analytic domain), and its image is precisely the locus of points at which
the fiber of ABer → SBer has Hasse invariant > h (resp. ≥ h).

Proof. First suppose A→ S admits a polarization. Passing to (A×A∨)4 thereby reduces us to the principally
polarized case at the expense of replacing p−1/8 with 1/p in what we have to prove. Since it suffices to work
over the constituents of a locally finite admissible affinoid covering of S, we may use the proof of Theorem
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3.1.1 in the principally polarized case to get to the situation in which S is affinoid and there is a power-
bounded rigid-analytic function H on S such that for any k′/k and s′ ∈ k′⊗̂kS, h(As′) = max(|Hk′(s′)|, 1/p).
All of the assertions to be proved are obvious for such an S.

In the general case it suffices to work locally on S, so we can assume that S is affinoid and that there
exists an fpqc cover S′ → S by another affinoid such that A/S′ acquires a polarization. The results are all
known in S′ and we wish to deduce them in S. By Theorem 3.1.1 the canonical morphism ι≥h : S≥h → S
is a quasi-compact open immersion, so the quasi-separated S≥h obviously admits a finite admissible affinoid
cover and on the associated Berkovich spaces the morphism ι≥h defines a strictly k-analytic domain. Since
S′

Ber → SBer is a surjection (as S′ → S is fpqc) and it is compatible with the formation of the Hasse invariant
for fibers of ABer, the compatibility of S≥h with respect to passage to Berkovich spaces is a consequence of
the corresponding known compatibility for S′≥h.

The map S′
Ber → SBer is a surjection between compact Hausdorff spaces, so it is a quotient map on

underlying topological spaces. Thus, the locus in SBer for which the Hasse invariant is contained in a fixed
open subinterval of (1/p, 1) is open, as this is true on S′

Ber. By using loci defined by membership of the
Hasse invariant in each of a suitable family of intervals that exhaust (h, 1], it follows that the quasi-separated
S>h has a locally finite admissible affinoid cover and ιBer

>h : (S>h)Ber → SBer is a strictly k-analytic domain
whose image is precisely the open locus in SBer with Hasse invariant > h. In particular, ιBer

>h is an open
immersion. �

Remark 3.1.3. If A/S in Theorem 3.1.1 fpqc-locally admits a formal semi-abelian model then the proof of
Theorem 3.1.1 can be applied without using Zarhin’s trick, and so the conclusions of Theorem 3.1.1 and
Corollary 3.1.2 apply to such A/S with p−1/8 replaced by 1/p. For example, this applies to the Berthelot
generic fiber of the universal formal deformation of a polarized abelian variety in characteristic p.

3.2. The general algebraic case. Now let A → S be an abelian scheme over a locally finite type k-
scheme; do not assume the existence of a polarization. We claim that the conclusions of Theorem 3.1.1 hold
for A an → S an. The starting point is the well-known:

Lemma 3.2.1. If A → S is an abelian scheme over a normal locally noetherian scheme then it admits a
polarization.

Proof. By passing to connected components of S we may assume that S is connected and hence irreducible.
Let η be the generic point of S , and pick an isogeny φη : Aη → A ∨

η that is a polarization. By the Weil
extension lemma [BLR, 4.4/1], this isogeny uniquely extends to a morphism of abelian schemes φ : A → A ∨

that is necessarily symmetric (φ∨ = φ) and an isogeny, so it is a polarization if and only if the pullback L of
the Poincaré bundle along the map (1, φ) : A → A ×A ∨ is S -ample. By [EGA, III1, 4.7.1] the locus U of
ample fibers for L is Zariski-open in S and L |U relatively ample over U , so it just has to be shown that
the open immersion U → S is proper. By the valuative criterion, it suffices to consider the case when the
base is the spectrum of a discrete valuation ring, and this case follows from special properties of line bundles
on abelian varieties given in [Mum, p. 60, p. 150] (see the bottom of [CF, I, p. 6] for the argument). �

By pullback to algebraic normalizations we get:

Corollary 3.2.2. If k is a non-archimedean field and A → S is an abelian scheme over a locally finite type
k-scheme then for any rigid space S equipped with a map S → S an the pullback A→ S of the analytification
A an → S an admits a polarization after a finite surjective base change on S.

Our goal is to prove:

Theorem 3.2.3. The conclusions in Theorem 3.1.1 hold if the fpqc-local polarization hypothesis on the
abeloid space A → S is replaced with the assumption that after local finite surjective base change it is a
pullback of the analytification of an abelian scheme over a locally finite type k-scheme.

Recall from Example 2.1.8 that the new hypothesis on A→ S in Theorem 3.2.3 is inherited by the abeloid
quotient of A by any finite flat S-subgroup.
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Proof. It suffices to treat the case when there exists a finite surjection S̃ → S such that the S̃-abeloid space
A/ eS is a pullback of A an → S an for an abelian scheme A over a locally finite type k-scheme S . After
composing with a further finite surjective base change (such as from analytification of the normalization of
Sred) we can assume that A/ eS is polarized. Pick h ∈ (p−1/8, 1] ∩

√
|k×|. By Theorem 3.1.1, the loci S̃>h

(allowing h = p−1/8) and S̃≥h in S̃ satisfy all of the desired properties. It is also clear that S̃>h is the full
preimage of its image S>h in S (allowing h = p−1/8), and likewise with “≥ h”.

To prove that the loci S≥h and S>h (allowing h = p−1/8 in the latter case) are admissible opens in S,
first note that these loci have preimages under the finite surjection S̃ → S that are admissible opens, so it
suffices to prove rather generally that if f : X ′ → X is a finite surjection between rigid spaces and U ⊆ X
is a subset such that f−1(U) is an admissible open in X ′ then U is an admissible open in X. We refer the
reader to Theorem A.2.1 in the Appendix for the proof of a more general result of Gabber along these lines
(allowing proper surjections rather than just finite surjections; the general finite case seems to be no easier
than the proper case).

The compatibility with base change on S is obvious. To check that S≥h → S is a quasi-compact morphism,
since any admissible open U in S has preimage U≥h in S≥h we have to prove that if S is quasi-compact
then S≥h is quasi-compact. Certainly S̃ is quasi-compact, so S̃≥h is quasi-compact by Theorem 3.1.1. The
restriction S̃≥h → S≥h of the finite surjection S̃ → S is a finite surjection, so quasi-compactness of S≥h

follows from the following elementary lemma:

Lemma 3.2.4. If X ′ → X is a quasi-compact surjection of rigid spaces and X ′ is quasi-compact then X is
quasi-compact.

The proof of this lemma is left to the reader; beware that the lemma is false if the quasi-compactness
hypothesis on the morphism X ′ → X is dropped.

We next check that if h ∈ [p−1/8, 1) ∩
√
|k×| then {S≥h′}h<h′≤1 is an admissible cover of S>h (where we

require h′ ∈
√
|k×|). More generally, if X ′ → X is a finite surjection of rigid spaces and {Xi} is a collection

of admissible opens in X such that the maps Xi → X are quasi-compact and the preimage collection {X ′
i} is

an admissible cover of X ′ then we claim that {Xi} is an admissible cover of X. By definition of admissibility
in terms of pullbacks to affinoids, we can assume that X is affinoid. In this case the Xi’s are quasi-compact
opens in X and so the problem is to show that a finite collection of them covers X set-theoretically. This in
turn follows from the covering hypothesis for {X ′

i} in X ′ and the surjectivity of X ′ onto X.
Finally, we check that the compatibility with respect to change in the base field is satisfied when S is

pseudo-separated or quasi-separated. Let k′/k be an analytic extension field, and let S̃′ → S′ be the extension
of scalars on S̃ → S. The open immersion S≥h → S is quasi-compact, so the induced map k′⊗̂k(S≥h)→ S′ is
also an open immersion as well as quasi-compact. By pullback along the finite surjection S̃′ → S′ we deduce
that the image of k′⊗̂k(S≥h) in S′ is precisely the image S′≥h of (S̃′)≥h in S′. To check that k′⊗̂k(S>h)→ S′

is an open immersion onto the admissible open S′>h in S′ we simply note that the source has an admissible
covering given by the collection {k′⊗̂k(S≥h′)}h<h′≤1 = {S′≥h′}h<h′≤1 that maps isomorphically onto an
admissible cover of S′>h. �

Here is an analogue of Corollary 3.1.2:

Corollary 3.2.5. Let A → S be as in Theorem 3.2.3, and assume that S is quasi-separated and admits a
locally finite admissible affinoid cover. All conclusions in Corollary 3.1.2 hold in this case.

Proof. The proof is essentially identical to the proof of Corollary 3.1.2 because the only role of fpqc maps of
affinoids in that proof is that they induce surjections on Berkovich spaces. Since finite surjections between
affinoids have the same property, the proof of Corollary 3.1.2 carries over to the new setting. �

Remark 3.2.6. If A/S admits a formal semi-abelian model after local finite surjective base change in the
sense of §1.2, then the conclusions of Theorem 3.2.3 and Corollary 3.2.5 apply with p−1/8 replaced by 1/p;
cf. Remark 3.1.3.
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4. Construction of canonical subgroups

The main result in the theory is a “fibral” existence theorem in §4.1, and it rests on a technique of analytic
continuation from the ordinary case. This analytic continuation argument requires an intermediate general
result (treated in §4.2) concerning the geometry of affinoid curves. The relativization of the fibral theorem
(see Theorem 4.3.1) is a straightforward application of the existence of Chai–Faltings compactifications, and
the relation between the level-n canonical subgroup and the kernel of the n-fold relative Frobenius map
modulo p1−ε also works out nicely; these and other refinements are treated in §4.3.

4.1. Fibral construction. The main existence theorem in the fibral case is:

Theorem 4.1.1. Fix a prime p and positive integers g and n. There exists h = h(p, g, n) ∈ (p−1/8, 1)
monotonically increasing in n (for fixed p and g) such that for any analytic extension field k/Qp and any
g-dimensional abelian variety A over k with Hasse invariant h(A) > h,

(1) a level-n canonical subgroup Gn exists in A[pn],
(2) (A[pn]/Gn)∨ ⊆ A∨[pn] is the level-n canonical subgroup in A∨.

Moreover, for any rn ∈ (p−1/pn−1(p−1), 1) we can pick h(p, g, n) so that Gn = A[pn]0≤rn
for any g-dimensional

abelian variety A/k with h(A) > h and arbitrary k/Qp.

Remark 4.1.2. In the case of a principally polarized abelian variety A with h(A) > h(p, g, n), assertion (2)
in the theorem says that Gn is a Lagrangian (i.e., maximal isotropic) subgroup for the induced perfect Weil
symplectic form on A[pn]. It is also worth noting at the outset that the proof consists of three essentially
different cases: the principally polarized case (with arbitrary potentially semistable reduction type), the
general good reduction case, and finally the general case. It is essential that we have universal control over
the radius rn in order to push through the proof of the general case (see Step 7 in the proof of Theorem
4.1.1).

Let us sketch the strategy of proof of Theorem 4.1.1. In the principally polarized case we will use
Berkovich’s étale cohomology theory for pn-torsion sheaves arising from pn-torsion in the “universal” semi-
abelian scheme over a Chai–Faltings compactification YQp

of Ag,1,N/Qp
(with a fixed N ≥ 3 not divisible

by p) to solve our problem by “smearing out” from the ordinary locus. (Of course, we have to extend
the notions of ordinarity and canonical subgroup to the semi-abelian fibers over Y an

Qp
.) This smearing-out

process gives rise to difficult connectivity problems that we do not know how to solve, and such problems are
circumvented by using Berkovich’s description of étale cohomology for germs along locally closed subsets.
The quasi-compactness of the base space Y an

Qp
is essential for the success of this step, and it is the reason

we can find a sufficient strict lower bound hpp(p, g, n) < 1 in the principally polarized case. In contrast, the
Zariski-open subset A an

g,1,N/Qp
⊆ Y an

Qp
is not quasi-compact. Since the construction of hpp(p, g, n) rests on

compactness arguments (on Berkovich spaces), it is not explicit.
To settle the case of good reduction in any dimension g with the sufficient strict lower bound

hgood(p, g, n) = hpp(p, 8g, n)1/8

on the Hasse invariant, we shall first use Zarhin’s trick to construct a level-n canonical subgroup in the
principally polarized 8g-dimensional abelian variety (A × A∨)4 when A has good reduction and h(A) >
hgood(p, g, n). This construction will also provide universal control on “how far” the canonical subgroup is
from the origin of the formal group of the unique formal abelian model. This will enable us to infer that
the level-n canonical subgroup in (A×A∨)4 must have the form (Gn ×G′n)4 for subgroups Gn ⊆ A[pn] and
G′n ⊆ A∨[pn], so the fibers of Gn and G′n are finite free Z/pnZ-modules with ranks adding up to 2g, and by
construction these are level-n canonical subgroups in A and A∨ if and only if each has rank g. Since A/k has
a polarization of some (unknown) degree d2 ≥ 1 (that may be divisible by p), the good reduction hypothesis
enables us to exploit the geometry of Ag,d,N/Zp

as follows. By a theorem of Norman and Oort, the ordinary
locus in Ag,d,N/Fp

is a Zariski-dense open and Ag,d,N/Zp
is a relative local complete intersection over Zp.

Thus, for any closed point x ∈ Ag,d,N/Fp
(such as arises from the reduction of our chosen polarized abelian

variety equipped with an N -torsion basis, after a preliminary argument to reduce to the case [k : Qp] <∞)
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we may use slicing to find a Zp-flat curve Z in Ag,d,N/Zp
whose Qp-fiber is smooth and whose closed fiber

passes through x and has all of its generic points in the ordinary locus of Ag,d,N/Fp
. In conjunction with a

connectivity result for affinoid curves (applied to the generic fiber Zrig of the p-adic completion Z of Z), this
will allow us to solve our problems in the good reduction case by analytic continuation from the ordinary
case.

Finally, in the general case the semistable reduction theorem provides a unique formal semi-abelian model
A for A after a finite extension on k, and the formal abelian part B of A is uniquely algebraizable to an
abelian scheme over the valuation ring. This unique algebraization has generic fiber B that is an abelian
variety satisfying h(B) = h(A) and dimB ≤ dimA; perhaps B = 0, but then we are in the purely toric
(and hence ordinary) case that is trivial. Since rn > |ζpn − 1| and the quotient map πn : A[pn]0 → B[pn]0

of finite flat R-groups has kernel T[pn] given by pn-torsion in the formal torus kernel T of the quotient
map A → B, we will deduce that the πn-preimage of the closure of a level-n canonical subgroup of B has
generic fiber that is a level-n canonical subgroup of A. (Here we have to use the settled principally polarized
case without good reduction hypotheses.) Thus, the existence problem in the general case is solved using
h(p, g, n) = max1≤g′≤g hgood(p, g′, n). This concludes our sketch of the proof of Theorem 4.1.1 and we now
turn to the proof itself, given in eight steps (with Steps 3 and 4 containing the key input from the theory of
Berkovich spaces):

Step 1. In the first five steps we will be working with certain families and not with a single abelian variety
over a field as in the statement of Theorem 4.1.1, so there will be no risk of confusion caused by the fact that
we shall use the notation A in Steps 1–5 to denote a certain fixed analytic family of semi-abelian varieties
depending on p and g (and not on n). Fix a positive integer N ≥ 3 not divisible by p, and let G→ Y be the
semi-abelian scheme over a Chai–Faltings compactification Y of Ag,1,N/Zp

(with G extending the universal
abelian scheme over Ag,1,N/Zp

). We let A→ X denote the analytification of the Qp-fiber of G→ Y , and we
let A→ X denote the p-adic completion of G→ Y , so A an

g,1,N/Qp
is a Zariski-open subset of X and by [C1,

5.3.1] we have that Xrig = X (by Zp-properness of Y ) and Arig is an admissible open X-subgroup of A.
For each x ∈ X = Xrig with associated valuation ring Rx ⊆ k(x) we may uniquely extend x to a Spf(Rx)-

point of X, so the formal semi-abelian group scheme Ax over Rx is a “model” for the semi-abelian rigid
space Ax in the sense that Arig

x is a quasi-compact admissible open subgroup of the smooth and separated
k(x)-group Ax. This condition uniquely determines Ax in terms of Ax, by [BL2, Lemma 1.3], so we can define
Ax[pn]0, Ax[pn]0≤r, h(Ax), and the concept of level-n canonical subgroup in Ax by using the g-parameter
formal group Âx over Rx even when Ax is not proper. This also works after extension of scalars from Qp

to any analytic extension field k (using formal schemes over its valuation ring). If R is the valuation ring
of such a k then the global formal “model” A/R → X/R for A/k → X/k = Xrig

/R ensures that the locus X>h
/k

(resp. X≥h
/k ) in X/k defined by the condition h(Ax) > h (resp. h(Ax) ≥ h) for h ∈ [1/p, 1) ∩

√
|k×| (resp.

h ∈ (1/p, 1] ∩
√
|k×|) is an admissible open whose formation commutes with any analytic extension on k.

