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Abstract. — We study the following phenomenon: some non-split connected
semisimple Q-groups G admit flat affine Z-group models G with “everywhere
good reduction” (i.e., GFp is a connected semisimple Fp-group for every prime
p). Moreover, considering such G up to Z-group isomorphism, there can be
more than one such G for a given G. This is seen classically for types B and
D by using positive-definite quadratic lattices.

The study of such Z-groups provides concrete applications of many facets
of the theory of reductive groups over rings (scheme of Borel subgroups, auto-
morphism scheme, relative non-abelian cohomology, etc.), and it highlights the
role of number theory (class field theory, mass formulas, strong approximation,
point-counting over finite fields, etc.) in analyzing the possibilities. In part,
this is an expository account of [G96].

Résumé. — Nous étudions le phénomène suivant : certains Q-groupes G
semi-simples connexes non déployés admettent comme modèles des Z-groupes
G affines et plats avec “partout bonne réduction” (c’est à dire, GFp est un Fp-
groupe Q-groupes G pour chaque premier p). En outre, considérant de tels G à
Z-groupe isomorphisme près, il y a au plus un tel G pour un G donné. Ceci est
vu classiquement pour les types B et D en utilisant des réseaux quadratiques
définis positifs.

L’étude de ces Z-groupes donne lieu à des applications concrètes d’aspects
multiples, de la théorie des groupes réductifs sur des anneaux (schémas de
sous-groupes de Borel, schémas d’automorphismes, cohomologie relative non
abélienne, etc.), et met en évidence le rôle de la théorie des nombres (théorie du
corps de classes, formules de masse, approximation forte, comptage de points
sur les corps finis, etc.) dans l’analyse des possibilités. En partie, ceci est un
article d’exposition sur [G96].
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1. Chevalley groups and Z-models

A Chevalley group is a reductive Z-group scheme (i.e., a smooth affine
group scheme G → Spec(Z) with connected reductive fibers) that admits a
fiberwise maximal Z-torus T ⊂ G. For example, the classical groups SLn, GLn,
PGLn, Sp2n, and SOn over Z are all Chevalley groups. (The characteristic-
free definition of SOn requires some care when n is even; see [Co2, C.2.9].)
Many authors require Chevalley groups to have semisimple fibers, but this is
a matter of convention.

A more traditional viewpoint on Chevalley groups is obtained via the notion
of Z-model of a connected reductive Q-group. In general, if K is the fraction
field of a domain R then an R-model of a connected reductive K-group G is
a pair (G , θ) consisting of a reductive R-group scheme G and an isomorphism
of K-groups θ : GK ' G. The notion of isomorphism between models of G is
defined in an evident manner. (Our notion of “model” is more restrictive than
in other circumstances, where one allows any flat and finitely presented – or
perhaps even smooth – affine group with a specified generic fiber.)

Lemma 1.1. — The generic fiber of any Chevalley group is split.

Proof. — It suffices to show that any Z-torus is necessarily split. By [SGA3,
X, 1.2, 5.16] (or [Co2, Cor. B.3.6]), the category of tori over a connected
normal noetherian scheme S is anti-equivalent to the category of finite free Z-
modules equipped with a continuous action of π1(S). (When S = Spec(k) for
a field k, this recovers the familiar “character lattice” construction for k-tori.)
An S-torus is split when the associated π1(S)-action is trivial.

For any Dedekind domain A, the connected finite étale covers of Spec(A)
correspond to the finite extensions of Dedekind domains A ↪→ A′ with unit
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discriminant. Thus, by Minkowski’s theorem that every number field K 6= Q
has a ramified prime, Spec(Z) has no nontrivial connected finite étale covers.
Hence, π1(Spec(Z)) = 1, so all Z-tori are split.

Every Chevalley group G is a Z-model of its split connected reductive
generic fiber over Q, and the Existence and Isomorphisms Theorems over
Z provide a converse that is one of the main theorems of [SGA3]:

Theorem 1.2 (Chevalley, Demazure). — Let R be a domain with fraction
field K. Every split connected reductive K-group G admits an R-model of the
form GR for a Chevalley group G over Z, and G is uniquely determined up
to Z-group isomorphism.

