

Remarks on mod- I^n Representations, I = 3, 5

Brian Conrad

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 E-mail: bconrad@math.harvard.edu

and

Siman Wong*

Department of Mathematics, Brown University, Providence, Rhode Island 02912 E-mail: siman@math.brown.edu

> Communicated by K. Rubin Received November 9, 1998

Let l=3 or 5. For any integer n>1, we produce an infinite set of triples (L, E_1, E_2) , where L is a number field with degree $l^{3(n-1)}$ over **Q** and E_1 and E_2 are elliptic curves over L with distinct j-invariants lying in \mathbf{Q} , such that the following conditions hold: (1) the pairs of j-invariants $\{j(E_1), j(E_2)\}$ are mutually disjoint, (2) the associated mod- l^n representations $G_L = \operatorname{Gal}(\bar{L}/L) \to GL_2(\mathbf{Z}/l^n)$ are surjective, (3) for almost all primes p of L, we have $l^n \mid a_n(E_1)$ if and only if $l^n \mid a_n(E_2)$, and (4) the two representations $E_i[l^n](\bar{L})$ are not related by twisting by a continuous character $G_L \to (\mathbb{Z}/l^n)^{\times}$. No such triple satisfying (2)–(4) exists over any number field if we replace l by a prime larger than 5. The proof depends on determining the automorphisms of the group $GL_2(\mathbb{Z}/l^n)$ for l=3,5 and analyzing ramification in a branched covering of "twisted" modular curves. © 1999 Academic Press

1. INTRODUCTION

Choose a number field K and fix an algebraic closure \overline{K} of K. Denote by G_K the Galois group $\operatorname{Gal}(\overline{K}/K)$. Let E_1, E_2 be elliptic curves over $K, l \in \mathbb{Z}$ a prime, $n \in \mathbb{Z}$ a positive integer, and fix a basis of $E_i[l^n](\overline{K})$ over \mathbb{Z}/l^n . Let

$$\rho_{E_i, l^n}: G_K \to \operatorname{Aut}(E_i[l^n](\overline{K})) \simeq \operatorname{GL}_2(\mathbf{Z}/l^n)$$

be the resulting mod- l^n representations associated to E_i , and assume that ρ_{E_1, I^n} and ρ_{E_2, I^n} are surjective. Let Σ be a finite set of non-archimedean primes of K containing all the primes of bad reduction for E_1 and E_2 , as well as all of the primes in K lying above l. For any prime \mathfrak{p} of K not in Σ , define $a_{p}(E_{i})$ to be the trace of the action on the *l*-adic Tate module of

^{*} Current address: Department of Mathematics, University of Massachusetts, Amherst, MA 01003-4515. E-mail: siman@math.umass.edu.

 E_i by an arithmetic Frobenius element at \mathfrak{p} in G_K . If $\rho_{E_1, l^n} \simeq \chi \rho_{E_2, l^n}$ for a continuous character $\chi: G_K \to (\mathbf{Z}/l^n)^{\times}$, then for all $\mathfrak{p} \notin \Sigma$, we have

$$l^n | a_{\mathfrak{p}}(E_1)$$
 if and only if $l^n | a_{\mathfrak{p}}(E_2)$. (1)

By the Cebotarev density theorem, this is equivalent to saying that for all $g \in G_K$, $\rho_{E_1, l^n}(g)$ has trace 0 if and only if $\rho_{E_2, l^n}(g)$ has trace 0. It follows from [9, Cor. 1(b)] (and "Correction to [9]" below) that if l > 5, then the condition (1) implies that the ρ_{E_i, l^n} are equivalent up to twisting by a $(\mathbf{Z}/l^n)^{\times}$ -valued continuous character of G_K . For l = 3 or l = 5, and n > 1, the same conclusion holds for the pair of representations $G_K \to \mathrm{GL}_2(\mathbf{Z}/l^{n-1})$ induced from the surjective ρ_i by reduction modulo l^{n-1} , thanks to [9, Cor. 1(c)]. The proofs depend upon determining the automorphisms of $\mathrm{PGL}_2(\mathbf{Z}/l^n)$. For l > 5, all such automorphisms turn out to be inner, but for l = 3 and l = 5 there are non-trivial outer automorphisms. In this paper, we exploit these outer automorphisms to produce elliptic curves E over number fields E for which the associated mod-E representation of E is surjective but is not determined (up to twisting) by the set of primes E with E E by the set of primes E with E E by the set of primes E with E by the set of E by t

Theorem 1. Let l=3 or 5, let n>1, and let K be a number field which is linearly disjoint from $\mathbf{Q}(\zeta_{l^n})$, where ζ_{l^n} is a primitive l^n th root of unity. There exist infinitely many triples (L, E_1, E_2) consisting of a finite extension L/K with degree $l^{3(n-1)}$ and elliptic curves E_1 , E_2 over L with distinct j-invariants in K such that the pairs $\{j(E_1), j(E_2)\}$ are mutually disjoint, the corresponding mod- l^n representations $\rho_{E_1, l^n}, \rho_{E_2, l^n}: G_L \to GL_2(\mathbf{Z}/l^n)$ satisfy the condition (1) and are surjective, and ρ_{E_1, l^n} and ρ_{E_2, l^n} are not equivalent up to twisting by any continuous character $G_L \to (\mathbf{Z}/l^n)^{\times}$. In fact, infinitely many such triples $\tau = (L, E_1, E_2)$ can be chosen so that each pair of representations ρ_{E_1, l^n} and ρ_{E_2, l^n} has the same common splitting field L_{τ} over L and as we vary τ , no prime of K away from l with norm $>(l^2-3)/2$ is ramified in more than one of the L_{τ} 's.

In view of our remarks above, for any triple (L, E_1, E_2) in the theorem, the mod- l^{n+1} representations $G_L \to GL_2(\mathbf{Z}/l^{n+1})$ arising from E_1 and E_2 cannot both be surjective. To prove the theorem, we use a non-trivial outer automorphism of $\operatorname{PGL}_2(\mathbf{Z}/l^n)$ in order to construct a non-trivial determinant-preserving outer automorphism φ of $GL_2(\mathbf{Z}/l^n)$ which takes trace zero matrices to trace zero matrices. If ρ is a surjective mod- l^n representation of an elliptic curve E over a number field K, then ρ and $\rho' = \varphi \circ \rho$ have cyclotomic determinant and are not equivalent up to twists. Moreover, for all but finitely many primes $\mathfrak p$ of K, ρ and ρ' are unramified at $\mathfrak p$ and $l^n \mid \operatorname{trace}(\rho(\operatorname{Frob}_{\mathfrak p}))$ if and only if $l^n \mid \operatorname{trace}(\rho'(\operatorname{Frob}_{\mathfrak p}))$, where $\operatorname{Frob}_{\mathfrak p}$ is an

arithmetic Frobenius element at \mathfrak{p} in G_K . We want to realize ρ' as the mod- l^n representation of an elliptic curve E' over K. This step will require enlarging K a small amount to an extension L, but we will be able to slightly control ramification in L/K.

Here is how we will find E'. There is a proper smooth curve $X(\rho')$ over K which, roughly speaking, classifies elliptic curves whose mod- l^n representation is isomorphic to ρ' . In particular, over \overline{K} there is an isomorphism

$$X(\rho') \times_K \overline{K} \simeq X(l^n) \times_{\mathbf{Z}[1/l]} \overline{K},$$

where $X(l^n)$ denotes the compactified full level l^n moduli scheme over $\mathbb{Z}[1/l]$ in the sense of [5, Sects. 8.6ff.], so $X(\rho')$ is *not* geometrically connected over K. However, since the determinant of ρ' is cyclotomic, the connected components of $X(\rho')$ are geometrically connected over K. Let $\bar{\rho}'$ be the mod-l reduction of ρ' . "Reduction mod l" on Galois representations induces a finite flat map $X(\rho') \to X(\bar{\rho}')$ over K whose base change to \bar{K} is the usual projection $X(l^n) \times_{\mathbb{Z}[1/l]} \bar{K} \to X(l) \times_{\mathbb{Z}[1/l]} \bar{K}$.