Working over the discretely-valued base field Qp, we will show that for any rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ
there exists h0 = h0(rn) ∈ (1/p, 1) sufficiently close to 1 such that the subgroup Ax[pn]0≤rn

has size png for
any fiber Ax of A→ X whose Hasse invariant h(Ax) strictly exceeds h0 (so by induction on n, the subgroup
Ax[pm]0≤rn

has size pmg for all 1 ≤ m < n, at the expense of possibly increasing h0). Granting this for a
moment, the same technique as in the case g = n = 1 [C4, Thm. 4.1.3] then provides a unique finite étale
subgroup Gn in A[pn]|X>h0 such that Gn induces the level-n canonical subgroup on fibers; this is such a
crucial step in the construction that we specifically wrote the proof of [C4, Thm. 4.1.3] for g = n = 1 so
that it is transparent that the method carries over to the case now being considered. (The key input is
the finiteness criterion for flat rigid-analytic morphisms in [C4, Thm. A.1.2], together with the fact that
Arig → X is the Raynaud generic fiber of a formal semi-abelian scheme A → X.) In view of what we are
temporarily assuming for h0 we get that Gn,x = Ax[pn]0≤rn

in Ax for all x ∈ X>h0 , so it follows (via the role
of the formal semi-abelian scheme A → X in the construction of Gn) that for arbitrary analytic extension
fields k/Qp, Gn/k ⊆ A/k over (X>h0)/k = X>h0

/k gives the level-n canonical subgroup on fibers. Hence,
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h0 also “works” in the principally polarized case over any k/Qp. (It is trivial to eliminate the restriction
rn ∈ pQ by working with rn + θn ∈ pQ for small |θn|.)

We now turn to the problem of finding h0. The method of proof of [C4, Thm. 4.1.3] shows that for any
r ∈ (0, 1) ∩ pQ there is a quasi-compact étale subgroup Gn,≤r in the X-group Arig[pn] ⊆ A[pn] such that
Gn,≤r induces Ax[pn]0≤r on fibers, and that the formation of Gn,≤r commutes with arbitrary extension on
the base field. We want to prove that for each rn ∈ pQ strictly between p−1/pn−1(p−1) and 1 there exists
h0 ∈ (1/p, 1) such that the fibers of Gn,≤rn over the admissible locus with Hasse invariant > h0 are finite
free Z/pnZ-modules of rank g. To construct h0 we shall use étale cohomology on Berkovich spaces.

Step 2. By [Ber2, 1.6.1], for any non-archimedean field K there is an equivalence of categories between
the category of paracompact strictly K-analytic Berkovich spaces and the category of quasi-separated rigid-
analytic spaces over K that have a locally finite admissible covering by affinoid opens. Moreover, this
equivalence is compatible with fiber products and change of the base field. Let ϕ : A → X be the
morphism of Berkovich spaces over Qp that corresponds to the morphism A → X under this equivalence,
so by compatibility with fiber products it follows that A [pn] → X is the morphism associated to the
étale morphism A[pn] → X that analytifies a quasi-finite étale group scheme. The universal properties
of analytification in the category of classical rigid-analytic spaces [C1, §5.1] and in the category of good
Berkovich spaces [Ber2, §2.6] ensure that ϕ is the Berkovich-analytification of the semi-abelian scheme over
the Qp-fiber of a Chai-Faltings compactification of Ag,1,N/Zp

, and likewise for the structural map for the
pn-torsion, so (by [Ber2, 2.6.9, 3.3.11, 3.5.8]) the the separated map of Berkovich spaces A →X is a smooth
group and A [pn]→X is an étale morphism (in the sense of Berkovich) which is separated with finite fibers.
Since X is quasi-compact and (quasi-)separated, the strictly Qp-analytic space X is compact and Hausdorff.

Let A0 denote the formal completion of A along the identity section of its mod-p fiber; the formal Spf(Zp)-
scheme A0 is not topologically finite type, but Berthelot’s functor as in [deJ, §7] provides a (non-quasi-
compact) rigid space Arig

0 that is a group over Xrig = X. By [deJ, 7.2.5], the canonical morphism of rigid
spaces i : Arig

0 → Arig = A over X is an open subgroup whose fiber over each x ∈ X is the Berthelot generic
fiber of the formal group of the formal semi-abelian model Ax for the semi-abelian rigid space Ax. This open
X-subgroup therefore meets A[pn] in an open X-subgroup of A[pn] whose fiber over each x ∈ X is Ax[pn]0

(see Definition 2.2.3), and (as in the proof of [C4, Thm. 3.2.5]) these properties persist after extension of the
base field to any analytic extension of Qp.

We claim that the X -group map A 0 → A associated to i is an open immersion. This is a special case
of a general lemma that we set up as follows. Let S be a formal scheme topologically of finite type over the
formal spectrum of a complete discrete valuation ring R with fraction field k. Let Y be its formal completion
along a closed subset Y0 in the closed fiber S0. By the reasoning just used over X, the canonical morphism

(4.1.1) i : Yrig → Srig

of quasi-separated rigid-analytic spaces is an open immersion and remains so upon arbitrary extension on
the base field. Under the equivalence in [Ber2, 1.6.1], (4.1.1) induces a morphism of Berkovich spaces and
we have:

Lemma 4.1.3. The morphism of Berkovich spaces associated to (4.1.1) is an open immersion.

Proof. It is sufficient to check this condition after pullback to each of a finite collection of (strictly k-analytic)
k-affinoid domains that cover Srig (such as the domains associated to the Berthelot-rigidifications of finitely
many formal open affines that cover S). Since Berthelot’s functor is compatible with fiber products, and
so is Berkovich’s functor (from “reasonable” rigid-analytic spaces over k to paracompact strictly k-analytic
Berkovich spaces), our problem is thereby reduced to the affine case S = Spf(B) and Y = Spf(B′) where
B′ is the completion of B along some ideal (f1, . . . , fm).

There is a natural isomorphism of topological B-algebras

(4.1.2) B′ ' B[[T1, . . . , Tm]]/(Tj − fj).

Let S be the Berkovich space associted to Srig, and let ∆ be the (Berkovich) open unit disc. By the
compatibility of the Berthelot and Berkovich functors with respect to closed immersions (and fiber products),
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(4.1.2) identifies the Berkovich space Y associated to Yrig with the Zariski-closed locus in S ×∆m cut out
by the simultaneous conditions Tj = fj where T1, . . . , Tm are the coordinates on the factors ∆ of ∆m. By
universal properties, the morphism Y → S is an isomorphism onto the open domain in S where |fj | < 1 for
all j. This completes the proof that the Berkovich-space map associated to (4.1.1) is an open immersion. �

Step 3. Now we study the smooth and separated group A → X with étale torsion levels A [pn] → X
whose fibers are finite. The fibral Berkovich group Ax over the completed residue field at any x ∈ X
is associated to the semi-abelian rigid space Ax having formal semi-abelian model Ax over the valuation
ring Rx at x. In particular, each fiber Ax has a Hasse invariant. Over each of finitely many strictly Qp-
analytic affinoid subdomains Dα that cover X and are sufficiently small, the pullback of A 0 over Dα splits
as a product of Dα with a g-dimensional open unit polydisc (with coordinates that measure the “size” of
geometric points of A 0 in fibers over Dα in accordance with Definition 2.2.5).

Since the compact Hausdorff space X is covered by a finite set of strictly analytic domains arising from
open affinoids in X, for any h ∈ (1/p, 1] the set X >h (resp. X ≥h) classifying points whose fibers have
Hasse invariant > h (resp. ≥ h) is an open (resp. closed) set in X , and likewise with h = 1/p when
considering X >h. The intersection of X ≥h with any sufficiently small affinoid subdomain D in X is an
affinoid subdomain of D because this subdomain of D is defined by the condition that a certain analytic
function on D has absolute value ≥ h (so in particular, if h ∈ pQ and D is a sufficiently small strictly
Qp-analytic domain in the strictly Qp-analytic space X then D ∩X ≥h is a strictly Qp-analytic affinoid
subdomain in D).

Let A [pn]0 denote the open subgroup A [pn]∩A 0 in A [pn], so A [pn]0 is étale and separated over X with
finite fibers. Since all of our preceding constructions in the classical rigid-analytic category are compatible
with arbitrary analytic change of the base field, the fibers of A 0 and A [pn]0 in the fiber of A over any point
x ∈X have the expected interpretations in terms of the semi-abelian rigid space Ax associated to Ax. Since
A 0 is an open subgroup in A , it is easy to see that for any r ∈ (0, 1) the locus A 0

<r (resp. A 0
≤r) in A 0 that

meets each fiber Ax of A →X in the set of points of size < r (resp. ≤ r) in the fibral “formal group” A 0
x

is an open (resp. compact, hence closed) subset in A . It follows that the respective intersections

A [pn]0<r = A [pn] ∩A 0
<r, A [pn]0≤r = A [pn] ∩A 0

≤r

are respectively open and closed subsets in the étale and separated X -group A [pn]0, with A [pn]0<r an open
X -subgroup of A [pn].

All fibers A [pn]0x are finite étale with rank ≥ png, and (as in Remark 2.2.10) the rank is exactly png if and
only if x lies in the closed subset X ≥1 in X . Let ϕn : A [pn]0 → X be the étale and separated structural
morphism. We wish to use “smearing out” from fibers of ϕn, analogous to the structure theorem for étale and
separated morphisms in complex-analytic geometry. To keep the picture clear, we shall therefore consider a
more general situation. Let f : Y → Z be a separated étale morphism with finite fibers between Berkovich
spaces over a non-archimedean field. For any z ∈ Z and sufficiently small open U in Z around z there is
a decomposition

(4.1.3) f−1(U ) = V
∐

V ′

with V finite étale over U and V ′
z = ∅. Indeed, by definition of what it means to be étale, for each of the

finitely many y ∈ f−1(z) there is an open V (y) around y such that the restriction fy : V (y) → f(V (y)) is
finite étale (with target open in Z since f is a flat quasi-finite morphism [Ber2, 3.2.7]). By [Ber2, 3.1.2] we
may take the V (y)’s to be arbitrarily small, and in particular to be pairwise disjoint. Thus, taking U inside
of ∩yf(V (y)) and V = ∪f−1

y (U ) then gives (4.1.3) because the union defining V is disjoint and each open
immersion f−1

y (U )→ f−1(U ) has closed image (as f is separated and fy is finite). Since Berkovich spaces
are locally connected, we can find arbitrarily small U as in (4.1.3) such that U is connected, and for such
U the decomposition as in (4.1.3) is unique because each connected component of V must have open and
closed image in U (so V is exactly the union of the connected components of f−1(U ) which meet f−1(z)).
In view of this uniqueness, when U is connected we see that the formation of V is compatible with fiber
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products over Z and is functorial (for a fixed U ). In particular, if Y has a structure of Z -group then V is
an open and closed U -subgroup in f−1(U ) when U is connected.

We apply the preceding considerations to the map f = ϕn to conclude that for all x ∈X and sufficiently
small connected open neighborhoods Ux around x, ϕ−1

n (Ux) contains a unique open Ux-subgroup that is
finite étale over Ux and has degree equal to the degree of the fiber ϕ−1

n (x) over the completed residue field
on X at x. In particular, if x is in the closed subset X ≥1 of points for which Ax has Hasse invariant
1 then ϕ−1

n (Ux) contains a unique open subgroup G(x) that is finite étale over Ux with rank png. These
ranks are constant as we vary such x, though the overlaps Ux ∩Ux′ may be disconnected and hence all we
can say is that G(x) and G(x′) coincide on the connected components of Ux ∩ Ux′ that meet X ≥1. We
want to glue these G(x)’s (and then exploit the compactness of X ≥1) to make an “overconvergent” level-n
canonical subgroup Gn, but disconnectedness problems seem to make it impossible to do this by brute force.
Moreover, we will not directly construct Gn as a level-n canonical subgroup. Instead, in Step 4 we will build
a finite étale open subgroup G in A over an open neighborhood U of X ≥1 ⊆ X such that G “glues”
the G(x)’s, and then we will use compactness of X to find h0 ∈ (1/p, 1) such that U contains X >h0 and
G|X >h0 is a fibrally level-n canonical subgroup given by a radius rn that we chose a priori in the interval
(p−1/pn−1(p−1), 1).

Step 4. We circumvent the difficulties with disconnectedness at the end of Step 3 by using étale coho-
mology to prove:

Lemma 4.1.4. There exists an open subset U ⊆ X containing X ≥1 over which there is an open U -
subgroup G ⊆ ϕ−1

n (U ) that is finite étale of degree png over U . If we discard all (necessarily open and
closed) connected components of U that do not meet X ≥1 then G is unique.

The “overconvergence” provided by G → U is to be considered as analogous to the classical extension
theorem [Go, II, 3.3.1] concerning sections along closed sets for sheaves of sets on a paracompact topological
space. Rather amusingly, this fact from sheaf theory on paracompact spaces is used in the proof of [Ber2,
4.3.5], which in turn is the key technical input in the proof of Lemma 4.1.4.

Proof. The uniqueness aspect is obvious, and for existence we shall use the theory of quasi-constructible
étale sheaves [Ber2, §4.4]. We now let k be an arbitrary non-archimedean field (with non-trivial absolute
value, as always), and we shall consider a very general situation for which we will gradually impose additional
hypotheses to resemble the setup in the statement of the lemma.

Consider a strictly k-analytic Berkovich space Y and a quasi-finite, étale, and separated abelian Y -group
G → Y ; the strictness hypothesis on Y ensures (see [Ber2, 4.1.5]) that representable functors are sheaves
for the étale site on Y , and it also ensures (by descent theory for coherent sheaves [BG, Thm. 3.1], applied
in the case of étale descent for coherent sheaves of algebras) that the category of étale sheaves of sets on Y
that are locally constant with finite stalks is equivalent to the category of finite étale Berkovich spaces over
Y . We assume that the fiber-degrees for G → Y are bounded above, and for each n ≥ 0 we let Yn be the
set of y ∈ Y such that the fiber Gy has degree ≤ n (and we define Yn = ∅ for n < 0). The “smearing out”
arguments as in (4.1.3) show that the Yn’s are a finite increasing family of closed sets that exhaust Y . We
may consider G as a sheaf on the étale site for Y , and for y ∈ Y the y-stalk of this sheaf is identified with
Gy as a Galois module for the residue field at y. Our first claim is that this sheaf is quasi-constructible by
means of the stratification defined by the Yn’s. That is, the pullback of G to a sheaf on the étale site of the
germ (Y ,Yn − Yn−1) is finite locally constant for each n ≥ 0.

We argue by descending induction on n. If nmax denotes the maximal fiber-degree for G over Y then over
the open stratum Y − Ynmax−1 the fiber-degree of G is constant and hence G is finite étale over this open
stratum. To induct, suppose that G has quasi-constructible restriction Gn on the open Un = Y − Yn−1 for
some n, and let jn : Un ↪→ Un−1 denote the canonical inclusion. We may assume n > 0. The pullback of the
étale sheaf Gn−1/jn!(Gn) to the germ (Y ,Yn−1 −Yn−2) is finite locally constant by means of the “smearing
out” argument (akin to (4.1.3)) at points in Yn−1 − Yn−2. (To do this calculation most easily, use [Ber2,
4.3.4] to permit replacing Y with the open subset Un−1 in which Yn−1 −Yn−2 is closed.) Hence, the exact
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sequence of abelian étale sheaves

0→ jn!(Gn)→ Gn−1 → Gn−1/jn!(Gn)→ 0

on Un−1 implies that Gn−1 is quasi-constructible on Un−1 because the outer terms are quasi-constructible
(using the inductive hypothesis for Gn) and quasi-constructibility is preserved under extensions (by [Ber2,
4.4.3], whose proof appears to be incorrect – due to an erroneous reduction to constant sheaves with finite
cyclic fibers – but which is nonetheless true by another argument). This descending induction shows that
G = G−1 is quasi-constructible on Y with finite locally constant restriction to each germ (Y ,Yn − Yn−1),
as desired.

Now we assume that Y is paracompact and Hausdorff. Let ν ≥ 0 be the minimal fiber-degree of G over
Y , so Yν−Yν−1 = Yν is a closed set and hence the germ (Y ,Yν−Yν−1) is a paracompact germ. We impose
the assumption that G is a Z/mZ-sheaf for some m ≥ 1 and that at points of Yν the stalks are finite free
over Z/mZ. We shall show that over some open neighborhood of Yν in Y there exists a finite étale open
subgroup in G with degree ν, so this will prove the lemma upon taking k = Qp, Y = X , and G = A [pn]0

(so ν = png and Yν = X ≥1 by Lemma 2.2.4).
The quotient sheaf G /jν+1!Gν+1 is finite locally constant on the germ (Y ,Yν). Thus, in view of the

paracompactness of Y , by [Ber2, 4.4.1] (adapted to abelian sheaves) we may find an open subset U ⊆ Y
containing Yν and a finite locally constant m-torsion abelian étale sheaf F on U such that on the étale site
of the germ (U ,Yν) = (Y ,Yν) there is an isomorphism of pullbacks

ξ : F |(Y ,Yν) ' (G /jν+1!Gν+1)|(Y ,Yν).