The existence of G for each G was first proved for K = Q as the main result
in [Chev61], though the language of reductive group schemes over Z was not
available at that time. The approach used by Demazure in [SGA3, XXV] is
to abstractly build a “split” Z-group G whose associated root datum may be
specified in advance. The Isomorphism Theorem for split connected reductive
groups over K then ensures that one gets all such K-groups as generic fibers of
the GR’s by varying over all possibilities for the root datum. Chevalley groups
are the only Z-models in the split case over Q, so we get a characterization
of Chevalley groups without any mention of maximal tori over rings. More
generally:

Proposition 1.3. — If R is a principal ideal domain and G is a split con-
nected reductive group over K = Frac(R) then any R-model of G is GR for a
Chevalley group G over Z.

The hypothesis on R is optimal: if R is Dedekind with fraction field K and
I is a nonzero ideal in R whose class in Pic(R) is not a square then SL(R⊕ I)
is a non-trivial Zariski-form of SL2,R (see [Co2, Exer. 7.4.10]). We postpone
the proof of Proposition 1.3 until §3, as it requires cohomological notions
introduced there.

The preceding discussion is summarized by:

Theorem 1.4. — Passage to the Q-fiber defines a bijection from the set of
Z-isomorphism classes of Chevalley groups onto the set of isomorphism classes
of split connected reductive Q-groups, with each set classified by root data (up
to isomorphism). Moreover, the only Z-models of such Q-groups are those
provided by Chevalley groups.

Work of Chevalley ([BIBLE], [Chev61]) and Demazure–Grothendieck
[SGA3] provides a satisfactory understanding of this remarkable theorem.
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(For any scheme S 6= ∅, [SGA3, XXII, 1.13] provides a definition of Cheval-
ley S-group avoiding the crutch of the theory over Z. This involves additional
conditions that are automatic for S = Spec(Z).)

Informally, the connected semisimple Q-groups arising as generic fibers of
non-Chevalley semisimple Z-groups are those with “good reduction” at all
primes but non-split over R (see Propositions 3.12 and 4.10). The theory
surrounding such Z-groups was the topic of [G96], where the possibilities
for the Q-fiber were classified (under an absolutely simple hypothesis) and
some explicit Z-models were given for exceptional types, generalizing examples
arising from quadratic lattices.

Overview. In §2 we discuss special orthogonal groups in the scheme-
theoretic framework, highlighting the base scheme Spec(Z) and some classi-
cal examples of semisimple Z-groups with non-split generic fiber arising from
quadratic lattices. In §3 we discuss general cohomological formalism for work-
ing with smooth (or more generally, fppf) affine groups over rings, extending
the more widely-known formalism over fields as in [S97, III].

In §4 we describe the possibilities for the generic fibers of reductive Z-
groups, with an emphasis on the case of semisimple Z-groups whose fibers are
absolutely simple and simply connected, and we show that this case accounts
for the rest via direct products and central isogenies. In §5 we introduce
Coxeter’s order in Cayley’s definite octonion algebra over Q, and we use it in
§6 to describe some non-split examples over Z. In §7 we explain (following
[G96]) how to use mass formulas to prove in some cases that the list of Z-
models found in §6 for certain Q-groups is exhaustive.

In Appendix A we use the cohomological formalism of semisimple Z-groups
to prove that an indefinite non-degenerate quadratic lattice over Z is deter-
mined up to isomorphism by its signature (in odd rank these are not uni-
modular lattices), and in Appendix B we discuss generalities concerning octo-
nion algebras over commutative rings, with an emphasis on the special case of
Dedekind domains. Finally, in Appendix C we discuss an explicit construction
of the simply connected Chevalley group of type E6.

Justification of the construction of simply connected Chevalley groups over
Z of types F4 and E6 via Jordan algebras (in §6 and Appendix C) uses
concrete linear algebra and Lie algebra computations over Z via Mathematica
code written by Jiu-Kang Yu (see [Yu]); for E6 this is only needed with local
problems at p = 2, 3. Reliance on the computer can probably be replaced with
theoretical arguments by justifying the applicability of results in [Sp, Ch. 14],
[Loos, §6], [A, §5], and [BLG, §3] to our circumstances, but it seems less
time-consuming to use the computer.
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Terminology. A connected semisimple group G over a field k is absolutely
simple if G 6= 1 and Gk has no nontrivial smooth connected proper normal
subgroup. This is equivalent to irreducibility of the root system of Gk. In the
literature there is a plethora of terminology for this concept: absolutely almost
simple, absolutely quasi-simple, etc. (see [G96, §1, p. 264]).