For l=3 and 5, an argument of Mazur shows that the connected components of $X(\bar{\rho}')$ have rational points and so are non-canonically isomorphic to \mathbf{P}^1_K . Thus, we can regard the connected components of $X(\rho')$ as branched covers of \mathbf{P}^1_K which are geometrically connected over K. We find the desired elliptic curves in Theorem 1 by looking in the fibers on $X(\rho')$ over well-chosen K-rational points on the connected components \mathbf{P}^1_K of $X(\bar{\rho}')$. We do not know if it is sufficient to only look at K-rational points on $X(\rho')$ (of which there are only finitely many, by Faltings' Theorem), and this is why we cannot precisely control the number fields over which our examples occur.

Correction to [9]. S. W. would like to take this opportunity to correct a confusing terminology mistake in [9], which is needed in the present paper. Let \mathcal{O} be a complete local ring with maximal ideal λ . Consider two continuous representations $\rho_1, \rho_2 \colon G_K \to \operatorname{GL}_n(\mathcal{O})$ which are unramified outside of a finite set of places Σ of K. For any $\mathfrak{p} \notin \Sigma$, define $a_i(\mathfrak{p}) = \operatorname{trace} \rho_i(\operatorname{Frob}_{\mathfrak{p}})$. In [9, Sect. 1] (see in particular the displayed equation (1) there), ρ_1 and ρ_2 are defined to be " λ -adically close at the supersingular primes" if there is a positive integer N_0 such that whenever both $a_i(\mathfrak{p})$ lie in λ^{N_0} , one has for all $w \geqslant N_0$ that $a_1(\mathfrak{p}) \in \lambda^w$ if and only if $a_2(\mathfrak{p}) \in \lambda^w$. This definition is inadequate for the proofs in [9], and is automatically satisfied whenever $\lambda^{N_0} = 0$ (a case of interest for the present paper)! The definition of λ -adic closeness should have been modified to require that if one of the two $a_i(\mathfrak{p}) \in \lambda^{N_0}$, then for any $w \geqslant N_0$, $a_1(\mathfrak{p}) \in \lambda^w$ if and only if $a_2(\mathfrak{p}) \in \lambda^w$. Note, for example, that this is a non-trivial condition even if $\lambda^{N_0} = 0$.

It is only under this modified definition of λ -adic closeness that the arguments in [9] yield the results as claimed there. However, the statement

of [9, Lemma 7] needs to be slightly modified. Beginning with the phrase *Suppose one of the following holds...*, the lemma should be replaced by the following:

Suppose one of the following holds:

- *n* is even and either $k \not\simeq \mathbf{F}_2$ or 2 is not a zero-divisor in \mathcal{O} ; or
- $n \ge 5$ is odd and either $k \not\simeq \mathbf{F}_3$ or 3 is not a zero-divisor in \mathcal{O} ; or
- n = 3 and $k \not\simeq \mathbf{F}_2$, $k \not\simeq \mathbf{F}_3$.

Then there exists an automorphism φ of $\operatorname{PGL}_n(\mathcal{O})$ such that $\varphi \circ \tilde{\rho}_2 = \tilde{\rho}_1$. Suppose instead that n is even and $k = \mathbb{F}_2$, or that n = 3 and $k = \mathbb{F}_3$. Let

Suppose instead that n is even and $k = \mathbf{F}_2$, or that n = 3 and $k = \mathbf{F}_3$. Let p denote the characteristic of k and let α denote the annihilator of p in \mathcal{O} . Then the analogous conclusion holds for the pair of representations $G_K \to \operatorname{PGL}_n(\mathcal{O}/\alpha)$ induced from the $\tilde{\rho}_i$.

2. BRANCHED COVERS OF P_K^1

In this section, we recall some results related to the Hilbert Irreducibility Theorem, stated in a geometric form.

Let K be a number field and let $\pi: X \to \mathbf{P}_K^1$ be a finite map, where X is a smooth connected curve over K. The Hilbert Irreducibility Theorem says that for infinitely many K-rational points $a \in \mathbf{P}_K^1$, the fiber $\pi^{-1}(a)$ has the form $\pi^{-1}(a) \simeq \operatorname{Spec}(L_a)$ for a finite extension field L_a/K . In more algebraic terms, if we identify $K(\mathbf{P}_K^1) \simeq K(t)$ and we choose a primitive element for the finite separable extension $K(X)/K(\mathbf{P}_K^1)$ of function fields, then $K(X) \simeq K(t)[Y]/(f)$ for some monic $f \in K(t)[Y]$. The Hilbert Irreducibility Theorem in the geometric form just given is equivalent to the statement that for infinitely many $t_0 \in K$, the polynomial $f(t_0, Y) \in K[Y]$ is irreducible, in which case $L_{t_0} = K[Y]/f(t_0, Y)$. Of course, we avoid the finitely many $t_0 \in K$ where some coefficient of f in K(t) has a pole.

We will need a milder stronger formulation, which is well-known:

LEMMA 1. Let π be as above and choose a finite extension E/K. Assume that X is geometrically connected over K, or more generally that E is linearly disjoint (over K) from the algebraic closure of K in K(X). Then there exist infinitely many K-rational points $a \in \mathbf{P}_K^1$ for which $\pi^{-1}(a) \simeq \operatorname{Spec}(L_a)$ for a finite extension L_a/K which is linearly disjoint from E over K. In other words, $\pi^{-1}(a) \times_K E$ is irreducible for infinitely many K-rational points $a \in \mathbf{P}_K^1$.

Proof. Since E/K is a finite separable extension, by [6, Prop 3.3, Sect. 9] every Hilbert set in E contains a Hilbert set in E. Put in more algebraic terms, for any irreducible monic polynomial $f \in E(t)[Y]$, there exists an irreducible

monic polynomial $g_f \in K(t)[Y]$ such that for all but finitely many $t_0 \in K$, $f(t_0, Y) \in E[Y]$ is irreducible whenever $g_f(t_0, Y) \in K[Y]$ is irreducible. Thus, by the Hilbert Irreducibility Theorem for the number field K and the polynomial $g_f \in K(t)[Y]$, we conclude that for any irreducible monic $f \in E(t)[Y]$, there are infinitely many $t_0 \in K$ (rather than just $t_0 \in E$) such that $f(t_0, Y) \in E[Y]$ is irreducible. In particular, for any irreducible monic $f \in K(t)[Y]$ which remains irreducible in E(t)[Y], there are infinitely many $t_0 \in K$ so that $f(t_0, Y)$ is irreducible in E[Y]. Of course, this is just the usual proof that a finite (separable) extension of a Hilbertian field is again Hilbertian.

In order to use this to deduce the lemma, we just have to show that if we choose an isomorphism $K(X) \simeq K(t)[Y]/(f)$ for some irreducible monic $f \in K(t)[Y]$, then f is irreducible in E(t)[Y]. It is not difficult to show that this is equivalent to the irreducibility of $X \times_K E$, or even the connectedness of $X \times_K E$ (by smoothness). If K' denotes the algebraic closure of K in K(X) then K is naturally a proper smooth curve over K' and is geometrically connected as such [X, Y], 4.5.15. Since $X \times_K E = X \times_{K'} \operatorname{Spec}(K' \otimes_K E)$ and $K' \otimes_K E$ is a field by the linear disjointness hypothesis, it follows that $X \times_K E$ is connected.

3. AUTOMORPHISMS OF $GL_2(\mathbf{Z}/l^n)$

LEMMA 2. Let R be a local ring with residue field k and maximal ideal m. The natural map $\mathrm{SL}_n(R) \to \mathrm{SL}_n(k)$ is surjective. The same holds with PSL_n replaced by PSL_n , PGL_n and GL_n .