By shrinking U we may arrange that the stalks of F are finite free Z/mZ-modules. The abelian sheaf F
is represented by some finite étale commutative U -group that we shall also denote by F . By [Ber2, 4.3.5]
applied to the pullback of H omZ/mZ(F ,G ) to the paracompact germ (Y ,Yν), we can shrink U so that
there is a map ψ : F → (G /jν+1!Gν+1)|U inducing the given isomorphism ξ over the paracompact germ
(Y ,Yν). We need to lift ψ to a map ψ̃ : F |U ′ → G |U ′ for some open U ′ ⊆ U containing Yν , as then
shrinking U ′ some more around Yν will ensure (by separatedness of the quasi-finite étale G over Y ) that ψ̃
is injective and corresponds to an open subgroup in G |U ′ that is finite étale of degree ν.

To construct the lifting ψ̃, it suffices to find an open U ′ ⊆ U containing Yν such that the connecting
map

(4.1.4) δ : HomZ/mZ(F |U ′ , (G /jν+1!Gν+1)|U ′)→ Ext1Z/mZ(U ′;F , jν+1!Gν+1)

kills the element corresponding to ψ|U ′ . Since F is finite locally free over Z/mZ, the Ext-group may be
identified with the étale cohomology group H1(U ′,F∨ ⊗Z/mZ jν+1!Gν+1), where F∨ is the Z/mZ-linear
dual, so by the compatibility of (4.1.4) with respect to shrinking U ′ around Yν it suffices to prove

lim−→
U ′⊇Yν

H1(U ′,F∨ ⊗Z/mZ jν+1!Gν+1) = 0.

By [Ber2, 4.3.5], this limit is identified with the étale cohomology group

H1((Y ,Yν), (F∨ ⊗Z/mZ jν+1!Gν+1)|(Y ,Yν))

for the pullback sheaf on the étale site of the paracompact germ (Y ,Yν). This pullback sheaf has vanishing
stalks at points in the closed subset Yν , so by [Ber2, 4.3.4(ii)] it vanishes as a sheaf on the site of the germ
(Y ,Yν). �

Step 5. We fix a choice of open U containing X ≥1 as in Lemma 4.1.4 such that each connected
component of U meets X ≥1, so over U there exists a unique open U -subgroup G ⊆ A [pn]0|U that is finite
étale with rank png. We have a disjoint-union decomposition of quasi-finite, étale, and separated U -spaces

(4.1.5) A [pn]0|U = G
∐

Z .

All fibers of the U -finite étale G are finite free of rank g as modules over Z/pnZ, as this holds on stalks
at points in the subset X ≥1 ⊆ U that meets all connected components of U . The Hasse invariant is a
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continuous function X → [1/p, 1], and X ≥1 is the locus with Hasse invariant 1. Hence, by compactness of
X it follows that there exists h0 ∈ (1/p, 1) such that X ≥h0 ⊆ U .

For any h ∈ [h0, 1), we write G>h to denote G|X >h . For any rn ∈ (p−1/pn−1(p−1), 1), the open X -
subgroup A [pn]0<rn

in A [pn]0 meets the finite étale X >h-subgroup G>h in an open subgroup that contains
the entire fiber over any point in the compact subset X ≥1. Hence, by properness of G>h → X >h we may
find hn ∈ (h0, 1) such that there is an inclusion

(4.1.6) G>hn ⊆ A [pn]0<rn
|X >hn

of opens in A |X >hn . Since X ≥h′ is compact for all h′ ∈ (hn, 1), it follows that all points in the fibers of
G>hn (viewed in fibers of A [pn]0) over X ≥h′ have size ≤ rn − ε (in the sense of Definition 2.2.5) for any
such h′, with a small ε > 0 that depends on h′ (and on rn).

We shall now prove that the reverse inclusion to (4.1.6) holds if we take hn sufficiently close to 1 (depending
on rn). Assume to the contrary, so we get a sequence of points xm ∈ U such that h(Axm) → 1− and
Axm

[pn]0<rn
meets the fiber Zxm

in some point zm, with Z as in (4.1.5). By compactness of X there is a
cofinal map j : I → {1, 2, . . . } from a directed set I to the natural numbers such that the subnet {xj(i)}i∈I

has a limit x ∈ X ≥1 ⊆ U . (We have to use subnets rather than subsequences because X is generally not
first-countable.) Since the closed set A [pn]0≤rn

restricted over the compact set X ≥h′ ⊆ U is itself compact
for any h′ ∈ (hn, 1), further passage to a subnet allows us to suppose {zj(i)} has a limit z in Ax[pn]0, and
by (4.1.5) we must have z ∈ Z since Z is open and closed in A [pn]0|U . We have Ax[pn]0 = Gx because
h(Ax) = 1, so Zx = ∅. Since z ∈ Zx, this is a contradiction and so completes our treatment in the case of
principally polarized abelian varieties (with a fixed dimension g ≥ 1). We let hpp(p, g, n) be the universal
lower bound on Hasse invariants that was constructed in this argument, and we may trivially arrange that
it is monotonically increasing in n (for fixed p and g).

Step 6. For the proof of (1) in the theorem, along with the universal “size description,” it remains to
infer the general case from what we have just proved in the principally polarized case. We fix p, g, and
n as at the outset, as well as rn ∈ (p−1/pn−1(p−1), 1), and we consider an abelian variety A of dimension
g over an analytic extension field k/Qp. The abelian variety A admits a polarization over k. The abelian
variety (A × A∨)4 is therefore principally polarized with dimension 8g, and (using Theorem 2.3.4) it has
Hasse invariant h(A)8 provided that h(A) > p−1/8. Thus, by taking

h(A) > hpp(p, 8g, n)1/8 > p−1/8

we ensure that (A × A∨)4 admits a level-n canonical subgroup that is “pn-torsion with size ≤ rn,” so the
level-n canonical subgroup in (A×A∨)4 is (Gn×G′n)4 for the subgroups Gn = A[pn]0≤rn

and G′n ⊆ A∨[pn]0≤rn

whose geometric fibers must therefore be finite free Z/pnZ-modules with ranks adding up to 2g. This shows
that A×A∨ has a level-n canonical subgroup, namely Gn ×G′n. We shall prove for A with good reduction
that for a suitable universal constant h(p, g, n) ∈ [hpp(p, 8g, n)1/8, 1) that is independent of k, the factors
Gn and G′n in A[pn] and A∨[pn] each have order png if h(A) > h(p, g, n). We also have to prove that
for such A these factors annihilate each other with respect to the Weil-pairing between A[pn] and A∨[pn]
by taking h(p, g, n) sufficiently near 1. The following argument shows that hgood(p, g, n) = hpp(p, 8g, n)1/8

works as such an h(p, g, n) when we restrict our attention to those g-dimensional abelian varieties A with
good reduction.

Pick a polarization on A, say with degree d2. Choose N ≥ 3 relatively prime to p and increase k so that
A[N ] and µN are k-split. Fix a trivialization of µN over k (so this uniquely extends to a trivialization of µN

over R), and use this to determine a dual basis of the N -torsion in the dual of any abelian scheme over R
whose N -torsion is endowed with a choice of ordered basis. The given data of A with its polarization and a
choice of N -torsion basis gives rise to a k-point on the moduli scheme Ag,d,N/k that is of finite type over k.
The splitting of µN and the relativization of Zarhin’s trick provide a morphism

ζd : Ag,d,N/k → A8g,1,N/k

of k-schemes such that the functorial effect of ζd on underlying abelian schemes (ignoring the polarization
and level structure) is A (A×A∨)4. For any h ∈ (1/p, 1]∩

√
|k×| the ζan

d -preimage of the locus with Hasse
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invariant h on A an
8g,1,N/k is the locus with Hasse invariant h1/8 on A an

g,d,N/k, and it follows from Theorem 3.1.1
that if h ∈ (p−1/8, 1] ∩

√
|k×| then the locus of points on A an

g,d,N/k with Hasse invariant > h is an admissible
open subset. Note also that ζd carries the good-reduction locus into the good-reduction locus because it
extends to a morphism on moduli schemes over R (as µN is R-split, since N ∈ R× and µN is k-split).

In view of Example 2.1.7 and the relative construction of canonical subgroups over analytic domains in
the analytified (compactified) moduli spaces for principally polarized abelian schemes in Steps 1–5, pullback
along ζan

d provides a closed finite étale subgroup Hn,d inside of the finite étale pn-torsion on the 4-fold

product of the universal polarized abeloid space and its dual over Mn,d/k
def= (A ∧

g,d,N/R)rig,>hgood(p,g,n) such
that on fibers it is a level-n canonical subgroup. As in the case of schemes over a base scheme, any rigid-
analytic map between finite étale spaces over a rigid space factors uniquely through a finite étale surjection,
and any two finite étale closed subspaces of a finite étale space coincide globally if they coincide in a single
fiber over each connected component of the base. Thus, by using projection to factors and the preceding
fibral analysis we see that Hn,d = (Gn,d × G ′n,d)

4 for unique finite étale closed Mn,d/k-subgroups Gn,d and
G ′n,d in the respective pn-torsion of the universal polarized abeloid and its dual over Mn,d/k; both of these
closed subgroups are étale-locally finite free Z/pnZ-module sheaves. Obviously the formation of Mn,d/k,
Gn,d, and G ′n,d is compatible with change in the base field. For example, these all arise from the analogous
constructions over Qp and Zp.

Over each connected component of Mn,d/k the Z/pnZ-ranks of Gn,d and G ′n,d are constant and add up
to 2g, and the relative Weil pairing between them vanishes if it does so on a single fiber. If a connected
component of Mn,d/k contains an ordinary point ξ then over that connected component the orders of Gn,d and
G ′n,d are equal to png (by checking on the ξ-fiber). Moreover, we claim that over the connected component of
an ordinary point ξ in Mn,d/k the groups Gn,d and G ′n,d must be orthogonal (and hence be exact annihilators)
under the Weil pairing on pn-torsion. By passing to the fiber at ξ, the problem comes down to the vanishing
of the Weil pairing between the multiplicative identity components of the p-divisible groups of the formal
abelian models (with ordinary reduction) for the abelian variety and dual abelian variety at ξ. More generally,
we have:

Lemma 4.1.5. Let A be an abelian variety over k having semistable reduction and formal semi-abelian model
AR over Spf(R) with ordinary abelian part modulo mR. Let A′R be the corresponding formal semi-abelian
model for A∨, so it too has ordinary abelian part modulo mR.

The Weil pairing between A[p∞] and A∨[p∞] makes A[p∞]0k and A′[p∞]0k orthogonal to each other.

Proof. By the final observation in Example 2.1.11, after a harmless finite extension of the base field we may
assume that A and A∨ extend to semi-abelian schemes AR and A′R over SpecR. By Example 2.1.10 the
respective completions ÂR and Â′R of AR and A′R along an ideal of definition of R are the formal semi-
abelian models AR and A′R as in Theorem 2.1.9, so we have unique isomorphisms AR[p∞] ' AR[p∞] and
A′R[p∞] ' A′R[p∞] respecting the identifications of the k-fibers inside of A[p∞] and A∨[p∞] respectively. Our
problem is therefore to prove that the Weil pairing between A[p∞] and A∨[p∞] makes AR[p∞]0k orthogonal
to A′R[p∞]0k.

Since R is a henselian local ring, it is a directed union of henselian local noetherian subrings D. By
standard direct limit arguments, we can descend AR and A′R to semi-abelian schemes AD and A′D over some
such D. Likewise, the identity components AD[p∞]0 and A′D[p∞]0 descend the multiplicative p-divisible
groups AR[p∞]0 and A′R[p∞]0, so these descended p-divisible groups over D are also multiplicative. If we let
F ⊆ k be the fraction field of D then the Weil pairing between the F -fibers AF [p∞] and A′F [p∞] = A∨F [p∞]
descends the Weil pairing between A[p∞] and A∨[p∞], so it suffices to prove that this pairing over F makes
the F -fibers AD[p∞]0F and A′D[p∞]0F orthogonal.

Rather generally, if Γ and Γ′ are any two multiplicative p-divisible groups over a local noetherian domain
D with residue characteristic p and fraction field F then any Gm[p∞]-valued bilinear pairing between the
F -fibers must be zero. In the irrelevant case char(F ) = p this is obvious for topological reasons. In case of
generic characteristic 0 we use local injective base change to assume that D is a strictly henselian discrete
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valuation ring, so Γ and Γ′ are powers of Gm[p∞] and the p-adic cyclotomic character of F is non-trivial (it
has infinite order). The vanishing is therefore also obvious in characteristic 0. �

To settle the case of good reduction with the strict lower bound hgood(p, g, n) ∈ (p−1/8, 1) ∩ pQ on the
Hasse invariant, it remains to show that for every d ≥ 1 and k/Qp there is an ordinary point on each
connected component Y of Mn,d/k. That is, we claim that such a component has non-empty locus with
Hasse invariant equal to 1. We will reduce our problem to the case k = Qp. (What really matters is that
we reduce to the case of a discretely-valued field.) The trick is to exploit finiteness properties in the theory
of connectivity for rigid spaces; the following argument uses completed algebraic closures but it could be
rewritten to work with only finite extensions. If k′/k is a finite extension then each connected component of
Y ⊗k k

′ is finite flat over Y and so surjects onto Y . Thus, our problem is unaffected by passage to a finite
extension on the base field. (By Theorem 3.1.1, or Theorem 3.2.3, the formation of the locus with Hasse
invariant 1 in Mn,d/k is compatible with change of the base field.) In particular, by [C1, Cor. 3.2.3] we may
suppose that Y is geometrically connected. Hence, again using the compatibility with change of the base
field in Theorem 3.1.1, we may assume that k is algebraically closed and so k contains Cp. Since connected
rigid spaces over Cp are geometrically connected, we may assume k = Cp. By [C1, Cor. 3.2.3], for each
connected component Z of Mn,d/Qp

there exists a finite extension k/Qp such that all connected components
of Z ⊗Qp

k are geometrically connected. It follows that each connected component Y of Mn,d/Cp
arises

as a base change of a connected component of Z/k0 for a suitable Z and finite extension k0/Qp (perhaps
depending on Y ). This completes the reduction of our problem to the case k = Qp.

Letting Xd = A ∧
g,d,N/Zp

be the p-adic completion of the finite type moduli scheme Ag,d,N/Zp
over Zp, it

is enough to prove that for any h ∈ (p−1/8, 1) ∩ pQ (such as hgood(p, g, n)) every connected component of
(Xrig

d )>h contains an ordinary point. The existence of such ordinary points is proved in Theorem 4.2.1 below.
We have settled the case of good reduction. For the initial fixed choice rn ∈ (p−1/pn−1(p−1), 1) we

constructed hgood(g, p, n) such that any g-dimensional A with good reduction and Hasse invariant h(A) >
hgood(p, g, n) admits a level-n canonical subgroup Gn given by the set of pn-torsion points with size ≤ rn,
and also (A[pn]/Gn)∨ ⊆ A∨[pn] is the level-n canonical subgroup of the g-dimensional abelian variety A∨

with good reduction and Hasse invariant h(A∨) = h(A) > hgood(p, g, n).
Step 7. Now we consider the same initial setup as in Step 6 except that we allow for the possibility that

(after a harmless finite extension of the base field) A has semi-stable reduction with non-trivial toric part.
We define

h(p, g, n) = max
1≤g′≤g

hgood(p, g′, n) ∈ (p−1/8, 1),

and we assume h(A) > h(p, g, n). By Theorem 2.1.9 there exists a (projective) abelian scheme BR over R
and a short exact sequence of connected p-divisible groups

0→ T[p∞]→ AR[p∞]0 → BR[p∞]0 → 0

over R with T a formal torus and AR a formal semi-abelian scheme that is a formal semi-abelian model for
A. By Example 2.3.2, the Hasse invariant of A is equal to that of the abelian variety B that is the generic
fiber of BR. Let g′ = dimB. If g′ > 0 then h(B) > hgood(g′, p, n), and if g′ = 0 then A is ordinary (and
h(B) = h(A) = 1). The subgroup B[pn]0≤rn

in B[pn]0 = BR[pn]0k is therefore a level-n canonical subgroup of
B with the arbitrary but fixed choice of rn ∈ (p−1/pn−1(p−1), 1) that has been used throughout the preceding
steps. Since rn > p−1/pn−1(p−1) we have

T[pn]k ⊆ A[pn]0≤p−1/pn−1(p−1) ⊆ A[pn]0≤rn
,

so there is an evident left-exact sequence

(4.1.7) 0→ T[pn]k → A[pn]0≤rn
→ B[pn]0≤rn

and the geometric fibers of T[pn]k and B[pn]0≤rn
are free with respective ranks g − g′ and g′ as Z/pnZ-

modules. Thus, A[pn]0≤rn
has order ≤ png and if equality holds then (4.1.7) is short exact with middle term
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that is Z/pnZ-free of rank g, so A[pn]0≤rn
is a level-n canonical subgroup when equality holds. The same

argument (with the same rn!) applies to A∨[pn]0≤rn
, so in particular this group has order ≤ png.