Acknowledgements. This work was partially supported by NSF grant
DMS-0917686. I am grateful to Wee Teck Gan and Gopal Prasad for their
advice, Benedict Gross for illuminating discussions and his inspiring work
upon which these notes are based, Jiu-Kang Yu for generously sharing his
expertise with group scheme computations on the computer, and the referees
for providing useful feedback. Most of all, I am indebted to Patrick Polo for
his extensive and insightful suggestions and corrections that vastly improved
the content and exposition (and fixed gaps in an earlier treatment).

2. Quadratic spaces and quadratic lattices

A quadratic space over a ring R is a pair (M, q) consisting of a locally free
R-module M of finite rank n > 0 equipped with an R-valued quadratic form
on M: a map

q : M→ R

such that (i) q(cx) = c2q(x) for all x ∈ M, c ∈ R and (ii) the symmetric

Bq : M×M→ R

defined by (x, y) 7→ q(x+y)− q(x)− q(y) is R-bilinear. (For our purposes, the
quadratic spaces of most interest will be over fields and Dedekind domains.)

For a quadratic space (M, q) over R such that M admits an R-basis
{e1, . . . , en},

(2.1) disc(q) := det(Bq(ei, ej)) ∈ R

changes by (R×)2-scaling when we change the basis. For R = Z, this is a
well-defined element of Z called the discriminant of (M, q). (For general R,
the ideal disc(q) generates in R is independent of {ei} and thus globalizes to a
locally principal ideal of R when M is not assumed to be free. If R = Z then
this ideal provides less information than the discriminant in Z.)

A quadratic lattice is a quadratic space (M, q) over Z such that disc(q) 6= 0.
For such pairs, (MR, qR) is a non-degenerate quadratic space over R and so
has a signature (r, s) with s = n− r.

Example 2.1. — Let V be a finite-dimensional inner product space over R,
and L ⊂ V a lattice such that q(x) := 〈x, x〉 ∈ Z for all x ∈ L. Then (L, q) is
a quadratic lattice. Note that Bq(x, y) = 2〈x, y〉 ∈ 2Z for all x, y ∈ L.
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Remark 2.2. — In the literature, one sometimes finds another convention for
(2.1), multiplying against (−1)n(n−1)/2 where n is the rank of the underlying
module. (The definition without the sign is then called the determinant of the
quadratic space.) This sign coincides with that of disc(qn) for (Zn, qn) as in
(2.2) below.

The “signed discriminant” is the convention in the book of Husemöller–
Milnor [HM, III, §5], whereas the books of Serre [S73, IV, 1.1] and Knus
[Knus, I, (3.1.1); IV, (3.1.2), (3.1.3)] do not insert the sign. We follow [S73]
by not inserting a sign in the definition of disc(q).

The orthogonal group of a quadratic lattice (M, q) is the affine Z-group

O(q) = {g ∈ GL(M) | q ◦ g = q}.

This can fail to be Z-flat for fiber-jumping reasons, even when q is Z-primitive.
For example, if q = x2 +y2 +pz2 for an odd prime p then O(q)Q has dimension
3 whereas O(q)Fp has dimension 4 and O(q)F2 has dimension 6. (In this case,

disc(q) = 8p2.) A nicer situation is that of the standard split quadratic form
qn on Zn given by

(2.2) q2m = x1x2 + x3x4 + · · ·+ x2m−1x2m, q2m+1 = x2
0 + q2m.

This satisfies disc(q2m) = (−1)m and disc(q2m+1) = 2(−1)m, so disc(qn) has

sign (−1)n(n−1)/2 for all n.
The Z-group On := O(qn) is smooth for even n [Co2, C.1.5] whereas for

n = 2m+ 1 it is Z-flat and equal to µ2 × SO2m+1 where

(2.3) SO2m+1 := O2m+1 ∩ SL2m+1

is Z-smooth [Co2, C.2.9–C.2.11].
A useful variant of the notion of a quadratic lattice is:

Definition 2.3. — A unimodular lattice is a pair (M′,B′) where M′ is a
nonzero finite free Z-module and B′ : M′ ×M′ → Z is a symmetric bilinear
form such that disc(B′) := det(B′(ei, ej)) equals ±1 for some (equivalently,
any) Z-basis {ei} of M′.