Proof. Given a matrix $A = (a_{ij})$ in $SL_n(k)$, let $\mathfrak{a} = (\alpha_{ij})$ be an $n \times n$ matrix over R with α_{ij} mod $\mathfrak{m} = a_{ij}$ for all i, j. Denote by \mathfrak{a}_{ij} the $(n-1) \times (n-1)$ matrix obtained by removing the ith row and the jth column of \mathscr{A} . Define A_{ij} similarly. Then

$$\sum_{j=1}^{n} (-1)^{j} \alpha_{1j} \det(\alpha_{1j}) = \det(\alpha) \equiv 1 \quad (\text{mod } \mathfrak{m}).$$
 (2)

If we fix the entries α_{ij} with $i \ge 2$, then any lift α of A with these α_{ij} for i > 2 gives rise to a solution mod m of the linear equation (2). Moreover, since $\det(\alpha_{1j}) \mod m = \det(A_{1j})$ for all j, at least one of the $\det(\alpha_{ij})$ is a unit. Thus, we can easily find elements $\alpha_{11}, ..., \alpha_{1n}$ in R so that the left side of (2) is equal to 1 in R. This takes care of the lemma for SL_n ; the other cases are similar.

LEMMA 3. Let R be a Noetherian local ring with maximal ideal m and finite residue field k with characteristic l > 0. Denote by K_n and L_n the kernel

of the natural maps from $\mathrm{PSL}_n(R)$ to $\mathrm{PSL}_n(R/\mathfrak{m})$ and $\mathrm{PSL}_n(R/\mathfrak{m}^2)$, respectively. Let $M \subset \mathrm{PSL}_n(R)$ be a normal subgroup such that ML_n/L_n is a finite l-group. Then $M \subset K_n$.

The same conclusion holds if $l \nmid n$ and if we replace PSL_n by PGL_n .

Remark 1. The group ML_n/L_n is always *finite*: it is a subgroup of $\mathrm{PSL}_n(R)/K_n$, which injects into $\mathrm{PSL}_n(R/\mathfrak{m}^2)$, which is finite since k is finite and \mathfrak{m} is finitely generated.

Proof. We first deal with the case of PSL_n . Then there are no non-trivial normal l-subgroups in $PSL_n(k)$: for $n \neq 2$ or $k \neq F_2$, F_3 this follows from the simplicity of $PSL_n(k)$, and the remaining cases follow from the isomorphisms $PSL_2(F_2) \simeq S_3$ and $PSL_2(F_3) \simeq A_4$.

Since $\mathfrak{m}/\mathfrak{m}^2$ is a finite-dimensional k-vector space, K_n/L_n is a finite elementary l-group, and hence so is MK_n/ML_n . The exact sequence

$$1 \to ML_n/L_n \to MK_n/L_n \to MK_n/ML_n \to 1$$

and the hypothesis on M then imply that MK_n/L_n , and hence MK_n/K_n , is a finite l-group. The latter is a normal l-subgroup of $\mathrm{PSL}_n(R)/K_n$, which by Lemma 2 is isomorphic to $\mathrm{PSL}_n(k)$. Thus $MK_n = K_n$, as desired.

The quotient group $\operatorname{PGL}_n(R)/\operatorname{PSL}_n(R) \simeq R^{\times}/R^{\times^n}$ has exponent dividing n, so the above argument applies to PGL_n if $l \nmid n$.

COROLLARY 1. Let R be a Noetherian local ring with maximal ideal m and a finite residue field k with characteristic l>0. Define K_n as in Lemma 3. Every automorphism φ of $\mathrm{PSL}_n(R)$ (resp. $\mathrm{PGL}_n(R)$ with $l \nmid n$) takes K_n to itself, thereby giving an automorphism $\bar{\varphi}$ of $\mathrm{PSL}_n(k)$ (resp. $\mathrm{PGL}_n(k)$) such that $\bar{\varphi}(\bar{g}) = \overline{\varphi(g)}$ for all $g \in \mathrm{PSL}_n(R)$ (resp. $g \in \mathrm{PGL}_n(R)$), where $\bar{(\cdot)}$ denotes the image under the natural map $\mathrm{PSL}_n(R) \to \mathrm{PSL}_n(k)$ (resp. $\mathrm{PGL}_n(R) \to \mathrm{PGL}_n(k)$).

Proof. Apply Lemma 3 to $M = \varphi(K_n)$.

For the rest of this section, fix a prime l, let $\alpha \in (\mathbf{Z}/l^n)^{\times}$ be a choice of generator of the unique cyclic subgroup order l-1, and let Γ be the subgroup of $GL_2(\mathbf{Z}/l^n)$ generated by $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ and $SL_2(\mathbf{Z}/l^n)$. Thus, Γ is abstractly a semi-direct product $\mathbf{Z}/(l-1) \times SSL_2(\mathbf{Z}/l^n)$, where the $\mathbf{Z}/(l-1)$ is generated by $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$. Since $SL_2(\mathbf{Z}/l^n)$ contains all elements in Γ with l-power order and it is generated by such elements (e.g., $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$) and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$), we see that $SL_2(\mathbf{Z}/l^n)$ is stable under $Aut(\Gamma)$. The natural map $\Gamma \to GL_2(\mathbf{Z}/l)$ is clearly surjective, and if l > 2, then the scalar matrices in Γ are those of order dividing l-1. Also, note that if l > 2, then the restriction of the canonical map $GL_2(\mathbf{Z}/l^n) \xrightarrow{\pi} PGL_2(\mathbf{Z}/l^n)$ to Γ is surjective.

Lemma 4. If l > 2, then every automorphism of $PGL_2(\mathbf{Z}/l^n)$ lifts to an automorphism of Γ .

Proof. Choose an automorphism φ of PGL₂(\mathbb{Z}/l^n). Since

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}^2 \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \alpha \end{pmatrix},$$

we see that $H = \ker(\pi|_{\Gamma})$ is a cyclic group (of scalar matrices) of order l-1, and

$$1 \to H \to \Gamma \xrightarrow{\pi} PGL_2(\mathbf{Z}/l^n) \to 1$$
 (3)

is a central extension, corresponding to a cohomology class $\phi \in H^2(\operatorname{PGL}_2(\mathbf{Z}/l^n), H)$ (the surjectivity of π in (3) requires l > 2). Since the automorphism group of the cyclic group H is commutative, an easy calculation shows that the automorphism φ of $\operatorname{PGL}_2(\mathbf{Z}/l^n)$ lifts to an automorphism of Γ if and only if $\varphi^*(\phi) \in H^2(\operatorname{PGL}_2(\mathbf{Z}/l^n), H)$ is equal to the image $\varphi_H(\phi)$ for some automorphism $\varphi_H: H \simeq H$. The point is that when such a φ_H exists, there is a lift $\widetilde{\varphi}$ of φ to an endomorphism of Γ which induces the automorphism φ_H on H. A simple diagram chase then shows that $\widetilde{\varphi}$ is actually an automorphism of Γ .

The only possibilities for φ_H are multiplication by $m \in (\mathbf{Z}/(l-1))^{\times}$, and if $\varphi^*(\phi) = m\phi$ for some $m \in \mathbf{Z}/(l-1)$, then (by the Chinese Remainder Theorem) m can be chosen to lie in $(\mathbf{Z}/(l-1))^{\times}$ (since φ^* is an automorphism). Thus, φ lifts to an automorphism of Γ if and only if the cohomology class $\varphi^*(\phi) = \varphi_H(\phi)$ for some endomorphism φ_H of the group H. By an argument in terms of central extensions, it is clear that the elements of the form $\varphi_H(\phi)$ for variable φ_H are precisely the elements in the kernel of π^* : $H^2(\mathrm{PSL}_2(\mathbf{Z}/l^n), H) \to H^2(\Gamma, H)$. Thus, φ lifts to an automorphism of Γ if and only if $(\varphi \circ \pi)^* \phi = \pi^* \varphi^* \phi = 0$ in $H^2(\Gamma, H)$. We will show that $(\varphi \circ \pi)^* \phi = 0$.