Since (A×A∨)4[pn]0≤rn
= (A[pn]0≤rn

×A∨[pn]0≤rn
)4, the upper bounds on the orders of the factors reduces us

to proving that this group has size p8ng. The abelian variety (A×A∨)4 has Hasse invariant > hgood(p, g, n)8 =
hpp(p, 8g, n) and it is principally polarized (with semistable reduction having toric part that may be nonzero),
so by Step 5 in dimension 8g its subgroup of pn-torsion points with size ≤ rn is a level-n canonical subgroup
and hence there are exactly p8ng such points as required. This completes the proof that A[pn]0≤rn

is a level-n
canonical subgroup whenever h(A) > h(p, g, n) (where h(p, g, n) ∈ (p−1/8, 1) may be taken to depend on the
arbitrary but fixed choice of rn ∈ (p−1/pn−1(p−1), 1)).

Step 8. Continuing with notation as in Step 7, the verification of part (2) in Theorem 4.1.1 will now be
given in general; in Step 6 it was verified in the case of good reduction. We must check that the Weil pairing
between A[pn]0≤rn

and A∨[pn]0≤rn
vanishes. The respective generic fibers AR[p∞]k, AR[p∞]0k, and T[p∞]k will

be called the finite part, local part, and toric part of the p-divisible group A[p∞] over k, and these generic
fibers will be respectively denoted A[p∞]f , A[p∞]0, and A[p∞]t. Although these definitions depend on A and
not just on A[p∞] (e.g., k may be algebraically closed), for our purposes such dependence is not a problem;
the pn-torsion of A[p∞]0 recovers Definition 2.2.3, so there is no inconsistency in the notation. Also, keep in
mind that A[p∞]t may be smaller than the generic fiber of the maximal multiplicative p-divisible subgroup
of AR[p∞]0. Analogous notations are used for A∨, and we let B′R denote the abelian scheme associated to
A∨, so B′R is canonically isomorphic to B∨R via Theorem 2.1.9.

The respective quotients A[p∞]f/A[p∞]t and A[p∞]0/A[p∞]t are canonically identified with B[p∞] and
B[p∞]0 def= BR[p∞]0k, and similarly with A∨ and B′R ' B∨R (even if BR and B′R vanish). Since the settled
case of good reduction in Step 6 ensures that the Weil pairing between B[pn]0≤rn

and B∨[pn]0≤rn
vanishes,

to infer the vanishing of the Weil pairing between A[pn]0≤rn
and A∨[pn]0≤rn

(and so to finish the proof of
Theorem 4.1.1, conditional on Theorem 4.2.1 below that was used above in Step 6) it suffices to use (4.1.7)
and its A∨-analogue along with the following general theorem that gives an analogue of the trivial Lemma
4.1.5 in the case of possibly non-ordinary or bad reduction (and characterizes the isomorphism B′ ' B∨ in
terms of two pieces of data: the unique formal semi-abelian models for A and A∨, and the Weil pairings
between torsion on A and A∨).

Theorem 4.1.6. Under the Weil pairing A[p∞] × A∨[p∞] → µp∞ over k, the toric part on each side
annihilates the finite part on the other side, and the induced pairing between A[p∞]f/A[p∞]t ' B[p∞]k and
A∨[p∞]f/A∨[p∞]t ' B′[p∞]k is the restriction of the Weil pairing for the abelian variety B over k via the
canonical isomorphism B′R ' B∨R.

Proof. See Theorem A.3.1 in the Appendix, where a more general compatibility is proved for N -torsion
pairings for any positive integer N . �

Remark 4.1.7. The method of proof of Lemma 4.1.5 can be used to give a proof of the orthogonality
aspect of Theorem 4.1.6 by reduction to the discretely-valued case that is precisely the semi-stable case of
Grothendieck’s orthogonality theorem [SGA7, IX, Thm. 5.2]. However, it is the compatibility with Weil
pairings on the abelian parts that is more important for us, and to prove this compatibility it seems to be
unavoidable to have to study the proof of Theorem 2.1.9 where the natural isomorphism between B′R and
B∨R is defined via the rigid-analytic uniformization construction of the dual to a uniformized abeloid space.

4.2. A connectedness result. This section is devoted to proving the following theorem that was used in
Step 6 in the proof of Theorem 4.1.1.

Theorem 4.2.1. Choose g, d ≥ 1 and N ≥ 3 with p - N . Let M = Ag,d,N/Zp
and let M̂ denote its p-adic

completion equipped with its universal p-adically formal polarized abelian scheme. For any h ∈ [1/p, 1)∩ pQ,
let (M̂ rig)>h denote the locus of fibers with Hasse invariant > h for the universal polarized abeloid space over
M̂ rig, and define (M̂ rig)≥h similarly for h ∈ (1/p, 1] ∩ pQ.

Each connected component of (M̂ rig)>h and of (M̂ rig)≥h meets the ordinary locus (i.e., it meets (M̂ rig)≥1).
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We can allow 1/p rather than p−1/8 in Theorem 4.2.1 because of Remark 3.1.3.

Proof. Let x be a point in (M̂ rig)>h (resp. (M̂ rig)≥h), with K(x)/Qp the residue field at x and Rx its
valuation ring. Let Ax be the fiber at x for the universal abeloid space over M̂ rig, so Ax is an abelian variety
over K(x) with good reduction, and likewise for its dual A∨x . We uniquely extend x to an Rx-point of M ,
and we let x be the induced rational point in the closed fiber of M/Rx

.
Norman and Oort [NO, Thm. 3.1] proved that the ordinary locus is Zariski-dense in every fiber of Ag,d,N

over closed points of SpecZ[1/N ], with all fibers of pure dimension g(g + 1)/2. Mumford proved that the
formal deformation ring at any rational point on a geometric fiber of Ag,d,N in positive characteristic over
Z[1/N ] is the quotient of a g2-variable power series ring (over the Witt vectors) modulo g(g− 1)/2 relations
[O, 2.3.3], so it follows from the equality g2 − g(g− 1)/2 = g(g+ 1)/2 and a standard result in commutative
algebra [Mat, 17.4] that Ag,d,N/Z[1/N ] is a relative local complete intersection over Z[1/N ] (and in particular
it is flat). To slice this appropriately (in case g > 1), we shall use:

Lemma 4.2.2. Let R be a discrete valuation ring with residue field k and fraction field K, and let S be
a flat affine R-scheme of finite type with fibers of pure dimension d ≥ 1. Assume that SK is smooth over
K and that Sk is a local complete intersection. Choose s ∈ S(R). For any global section f of OSk

that is
nowhere a zero-divisor and vanishes at sk ∈ S(k) there is a lifting f ∈ OS(S) which vanishes along s and
has R-flat zero-scheme Zf with smooth K-fiber.

Proof. We can choose a closed immersion S ↪→ AN
R into an affine space so that s maps to the origin and

there is a nonzero linear form ` over k whose pullback to Sk is f . For any linear form L over R lifting `
the pullback of L to S has R-flat zero scheme Z (since S is R-flat and f is nowhere a zero divisor on Sk)
and passes through the origin over R, so the only problem is to find such an L for which ZK is smooth over
K. Working over the completion R̂, the space of possible L’s is an open unit polydisc in the K̂-analytic
manifold of hyperplanes in K̂N , so it suffices to show that in the projective space P of hyperplanes in AN

K

the locus of those H for which H ∩ SK is smooth contains a Zariski-dense open subset (as this must meet
any non-empty open set in P (K̂), since P is covered by affine spaces, and for similar reasons P (K) is dense
in P (K̂)). More generally, for any smooth quasi-projective scheme Y with pure positive dimension over a
field F of characteristic 0 and any y0 ∈ Y (F ) the generic hyperplane through y0 has smooth intersection
with Y . This follows from a standard incidence correspondence argument as in the proof of the classical
Bertini theorem, since y0 does not lie on the projective tangent space to a generic point of Y (as we are in
characteristic 0). �

In the setting of Lemma 4.2.2, by shrinking S if necessary around sk we can always find such an f (since
OSk,sk

has depth d > 0). Moreover, if U ⊆ Sk is a dense open subset (not necessarily containing sk) and
d > 1 then f can be chosen so that its zero scheme Zf has all generic points contained in U . Indeed, by
shrinking around sk this comes down to the assertion that if I is an ideal in OSk,sk

not contained in any
minimal prime then there is a regular element in the maximal ideal msk

whose minimal prime divisors do
not contain I. To verify this assertion, we first note that by dimension reasons the set of height-1 primes of
OSk,sk

containing I is finite, say {q1, . . . , qn}, and any minimal prime over a regular element in the maximal
ideal is necessarily of height 1. Thus, we just have to find an element f ∈ msk

not in any of the finitely many
associated primes {p1, . . . , pm} of OSk,sk

and also not in any of the qj ’s. If no such f exists then msk
lies

in the union of the pi’s and the qj ’s, so msk
is equal to one of these primes, an absurdity since OSk,sk

has
depth d ≥ 2. Since Zf is a relative local complete intersection over R with fibers of pure dimension d − 1
and with smooth K-fiber, if d > 2 then we can repeat the process (viewing s in Zf (R)).

Thus, we may apply Lemma 4.2.2 several times (if g > 1) to construct an Rx-flat locally closed affine
subscheme Z in M/Rx

with pure relative dimension 1 such that

• the closed fiber Z has all generic points in the ordinary locus,
• the generic fiber Z/K(x) is smooth,
• the Rx-point x passes through Z.
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Let Z be the Rx-flat p-adic completion of Z, so Zrig is a quasi-compact admissible open in Zan
K(x) [C1, 5.3.1(3)]

and x lies in Zrig. In particular, the affinoid Zrig is smooth with pure dimension 1.
By the construction of the p-adic analytic Hasse invariant, we may replace Z with a suitable open affine

around x (to trivialize the locally-free module underlying a formal Lie algebra) so that the universal abelian
scheme over Z0 = Z mod pRx admits a mod-p Hasse invariant as an algebraic function on Z0 (rather than
merely as a section of a line bundle on Z0). Let H be a formal-algebraic function on Z that lifts this
Hasse invariant. If Hrig denotes the associated rigid-analytic function on Zrig then max(|Hrig|, 1/p) defines
the Hasse invariant over Zrig. The coordinate ring O(Z) of the affine formal scheme Z is excellent and
reduced (as Zrig is smooth), so the normalization of O(Z) is an Rx-flat finite extension ring of O(Z) whose
associated formal scheme Z̃ is Z-finite with Raynaud generic fiber Zrig because Zrig is its own normalization
(as it is even smooth). Also, the “generic ordinarity” of the locus Z in the moduli space ensures that on
the pure one-dimensional reduction Z mod mRx (with underlying space Z) the reduction of H is a unit
at the generic points. The same must therefore hold for H on the mod-mRx

fiber of the Z-finite formal
normalization covering Z̃, as Z̃ has no isolated points (and so its irreducible components are all finite over
those of the 1-dimensional Z). By [deJ, 7.4.1], O(Z̃) is the ring of power-bounded functions on the K(x)-
affinoid Z̃rig = Zrig. Hence, the ideal of topological nilpotents in O(Zrig) is the radical of mRxO(Z̃). (The
intervention of the radical is necessary because sup-norms for elements of the K(x)-affinoid Zrig merely lie in√
|K(x)×| and not necessarily in |K(x)×|.) Thus, we are reduced to the following theorem in 1-dimensional

affinoid geometry (applied to O(Zrig) over K(x)). �

Theorem 4.2.3. Let k be a non-archimedean field and let A be a nonzero k-affinoid algebra such that SpA
has pure dimension 1. Let A0 ⊆ A be the subring of power-bounded functions, and let Ã be its analytic
reduction; i.e., the quotient of A0 modulo topological nilpotents.

Let a ∈ A0 be an element whose image ã in the reduced algebra Ã is non-vanishing at the generic points
of Spec Ã; in particular, ||a||sup = 1. For any r ∈

√
|k×| with r ≤ 1, every connected component of

(4.2.1) (Sp(A))≥r = {x ∈ Sp(A) | |a(x)| ≥ r}

contains a point x such that |a(x)| = 1.

This theorem can be proved by using the geometry of formal semi-stable models to track the behavior of
|a(x)| as x moves in Sp(A), following some techniques of Bosch and Lütkebohmert in classical rigid geometry
as in [BL1, §2] (after reducing to the case of algebraically closed k with the help of [C1, §3.2]). However, A.
Thuillier showed me an appealing geometric proof that uses only elementary properties of affinoid Berkovich
spaces, so we present Thuillier’s proof.

Proof. It is equivalent to work with the associated strictly k-analytic Berkovich spaces, so we let X = M (A)
and X≥r = M (A≥r), with Sp(A≥r) equal to the affinoid subdomain (Sp(A))≥r in Sp(A). Clearly X≥r ⊆ X
is the locus of points x ∈ X for which |a(x)| ≥ r. The Shilov boundary Γ(X) ⊆ X is the finite set of
preimages of the generic points of the analytic reduction Spec(Ã) under the reduction map X → Spec(Ã)
[Ber1, 2.4.4]. The hypotheses therefore imply that |a(x)| = 1 for each x ∈ Γ(X), so it is necessary and
sufficient to prove that every connected component C of X≥r meets Γ(X) (since the “classical” points are
dense in any strictly k-analytic Berkovich space, such as C ∩ X≥1 for each such C). Hence, we pick a
component C disjoint from Γ(X) and seek a contradiction. The complement U = X − (X≥r−C) is an open
set in X that contains C, so since C ∩ Γ(X) = ∅ and Γ(X) ⊆ X≥r we have U ∩ Γ(X) = ∅ and |a| < r on
U − C = (X −X≥r) ∩ (X − C).

The closed subset C in X is an affinoid domain in X, so by [Ber1, 2.5.13(ii)] its relative interior Int(C/X)
is equal to the topological interior of C in X. Passing to complements, the relative boundary ∂(C/X) is
equal to the topological boundary ∂X(C) of C in X. (See [Ber1, 2.5.7] for these notions of relative interior
and boundary for morphisms of affinoid Berkovich spaces.) By the transitivity relation for relative interior
with respect to a composite of morphisms [Ber1, 2.5.13(iii)], applied to C → X →M (k), we obtain

∂(C/M (k)) = ∂X(C) ∪ (C ∩ ∂(X/M (k))).
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For any non-empty pure 1-dimensional strictly k-analytic affinoid Berkovich space Z, the relative boundary
with respect to k coincides with the Shilov boundary. (Proof: By Noether normalization there is a finite map
Z → B1 to the closed unit ball. By Theorem A.1.1, [BGR, 6.3.5/1], and [Ber1, 2.4.4, 2.5.8(iii), 2.5.13(i)],
we are thereby reduced to the case Z = B1. By [Ber1, 2.5.2(d), 2.5.12] we have ∂(B1/M (k)) = {|| · ||sup} =
Γ(B1).) Hence, Γ(C) = ∂X(C) ∪ (C ∩ Γ(X)) = ∂X(C) since C ∩ Γ(X) = ∅. Any neighborhood of a point in
∂X(C) meets the locus U−C on which |a| < r, so by continuity of |a| on X we have |a| ≤ r on ∂X(C) = Γ(C).
But Γ(C) ⊆ C ⊆ X≥r, so |a| = r on Γ(C). By the maximum principle for the Shilov boundary of an affinoid,
we conclude |a| ≤ r on C. Hence, |a| = r on C because C ⊆ X≥r. Since |a| < r on U − C, this implies
|a| ≤ r on U .

To get a contradiction, pick a point c ∈ Γ(C) and let X ′ = M (A′) ⊆ U be a strictly k-analytic affinoid
subdomain of X that contains c. Since X ′ ⊆ U , the sup-norm of a|X′ (in the equivalent senses of rigid spaces
or Berkovich spaces) is at most r, so it is equal to r because |a(c)| = r and c ∈ X ′. Let X ′′ = M (A′′) ⊆ X ′

be a connected strictly k-analytic neighborhood of c in X ′ with X ′′ disjoint from the finite set Γ(X ′). (Note
that X ′′ must also be a neighborhood of c in X.) Since Γ(X ′) is the preimage of the generic points under
the analytic reduction map X ′ → Spec(Ã′), by surjectivity of the reduction map X ′′ → Spec(Ã′′) [Ber1,
2.4.4(i)] we conclude that the constructible image of the natural map Spec(Ã′′) → Spec(Ã′) contains no
generic points of the target and is connected (as Spec(Ã′′) is connected, due to connectivity of Sp(A′′)).
The only nowhere-dense connected constructible subsets of a pure 1-dimensional algebraic k̃-scheme are the
closed points, so Spec(Ã′′) maps onto a single closed point in Spec(Ã′) that must be the analytic reduction
of c.

We shall prove that a|X′′ has absolute value r at all points of X ′′, and this gives a contradiction because
the neighborhood X ′′ of c ∈ Γ(C) = ∂X(C) in X meets the locus U − C on which |a| < r. Let n be a
positive integer such that rn = |ρ| with ρ ∈ k×. The analytic function f = an/ρ has sup-norm 1 on X ′ with
associated algebraic function on Spec(Ã′) that is a unit at the analytic reduction of c. The restriction f |X′′

is also power-bounded. By the functoriality of analytic reduction, the reduction of f |X′′ on Spec(Ã′′) is the
pullback of the reduction of f |X′ on Spec(Ã′) under the natural map Spec(Ã′′)→ Spec(Ã′). But this latter
map is a constant map to a closed point in the unit locus for the reduction of f |X′ , so we conclude that
f |X′′ has nowhere-vanishing reduction. That is, f |X′′ has constant absolute value 1, or equivalently a|X′′

has constant absolute value r as desired. �

4.3. Relativization and Frobenius kernels. The variation of canonical subgroups in rigid-analytic fam-
ilies goes as follows:

Theorem 4.3.1. Let h = h(p, g, n) ∈ (p−1/8, 1) be as in Theorem 4.1.1 (adapted to a fixed choice of
rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ), and let k/Qp be an analytic extension field. Choose an abeloid space A →
S with relative dimension g over a rigid-analytic space over k, and assume either that (i) A/S admits a
polarization fpqc-locally on S or (ii) A/S becomes algebraic after local finite surjective base change. Also,
assume h(As) > h for all s ∈ S.