Associated to such an (M′,B′) is the quadratic lattice (M′,QB′) with
QB′(x) = B′(x, x). If (M′,B′) = (M,Bq) for a quadratic lattice (M, q) then
QB′ = 2q is valued in 2Z, so unimodular lattices (M′,B′) of rank n that are
even in the sense that QB′ is valued in 2Z (called “type II” in [S73, Ch. V])
are equivalent to quadratic lattices (M, q) of rank n such that disc(q) = ±1.
If QB′(M′) 6⊂ 2Z then we say (M′,B′) is odd.

Example 2.4. — The lattice M′ = Zn equipped with B′(~x, ~y) =
∑n

i=1 xiyi is
a unimodular lattice for any n. This is never even.
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Examples of even unimodular lattices include the hyperbolic plane H over Z
(arising from the quadratic form q2(x, y) = xy on Z2) and the positive-definite
or negative-definite versions of the E8 root lattice inside Z8 [S73, Ch. V, 1.4.3].

Any unimodular lattice (M′,B′) with odd rank must satisfy QB′(M′) 6⊂ 2Z;
i.e., it is “type I” in the terminology of [S73, Ch. V]. Indeed, otherwise the
non-degenerate B′ mod 2 on M/2M would be alternating, hence a symplectic
form over F2, and symplectic spaces over a field always have even dimension.

In many characteristic-free references on quadratic forms (e.g., [Chev97],
[SV]), a quadratic space (V, q) over a field k is called “non-degenerate” when
Bq : V × V → k is a perfect pairing. This has the effect of ruling out odd-
dimensional V when char(k) = 2, since Bq is alternating in characteristic 2
and a symplectic space is always even-dimensional. A systematic approach
to semisimple group schemes over Z must incorporate all special orthogonal
groups in a characteristic-free manner, and to that end we will find it conve-
nient to use a broader notion of non-degeneracy that allows odd-dimensional
examples in characteristic 2:

Definition 2.5. — A quadratic space (M, q) over a commutative ring R is
non-degenerate if q is fiberwise nonzero over Spec(R) and the R-flat zero
scheme (q = 0) ⊂ P(M∗) is R-smooth.

If R is a field then our notion of non-degeneracy is equivalent to perfectness
of Bq except in odd dimension in characteristic 2, for which it is the condition
that the defect space

M⊥ := {m ∈ M |Bq(m, ·) = 0}

is 1-dimensional (the smallest possibility in odd-rank cases in characteristic
2); the steps of the proof of this equivalence are given in [Co2, Exer. 1.6.10].
For R = Z, the condition of fiberwise non-vanishing for q over Spec(R) is
classically called primitivity for q. In general, the R-smoothness of (q = 0)
may be checked fiberwise due to its R-flatness. If R is a domain with fraction
field K and R 6= K then non-degeneracy for a quadratic space (M, q) over R is
much stronger than non-degeneracy for (MK, qK).

To make non-degeneracy explicit for R = Z, we shall consider the cases of
even and odd rank separately. Consider an even integer n > 0. It is easy to
check that the following are equivalent for (M, q) with M of rank n:

– disc(q) ∈ Z× = {±1},
– Bq is perfect over Z,
– q is Z-primitive with Z-smooth projective zero scheme (q = 0) ⊂ P(M∗).

These correspond to the rank-n even unimodular lattices studied in [S73,
Ch. V]. They exist with signature (r, s) whenever r − s ≡ 0 mod 8 (in which
case n = r + s is certainly even):
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Example 2.6. — If r = s+ 8k with k > 0 then n = 2s+ 8k and we can take
(M, q) to be the orthogonal direct sum H⊕s ⊕ E⊕k8 . If instead r = s− 8k with
k > 0 then n = 2r + 8k and we can take (M, q) to be the orthogonal direct
sum of r copies of H and k copies of the negative-definite version of E8.

The condition r − s ≡ 0 mod 8 is not only sufficient for the existence
of an even-rank (M, q) of signature (r, s) with disc(q) = ±1, but it is also
necessary. Indeed, evenness of the rank reduces this to the same necessity for
even unimodular lattices, which holds for any rank [S73, Ch. V, 2.1, Cor. 1 to
Thm. 2].