Let $K = \ker(\Gamma \to GL_2(\mathbf{Z}/l))$ and let $P = \ker(\Gamma \to PGL_2(\mathbf{Z}/l))$. Since (3) is a central extension, P and K act trivially on H. Also, since K is a finite l-group and H has order prime to l, $H^i(K, H) = 0$ for all i > 0. Since $\pi(P)$ is the kernel of the natural map $PGL_2(\mathbf{Z}/l^n) \to PGL_2(\mathbf{Z}/l)$, it follows from Lemma 3 that φ takes $\pi(P)$ isomorphically back to itself. The induced automorphism $\bar{\varphi}$ of $PGL_2(\mathbf{Z}/l^n)/\pi(P) \simeq PGL_2(\mathbf{Z}/l)$ is exactly the map in Corollary 1, so composing the map $\Gamma/K \to PGL_2(\mathbf{Z}/l^n)/\pi(K)$ (induced by π) with the projection $PGL_2(\mathbf{Z}/l^n)/\pi(K) \to PGL_2(\mathbf{Z}/l^n)/\pi(P)$ and the automorphism $\bar{\varphi}$, we get a map of groups $\psi \colon \Gamma/K \to PGL_2(\mathbf{Z}/l^n)/\pi(P)$. Using the identification $\Gamma/K \simeq GL_2(\mathbf{Z}/l)$, this map ψ is exactly the composite

of the canonical projection $\bar{\pi}$: $GL_2(\mathbf{Z}/l) \to \operatorname{PGL}_2(\mathbf{Z}/l)$ and the automorphism $\bar{\varphi}$ of $\operatorname{PGL}_2(\mathbf{Z}/l)$. The kernel of $\bar{\pi}$ is just the mod l "reduction" of H, which is canonically identified with H, due to how H is defined.

Functoriality and the inflation-restriction sequence therefore yield the commutative diagram

$$H^{2}(\operatorname{PGL}_{2}(\mathbf{Z}/l^{n})/\pi(P), H) \xrightarrow{\beta} H^{2}(\operatorname{PGL}_{2}(\mathbf{Z}/l^{n}), H)$$

$$\downarrow^{\psi^{*}} \qquad \qquad \downarrow^{(\varphi \circ \pi)^{*}} \qquad (4)$$

$$H^{2}(\Gamma/K, H) \xrightarrow{\sim} H^{2}(\Gamma, H).$$

in which the bottom row is an isomorphism and the left column is identified with the map

$$(\bar{\varphi} \circ \bar{\pi})^*$$
: $H^2(\operatorname{PGL}_2(\mathbf{Z}/l), H) \cong H^2(\operatorname{GL}_2(\mathbf{Z}/l), H)$.

The cohomology class $\bar{\phi}$ in $H^2(\operatorname{PGL}_2(\mathbf{Z}/l), H)$ corresponding to the central extension

$$1 \to H \to GL_2(\mathbf{Z}/l) \xrightarrow{\bar{\pi}} \mathrm{PGL}_2(\mathbf{Z}/l) \to 1 \tag{5}$$

satisfies $\beta(\bar{\phi}) = \phi$. Thus, $(\varphi \circ \pi)^* \phi = 0$ if and only if $(\bar{\varphi} \circ \bar{\pi})^* (\bar{\phi}) = 0$, which is to say that the automorphism $\bar{\varphi}$ of $PGL_2(\mathbf{Z}/l)$ can be lifted to an automorphism of $GL_2(\mathbf{Z}/l)$. The liftability of all such automorphisms is classical [2, Thm. V.5].

For any ring R, if φ is an automorphism of $GL_2(R)$, then φ takes the diagonal matrices of $GL_2(R)$ to themselves (since these matrices constitute the center of $GL_2(R)$). Thus φ induces a group homomorphism $r_{\varphi} \colon R^{\times} \to R^{\times}$.

LEMMA 5. Let R be a local ring whose residue field is not \mathbf{F}_2 . Then every automorphism φ of $GL_2(R)$ takes $SL_2(R)$ to itself. Moreover, if φ_1 and φ_2 are two automorphisms of $GL_2(R)$, then φ_1 and φ_2 coincide on $SL_2(R)$ if and only if there is a map of groups λ : $R^\times \to R^\times$ such that $\varphi_1(g) = \lambda(\det(g)) \varphi_2(g)$ for all $g \in GL_2(R)$. Conversely, for any map of groups λ : $R^\times \to R^\times$ and any automorphism φ of $GL_2(R)$, $\lambda^2 r_{\varphi}$ is an automorphism of R^\times if and only if the map $g \mapsto \lambda(\det(g)) \varphi(g)$ defines an automorphism of $GL_2(R)$.

Proof. For a local ring R as above, the commutator subgroup of $GL_2(R)$ is $SL_2(R)$ [1, Thm 4.1, Prop 9.2]. The first part of the lemma then follows, and any group map $GL_2(R) \to R^\times$ must factor through the determinant map. To prove the second part, it suffices to consider an endomorphism φ of the group $GL_2(R)$ such that φ is the identity on $SL_2(R)$, and to show that $\varphi(g) = \lambda(\det(g))g$ for all $g \in GL_2(R)$, where

 $\lambda: R^{\times} \to R^{\times}$ is some map of groups. Pick an element $\mu \in R^{\times}$ and write $\varphi(\begin{smallmatrix} 1 & 0 \\ 0 & \mu \end{smallmatrix}) = (\begin{smallmatrix} x & y \\ z & w \end{smallmatrix})$. We have the identities

$$\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}^{-1} = \begin{pmatrix} 1 & \lambda/\mu \\ 0 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ \lambda\mu & 1 \end{pmatrix}.$$

Since φ is trivial on $\operatorname{SL}_2(R)$, applying φ to these identities and comparing the entries yields y=z=0 and $\mu=w/x$. Thus $\varphi(\begin{smallmatrix} 1 & 0 \\ 0 & \mu \end{smallmatrix})=\lambda(\mu)(\begin{smallmatrix} 1 & 0 \\ 0 & \mu \end{smallmatrix})$ for some $\lambda(\mu)\in R^\times$. Since φ is multiplicative, λ is an endomorphism of the group R^\times . Every element g of $\operatorname{GL}_2(R)$ can be written uniquely as $g'(\begin{smallmatrix} 1 & 0 \\ 0 & \det(g) \end{smallmatrix})$ with $g'\in\operatorname{SL}_2(R)$, so $\varphi(g)=\lambda(\det(g))g$ for all $g\in\operatorname{GL}_2(R)$.

Finally, let φ be an automorphism of the group $\operatorname{GL}_2(R)$ and let $\lambda\colon R^\times\to R^\times$ be a map of groups. Then $\varphi_\lambda\colon g\mapsto \lambda(\det(g))\,\varphi(g)$ is an endomorphism of $\operatorname{GL}_2(R)$ which induces an automorphism on $\operatorname{SL}_2(R)$. Suppose

$$\varphi_{\lambda}(g) = \varphi_{\lambda}(h) \tag{6}$$

for some $g,h \in GL_2(R)$. Then $\lambda(\det(g)) \lambda(\det(h))^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \varphi(g^{-1}h)$. Since φ induces an automorphism of the scalar matrices, we have $h = g\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}$ for some $s \in R^{\times}$. Since φ_{λ} is a homomorphism, it follows from (6) that $\varphi_{\lambda}(h) = \varphi_{\lambda}(g) \varphi_{\lambda}\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}$, and hence $\lambda^2(s) r_{\varphi}(s) = 1$. Conversely, if $(\lambda^2 r_{\varphi})(s) = 1$ for some $s \in R^{\times}$, then $\varphi_{\lambda}\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} = 1$. Thus φ_{λ} is injective if and only if $\lambda^2 r_{\varphi}$ is injective.

Denote by $\mathscr S$ the subgroup of $\operatorname{GL}_2(R)$ generated by $\operatorname{SL}_2(R)$ and by the scalar matrices. Note that φ_λ takes $\mathscr S$ to itself, and induces an automorphism of $\mathscr S$ if φ_λ is an automorphism. Since $\varphi_\lambda({}_0^\beta {}_0^\beta) = \lambda^2 r_\varphi(\beta)({}_0^1 {}_0^\beta)$, we conclude that $\lambda^2 r_\varphi$ is an automorphism (of the scalar matrices) if and only if φ_λ induces an automorphism of $\mathscr S$. Thus φ_λ always induces a map $\tilde\varphi_\lambda$ on $\operatorname{GL}_2(R)/\mathscr S$, and φ_λ is an automorphism if and only if $\lambda^2 r_\varphi$ is an automorphism and $\tilde\varphi_\lambda$ is surjective on $\operatorname{GL}_2(R)/\mathscr S$. But the action of $\tilde\varphi_\lambda$ on $\operatorname{GL}_2(R)/\mathscr S$ is the same as that of φ on $\operatorname{GL}_2(R)/\mathscr S$, which is surjective since φ is an automorphism of $\operatorname{GL}_2(R)$, so we are done.