There exists a unique finite étale subgroup Gn ⊆ A[pn] with rank png such that Gn gives the level-n
canonical subgroup on fibers, and the formation of Gn is compatible with base change on S and (for quasi-
separated or pseudo-separated S) with change of the base field. The dual (A[pn]/Gn)∨ is the analogous such
subgroup for A∨, and Gn[pm] = Gm for 0 ≤ m ≤ n.

Note that under either hypothesis (i) or (ii), each abeloid fiber As becomes an abelian variety after a
finite extension on k(s). By descending a suitable ample line bundle, each As is therefore an abelian variety.
Thus, it makes sense to speak of a Hasse invariant for each fiber As. Also, Theorem 3.1.1 and Theorem 3.2.3
ensure that the hypothesis on fibral Hasse invariants exceeding h is preserved under arbitrary change of the
base field (for quasi-separated or pseudo-separated S).

Proof. The uniqueness of Gn and the description of its p-power torsion subgroups follow from connectivity
considerations and our knowledge on fibers, and the same goes for the behavior with respect to Cartier
duality. Thus, the existence result is preserved by base change. By rigid-analytic fpqc descent theory [C2,
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§4.2], it suffices to work fpqc-locally on S to prove the theorem. In particular, we may and do assume S
is quasi-compact and quasi-separated (e.g., affinoid). By Lemma 4.3.2 below (applied with Y = A[pn] over
X = S), it also suffices to make the construction after a finite surjective base change. Thus, using Corollary
3.2.2 in case (ii), we can assume that A/S admits a polarization of some constant degree d2 and that the
finite étale S-groups A[N ] and A∨[N ] are split for a fixed choice of N ≥ 3 not divisible by p. In particular,
by Zarhin’s trick (A×A∨)4 is a pullback of the universal principally polarized abeloid space over A an

8g,1,N/Qp

along a map S → A an
8g,1,N/Qp

.
Let G→ Y denote the p-adic completion of the semi-abelian scheme G→ Y as in the proof of Theorem

3.1.1, so A an
g,1,N/Qp

is Zariski-open in Y an
Qp

= Yrig and hence (A × A∨)4 is a pullback of Grig → Yrig along
a map f : S → Yrig. For a suitable formal admissible blow-up Y′ of Y, we may find a quasi-compact flat
formal model S for S and a map f : S → Y′ such that frig = f . In particular, the pullback f∗(G′) of
G′ = G×Y Y′ is a formal semi-abelian scheme over S whose Raynaud generic fiber is an open subgroup of
the abeloid S-group (A × A∨)4 and it thereby serves as a relative version of the formal semi-abelian group
as in Theorem 2.1.9 for the fibers (As ×A∨s )4.

For each s ∈ S, let Gn,s ⊆ As[pn] be the level-n canonical subgroup of As. The subgroup

(Gn,s × (As[pn]/Gn,s)∨)4 ⊆ (A×A∨)4s[p
n]

is the level-n canonical subgroup of (A × A∨)4s since h(p, g, n) is adapted to rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ.
Hence, if we can find a finite étale S-subgroup Cn of (A×A∨)4 that recovers the level-n canonical subgroup
on fibers then the image Gn of Cn under projection to the first factor of the finite étale eight-fold product
(A×A∨)4[pn] ' (A[pn]×A∨[pn])4 over S is a finite étale S-subgroup of A[pn] that has the required properties.
It is therefore enough to find such a Cn in the pn-torsion of (A×A∨)4. Working locally on S, we may assume
that the Lie algebra of f∗(G′) is globally free (of rank 8g) as a coherent OS-module, so the formal completion
G′0 of f∗(G′) along the identity section of its mod-p fiber is identified with a g-variable formal group law over
S.

Since rn ∈ pQ ⊆
√
|k×|, we may argue as in Steps 2 and 3 of the proof of Theorem 4.1.1 to conclude

that the Berthelot generic fiber G′0
rig is an admissible open subgroup of f∗(G′)rig = (A× A∨)4 whose locus

with fibral polyradius ≤ rn in (A×A∨)4 is a quasi-compact admissible open S-subgroup. Denote this latter
S-subgroup as (A×A∨)4≤rn

. The overlap Cn of this S-subgroup and the finite étale S-subgroup (A×A∨)4[pn]
is a quasi-compact separated étale S-subgroup whose s-fiber is (Gn,s × (As[pn]/Gn,s)∨)4 for all s ∈ S. In
particular, Cn,s has rank p4ng that is independent of s, so by [C4, Thm. A.1.2] the map Cn → S is finite.
Hence, the S-subgroup Cn ⊆ (A×A∨)4[pn] has the required properties. �

The following lemma was used in the preceding proof:

Lemma 4.3.2. Let f : X ′ → X be a finite surjective map between schemes or rigid spaces, and let Y → X
be a finite étale cover with pullback Y ′ → X ′ along f . If i′ : Z ′ ↪→ Y ′ is a closed immersion with Z ′ finite
étale over X ′ then i′ descends to a closed immersion i : Z ↪→ Y with Z finite étale over X if and only if it
does so on fibers over each point x ∈ X.

Proof. Let p1, p2 : X ′′ = X ′ ×X X ′ ⇒ X ′ be the projections, and let Y ′′ = X ′′ ×X Y . By the fibral descent
hypothesis, the finite étale X ′′-spaces p∗1(Z

′) and p∗2(Z
′) inside of the finite étale X ′′-space Y ′′ coincide over

X ′′
x for all x ∈ X, and so p∗1(Z

′) = p∗2(Z
′) inside Y ′′. The problem is therefore to show that finite étale covers

satisfy effective (and uniquely functorial) descent with respect to finite surjective maps. By working locally
on the base, the rigid-analytic case is reduced to the case of schemes (using affinoid algebras). The case of
schemes is [SGA1, IX, 4.7]. �

Now we turn to the problem of relating canonical subgroups and Frobenius kernels. Let A be a g-
dimensional abelian variety over k/Qp with h(A) > h(p, g, n), and pass to a finite extension of k if necessary
so that A has semistable reduction in the sense of Theorem 2.1.9. Let AR be the associated formal semiabelian
scheme over R, and let t and a be the respective relative dimensions of the formal toric and abelian parts T
and B of AR (so t+ a = g). Thus, AR[pn] is a finite flat group scheme over R with geometric generic fiber
that is free of rank t+ 2a as a Z/pnZ-module. Since h(A) > h(p, g, n) there is a level-n canonical subgroup
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Gn ⊆ A[pn]0 ⊆ AR[pn]0 and so by schematic closure this is the k-fiber of a unique finite flat closed R-
subgroup Gn ⊆ AR[pn]0 with order png. (Since the valuation ring R is local, this finite flat schematic closure
is automatically finitely presented as an R-module even if R is not noetherian.) Likewise, Gm = Gn[pm] is
a level-m canonical subgroup for all 1 ≤ m ≤ n and we let Gm ⊆ AR[pm]0 denote its closure.

If 1 ≤ m ≤ n then by definition, Gm is contained in the identity component AR[pm]0 whose geometric
generic fiber is a free Z/pmZ-module with rank t + h0, where h0 ≥ a is the height of the local part of the
p-divisible group of B. In the ordinary case we have t+h0 = g and so Gm = AR[pm]0; thus, the R/pR-group
Gm mod pR ⊆ AR

def= AR mod pR is the kernel of the m-fold relative Frobenius map

FAR,m,R/pR : AR → A
(pm)

R .

In the non-ordinary case t + h0 > g and we cannot expect Gm mod pR to equal kerFAR,m,R/pR. Working
modulo p1−ε for a small ε > 0, we get a congruence by taking h(A) near 1 in a “universal” manner:

Theorem 4.3.3. Fix p, g, and n ≥ 1, and pick λ ∈ (0, 1). There exists h(p, g, n, λ) ∈ (h(p, g, n), 1) such
that if h(A) > h(p, g, n, λ) then Gm mod pλR = ker(FAR mod pλR,m,R/pλR) for 1 ≤ m ≤ n.

In the theorem and its proof, the terminology “modulo pλR” really means “modulo c′R′” for the valuation
ring R′ of any analytic extension k′/k and any c′ ∈ R′ satisfying |c′| ≥ p−λ. The implicit unspecified
extension of scalars is necessary in order to make sense of the assertion that the same λ works across all
extensions of the base field without the restriction pλ ∈ |k×| that is unpleasant in the discretely-valued case
(as λ arbitrarily near 1 is the interesting case). We will typically abuse notation and write expressions such
as R/pλR that the reader should understand to mean R′/c′R′ for any R′ and c′ as above; this abuse of
terminology streamlines the exposition and does not create serious risk of error because local extensions of
valuation rings are faithfully flat.

Proof. The ordinary case is a triviality, so we may restrict attention to those A with h(A) < 1. We also may
and do restrict attention to the case m = n. The formal semi-abelian model AR for A fits into a short exact
sequence

0→ T→ AR → B→ 0
with a formal torus T and (uniquely) algebraizable formal abelian scheme B over Spf(R). Let t and a be
the respective relative dimensions of the toric and abelian parts, so a > 0 since h(A) < 1. Let BR be the
associated abelian scheme over R, so its generic fiber B over k is an a-dimensional abelian variety with the
same Hasse invariant as A. The dual A∨ also has semistable reduction and its abelian part is identified with
the formal completion B∨ of the dual abelian scheme B∨R whose generic fiber is B∨. Hence, (A× A∨)4 has
semistable reduction with formal abelian part (B×B∨)4 arising from the abelian scheme (BR×B∨R)4 whose
generic fiber (B ×B∨)4 is principally polarized with good reduction.

We fix rn ∈ (p−1/pn−1(p−1), 1), and in all subsequent applications of Theorems 4.1.1 and 4.3.1 we use this
choice. By Theorem 4.1.1, for all g ≥ 1 we can find h(p, g, n) ∈ (p−1/8, 1) sufficiently near 1 such that if a g-
dimensional A satisfies h(A) > h(p, g, n) then there is a level-n canonical subgroup Gn in A and the pn-torsion
subgroup (Gn×(A[pn]/Gn)∨)4 in (A×A∨)4 is a level-n canonical subgroup. Since the formation of schematic
closure (over R) and relative Frobenius maps commute with products and h((A×A∨)4) = h(A)8 ∈ (1/p, 1), it
therefore suffices to work with (A×A∨)4 rather than A provided that we use the bound hpp(p, 8g, n) ∈ (1/p, 1)
from the principally polarized case (as in the proof of Theorem 4.1.1). In particular, we can assume that A
and B admit principal polarizations (and we rename 8g as g and 8a as a). Consider the p-adic completion
A → M of the universal abelian scheme over the finite type moduli scheme M = Ag′,1,N/Zp

over Zp, with
N ≥ 3 a fixed integer relatively prime to p and 1 ≤ g′ ≤ g. By increasing k so that the finite étale R-scheme
BR[N ] is constant, the principally polarized abelian variety B arises as a fiber of the morphism Arig →Mrig

in the case g′ = a. Theorem 4.3.1 provides a relative level-n canonical subgroup over the locus in Mrig

where the Hasse invariant is > hpp(p, g′, n), and so the proof of [C4, Thm. 4.3.1] (the case g′ = 1) applies
to this situation. (The proof of [C4, Thm. 4.3.1] was specifically written to be applicable to the present
circumstances with any g′ ≥ 1.) This provides an hgood(p, g′, n, λ) that “works” in the g′-dimensional
principally polarized case with good reduction for any g′ ≥ 1.
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We now check that h(p, g, n, λ) = max(hpp(p, g, n),max1≤g′≤g(hgood(p, g′, n, λ))) ∈ (1/p, 1) works for A.
Since A and B have the same Hasse invariant, if h(A) > h(p, g, n, λ) then B has a level-n canonical subgroup
G′n whose schematic closure G ′n in B[pn]0 = B[pn]0 reduces to the kernel of the n-fold relative Frobenius
map modulo pλ. We have an exact sequence of identity components

(4.3.1) 0→ T[pn]→ AR[pn]0
π0

n→ B[pn]0 → 0,

so the π0
n-preimage G̃ ′n ⊆ AR[pn]0 of G ′n ⊆ B[pn]0 is a finite flat closed R-group of AR[pn]0 whose k-fiber is

the full preimage of G′n in A[pn]0. In Step 7 of the proof of Theorem 4.1.1 we saw that the full preimage of
G′n in A[pn]0 is the level-n canonical subgroup Gn of A, and so G̃ ′n as just defined is indeed the schematic
closure Gn of Gn in AR[pn]0.

We therefore need to prove that G̃ ′n mod pλR is killed by its relative n-fold Frobenius morphism (and then
order considerations force this subgroup to coincide with the kernel of the n-fold relative Frobenius map for
the formal completion of AR mod pλR along its identity section). Since G ′n reduces to the corresponding
Frobenius-kernel in B[pn]0 mod pλR, it suffices to check that the containment

ker(FAR mod pλR,n,R/pλR) ⊆ (π0
n)−1(ker(FB mod pλR,n,R/pλR))

of closed subschemes inside AR mod pλR (which follows from the functoriality of relative Frobenius) is an
equality. Both terms are finite flat R/pλR-schemes and they have the same rank png = pnt · pna (since π0

n in
(4.3.1) is a finite locally free map with degree equal to the order pnt of its kernel T[pn]). Hence, equality is
forced. �

Control over reduction of canonical subgroups allows us to give a partial answer to the question of how
the Hasse invariant and level-n canonical subgroup (for n > 1) behave under passage to the quotient by the
level-m canonical subgroup for 1 ≤ m < n.

Corollary 4.3.4. Choose n ≥ 2 and rn ∈ (p−1/pn−1(p−1), 1). Consider 1 ≤ m < n and λ ∈ (0, 1) such that
p−λ ≤ rpm

n . Let h = max(h(p, g, n, λ), p−λ/pm

) ∈ (h(p, g, n), 1) with h(p, g, n) adapted to rn in the sense of
Theorem 4.1.1.

For any analytic extension field k/Qp and g-dimensional abelian variety A over k such that h(A) > h,
the quotient A/Gm has Hasse invariant h(A)pm

and Gn/Gm is a level-(n −m) canonical subgroup that is
equal to (A/Gm)[pn−m]0

≤rpm
n

. Moreover, after replacing k with a finite extension so that A has semistable

reduction, the quotient A/Gm has semistable reduction and the reduction of Gn/Gm modulo pλ coincides
with the kernel of the relative (n−m)-fold Frobenius on the formal semi-abelian model for A/Gm modulo pλ.

Proof. Replace k with an analytic extension so that pλ ∈ |k×| and there is a formal semi-abelian model
AR for A. For all 1 ≤ m ≤ n the closure Gm in AR[pm]0 of the level-m canonical subgroup Gm = Gn[pm]
reduces to the kernel of the relative m-fold Frobenius modulo pλ. Let AR,λ be the reduction of AR modulo
pλ. The mod-pλ reduction of the formal semi-abelian model AR/Gm of A/Gm is thereby identified with
A

(pm)

R,λ , so the relative Verschiebung for AR/Gm mod pλ is identified with the m-fold Frobenius base change
of the relative Verschiebung for the smooth R/pλR-group AR,λ. Hence, passing to induced R/pλR-linear
maps on Lie algebras, the associated determinant ideal in R/pλR for AR/Gm mod pλR is the pmth power of
the determinant of Lie(VAR,λ

). This implies h(A/Gm) = h(A)pm

since h(A)pm

> hpm ≥ p−λ.
Now we show that Gn/Gm is a level-(n−m) canonical subgroup of A/Gm. Clearly its module structure

is (Z/pn−mZ)g, so it suffices to prove that this subgroup of (A/Gm)[pn−m]0 is precisely the subgroup of
elements with size ≤ rpm

n . First, for x ∈ Gn we claim that sizeA/Gm
(x mod Gm) ≤ rpm

n . Since rpm

n ≥ p−λ, to
prove the claim it suffices to work modulo pλ. The projection from A to A/Gm reduces to the m-fold relative
Frobenius map on AR,λ, so it raises size to the pmth power modulo pλR. More precisely, if x ∈ A extends
to an integral point of AR and sizeA(x) ≤ p−λ/pm

then sizeA/Gm
(x mod Gm) ≤ p−λ ≤ rpm

n , whereas if
sizeA(x) > p−λ/pm

then sizeA/Gm
(x mod Gm) = sizeA(x)pm

. Hence, Gn/Gm ⊆ (A/Gm)[pn−m]0
≤rpm

n
. If this

inclusion is not an equality then there is a point x0 ∈ (A/Gm)[pn−m]0 with size ≤ rpm

n such that it does not
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lift into Gn in A. Since AR → AR/Gm is finite flat of degree pm, the image of A[pn]0 in (A/Gm)[pn]0 contains
(A/Gm)[pn−m]0. We may therefore find a lift x0 ∈ A[pn]0 of x0, and x0 6∈ Gn = A[pn]0≤rn

. By the preceding
general size considerations, since sizeA(x0) > rn ≥ p−λ/pm

we get sizeA/Gm
(x0) = sizeA(x0)pm

> rpm

n ,
contradicting how x0 was chosen. �

Remark 4.3.5. Any λ ∈ [1/(p(n−m)−1(p − 1)), 1) satisfies the hypotheses in Corollary 4.3.4, regardless of
rn, and it is λ near 1 that are of most interest anyway. Such a “universal” λ can be found if and only if
1/p(n−m)−1(p− 1) < 1, so if p = 2 then we have to require m < n− 1 (and hence n ≥ 3) in order that such a
universal λ may be found (though if we do not care about λ being independent of rn then some λ can always
be found). For example, we may always take λ = 1/(p− 1) if p 6= 2 and we may always take λ = 1/p(p− 1)
for any p if m < n− 1.