For odd n = 2m + 1 the discriminant disc(q) is always even. Indeed,
Bq mod 2 is always an alternating form over F2 and hence would be symplectic
if disc(q) is odd, yet symplectic spaces over fields always have even dimension.
Thus, a better measure of non-degeneracy over Z for odd n is provided by the
half-discriminant disc′(q) = disc(q)/2. More specifically, if n = 2m + 1 > 1
then by [Co2, C.1.4(3)] the two conditions

– disc′(q) ∈ Z× = {±1},
– q is Z-primitive with Z-smooth projective zero scheme (q = 0) ⊂ P(M∗)

are equivalent and in such cases Bq mod 2 on M/2M has a 1-dimensional defect

space (M/2M)⊥. (For the rank-1 case (Z,±x2), the projective space P(M∗) is
Spec(Z) and the zero scheme (q = 0) in there is empty.)

Example 2.7. — Odd-rank quadratic lattices (M, q) with half-discriminant
±1 exist with signature (r, s) whenever r − s ≡ ±1 mod 8. For example, if
r = s+ 8k − 1 with k > 0 then we can take (M, q) to be an orthogonal direct

sum H⊕s ⊕ E
⊕(k−1)
8 ⊕ E7. If instead r = s + 8k + 1 with k > 0 then we use

H⊕s ⊕ E⊕k8 ⊕ (x2).

In the indefinite case, any (M, q) that is non-degenerate over Z is determined
up to Z-isomorphism by its rank and signature. The proof for M of even rank
reduces to the analogue for unimodular lattices, which is [S73, Ch. V, 2.2,
Thm. 6] (for any rank). (In the special case r = s, which is to say signature
(n/2, n/2) with n even, it follows that the only example is a direct sum of n/2
hyperbolic planes over Z.) The proof for M of odd rank is harder because it
does not reduce to the analogue for unimodular lattices, so we give a proof in
Appendix A using special orthogonal group schemes (to be defined shortly)
and cohomological techniques with semisimple Z-groups (see §3).

In the definite case the situation is completely different. In addition to Ex-
amples 2.6 and 2.7 with rank n ≡ 0,±1 mod 8, the number of additional ex-
amples grows in abundance as n→∞. A weighted enumeration of the definite
examples of a given rank n ≡ 0,±1 mod 8 is provided by the Minkowski–Siegel
mass formula (see [S73, Ch. V, 2.3], [CS, §4], and the references therein).
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We have seen that the possibilities for the signature of an even-rank
quadratic lattice that is non-degenerate over Z are precisely those (r, s) with
r, s > 0 such that r − s ≡ 0 mod 8, and that in odd rank the pairs satisfy-
ing r − s ≡ ±1 mod 8 do occur. To show that no other signatures occur for
odd rank, we need to digress and explain a general procedure that associates
unimodular lattices of odd rank n to rank-n quadratic lattices that are non-
degenerate over Z. The construction and study of such unimodular lattices is
informed by properties of special orthogonal group schemes over Z attached
to quadatic lattices, so we first review how such group schemes are defined.

Definition 2.8. — The special orthogonal group SO(q) of a quadratic lattice
(M, q) is the schematic closure inside O(q) (or equivalently, inside GL(M)) of
the smooth closed subgroup SO(qQ) ⊂ O(qQ) = O(q)Q.

Since Z is Dedekind, this is a Z-flat closed subscheme of O(q) that is
moreover a subgroup scheme. To prove that SO(q) has good properties when
(M, q) is non-degenerate over Z, one uses another procedure in such cases to
produce a Z-smooth closed subgroup of O(q) with generic fiber SO(qQ); such
a closed subgroup must equal the flat closure SO(q) as just defined. (For
example, if q = q2m+1 then SO(q2m+1) as defined by Zariski closure over Z
must coincide with the Z-smooth SO2m+1 as defined in (2.3).) Such alternative
procedures underlie the proofs of the results invoked in the next two examples.

Example 2.9. — Let (M, q) be non-degenerate over Z with rank n = 2m > 4.
The Z-group O(q) is Z-smooth [Co2, C.1.5] and SO(q) is a semisimple Z-group
of type Dm that coincides with O(q) ∩ SL(M) over Z[1/2] [Co2, C.2.9, C.3.9,
C.3.2]. We denote SO(q2m) as SO2m.