LEMMA 6. Let l = 3 or 5, and let n > 1. Let $v, t \in \mathbb{Z}/l^n$ be divisible by l^{n-1} , with t = 0 or 3 if l = 3 and n = 2. Then the following

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ t & 1+t \end{pmatrix}, \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & t-1 \\ t+1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha & v \\ v & 1 \end{pmatrix}, \qquad \begin{pmatrix} \beta & 0 \\ 0 & \beta \end{pmatrix} \mapsto \begin{pmatrix} \beta & 0 \\ 0 & \beta \end{pmatrix}$$

determine a unique automorphism $\phi_{v,t}$ of $GL_2(\mathbf{Z}/l^n)$, and $\phi_{v,t}$ is determinant-preserving. When $v \neq 0$ or $t \neq 0$, then $\phi_{v,t}$ is not an inner automorphism.

Every automorphism of $GL_2(\mathbb{Z}/l^n)$ has the form

$$\phi_{v, t, \lambda, h} \colon g \mapsto \lambda(\det(g)) \ h\phi_{v, t}(g) \ h^{-1}$$

for $h \in \operatorname{GL}_2(\mathbf{Z}/l^n)$ and a map of groups $\lambda \colon (\mathbf{Z}/l^n)^\times \to (\mathbf{Z}/l^n)^\times$. Such automorphisms take elements with trace zero to elements with trace zero. Finally, for any v, t, λ, h as above, the map $\phi_{v, t, \lambda, h}$ is an automorphism of $\operatorname{GL}_2(\mathbf{Z}/l^n)$ if and only if $\lambda^2(a) \neq a^{-1}$ for all $a \in (\mathbf{Z}/l^n)^\times$ with $a \neq 1$.

Proof. With t and v as in the lemma, it follows from [9, Thm. 3] and our hypothesis that l=3 or l=5 that

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ t & t+1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 & t-1 \\ t+1 & 0 \end{pmatrix}, \quad \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} \alpha & v \\ v & 1 \end{pmatrix}$$

$$(7)$$

determines a unique automorphism $\varphi_{v,t}$ of $\operatorname{PGL}_2(\mathbf{Z}/l^n)$, and that every automorphism of $\operatorname{PGL}_2(\mathbf{Z}/l^n)$ is the compositum of an inner one with some $\varphi_{v,t}$. Moreover, by [9, Cor 2] and our hypothesis that l=3 or l=5, the first two conditions in (7) determine a unique automorphism of $\operatorname{SL}_2(\mathbf{Z}/l^n)$. Since $-1 \in (\mathbf{Z}/l^n)^{\times}$ does not have l-power order, by Lemma 4 and our earlier observation that $\operatorname{SL}_2(\mathbf{Z}/l^n) \subseteq \Gamma$ is stable under $\operatorname{Aut}(\Gamma)$ we see that there exists an automorphism $\Phi_{v,t}$ of Γ satisfying the first two conditions of (7), with

$$\boldsymbol{\Phi}_{v,t} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & v \\ v & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix}$$

for some $\gamma \in (\mathbf{Z}/l^n)^{\times}$. Since $\begin{pmatrix} \alpha & v \\ v & 1 \end{pmatrix}$ has order l-1 in $\mathrm{GL}_2(\mathbf{Z}/l^n)$, we have $\gamma^{l-1} = 1$, so we can write

$$\Phi_{v,t} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}^{A} \begin{pmatrix} \alpha & v \\ v & 1 \end{pmatrix}$$

for some $A \in \mathbb{Z}$. The scalars in Γ are the powers of $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ since l > 2, and it is easy to compute that

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1},$$

so $\Phi_{v,t}$ acts as multiplication by α^{2A} on $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$. Since $\operatorname{GL}_2(\mathbf{Z}/l^n)$ is generated by the commuting subgroups Γ and $(\mathbf{Z}/l^n)^{\times}$ (i.e., the scalar matrices), we can extend $\det^{-A}\Phi_{v,t}$ to an endomorphism $\phi_{v,t}$ of the group $\operatorname{GL}_2(\mathbf{Z}/l^n)$ by

letting it acts trivially on the scalar matrices. It is easy to see that $\phi_{v,t}$ is an automorphism. Moreover, since $\phi_{v,t}$ does not preserve the trace function if $t \neq 0$, it is easy to see that $\phi_{v,t}$ is not an inner automorphism unless v = t = 0, in which case it is the identity.

If φ is an automorphism of $\mathrm{GL}_2(\mathbf{Z}/l^n)$, then by [9, Cor. 2] the restriction of φ to $\mathrm{SL}_2(\mathbf{Z}/l^n)$ coincides with that of the composite of some $\phi_{v,\,t}$ with an inner automorphism. Applying the last part of Lemma 5 and noting that $r_{\phi_{v,\,t,\,1,\,h}}$ is the identity map for any v and t, we have now determined the automorphisms of $\mathrm{GL}_2(\mathbf{Z}/l^n)$.

Finally, since l > 2, the trace zero elements of $GL_2(\mathbf{Z}/l^n)$ are precisely those whose squares are scalar matrices. Thus, they are taken to themselves under any automorphism, as desired.

4. TWISTED MODULAR CURVES

In this section, we fix a positive integer $N \ge 3$ and let S be a $\mathbb{Z}[1/N]$ -scheme. Denote by $\mathbf{Sch}_{/S}$ and \mathbf{Sets} the category of S-schemes and sets, respectively. We define the (open) modular curve Y(N) over S as in [5, Cor. 4.7.2]. For any S-scheme T, we will denote $Y(N) \times_S T$ by Y(N) when T is understood from context.

Given an elliptic curve E over a S-scheme T, denote by E[N] the N-torsion subgroup scheme of E. Since N is invertible over S, the finite locally free commutative group scheme E[N] is étale over T and after a finite étale surjective base change is isomorphic to the constant group scheme $(\mathbf{Z}/N)^2$. For any finite étale commutative group scheme G over S which is étale locally isomorphic to the constant group scheme $(\mathbf{Z}/N)^2$, we denote by det G the finite étale S-group scheme which represents the étale sheaf $\bigwedge_{\mathbf{Z}/N}^2(G)$.

The following result is well-known to experts, but for the sake of completeness (and to assist the non-expert reader), we give a proof via reduction to standard results which are completely proven in [5].

THEOREM 2. Let S and G be as above. For $N \ge 3$, the functor F_G : $\mathbf{Sch}_{/S} \to \mathbf{Sets}$ given by

$$T \mapsto \begin{cases} isomorphism\ classes\ of\ pairs\ (E,\alpha),\ with\ E_{/T}\ an\ elliptic\ curve\ \\ and\ \alpha:\ E[N] \simeq G \times_S T\ an\ isomorphism\ of\ T-group\ schemes\ \end{cases}$$

is represented by an S-scheme Y(G) which becomes isomorphic to Y(N) over a finite étale cover of S (so $Y(G) \rightarrow S$ is smooth and affine of pure relative dimension 1).

Suppose we are given an isomorphism of S-group schemes i: det $G \simeq \mu_N$. Then for $N \geqslant 3$, the functor F_G^i : $\mathbf{Sch}_{/S} \to \mathbf{Sets}$ given by

$$T \mapsto \begin{cases} \text{isomorphism classes of pairs } (E, \alpha), \text{ such that } E_{/T} \text{ is an elliptic} \\ \text{curve, } \alpha \text{: } E[N] \simeq G \times_S T \text{ is an isomorphism of T-group schemes,} \\ \text{and } \det \alpha \text{: } \det E[N] \simeq (\det G) \times_S T \simeq {}^i \mu_{N_{/T}} \text{ is the Weil pairing} \end{cases}$$

is represented by an open and closed subscheme Y(G, i) in Y(G), and Y(G) is covered by the disjoint open subschemes $Y(G, i^n)$ for $n \in (\mathbb{Z}/N)^{\times}$, where the isomorphism i^n is the composite of i and the nth power map on μ_N . The scheme Y(G, i) has geometrically connected fibers over S.