Remark 4.3.6. For h(A) > h(p, g, n), the dual (A/Gm)∨ is identified with the quotient of A∨ modulo the
subgroup (A[pm]/Gm)∨ that is its level-m canonical subgroup. Thus, for A as in Corollary 4.3.4, the level-
(n−m) canonical subgroup of (A/Gm)∨ is

(A[pn]/Gn)∨/(A[pm]/Gm)∨ ' (A[pn−m]/Gn−m)∨.

Also, upon fixing 1 ≤ m < n and choosing rn and λ, for h as in Corollary 4.3.4 we may take h(p, g,m) =
hpn−m

when using rm = rpn−m

n ∈ (p−1/pm−1(p−1), 1) as the universal size bound in Theorem 4.3.1 for level-
m canonical subgroups. The reader should compare Corollary 4.3.4 with the more precise results [C4,
Thm. 4.2.5, Cor. 4.2.6] in the case g = 1 (where the size estimates and calculation of the Hasse invariant of
the quotient have no dependence on Frobenius kernels, essentially because the formal group only depends
on a single parameter).

4.4. Comparison with other approaches to canonical subgroups. We conclude this paper by compar-
ing Theorem 4.1.1 and Theorem 4.3.1 with results in [AM], [AG], [GK], and [KL]. In [AM], level-1 canonical
subgroups are constructed on abelian varieties over k when p ≥ 3 and k is discretely-valued with perfect
residue field, and an explicit sufficient lower bound on the Hasse invariant is given in terms of p and g (our
method does not make h(p, g, n) explicit for g > 1, even with n = 1). The construction in [AM] is character-
ized by a completely different Galois-theoretic fibral property coming out of p-adic Hodge theory, so we must
use the arguments in Steps 7 and 8 of the proof of Theorem 4.1.1 (especially the existence of ordinary points
on certain connected components via Theorem 4.2.1) to conclude that this construction agrees with ours for
level-1 canonical groups, at least for Hasse invariants sufficiently close to 1 (where “sufficiently close” only
depends on p and g but is not made explicit by our methods since our hpp(p, g, 1) in the principally polar-
ized case is not explicit). The methods in [AM] do not appear to give information concerning higher-level
canonical subgroups or level-1 canonical subgroups with p = 2 or general (e.g., algebraically closed) k.

The methods in [AG] are algebro-geometric rather than rigid-analytic, and give a theory of level-1 canon-
ical subgroups in families of polarized abelian varieties with good reduction over any normal p-adically
separated and complete base scheme. A discreteness hypothesis is required on the base field, though this
restriction is probably not necessary to push through the construction in [AG]. One advantage in [AG] is a
strong uniqueness result (ensuring compatibility with products and with Frobenius-kernels modulo p1−ε, as
well as with any other theory satisfying a few axioms), but the restriction to families with good reduction
seems to be essential in this work.

Finally, in [GK] and [KL] rigid-analytic methods (different from ours) are used to establish the “over-
convergence” of the canonical subgroup in the universal families over some modular varieties for which
well-understood integral models exist. In [GK] there is given a very detailed treatment for canonical sub-
groups over Shimura curves and an exact description of the maximal connected domains over which canonical
subgroups exist; the fine structure of integral models for the 1-dimensional modular variety underlies the
technique. As in Theorem 4.1.1, no explicit bound on the Hasse invariant is given by the general methods in
[KL]. Whereas our abstract bound h(p, g, 1) only depends on p and g, in principle the construction in [KL]
gives a “radius of overconvergence” that may depend on the specific modular variety that is considered. In
particular, in contrast with our viewpoint and the viewpoints in [AM] and [K], since the approach in [KL]
does not assign an a priori intrinsic meaning to the notion of a canonical subgroup in the p-torsion of an
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individual abelian variety it does not seem to follow from the methods in [KL] that if an abelian variety
arises in several fibers near the ordinary locus over a modular variety then the induced level-1 canonical
subgroups in these fibers must coincide and be independent of the choice of modular variety. (Our methods,
such as Lemma 4.1.4, ensure that these difficulties do not arise for Hasse invariants sufficiently close to 1 in
a universal manner.)

Appendix A. Some input from rigid geometry

There are several results from rigid geometry that were used in the body of the paper but whose proofs
were omitted there so as to avoid interrupting the main lines of argument. We have gathered these results
and their proofs in this appendix.

A.1. Fiber dimension and reduction. The following must be well-known, but we could not find a pub-
lished reference:

Theorem A.1.1. If B is a nonzero k-affinoid algebra of pure dimension d then its nonzero analytic reduction
B̃ over the residue field k̃ also has pure dimension d.

Proof. By [BGR, 6.3.4] the ring B̃ is a d-dimensional k̃-algebra of finite type, so the problem is to show that
Spec(B̃) has no irreducible component with dimension strictly smaller than d. Equivalently, we have to rule
out the existence of b̃ ∈ B̃ such that B̃[1/b̃] is nonzero with dimension < d.

The description of B̃ in terms of the supremum seminorm shows that the natural map B → Bred to
the reduced quotient induces an isomorphism on analytic reductions. Hence, we can assume B is reduced.
Since B̃ is of finite type over k̃, we can find a topologically finite type R-subalgebra B (i.e., a quotient of a
restricted power series ring R{{t1, . . . , tn}}) contained in the subring of power-bounded elements of B such
that k ⊗R B = B and B → B̃ is surjective. Since B is R-flat, by [BL3, Prop. 1.1(c)] the R-algebra B is
topologically finitely presented (so it provides a formal model for B in the sense of Raynaud). In particular,
if I denotes an ideal of definition of R then there is a natural surjection B0

def= B/IB � B̃. We claim
that the kernel of this map consists entirely of nilpotents, so the quotient Bred of B modulo topological
nilpotents coincides with B̃ (since, by definition, B̃ is reduced).

Pick any b0 ∈ ker(B0 � B̃) and lift it to an element b ∈ B, so |b|sup < 1 on Sp(B). It suffices to show
that b0 lies in every maximal ideal of the ring B0, for then it will lie in every maximal ideal of the reduced
quotient (B0)red that is finitely generated over the field k̃ and hence it will vanish in this quotient (i.e., b0 is
in the nilradical of B0), as desired. Let n0 ∈ Spec(B0) be a closed point (corresponding to a maximal ideal n
of B). The theory of rig-points on formal models [BL3, 3.5] provides a point x ∈ Sp(B) = MaxSpec(k⊗R B)
such that if p = ker(B → k(x)) then under the projection from B to its R-flat and R-finite local quotient
B/p ⊆ k(x) the preimage of the unique maximal ideal of B/p is n. Since |b|sup < 1 we have that the element
b(x) ∈ k(x) lies in the maximal ideal of the valuation ring k(x)0 ⊆ k(x). But R → k(x)0 is integral (as
[k(x) : k] is finite), so B/p → k(x)0 is an integral extension. Hence, b mod p lies in the maximal ideal of
B/p, so the required result b ∈ n (equivalently, b0 ∈ n0) is thereby proved.

We conclude that (B0)red = B̃, so Spec(B0) is d-dimensional and our problem is to prove that it is equidi-
mensional. It is equivalent to prove that every non-empty basic open affine Spec(B0[1/b0]) has dimension d.
Pick any b0 ∈ B0 such that Spec(B0[1/b0]) is non-empty. Since the quotient (B0)red is identified with B̃ and
the Zariski-open non-vanishing locus for b0 in Spec(B0) is non-empty, b0 has nonzero image in (B0)red = B̃.
Hence, if b ∈ B is a lift of b0 then as a power-bounded element of B it has nonzero image in B̃. That is,
|b|sup = 1. The affinoid subdomain Sp(B〈1/b〉) in Sp(B) is therefore non-empty and so has dimension d
since Sp(B) is equidimensional of dimension d. We conclude that dim(B〈1/b〉) = d, so the analytic reduction
(B〈1/b〉)∼ is d-dimensional over k̃. By [BGR, 7.2.6/3] this analytic reduction is (via the evident map from
B̃) naturally isomorphic to B̃[1/b̃], where b̃ is the image of b in B̃. Since the nil-thickening B0 � B̃ carries
b0 to b̃, it follows that (B0[1/b0])red = B̃[1/b̃], so B0[1/b0] is d-dimensional as desired. �
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A.2. Descent through proper maps. It is topologically obvious that if f : X ′ → X is a proper surjection
of schemes (or of topological spaces) and U ⊆ X is a subset such that f−1(U) ⊆ X ′ is open then U is open in
X. The analogue in rigid geometry with admissible opens is true, but it does not seem possible to prove this
using either classical rigid geometry or Raynaud’s theory of formal models, even if we restrict to the case of
finite f and admissible opens f−1(U) ⊆ X ′ with quasi-compact inclusion into X ′. Gabber observed that by
considering all formal models at once, as a Zariski–Riemann space, the general problem can be solved:

Theorem A.2.1 (Gabber). If f : X ′ → X is a proper surjection of rigid spaces and U ⊆ X is a subset such
that U ′ = f−1(U) ⊆ X ′ is admissible open then U ⊆ X is admissible open.

Remark A.2.2. By Lemma 3.2.4, if U ′ is quasi-compact (resp. U ′ → X ′ is quasi-compact) then so is U (resp.
U → X).

The subsequent discussion is a detailed explanation of Gabber’s proof of Theorem A.2.1, built up as a
series of lemmas. Of course, to prove the theorem we may work locally on X and so we can assume X
is affinoid. In particular, we can assume X (and hence X ′) is quasi-compact and quasi-separated. Rather
than work only with such classical rigid spaces, we will work with Zariski–Riemann spaces. This amounts to
working with the underlying topological spaces of the associated adic spaces in the sense of Huber, but since
we only use the underlying topological spaces of certain adic spaces we do not require any serious input from
the theory of adic spaces.

Definition A.2.3. Let X be a quasi-compact and quasi-separated rigid space. The Zariski–Riemann space
ZRS(X) attached to X is the topological inverse limit of the directed inverse system of (quasi-compact and
flat) formal models of X. (All transition maps are proper, by [L1, 2.5, 2.6].)

As we shall see shortly, these spaces ZRS(X) are spectral spaces in the sense of Hochster: a spectral space
is a quasi-compact topological space T that is sober (i.e., every irreducible closed set in T has a unique generic
point) and admits a base B of quasi-compact opens such that B is stable under finite intersections (so in fact
the overlap of any pair of quasi-compact opens is quasi-compact, which is to say that T is quasi-separated;
in [H, §12] this property is called semispectral). For example, if S is a quasi-compact and quasi-separated
scheme then by taking B to be the collection of quasi-compact opens in the underlying topological space |S|
we see that |S| is spectral. (Conversely, in [H] it is shown that every spectral space arises as the spectrum of a
ring, so spectral spaces are precisely the underlying topological spaces of quasi-compact and quasi-separated
schemes; we shall not use this fact.)

A spectral map between spectral spaces is a continuous map that is quasi-compact (i.e., the preimage of
a quasi-compact open is quasi-compact). For example, if f : S′ → S is a map between quasi-compact and
quasi-separated schemes then |f | : |S′| → |S| is spectral. Thus, the inverse system of formal models for a
fixed quasi-compact and quasi-separated rigid space X consists of spectral spaces with spectral transition
maps, so Lemma A.2.6 below ensures that ZRS(X) is a spectral space. By the theory of formal models for
morphisms [BL3, Thm. 4.1], Lemma A.2.6 also ensures that X  ZRS(X) is a (covariant) functor from
the full subcategory of quasi-compact and quasi-separated rigid spaces to the category of spectral spaces
equipped with spectral maps.

We need to record some properties of inverse limits in the category of spectral spaces, and to do this it
is convenient to introduce a few general topological notions for a class of spaces that is more general than
the class of spectral spaces in the sense that we weaken the sobriety axiom to the T0 axiom. Let X be a
T0 topological space (i.e., distinct points have distinct closures) that is quasi-compact and quasi-separated,
and assume that the quasi-compact opens are a base for the topology. A constructible set in X is a member
of the Boolean algebra of subsets of X generated by the quasi-compact opens. Explicitly, a constructible
set in X is a finite union of overlaps U ∩ (X − U ′) for quasi-compact opens U,U ′ ⊆ X. The constructible
topology on such an X is the topology having the constructible sets as a basis of opens, and the associated
topological space is denoted Xcons. (By [EGA, IV1, 1.9.3], if X is the underlying space of a quasi-compact
and quasi-separated scheme then this notion of Xcons coincides with that defined more generally in [EGA,
IV1, 1.9.13].) An open (resp. closed) set in Xcons is an arbitrary union (resp. intersection) of constructible
sets in X, and these are respectively called ind-constructible and pro-constructible sets in X. In particular,
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the constructible topology on X refines the given one on X. (In [H], Xcons is called the patch topology and a
pro-constructible set is called a patch. Hochster’s terminology has the advantage of brevity, but we choose to
follow the terminology of Grothendieck that is more widely used in algebraic geometry.) If Z ⊆ X is a closed
subset then Z is also a quasi-compact and quasi-separated T0-space such that the quasi-compact opens are a
base for the topology, and it is clear that the constructible topology on X induces the constructible topology
on Z.

Note that for any T0-space X, the topological space Xcons is a Hausdorff space. Indeed, let x, y ∈ X be
distinct points, so either x 6∈ {y} or y 6∈ {x} and hence there is an open U of X that contains x but not y
or contains y but not x. Using the basis of quasi-compact opens we may shrink U to be quasi-compact, so
U and X − U are disjoint opens in Xcons that separate x and y.

The analysis of topological operations with spectral spaces is very much simplified by means of:

Lemma A.2.4. Let X be a quasi-compact and quasi-separated T0 topological space such that the quasi-
compact opens are a base for the topology.

(1) The space X is a spectral space if and only if the Hausdorff space Xcons is quasi-compact.
(2) A continuous map f : X → Y between two spectral spaces is spectral if and only if f cons : Xcons →

Y cons is continuous.

The proof is very briefly sketched in [H, §2]. Due to lack of a reference with a more complete discussion,
we provide the details for the convenience of the reader because the proof requires some non-obvious input
from point-set topology (the Alexander subbase theorem) that is not widely known to non-topologists.