In contrast, the Z-group O(q) ∩ SL(M) is not flat at 2 [Co2, C.3.4]. More-
over, the Z-group SO(q) = SO(−q) is a Chevalley group when r = s (this
applies to q = q2m), but otherwise its Q-fiber is not split since even its R-
fiber is not split (as ±qR are non-split for signature reasons and the homo-
thety class of a non-degenerate quadratic space over a field is determined by
the isomorphism class of its special orthogonal group [Co2, C.3.13, C.3.15]).
Thus, distinct integers r, s > 0 in the same congruence class modulo 8 with
n = r + s > 4 provide Z-models of non-split connected semisimple Q-groups
of type Dn/2.

Example 2.10. — If (M, q) is non-degenerate over Z with odd rank n =
2m + 1 > 3 then SO(q) is a semisimple Z-group of type Bm (in particular, it
is Z-smooth with connected semisimple fibers); see [Co2, C.2.9, C.3.9].

Now we are in position to construct unimodular lattices of odd rank n from
quadratic lattices (M, q) of odd rank n that are non-degenerate over Z (i.e.,
disc(q) = ±2). The first step is:
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Lemma 2.11. — There is an F2-isomorphism qF2 ' qn as quadratic spaces.

Proof. — The condition disc(q) = ±2 ensures that the odd-dimensional
quadratic space M/2M over F2 is non-degenerate in the sense that its defect
space has the minimal possible dimension (namely, 1). By [SGA7, XII,
Prop. 1.2] the quadratic spaces (M, q)F2 and (Fn

2 , qn) are isomorphic over F2,
so the isomorphism class of (M, q)F2 is classified by a Galois cohomology class
in H1(F2,On(F2)). But On = µ2 × SOn since n is odd, and SOn is smooth
and connected, so H1(F2,On(F2)) = H1(F2, SOn) = 1 by a vanishing theorem
of Lang [Bor, 16.5(i)]. Hence, qF2 ' qn as desired.

Remark 2.12. — The existence of an F2-isomorphism qF2 ' qn for odd n,
as proved above, can be strengthened: qZ2 ' ±qn over Z2. (This will be
useful later.) To prove this, we may and do replace q with −q if necessary

so that disc(q) = 2(−1)n(n−1)/2 = disc(qn). By [SGA7, XII, Prop. 1.2], q
and qn become isomorphic fppf-locally over Z2, so the affine finite type Isom-
scheme I = Isom(q, qn) over Z2 is an On-torsor for the fppf topology. Since
SOn → Spec(Z) is smooth with connected fibers, H1(Z2, SOn) = 1 (as we will
explain more generally in Proposition 3.10). But On = µ2 × SOn because n is
odd, so the isomorphism class of I is classified by an fppf µ2-torsor.

This µ2-torsor is classified by an element in the fppf cohomology group
H1(Z2, µ2), and that group in turn is identified with Z×2 /(Z

×
2 )2 via the 2-power

fppf Kummer sequence

1→ µ2 → Gm
t2→ Gm → 1

over Z2. If a ∈ Z×2 represents the Kummer class of I then upon passing from
the fppf On-torsor I back to the quadratic space q via descent theory yields a
Z2-isomorphism

ϕ : (M, q)Z2 ' (Zn2 , ax
2
0 + x1x2 + · · ·+ xn−2xn−1).

The discriminants of the two sides in Q×2 /(Z
×
2 )2 are 2(−1)n(n−1)/2 and

2a(−1)n(n−1)/2 respectively, so a ∈ (Z×2 )2. Hence, qZ2 ' qn as desired.

By inspection of (qn)F2 with n = 2m+ 1, it follows from Lemma 2.11 that
the maximal isotropic subspaces V ⊂ M/2M have codimension m. Clearly Bq

is 2Z-valued on the preimage M′ of such a V in M. Upon choosing V to obtain
such an M′, the symmetric bilinear form B′ = (1/2)Bq|M′×M′ is Z-valued with
disc(B′) = 2−n[M : M′]2disc(q) = ±1, so (M′,B′) is unimodular. Note that
QB′ = q|M′ , and (M′,B′) has the same signature as (M, q). The unimodular
lattices (M′,B′) built in this way are always odd (“type I” in the terminology
of [S73, Ch. V]), since their rank n is odd; see Example 2.4.