Proof. We begin by showing that the functor F_G on $\mathbf{Sch}_{/S}$ is an étale sheaf. Since F_G is trivially a Zariski sheaf (due to the rigidity of level N structures for $N \geqslant 3$ [5, Cor. 2.7.2]), it remains to show that if $T' \to T$ is a quasi-compact étale surjective map of S-schemes, then the diagram of sets

$$F_G(T) \to F_G(T') \rightrightarrows F_G(T' \times_T T')$$
 (8)

is exact. Indeed, once such exactness is proven we can use étale descent theory to see that the representability of F_G by an affine smooth S-scheme with pure relative dimension 1 can be checked after we make a finite étale surjective base change $S' \to S$ (the effectiveness of the descent data on affine S'-schemes with respect to $S' \to S$ follows from [4, Cor. 7.6, Exp. VIII]). We can find such a base change so that $G \times_S S' \simeq (\mathbf{Z}/N)^2$, so the representability over S' by the affine smooth S'-scheme Y(N) with pure relative dimension 1 follows from [5, Cor. 4.7.2].

By the rigidity of level N structures for $N \geqslant 3$, $F_G(T) \rightarrow F_G(T')$ is injective. Indeed, if (E_1, α_1) , (E_2, α_2) over T become isomorphic over T', via an isomorphism $\varphi' \colon E_1 \simeq E_2$ over T' that takes α'_1 to α'_2 , then both pullbacks of φ' to $T'' = T' \times_T T'$ take α''_1 to α''_2 . By rigidity, we conclude that the two pullbacks of φ' to $T' \times_T T'$ coincide, so by fpqc descent of morphisms we have $\varphi' = \varphi \times_T T'$ for a unique map $\varphi \colon E_1 \rightarrow E_2$ which is necessarily an isomorphism of elliptic curves taking α_1 to α_2 , as these properties all hold after the fpqc base change $T' \rightarrow T$. This establishes injectivity on the left of (8).

Now suppose that for some (E', α') in $F_G(T')$ there is an isomorphism $\varphi \colon (E_1, \alpha_1) \simeq (E_2, \alpha_2)$ over $T'' = T' \times_T T'$, where (E_i, α_i) is the base change by the ith projection $T'' \to T'$. We want to construct an (E, α) in $F_G(T)$ inducing (E', α') in $F_G(T')$. By descent of schemes (using canonical projectiveness of elliptic curves to get effectiveness of descent data [4, Prop. 7.8, Exp. VIII]), it suffices to check that φ satisfies a "cocycle" condition. But this condition over $T' \times_T T' \times_T T'$ is forced by the rigidity of level N structures for $N \geqslant 3$. This yields the desired exactness, so F_G is indeed an étale

sheaf on $\mathbf{Sch}_{/S}$. As we noted above, this implies the first part of the theorem, via reduction to the special case $G = (\mathbf{Z}/N)^2$.

To prove the second part of the theorem, denote by $E^{\text{univ}} \to Y(G)$ the universal elliptic curve over Y(G). The Weil pairing and det α give rise to a composite isomorphism

$$j: \mu_N \simeq \det E^{\mathrm{univ}}[N] \simeq \det(G) \stackrel{i}{\simeq} \mu_N$$

over Y(G), which is an automorphism μ_N over Y(G). Since $\underline{\operatorname{Aut}}(\mu_N) \simeq (\underline{\mathbf{Z}/N})^{\times}$ as étale sheaves on $\operatorname{Sch}_{/S}$, j must be given Zariski locally on Y(G) by raising to the dth power for various $d \in (\mathbf{Z}/N)^{\times}$. It is obvious that F_G^{in} is represented by the open and closed subscheme $Y(G, i^n)$ corresponding to d = n, and as n runs through the elements of $(\mathbf{Z}/N)^{\times}$, the $Y(G, i^n)$'s give a covering of Y(G) by disjoint open subschemes. Passing to geometric fibers, we may study the geometric connectedness of the fibers in the case $S = \operatorname{Spec} k$, with k an algebraically closed field of characteristic not dividing N and $G = (\underline{\mathbf{Z}/N})^2$. In this case, $\det G \simeq^i \mu_N$ corresponds to a choice of primitive Nth root of unity $\zeta_N \in \mu_N(k)$. This choice makes k a $\mathbf{Z}[1/N, \zeta_N]$ -algebra and Y(G, i) is exactly the k-fiber of the $\mathbf{Z}[1/N, \zeta_N]$ -scheme $Y(N)^{\operatorname{can}}$ as defined in [5, 9.1.6]. However, it follows from [5, 10.9.2(2)] (which makes essential use of the complex analytic theory of modular curves and its compatibility with the algebraic theory) that $Y(N)^{\operatorname{can}}$ has geometrically connected fibers over $\mathbf{Z}[1/N, \zeta_N]$.

5. PROOF OF THEOREM 1

Let n > 1 and choose a prime l = 3 or 5. Fix a number field K which is linearly disjoint from $\mathbf{Q}(\zeta_m)$. Choose any $r \in (\mathbf{Z}/l)^{\times}$ which is not a square. Let \mathcal{O} be the integer ring of K. By the Cebotarev density theorem and the linear disjointness of K and $\mathbf{Q}(\zeta_l)$, there exist infinitely many primes $p \neq l$ in **Z** such that p is totally split in K and $p \equiv -r \pmod{l}$. Fix a choice of such a p. In particular, $X^2 + p$ does not have a root in the finite field \mathbf{F}_l . By Honda-Tate theory [8], there exists an elliptic curve \bar{E}_p over \mathbf{F}_p which is supersingular, which is to say that the characteristic polynomial of the arithmetic Frobenius action on the *l*-adic Tate module of \bar{E}_p is $X^2 + p$. Fix a choice of such a \overline{E}_p and choose a Weierstrass model for this over \mathbf{F}_p . Pick a prime $\mathfrak p$ of K over p and choose a Weierstrass equation over $\mathscr O_{\mathfrak p}$ whose reduction is the equation for \overline{E}_p . This defines an elliptic curve E_1 over \mathcal{O}_p with reduction at \mathfrak{p} isomorphic to \overline{E}_p . Thus, the G_K -module action on $E_1[l](\overline{K})$ must be irreducible, since $X^2 + p$ has no roots in F_l , and the same holds for any elliptic curve over K given by a Weierstrass equation which is p-adically close to that of E_1 .

Choose any prime q of K not equal to $\mathfrak p$ and not lying over l. From the theory of Tate curves $[7, \operatorname{Ch}. V, \operatorname{Thm}. 5.3]$, we can find a Weierstrass equation over K which defines an elliptic curve E_2 over K with split multiplication reduction at $\mathfrak q$ and $\operatorname{ord}_{\mathfrak q}(j(E_2)) = -1$. Moreover, any Weierstrass equation over K which is $\mathfrak q$ -adically close to that of E_2 will also have these properties. Now consider any elliptic curve E/K defined by a Weierstrass equation which is $\mathfrak p$ -adically close to E_1 and $\mathfrak q$ -adically close to E_2 . Clearly there are infinitely many j-invariant values $j(E) \in K$ which arise in this way, and (by weak approximation) we can even find such E with good reduction at any desired finite set of places away from $\mathfrak q$, and split multiplicative reduction at $\mathfrak q'$ with $\operatorname{ord}_{\mathfrak q'}(j(E)) = -1$ for any desired finite set of other places $\mathfrak q'$ away from $\mathfrak p$. In particular, we can find an infinite set of such E's so that the sets of ramified primes in the mod- l^n representations of G_K are non-empty and mutually disjoint away from l.