Proof. Let us begin with (1). First assume that Xcons is quasi-compact. Pick an irreducible closed set
Z ⊆ X. We seek a generic point. Since Xcons induces the contructible topology on Z, clearly Zcons is closed
in Xcons and hence it too is quasi-compact. We may therefore rename Z as X to reduce to the case when X is
irreducible and we wish to find a generic point for X. If x ∈ X is non-generic then there exists a non-empty
quasi-compact open Ux ⊆ X that does not contain x. Hence, if there is no generic point then we get a
collection {Ux} of non-empty quasi-compact opens in X such that ∩x∈XUx = ∅. The Ux’s are closed in the
quasi-compact topological space Xcons, so by the finite intersection property for closed sets in quasi-compact
spaces some finite intersection Ux1 ∩ · · · ∩ Uxn

must be empty. This contradicts the irreducibility of X (as
all Uxi

are non-empty opens in X).
Conversely, suppose that X is spectral. To prove that Xcons must be quasi-compact we prove that

it satisfies the finite intersection property for closed sets. Every closed set in Xcons is an intersection of
constructible sets, and every constructible set is a finite union of overlaps U ∩ (X − U ′) for quasi-compact
open U and U ′. Hence, the quasi-compact opens and their complements form a subbasis of closed sets for
the constructible topology. By the Alexander subbase theorem [Ke, Ch. 5, Thm. 6] (whose proof uses Zorn’s
Lemma), a topological space is quasi-compact if it satisfies the finite intersection property for members of
a subbasis of closed sets. Hence, it is enough to show that if {Ci} is a collection of subsets of X with each
Ci either closed or quasi-compact open in X and if all finite intersections among the Ci’s are non-empty
then ∩iCi 6= ∅. By Zorn’s Lemma we may and do enlarge {Ci} to a maximal such collection (ignoring
the property of whether or not the total intersection is non-empty). In particular, {Ci} is stable under
finite intersections among its quasi-compact open members and also among its closed members. Since X is
quasi-compact and those Ci’s that are closed satisfy the finite intersection property, their total intersection
Z is non-empty. For any Ci0 that is a quasi-compact open, the overlaps Ci0 ∩ Ci for closed Ci satisfy the
finite intersection property in the quasi-compact space Ci0 and hence the open Ci0 meets Z. Let us show
that the non-empty Z is irreducible. Suppose Z = Z1 ∪ Z2 for closed subsets Z1, Z2 ⊆ Z. If each Zj fails
to meet some Cij

then Ci1 and Ci2 must be quasi-compact opens in X and so the member Ci1 ∩ Ci2 in the
collection {Ci} is a quasi-compact open that does not meet Z1 ∪ Z2 = Z, a contradiction. Thus, one of the
closed sets Zj meets every Ci and hence by maximality that Zj is in the collection {Ci}. By construction
of Z we thereby obtain Z ⊆ Zj , so Zj = Z as desired. The spectral property of X provides a generic point
z in the irreducible closed set Z, and since each quasi-compact open Ci0 meets Z it follows that every such
Ci0 contains z. Thus, z ∈ ∩iCi. This shows that Xcons is indeed quasi-compact.
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Now we turn to (2). Certainly if f is spectral then f−1(U) is a quasi-compact open in X for every
quasi-compact open in Y , so f cons is continuous. Conversely, assuming f cons to be continuous we pick a
quasi-compact open U ⊆ Y and we want the open set f−1(U) ⊆ X to be quasi-compact. Since U is closed
in Y cons it follows from continuity of f cons that f−1(U) = (f cons)−1(U) is closed in the space Xcons that is
also quasi-compact since X is spectral. Hence, f−1(U) is a quasi-compact subset of Xcons. But the open
set f−1(U) in X is covered by quasi-compact opens in X, and this may be viewed as an open covering of
f−1(U) in Xcons. Hence, there is a finite subcover, so f−1(U) is a finite union of quasi-compact opens in X.
Thus, f−1(U) is quasi-compact. �

Example A.2.5. By the theory of formal models for open immersions [BL4, Cor. 5.4(a)], if U ⊆ X is a
quasi-compact admissible open in a quasi-compact and quasi-separated rigid space X then a cofinal system
of formal (flat) models for U is given by an inverse system of opens in a cofinal system of formal (flat) models
for X. The induced map ZRS(U)→ ZRS(X) is thereby identified with an inverse limit of open embeddings,
so it is an open embedding of topological spaces. Likewise, if U ′ ⊆ X is another such open then so is U ∩U ′
and clearly ZRS(U) ∩ ZRS(U ′) = ZRS(U ∩ U ′) inside of ZRS(X).

Since every closed point of a formal model arises as the specialization of a point on the rigid-analytic
generic fiber, we see that if {Ui} is a finite collection of quasi-compact admissible opens in a quasi-compact
and quasi-separated rigid space X then the Ui’s cover X if and only if the ZRS(Ui)’s cover ZRS(X). By the
same argument, a base of opens in ZRS(X) is given by ZRS(U)’s for the affinoid subdomains U ⊆ X.

Lemma A.2.6. The full subcategory of spectral spaces in the category of topological spaces enjoys the fol-
lowing properties with respect to topological inverse limits:

(1) If {Xi} is a directed inverse system of spectral spaces with spectral transition maps then the inverse
limit space X is spectral and each map X → Xi is spectral. Moreover, (lim←−Xi)cons = lim←−X

cons
i as

topological spaces.
(2) If {Xi} → {Yi} is a map of such inverse systems with each fi : Xi → Yi a spectral map then the

induced map f : X → Y on inverse limits is spectral. Moreover, if {Fi} is an inverse system of
pro-constructible (resp. closed) subsets of {Xi} then the inverse limit F is pro-constructible (resp.
closed) in X and f(F ) is the inverse limit of the fi(Fi) ⊆ Yi. In particular if each fi is a surjective
(resp. closed) map of topological spaces then so is f .

Part (1) is [H, Thm. 7], and the proof we give for the entire lemma follows suggestions of Hochster.

Proof. We first analyze the formation of products of spectral spaces. If {Xα} is a collection of spectral spaces
then we claim that P =

∏
Xα is again a spectral space and that P cons =

∏
Xcons

α (in the sense that the
constructible topology on the underlying set of P is the same as the product of the constructible topologies
on the factor spaces Xα). Certainly P is a quasi-compact space, and P has a base of quasi-compact opens
because each Xα has a base of quasi-compact opens. The T0 property for P follows from the T0 property for
the factors Xα. Let us next check that P is quasi-separated. Any open in P is covered by opens of the form∏
Uα with each Uα a quasi-compact open in Xα and Uα = Xα for all but finitely many α; such a

∏
Uα shall

be called a basic quasi-compact open block. Any quasi-compact open in P is covered by finitely many basic
quasi-compact open blocks, and since an intersection of two such blocks is another such block (as each Xα

is quasi-separated) we conclude that P is indeed quasi-separated. By Lemma A.2.4, the spectral property
for P is now reduced to showing that P cons is quasi-compact.

We will show directly that P cons =
∏
Xcons

α , so by quasi-compactness of the Xcons
α ’s (via Lemma A.2.4)

we would get the desired quasi-compactness of P cons. The topology on P cons has as a base of opens the sets
U ∩ (P −U ′) for quasi-compact opens U,U ′ ⊆ P , and both U and U ′ are finite unions of basic quasi-compact
open blocks. Thus, U is certainly open in

∏
Xcons

α and P −U ′ is a finite intersection of complements P −U ′i
with U ′i ⊆ P a basic quasi-compact open block

∏
α Uα,i. If we let pα : P → Xα denote the projection then for

each i the complement P −U ′i is the union of the finitely many p−1
α (Xα−Uα,i)’s for which the quasi-compact

open Uα,i ⊆ Xα is distinct from Xα, so P − U ′i is open in
∏
Xcons

α . Hence, every open in P cons arises
from an open in

∏
Xcons

α . The converse is exactly the assertion that the map of spaces P cons →
∏
Xcons

α is
continuous, which is to say that each map pcons

α : P cons → Xcons
α is continuous. Since Xcons

α has a base of
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opens given by U ∩ (Xα − U ′) for quasi-compact opens U,U ′ ⊆ Xα, and both p−1
α (U) and P − p−1

α (U ′) are
constructible in P , we are done with the treatment of products.

Turning our attention to directed inverse limits, to prove that lim←−Xi is spectral we will use the criterion
in Lemma A.2.4. Thus, we first must show that this topological inverse limit satisfies the hypotheses
in Lemma A.2.4. By the definition of topological inverse limits, the induced topology on lim←−Xi from
(
∏
Xi)cons =

∏
Xcons

i is lim←−X
cons
i ; this latter topological inverse limit makes sense topologically because

the transition maps fij : Xj → Xi are spectral and hence each f cons
ij is continuous. Each Xcons

i is a quasi-
compact Hausdorff space and hence the inverse limit of the Xcons

i ’s is closed in the product
∏
Xcons

i . In
particular, lim←−X

cons
i is quasi-compact and Hausdorff. It is clear that lim←−Xi is a T0-space (as it is a subspace

of the product
∏
Xi of T0-spaces), and it has a refined topology lim←−X

cons
i that is quasi-compact so it must

be quasi-compact as well. Next, we check that lim←−Xi is quasi-separated. For any i0, the set-theoretic
identification lim←−Xi = lim←−i≥i0

Xi is a homeomorphism and so a base of opens of lim←−Xi is given topologically

by lim←−i≥i0
Ui where Ui0 ⊆ Xi0 is a quasi-compact open and Ui = f−1

i0i (Ui0) is a quasi-compact open in Xi

for all i ≥ i0 (since fi0i is spectral). But a quasi-compact open in a spectral space is spectral, so {Ui}i≥i0

is also a directed inverse system of spectral spaces with spectral transition maps, whence U = lim←−i≥i0
Ui is

quasi-compact. If U ′ = lim←−i≥i′0
U ′i is another such open in lim←−Xi and we pick i1 ≥ i0, i′0 and let U ′′i = Ui∩U ′i

for i ≥ i1 then U ∩ U ′ = lim←−i≥i1
U ′′i inside of lim←−Xi. Hence, lim←−Xi has a base of quasi-compact opens that

is stable under finite intersection, so it is quasi-separated.
We have proved enough about the topology of lim←−Xi so that (lim←−Xi)cons makes sense. Thus, by Lemma

A.2.4 the spectral property for the space lim←−Xi and for the continuous maps lim←−Xi → Xi0 (for all i0) will
follow if the set-theoretic identification (lim←−Xi)cons = lim←−X

cons
i is a homeomorphism. It has been shown

above that lim←−X
cons
i is the topology induced on lim←−Xi by

∏
Xcons

i = (
∏
Xi)cons, so we just have to show

that the constructible topology on lim←−Xi is also induced by (
∏
Xi)cons. By directedness of the indexing

set and the spectral property for the transition maps, it is clear that any basic quasi-compact open block
in
∏
Xi meets lim←−Xi in a quasi-compact open set, and so any constructible set in

∏
Xi meets lim←−Xi in a

constructible set. That is, (lim←−Xi)cons → (
∏
Xi)cons is continuous. To see that it is an embedding, we just

have to show that every constructible set in lim←−Xi is a pullback of a constructible set in
∏
Xi, and for this

it suffices to consider quasi-compact opens. But any quasi-compact open U in lim←−Xi is trivially of the form
lim←−i≥i0

Ui considered above, so U is the pullback of the basic quasi-compact open block in
∏
Xi given by

Ui0 in the i0-factor and Xi in the i-factor for all i 6= i0. This completes the proof of (1).
For the first assertion in (2), the induced map f = lim←− fi : X → Y is certainly continuous and hence

(by Lemma A.2.4) is spectral if and only if f cons is continuous. The preceding considerations show that
f cons = lim←− f

cons
i , and each f cons

i is continuous since each fi is spectral, so f cons is indeed continuous. Since
pro-constructible sets in a spectral space are precisely the closed sets in the associated constructible topology,
if {Fi} is an inverse system of pro-constructible sets then the subset F = lim←−Fi in X = lim←−Xi is an inverse
limit of closed sets in lim←−X

cons
i = Xcons. Thus, F is closed in X since the Xcons

i ’s are quasi-compact
Hausdorff spaces (with continuous transition maps between them), so F is indeed pro-constructible in X for
such {Fi}. This argument also shows that f(F ) ⊆ Y is pro-constructible because f(F ) = f cons(F cons) inside
of Y cons = lim←−Y

cons
i (with F cons denoting F viewed inside of Xcons = lim←−X

cons
i ) and f cons is a continuous

map between quasi-compact Hausdorff spaces (so it is closed). Moreover, f(F ) is the inverse limit of the
fi(Fi) (as subsets of Y ) because upon passing to the constructible topologies we reduce to the well-known
analogous claim for a continuous map between inverse systems of quasi-compact Hausdorff spaces (see [B,
I, §9.6, Cor. 2]). Since closed sets in each Xi are trivially pro-constructible, the same argument shows the
set-theoretic fact that if the Fi’s are closed in X then f(F ) is the inverse limit of the fi(Fi)’s in Y . In this
special case the subset F ⊆ X is closed because X − F is the union of the overlap of X ⊆

∏
Xi with the

open blocks given by (Xi0 − Fi0)×
∏

i 6=i0
Xi for all i0.

By taking Fi = Xi for all i, we conclude that if fi(Xi) = Yi for all i then f(X) = Y ; that is, f is surjective
if all fi’s are surjective. As for the property that f(F ) is closed in Y whenever F ⊆ X is closed and each fi is
closed, we note that if F = lim←−Fi with {Fi} an inverse system of closed sets in {Xi} then f(F ) = lim←− fi(Fi)
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is an inverse limit of closed sets in the Yi’s and hence is indeed closed in Y . Thus, the preservation of
closedness for morphisms reduces to the claim that any closed set F in X = lim←−Xi has the form lim←−Fi with
Fi ⊆ Xi a closed set. This is true in the setting of arbitrary topological spaces, as follows. An arbitrary
intersection of closed sets of the form lim←−Fi with closed Fi ⊆ Xi again has this special form, so it suffices to
verify our claim for closed sets complementary to members of a base of opens. A base of opens is given by
lim←−i≥i0

f−1
i0i (Ui0) with Ui0 ⊆ Xi0 an open set (and fi0i : Xi → Xi0 the continuous transition map), and the

complement of such an open has the form lim←−i≥i0
Fi with Fi = f−1

i0i (Xi0 − Ui0) for i ≥ i0. Defining Fi = Xi

for all other i settles the claim. �

Let I be an ideal of definition for the valuation ring R of our non-archimedean base field k. Fix a nonzero
k-affinoid algebra A, and let A be a flat formal affine model (i.e., A is topologically finitely presented
and flat over R, with k ⊗R A ' A). A key fact is that the ring extension A ⊆ A0 into the subring of
power-bounded elements is integral. To prove this, we shall exhibit a subring of A over which A0 is integral.
Let d = dim(A /mRA ) ≥ 0. By [C4, Thm. A.2.1(1)], d = dim(A). By Noether normalization over the
residue field k̃, there is a finite map ϕ : k̃[T1, . . . , Td]→ A /mRA . For an ideal of definition I of R it follows
that any lifting of Specϕ to a map Spec(A /IA )→ Spec((R/I)[T1, . . . , Td]) between finitely presented R/I-
schemes is proper and quasi-finite, hence finite. Thus, any continuous lift Φ : R{{T1, . . . , Td}} → A of ϕ
over R is finite. Such a map of flat R-algebras must be injective because on generic fibers it is a finite map
Φk : k〈〈T1, . . . , Td〉〉 → A with d = dimA. The finite map Φk between k-affinoids induces an integral map on
subrings of power-bounded elements [BGR, 6.3.5/1], but the power-bounded elements of the d-variable Tate
algebra are precisely the d-variable restricted power series over R. The R-algebra of such power series is a
subalgebra of A inside of A, so we conclude that A0 is indeed integral over A .

By [vdPS, Thm. 2.4], the points in ZRS(Sp(A)) are functorially in bijective correspondence with (not
necessarily rank-1) R-flat valuations rings V on fraction fields Frac(A/p) for primes p of A such that the
map A → Frac(V ) carries the subring A0 of power-bounded elements into V and the (necessarily nonzero)
ideal IV of V generated by I is topologically nilpotent (i.e., ∩n≥1(IV )n = ∩n≥1I

nV vanishes). Alternatively,
and more conveniently for our purposes, since A → A0 is an integral ring extension we can identify points
of ZRS(Sp(A)) with maps A → V to valuation rings V such that (i) I generates a nonzero proper ideal of
V that is topologically nilpotent, and (ii) Frac(V ) is generated by the image of A (or equivalently, of A).

For any R-algebra V that is a valuation ring such that I generates a nonzero proper ideal in V (i.e., V
is faithfully flat over R), it is straightforward to check that the I-adic completion V̂ of V is a valuation ring
in which I generates a nonzero topologically nilpotent ideal. Thus, for any R-algebra map ϕ : A → V to a
valuation ring V that is faithfully flat over R, the associated composite map ϕ̂ : A→ V̂ thereby determines
a point xϕ of ZRS(Sp(A)) since (by principality of finitely generated ideals in a valuation ring) one can
uniquely lift the map of formal schemes Spf(ϕ̂) : Spf(V̂ ) → Spf(A ) through admissible formal blow-ups
(and so chasing the image of the closed point of Spf(V̂ ) gives the desired point xϕ ∈ ZRS(Sp(A))). Using the
induced valuation ring structure on the fraction field of the image of A in V̂ gives the valuation associated
to this point. In particular, via the theory of rig-points [BL3, 3.5], points of Sp(A) give rise to points in the
associated Zariski–Riemann space; likewise, if X is a quasi-compact and quasi-separated rigid space then the
underlying set of X is functorially a subset of its associated Zariski–Riemann space. (Note that X is empty
if and only if ZRS(X) is empty.)

Lemma A.2.7. Any pair of faithfully flat local maps W ⇒ V, V ′ of valuation rings can be completed to a
commutative square of valuation rings and faithfully flat local maps.

Proof. Pick x ∈ Spec(V ⊗W V ′) over the closed points of Spec(V ) and Spec(V ′), so the maps V, V ′ ⇒
OV⊗W V ′,x are local and flat, hence faithfully flat. Let p be a minimal prime of the local ring at x. By
going-down for flat maps, the two local maps V, V ′ ⇒ OV⊗W V ′,x/p are injective and hence are faithfully flat
because a local map from a valuation ring to a domain is faithfully flat if and only if it is injective (as all
finitely generated ideals in a valuation ring are principal). Thus, any valuation ring dominating OV⊗W V ′,x/p
does the job. �
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Lemma A.2.8. Let X,Y ⇒ Z be a pair of maps between quasi-compact and quasi-separated rigid spaces,
and let P = X ×Z Y , so P is also quasi-compact and quasi-separated. The natural continuous map of
topological spaces

(A.2.1) ZRS(P )→ ZRS(X)×ZRS(Z) ZRS(Y )

is surjective.