We claim that the representation $\rho_{E,\,l^n}\colon G_K\to \operatorname{Aut}(E[\,l^n\,](\overline{K}))\simeq \operatorname{GL}_2(\mathbf{Z}/l^n)$ is surjective for all such E. Since K is linearly disjoint from $\mathbf{Q}(\zeta_{l^n})$, it suffices to prove that $\operatorname{SL}_2(\mathbf{Z}/l^n)$ lies in the image of $\rho_{E,\,l^n}$. From the Tate parameterization of elliptic curves with split multiplicative reduction and the condition $\operatorname{ord}_q(j(E))=-1$, there is a basis $\{e_1,e_2\}$ of $E[\,l^n\,](\overline{K})$ over \mathbf{Z}/l^n with respect to which $\sigma=(\begin{smallmatrix}1&1\\0&1\end{smallmatrix})$ lies in the image of $\rho_{E,\,l^n}$ on the inertia group at \mathfrak{q} . Since $\rho_{E,\,l^n}(\operatorname{mod}\,l)$ is irreducible, there exists $g\in G_K$ such that $e'_2=ge_1\notin (\mathbf{Z}/l^n)e_1$. With respect to the basis $\{e_1,e'_2\}$, the automorphism σ becomes $(\begin{smallmatrix}1&\alpha\\0&1\end{smallmatrix})$ whence $g\sigma g^{-1}=(\begin{smallmatrix}1&0\\\beta&1\end{smallmatrix})$, with $\alpha,\beta\in \mathbf{Z}/l^n$. Since $(\begin{smallmatrix}1&\alpha\\0&1\end{smallmatrix})$ and $(\begin{smallmatrix}1&0\\\beta&1\end{smallmatrix})$ are conjugate to $(\begin{smallmatrix}1&1\\0&1\end{smallmatrix})$ in $\operatorname{GL}_2(\mathbf{Z}/l^n)$, these matrices have order l^n . Consequently, the image of $\rho_{E,\,l^n}$ contains $(\begin{smallmatrix}1&1\\0&1\end{smallmatrix})$ and $(\begin{smallmatrix}1&0\\1&1\end{smallmatrix})$, which generate $\operatorname{SL}_2(\mathbf{Z}/l^n)$. Thus the image of $\rho_{E,\,l^n}$ contains $\operatorname{SL}_2(\mathbf{Z}/l^n)$, so the representation $\rho_{E,\,l^n}$ is surjective, as desired. Fix such an E as above and choose a basis of $E[\,l^n\,](\overline{K})$ over \mathbf{Z}/l^n . Let $\rho=\rho_{E,\,l^n}\colon G_K\to\operatorname{GL}_2(\mathbf{Z}/l^n)$ be the corresponding representation.

Let $\phi = \phi_{v,\,t}$ be an automorphism of $GL_2(\mathbf{Z}/l^n)$ as furnished by Lemma 6 with $v,\,t\not\equiv 0\pmod{l^n}$. Define $\rho'=\phi\circ\rho$, and let $\bar\rho'$ be the induced mod-l representation. Note that by the definition of $\phi_{v,\,t}$, the mod-l representation $\bar\rho$ obtained from ρ is literally equal to $\bar\rho'$. However, ρ and ρ' are not equivalent up to a twist. To see this, we note that if ρ and ρ' were equivalent up to a twist, then the corresponding projective representations would be conjugate. Since ρ is surjective and $\rho'=\phi_{v,\,t}\circ\rho$, it would follow that $\phi_{v,\,t}$ induces an inner automorphism of $\mathrm{PGL}_2(\mathbf{Z}/l^n)$, a contradiction (due to our choices of v and t).

Viewing ρ' and $\bar{\rho}'$ as finite étale group schemes over K with cyclotomic determinant, we denote by $X(\rho')$ and $X(\bar{\rho}')$ the canonical compactifications of the smooth affine curves as furnished by the first part of Theorem 2. There is an obvious natural K-morphism $\pi\colon X(\rho')\to X(\bar{\rho}')$ which corresponds (away from the cuspidal part) to "reduction mod l" in terms of

Yoneda's lemma. By the second part of Theorem 2, the connected components of $X(\rho')$ and $X(\bar{\rho}')$ are geometrically connected over K. We claim that the induced maps between connected components have degree $l^{3(n-1)}$ (and in particular, π is finite flat). This can be checked after base change to \bar{K} , over which π becomes the canonical map $X(l^n) \times_{\mathbf{Z}[1/l]} \bar{K} \to X(l) \times_{\mathbf{Z}[1/l]} \bar{K}$, which is well-known to be a generically Galois covering between connected components, with Galois group $\ker(\mathrm{PSL}_2(\mathbf{Z}/l^n) \to \mathrm{PSL}_2(\mathbf{Z}/l))$ having order $l^{3(n-1)}$ (moreover, the branch locus is supported in the *cuspidal part*).

Since l=3 or l=5 and the genus of a proper smooth geometrically connected curve over a field can be computed after arbitrary change of the base field, the connected components of the proper smooth K-curve $X(\bar{\rho}') = X(\bar{\rho})$ have genus 0. We claim that each of these connected components is K-isomorphic to \mathbf{P}_K^1 . Let X be one of the connected components of $X(\bar{\rho}') = X(\bar{\rho})$, so X is a proper smooth geometrically connected curve over K with genus 0. In order to show that $X \simeq \mathbf{P}_K^1$, it suffices to show that X(K) is non-empty. There is a connected component X_1 of $X(\bar{\rho}') = X(\bar{\rho})$ which contains a K-rational point corresponding to the given elliptic curve E over K and the identity of G_K -modules $E[I](\bar{K}) = \bar{\rho}$. Since $X_1(K)$ is non-empty, $X_1 \simeq \mathbf{P}_K^1$. It suffices below to just work with this component, but we want to briefly explain Mazur's elegant proof of the stronger result that all connected components of $X(\bar{\rho}')$ are K-isomorphic to \mathbf{P}_K^1 .

We see from the proof of Theorem 2 that the connected components of $X(\bar{\rho})$ are indexed by elements v of $(\mathbf{Z}/l)^{\times}$ (i.e., automorphisms of μ_l), and there is an obvious K-isomorphism of connected components $X_n \simeq X_{nw^2}$ for any two $v, w \in (\mathbb{Z}/l)^{\times}$, by using Yoneda's Lemma and "multiplication by w" on the level of *l*-torsion group schemes. Thus, to show that all connected components of $X(\bar{\rho}') = X(\bar{\rho})$ are K-isomorphic to \mathbf{P}_{K}^{1} , it suffices to show that $X_n \simeq \mathbf{P}_K^1$ for a single non-square $v \in (\mathbf{Z}/l)^{\times}$. Since l=3 or l=5, we may consider v = 2. It is a classical observation that in order to show X(K)is non-empty, it suffices to construct a divisor D on X with odd degree. Indeed, adding a suitable multiple of the canonical divisor (which has degree -2) to D gives a divisor D' on X with degree 1. By the Riemann-Roch Theorem for the geometrically connected proper smooth curve X over K, we have $H^0(X, \mathcal{L}(D')) = 1 > 0$, so there is an effective divisor on X with degree 1, which is to say that X(K) is non-empty. Thus, it suffices to construct a divisor with odd degree on X_2 . Mazur observed that an étaletwisted version of the Hecke operator T_2 gives a correspondence between X_1 and X_2 with degree 3 over both X_1 and X_2 . By using this correspondence and the existence of a K-rational point on X_1 , we can construct an effective divisor on X_2 with odd degree (1 or 3). This completes the sketch of Mazur's proof that every connected component of $X(\bar{\rho}')$ is *K*-isomorphic to \mathbf{P}_{κ}^{1} .