Proof. By Example A.2.5 it is enough to consider the affinoid case, say with X = Sp(A), Y = Sp(B), and
Z = Sp(C), so P = Sp(D) where D = A⊗̂CB. Let A , B, and C be flat affine formal models for A,
B, and C respectively, equipped with continuous R-algebra maps C ⇒ A ,B inducing C ⇒ A,B. Let D
be the quotient of A ⊗̂C B by R-torsion (so D is a flat affine formal model for D). A point in the target
of (A.2.1) is induced by a compatible triple of maps to valuation rings A → V , B → V ′, and C → W
(with local faithfully flat maps W ⇒ V, V ′) such that I generates a nonzero topologically nilpotent ideal in
W , V , and V ′. By Lemma A.2.7 we can find a valuation ring V ′′ equipped with a map V ⊗W V ′ → V ′′

such that the maps V, V ′ ⇒ V ′′ are local and faithfully flat. In particular, V ′′ is faithfully flat over R,
so the I-adically completed tensor product A ⊗̂C B maps to the I-adic completion V̂ ′′ of V ′′ that is a
valuation ring in which I generates a nonzero topologically nilpotent proper ideal. The resulting unique
factorization A ⊗̂C B � D → V̂ ′′ through the maximal R-flat quotient D gives a map Spf(V̂ ′′) → Spf(D).
This determines the desired point of ZRS(Sp(D)) = ZRS(P ). �

Lemma A.2.9. If f : X → Y is a map of quasi-compact and quasi-separated rigid spaces then the following
are equivalent:

• The map f is surjective.
• Every formal model f : X→ Y of f (using R-flat formal models of X and Y ) is surjective.
• The map ZRS(f) is surjective.

Proof. First assume f is surjective, and let f : X → Y be a formal model with X and Y flat over R. On
topological spaces f coincides with the map fred of ordinary finite type k̃-schemes, and so it is surjective if
and only if it is surjective on underlying spaces of closed points. For any closed point y0 ∈ Y, the R-flatness
of Y ensures (via the theory of rig-points) that there exists a finite extension k′/k (with valuation ring R′/R)
and a map y : Spf(R′) → Y over Spf(R) that hits y0. If y0 is not hit by f then the pullback of f by y is
empty. However, this pullback is a topologically finitely presented (possibly non-flat) formal scheme over R′

whose generic fiber over Sp(k′) is f−1(y) with y ∈ Y = Yrig the image of yrig. Since f is surjective, the fiber
f−1(y) cannot be empty and so we have a contradiction. Thus, f is indeed surjective.

If all formal models for f are surjective then the map ZRS(f) can be expressed as an inverse limit of
surjective spectral maps, and so surjectivity of ZRS(f) follows from Lemma A.2.6 in such cases.

Finally, assume ZRS(f) is surjective and pick y ∈ Y ⊆ ZRS(Y ). Identify y with a map y : Sp(k′) → Y
for a finite extension k′/k. We want to prove that the fiber product Sp(k′)×Y X is non-empty. It suffices to
show that its associated Zariski–Riemann space is non-empty, and by Lemma A.2.8 the natural map

(A.2.2) ZRS(Sp(k′)×Y X)→ ZRS(Sp(k′))×ZRS(Y ) ZRS(X)

is surjective. But ZRS(Sp(k′)) is trivially a one-point space {ξ}, and so the topological target fiber product
in (A.2.2) is exactly the fiber of ZRS(f) over the image of ξ in ZRS(Y ). Hence, surjectivity of ZRS(f) gives
the desired non-emptiness. �

Here is the key definition.

Definition A.2.10. Let X be a quasi-compact and quasi-separated rigid space. An open subset U ⊆
ZRS(X) is admissible if for every map of quasi-compact and quasi-separated rigid spaces f : Y → X, the
image of ZRS(f) is contained in U whenever the subset f(Y ) ⊆ X ⊆ ZRS(X) is contained in U . (It clearly
suffices to work with affinoid Y .) Given such a U , we call the subset U = U ∩X its set of ordinary points.

Remark A.2.11. If U ⊆ ZRS(X) is an admissible open then ZRS(f)−1(U ) ⊆ ZRS(Y ) is an admissible open
subset for any f : Y → X as in Definition A.2.10.
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Let X be a quasi-compact and quasi-separated rigid space. It is clear that if U ⊆ X is a quasi-compact
admissible open in the sense of Tate then ZRS(U) ∩X inside of ZRS(X) is equal to U ⊆ X, so the quasi-
compact open set ZRS(U) in ZRS(X) is admissible. Every quasi-compact open in ZRS(X) has the form
ZRS(U) for such a U (since any finite union U of affinoid subdomains U1, . . . , Un in a quasi-compact and
quasi-separated rigid space X is an admissible open for which the Ui’s are an admissible covering), so every
quasi-compact open in ZRS(X) is admissible. In general, if U ⊆ ZRS(X) is an admissible open then the
associated locus U ⊆ X of ordinary points is an admissible open of X in the sense of Tate. Indeed, we may
choose admissible affinoid opens Ui ⊆ X such that the associated open sets Ui = ZRS(Ui) ⊆ ZRS(X) are
an open cover of U (so obviously ∪Ui = U inside of X) and we just have to check that for any (necessarily
quasi-compact) morphism f : Y = Sp(B)→ X from an affinoid space such that f(Y ) ⊆ U , the set-theoretic
cover of Y given by the quasi-compact pullbacks f−1(Ui) has a finite subcover. By definition of admissibility
for U , the map ZRS(f) has image contained in U and hence the preimages ZRS(f)−1(Ui) are an open
cover of the space ZRS(Y ) that is quasi-compact. It follows that ZRS(f) has image contained in the union
of finitely many Ui, whence f(Y ) ⊆ X is contained in the union of the finitely many corresponding loci
Ui = Ui ∩X, as required. This can be strengthened as follows:

Lemma A.2.12. Let X be a quasi-compact and quasi-separated rigid space. The association U 7→ U ∩X
from admissible opens in ZRS(X) to admissible opens in X is a bijection that commutes with the formation
of intersections. Moreover, U is quasi-compact if and only if the admissible open U ∩X in X is a quasi-
compact rigid space, and the correspondence U 7→ U ∩ X commutes with formation of preimages under
ZRS(f) for any map f : X ′ → X between quasi-compact and quasi-separated rigid spaces.

Proof. Since U is covered by opens of the form ZRS(U) for quasi-compact admissible opens U ⊆ X, to prove
that the admissible open U ∩X determines U it suffices to note the obvious fact that for any quasi-compact
admissible open U ⊆ X we have ZRS(U) ⊆ U if and only if U ⊆ U ∩X (here we use three properties: U
is admissible, U = X ∩ ZRS(U), and ZRS(·) is a functor).

Now let U ⊆ X be an arbitrary admissible open, say with {Ui} an admissible covering by quasi-compact
opens. Let U be the open set ∪ZRS(Ui) in ZRS(X), so U ∩X = U . We claim that U is admissible. Consider
a quasi-compact and quasi-separated rigid space Y and a morphism f : Y → X such that f(Y ) ⊆ U . We
need to prove that ZRS(f) has image contained in U . By the definition of admissibility for the covering {Ui}
of U , the loci f−1(Ui) in Y are admissible opens and constitute an admissible cover. In particular, there is
a finite collection of affinoid domains {Vj} in Y that covers Y and refines {f−1(Ui)}. Since an admissible
covering by finitely many quasi-compact opens can always be realized from a Zariski-open covering of a
suitable formal model [BL3, Lemma 4.4], ZRS(Y ) is the union of the ZRS(Vj)’s. Thus, the image of ZRS(f)
is the union of the images of the ZRS(fj)’s, with fj = f |Vj

: Vj → X a map that factors through some
Ui(j). Hence, ZRS(fj) has image contained in ZRS(Ui(j)) ⊆ U , so ZRS(f) has image contained in U . This
concludes the proof that U is an admissible open in ZRS(X).

Finally, we check that an admissible open U ⊆ ZRS(X) is quasi-compact if and only if the admissible
open U = U ∩X in X is quasi-compact as a rigid space, and that the correspondence between admissible
opens in X and ZRS(X) is compatible with preimages. The preceding argument shows that if a collection of
quasi-compact opens Ui ⊆ U is an admissible covering of U then the ZRS(Ui)’s cover U , and the converse is
immediate from the hypothesis of admissibility for U and the quasi-compactness of Zariski–Riemann spaces.
Thus, the desired quasi-compactness result follows. As for preimages, if f : X ′ → X is a map between quasi-
compact and quasi-separated rigid spaces and U ⊆ ZRS(X) is an admissible open then for U = U ∩X we
have to check that f−1(U) = ZRS(f)−1(U ) ∩X ′. The containment ⊆ is obvious by admissibility of U and
functoriality of ZRS(·) (applied to admissible quasi-compact opens in U). For the reverse inclusion consider
x′ ∈ X ′ such that ZRS(f)(x′) ∈ U . Since ZRS(f)(x′) = f(x′) in X ⊆ ZRS(X) we have f(x′) ∈ U ∩X = U
as desired. �

Lemma A.2.13. If f : X ′ → X is a surjective map of quasi-compact and quasi-separated rigid spaces and
U is an open subset of ZRS(X) whose open preimage U ′ ⊆ ZRS(X ′) is admissible then U is admissible.
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Proof. Let Y be a quasi-compact and quasi-separated rigid space and h : Y → X a map such that h(Y ) ⊆ U .
We want to prove that ZRS(h) has image contained in U . The pullback f ′ : Y ′ = X ′×X Y → Y is surjective,
so by Lemma A.2.9 the map ZRS(f ′) is surjective. Hence, we may replace Y with Y ′ so that h factors as
f ◦ h′ for some h′ : Y → X ′. Obviously h′(Y ) ⊆ U ′, so by admissibility of U ′ the image of ZRS(h′) is
contained in U ′. Composing with ZRS(f) gives that ZRS(h) has image contained in U . �

Lemma A.2.14. If f : X ′ → X is a proper map of quasi-compact and quasi-separated rigid spaces then
ZRS(f) is a closed map of topological spaces. Moreover, if f is surjective and U ⊆ ZRS(X) is a subset
whose preimage in ZRS(X ′) is open (resp. admissible open, resp. quasi-compact open) then the same holds
for U in ZRS(X).

Proof. By Lemma A.2.6, ZRS(f) is closed provided that any formal model for f is a closed map. But (as
we explained in [C3, §A.1]), by recent work of Temkin [Te] the map f is proper in the sense of rigid spaces
if and only if one (equivalently every) formal model of f is proper (and thus closed) in the sense of formal
geometry.

Now assume that f is also surjective. Any closed surjection of topological spaces is a quotient map, so
a subset U ⊆ ZRS(X) is open (resp. quasi-compact open) if its preimage in ZRS(X ′) has this property.
If ZRS(f)−1(U ) is an admissible open in ZRS(X ′) then U must at least be open in ZRS(X) and it is
admissible by Lemma A.2.13. �

Now we can prove Theorem A.2.1:

Proof. Let P = X ′×X X ′ and let U ′ ⊆ ZRS(X ′) be the admissible open that corresponds to U ′ via Lemma
A.2.12. Let p1, p2 : P ⇒ X ′ be the canonical projections. By the definition of U ′ as a preimage from X, the
two admissible open preimages p−1

j (U ′) in P coincide, so they correspond to the same admissible open set in
ZRS(P ). But the final part of Lemma A.2.12 ensures that p−1

j (U ′) corresponds to ZRS(pj)−1(U ′), so these
latter two opens in ZRS(P ) coincide. By Lemma A.2.8, it follows that U ′ is the preimage of a subset U of
ZRS(X). By Lemma A.2.14, U is therefore an admissible open in ZRS(X), so its associated locus U ∩X of
ordinary points is an admissible open in X by Lemma A.2.12. Since the correspondence between admissible
opens in X and ZRS(X) has been shown to be compatible with formation of preimages, we conclude that
the admissible open U ∩X in X has preimage U ′ ∩X ′ = U ′ in X ′ and hence it is equal to the image U of
U ′ in X. Thus, U is indeed an admissible open in X. �

A.3. Weil-pairings and formal semi-abelian models. Let k be a non-archimedean field with valuation
ring R and let A/k be an abelian variety with semistable reduction over R. Let AR and A′R be the associated
formal semi-abelian models for A and A∨ over Spf(R), and let

0→ T→ AR → B→ 0, 0→ T′ → A′R → B′ → 0

be the filtrations with maximal formal subtori and formal abelian scheme quotients as in the general semi-
stable reduction theorem (Theorem 2.1.9). In particular, there are unique abelian schemes BR and B′R over
Spec(R) that algebraize B and B′, and we let B and B′ denote their respective generic fibers over k. The
proof of Theorem 2.1.9 provides a canonical isomorphism B′ ' B∨ (or equivalently, B′R ' B∨R or B′ ' B∨).

In the discretely-valued case, it follows from [SGA7, IX, 3.5, 5.2] that the Néron models N(A) and N(A∨)
of A and A∨ over R must have semi-stable reduction, and by Example 2.1.10 the formal semi-abelian
models AR and A′R coincide with the respective mR-adic completions of the relative identity components
N(A)0 and N(A∨)0. Grothendieck [SGA7, IX, 5.2, 7.1.5, 7.4] proved that in the discretely-valued case the
finite flat k-group T[N ]k (resp. T′[N ]k) is orthogonal to A′R[N ]k (resp. AR[N ]k) under the Weil-pairing
A[N ] × A∨[N ] → µN for every positive integer N and (via the theory of bi-extensions) that there is a
canonical isomorphism B′R ' B∨R with respect to which the pairing between B′[N ] ' (A′R[N ]/T′[N ])k and
B[N ] ' (AR[N ]/T[N ])k induced by the Weil-pairing A[N ] × A∨[N ] → µN is precisely the canonical Weil-
pairing between B[N ] and B∨[N ] for every N ≥ 1. This condition for all N (or even just N running through
powers of a fixed prime) uniquely characterizes Grothendieck’s isomorphism B′ ' B∨ without mentioning
the theory of bi-extensions. The proof of the duality aspect of Theorem 4.1.1 rests on an analogue of these
results in the setting of the general semistable reduction theorem without discreteness restrictions on the
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absolute value. The required analogous result was recorded without proof as Theorem 4.1.6, and here we
give the statement and proof of a slightly more general result:

Theorem A.3.1. With notation as above, for every positive integer N the Weil pairing A[N ]×A∨[N ]→ µN

makes T[N ]k annihilate A′R[N ]k and AR[N ]k annihilate T′[N ]k, and the resulting pairing

(A.3.1) B[N ]×B′[N ] = B[N ]k ×B′[N ]k ' (AR[N ]k/T[N ]k)× (A′R[N ]k/T′[N ]k)→ µN

induced by the Weil pairing between A[N ] and A∨[N ] arises from the canonical isomorphism B′R ' B∨R via
the Weil pairing B[N ]×B∨[N ]→ µN .

The key point is that the isomorphismB′R ' B∨R is provided by a specific uniformization construction in the
proof of Theorem 2.1.9 and not through an abstract procedure such as the algebraic theory of bi-extensions
that is used by Grothendieck in the discretely-valued case (and which we do not have in the rigid-analytic
setting). Since Theorem A.3.1 gives an abstract unique characterization of the isomorphism B′R ' B∨R that
emerges from the rigid-analytic constructions in the proof of Theorem 2.1.9, in the discretely-valued case we
conclude (using Grothendieck’s results) that the isomorphism B′R ' B∨R constructed via rigid geometry in
[BL2] coincides with the one that is provided by Grothendieck’s work with bi-extensions. We emphasize that
it is the duality between B′ and B via rigid geometry that is relevant in the theory of canonical subgroups,
and so one cannot avoid relating this specific duality with the duality between torsion-levels of A and A∨ in
the study of how duality interacts with canonical subgroups.

The proof of Theorem A.3.1 requires nothing more than carefully unwinding the rigid-analytic construction
of the Poincaré bundle PA on A×A∨ in terms of the formal Poincaré bundle PB on B×B∨ in the proof of
Theorem 2.1.9, and applying the construction of the Weil pairing A[N ] × A∨[N ] → µN in terms of PA (as
in [Mum, §20]) so that we can understand how it restricts to AR[N ]k × A′R[N ]k ⊆ A[N ]×A∨[N ].

Proof. 1 � 1
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[SGA3] A. Grothendieck, Schémas en groupes I, II, Springer Lecture Notes in Mathematics 151, 152, Springer-Verlag, New

York (1970).
[SGA7] A. Grothendieck, Groupes de monodromie en géométrie algébrique, Springer Lecture Notes in Math 288, Springer-
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[deJ] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. IHES, 82 (1995), pp.

5–96.
[Kas] P. Kassaei, A gluing lemma and overconvergent modular forms, Duke Math Journal, to appear.

[K] N. Katz, p-adic properties of modular schemes and modular forms in Modular Functions of One Variable III, Springer

Lecture Notes in Mathematics 350 (1973), pp. 69–190.
[Ke] J. Kelley, General topology, D. Van Nostrand Co., Inc., New York, 1955.

[KL] M. Kisin, K.F. Lai, Overconvergent Hilbert modular forms, Amer. Journal of Math., 127 (2005), no. 4, pp. 735–783.
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