Fix a connected component $C\simeq \mathbf{P}^1_K$ of $X(\bar{\rho}')$ and a connected component C' in $X(\rho')$ over C, so $\pi_{C'}\colon C'\to C$ is a finite map with degree $l^{3(n-1)}$. By Theorem 2, the proper smooth curve C' over K is geometrically connected. Therefore, by Theorem 1, there exist infinitely many non-cuspidal $a\in C(K)$ such that $\pi_{C'}^{-1}(a)=\operatorname{Spec}(L_a)$, where L_a is a finite extension of K which is linearly disjoint from the splitting field of ρ (which coincides with the splitting field of ρ'). Obviously $[L_a\colon K]$ is equal to the degree of $\pi_{C'}$, which is $l^{3(n-1)}$. From the linear disjointness, it follows that the representations $\rho|_{G_{L_a}}$ and $\rho'|_{G_{L_a}}$ are surjective and come from the mod- l^n representations of elliptic curves over L_a with j-invariants in K (since $a\in C(K)$). Of course, we can choose these j-invariants to avoid any desired finite set of elements of K. By the the choice of ϕ , $\rho|_{G_{L_a}}$ and $\rho'|_{G_{L_a}}$ satisfy the condition (1) in the Introduction and are not equivalent up to twists.

It remains to analyze ramification in L_a/K . Recall that in our construction of elliptic curves above via Tate models, we saw that we can choose the mod- l^n representation ρ coming from our elliptic curve E over K to be ramified at any desired finite set of primes of K away from l and to be unramified at any desired finite set of other primes of K away from l. In order to complete the proof of the theorem, we need to check that the ramification in L_a outside of l can be chosen to avoid any desired finite set of primes of K with norm $>(l^2-3)/2$.

Choose a prime $\mathfrak p$ of K not over l at which E has good reduction. Thus, ρ and ρ' are unramified at $\mathfrak p$. By étale descent, we can identify ρ' with the generic fiber of a finite étale group scheme $\mathscr G$ over $\mathscr O_{\mathfrak p}$ which is étale-locally isomorphic to the constant group scheme $(\mathbf Z/l^n)^2$. The l-torsion subgroupscheme $\mathscr G[l] \simeq \mathscr G/l^{n-1}$ is an analogous $\mathscr O_{\mathfrak p}$ -model for $\bar \rho'$. Since $\mathscr O_{\mathfrak p}$ is a $\mathbf Z[1/l]$ -scheme, we can use Theorem 2 and the compactification theory of modular curves [5, 8.6.7, 10.9.5] to realize the map $\pi \colon X(\rho') \to X(\bar \rho')$ as the K-fiber of a finite flat map $\pi_{\mathfrak p} \colon X(\mathscr G) \to X(\mathscr G[l])$ between proper smooth $\mathscr O_{\mathfrak p}$ -schemes with geometric fibers of pure dimension 1. This map $\pi_{\mathfrak p}$ is just an étale twist of the finite flat map $X(l^n) \times_{\mathbf Z[1/l]} \mathscr O_{\mathfrak p} \to X(l) \times_{\mathbf Z[1/l]} \mathscr O_{\mathfrak p}$.

Since the natural map $X(l^n) \to X(l)$ over $\mathbf{Z}[1/l]$ is Galois away from the cusps, the branch locus of $\pi_{\mathfrak{p}}$ is supported in the cuspidal subscheme of $X(\mathcal{G}[l])$, which is étale over $\mathcal{O}_{\mathfrak{p}}$ with degree $(l^2-1)/2$ (as the same holds for the cuspidal subscheme of X(l) over $\mathbf{Z}[1/l]$). Consider $a \in C(K) \subseteq X(\bar{\rho}')(K) = X(\mathcal{G}[l])(K)$ as above. The scheme-theoretic closure of $a \in X(\mathcal{G}[l])(K)$ in $X(\mathcal{G}[l])$ is a point $\bar{a} \in X(\mathcal{G}[l])(\mathcal{O}_{\mathfrak{p}})$, by the valuative criterion for properness. If we can choose a so that the closed point of \bar{a} is not a cusp, then $\pi_{C'}^{-1}(a) = \operatorname{Spec}(L_a)$ is a component of the generic fiber of the finite étale scheme $\pi_{\mathfrak{p}}^{-1}(\bar{a})$ over $\bar{a} = \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}})$. Thus, the prime \mathfrak{p} would not ramify in L_a . In order to check that a can be chosen in the manner desired, consider the connected component \bar{C} of $X(\mathcal{G}[l])$ which

has generic fiber C (so $\bar{a} \in \bar{C}(\mathcal{O}_{\mathfrak{p}})$). Since $\bar{C} \to \operatorname{Spec}(\mathcal{O}_{\mathfrak{p}})$ is proper and smooth with geometric fibers of pure dimension 1 and generic fiber \mathbf{P}^1_K , it must be the case that $\bar{C} \simeq \mathbf{P}^1_{\mathcal{O}_{\mathfrak{p}}}$, thanks to the following well-known lemma. We give a proof due to lack of an adequate reference.

LEMMA 7. Let R be a discrete valuation ring with fraction field K, X a proper smooth R-scheme with pure relative dimension 1 and generic fiber $X \times_R K \simeq \mathbf{P}^1_K$. Then $X \simeq \mathbf{P}^1_R$ over R.

Proof. Since the generic fiber of X is geometrically connected, the closed fiber is also geometrically connected [3, IV₃, 12.2.4(vi)], necessarily with genus 0. By the valuative criterion for properness, we have X(R) = X(K). This set is non-empty, so choose a section $\operatorname{Spec}(R) \to X$ over R. This defines a relative effective Cartier divisor D on X over R with degree 1. By Grothendieck's theory of cohomology and base change, as well as the Riemann–Roch theorem for genus 0 curves over fields, $\mathcal{L}(D)$ is generated by its global sections $H^0(X, \mathcal{L}(D))$ and this R-module is locally free of rank 2 over R, commuting with arbitrary base change over R. Since R is local, $H^0(X, \mathcal{L}(D))$ is free of rank 2. Choosing a basis gives a map $X \to \mathbf{P}_R^1$ which commutes with arbitrary base change over R. We claim this map is an isomorphism. Since both sides are smooth over R, by [3, IV₄, 17.9.5] it suffices to show that the induced map on fibers over Spec(R) is an isomorphism. But over a field k, it is classical that for a proper, smooth, geometrically connected curve C over k with genus 0, and a rational function $f \in k(C)$ with a simple pole at a k-rational point and no other poles, the map $f: C \to \mathbf{P}^1_k$ is an isomorphism.

Thus, as long as the number of rational points $|\mathscr{O}/\mathfrak{p}|+1$ in the closed fiber of $\overline{C}\simeq \mathbf{P}^1_{\mathscr{O}\mathfrak{p}}$ is larger than the degree $(l^2-1)/2$ (=4 or 12) of the cuspidal subscheme on $X(\mathscr{G}[l])$, then a \mathfrak{p} -adic congruence condition on $a\in C(K)=\mathbf{P}^1_K$ ensures that the closed point of \overline{a} is non-cuspidal. This implies that \overline{a} is disjoint from the branch locus of $\pi_{\mathfrak{p}}$, so L_a is unramified over \mathfrak{p} . Thus, we can indeed force \mathfrak{p} to be unramified in L_a if the norm of \mathfrak{p} exceeds $(l^2-3)/2$. The same argument allows us to handle any finite number of such \mathfrak{p} 's simultaneously.

ACKNOWLEDGMENTS

S.W. thanks Karl Rubin for a useful discussion on twisted modular curves. Both authors thank the referee for helpful comments.

REFERENCES

- 1. P. M. Cohn, On the structure of the GL₂ of a ring, Publ. Math. IHES 30 (1966), 5-54.
- M. H. Dull, Automorphisms of the two-dimensional linear groups over integral domains, Amer. J. Math. 96 (1974), 1–40.
- 3. A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. IHES 24, 28, 32 (1966).
- A. Grothendieck, "Revêtements étales et groupe fondamental," Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, New York, 1971.
- N. Katz and B. Mazur, "Arithmetic Moduli of Elliptic Curves," Princeton Univ. Press, Princeton, NJ, 1985.
- S. Lang, "Fundamentals of Diophantine Geometry," Springer-Verlag, Berlin/New York, 1983.
- J. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves," Springer-Verlag, New York/Berlin, 1994.
- J. Tate, Classes d'isogénie des variétes abéliennes sur un corps fini (d'aprés T. Honda), Sém. Bourbaki 352 (1968).
- 9. S. Wong, Twists of Galois representations and projective automorphisms, *J. Number Theory*, to appear.