For odd rank n > 3 there is more than one choice of V ⊂ M/2M, and as we
vary V the sublattices M′ ⊆ M will vary too. However, the isomorphism class
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of (M′,B′) does not vary in the indefinite case, since these unimodular lattices
all have the same signature and in the indefinite case a unimodular lattice
(of any rank) is determined up to isomorphism by its signature [S73, Ch. V,
2.2, Thm. 6]. The abstract isomorphisms among all (M′,B′)’s in the indefinite
odd-rank case can be made more concrete by using the strong approximation
theorem for indefinite spin groups to prove:

Proposition 2.13. — If (M, q) is indefinite and non-degenerate over Z with
odd rank n > 3 then the group SO(q)(Z) acts transitively on the set of all such
lattices M′ ⊆ M.

Proof. — Since n > 3, SO(q) is a semisimple Z-group with absolutely simple
fibers. We first claim that the group SO(q)(F2) = O(q)(F2) acts transitively
on the set of maximal isotropic subspaces V ⊂ M/2M.

Letting W be the quotient of M/2M by the defect line (M/2M)⊥, the bilinear
form Bq mod 2 induces a symplectic form Bq on W. The maximal isotropic
subspaces of M/2M with respect to Bq mod 2 contain the defect line, so the
set of such subspaces corresponds bijectively to the set of maximal isotropic
subspaces of W (relative to Bq). It is elementary that the automorphism
group of a symplectic space over a field acts transitively on the set of maximal
isotropic subspaces, so Sp(Bq)(F2) acts transitively on the set of maximal
isotropic subspaces of W. To conclude the same for the action of SO(q)(F2)
on the set of maximal isotropic subspaces of M/2M, it suffices to show that the
natural isogeny f : SO(q)F2 → Sp(Bq) (see [Co2, C.3.6]) induces a bijection
on F2-points.

Isogenous smooth connected affine groups over a finite field have the same
number of rational points [Bor, 16.8], and ker f is infinitesimal (it is αn−1

2
since qF2 ' qn; see [Co2, C.3.6]). Thus, f is bijective on F2-points.

In view of the transitivity of the SO(q)(F2)-action, it suffices to show that
SO(q)(Z) → SO(q)(F2) is surjective. The verification of this surjectivity
property is a job for the strong approximation theorem, except that strong
approximation applies to simply connected groups whereas SO(q) is not simply
connected. But Spin(q)F2 → SO(q)F2 is an isogeny with infinitesimal kernel
over a finite field, so the map on rational points is bijective. Hence, it suffices
to show that Spin(q)(Z)→ Spin(q)(F2) is surjective.

The indefiniteness of qR implies that SO(q)R is R-isotropic, so Spin(q)R is
R-isotropic. Hence, the strong approximation theorem for absolutely sim-
ple and simply connected Q-groups (see [Pras] and references therein) is
applicable to Spin(q)Q and the archimedean place of Q. This says that

Spin(q)(Q) · Spin(q)(R) is dense in Spin(q)(AQ), so for the open subring Ẑ
inside the ring of finite adeles of Q we conclude that the intersection

Spin(q)(Q) ∩ Spin(q)(Ẑ) = Spin(q)(Z)
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is dense in Spin(q)(Ẑ). But Spin(q)(Ẑ) → Spin(q)(Z/dZ) is surjective with
open kernel for all d > 0 since Spin(q) is Z-smooth, so any dense sub-

set of Spin(q)(Ẑ) maps onto Spin(q)(Z/dZ). In particular, Spin(q)(Z) →
Spin(q)(Z/dZ) is surjective. Setting d = 2 gives the desired surjectivity from
Z-points onto F2-points.

Now we may resume our discussion of the possibilities for the signature
(r, s) of a quadratic lattice (M, q) of odd rank n = 2m+ 1 with disc(q) = ±2,
showing that the sufficient condition r − s ≡ ±1 mod 8 from Example 2.7 is
necessary.

By passing to (M,−q) if necessary so that disc(q) = disc(qn), we claim
that r − s ≡ 1 mod 8. To prove this, consider a unimodular lattice (M′,B′)
associated to (M, q) via a choice of maximal isotropic subspace V in M/2M as

in the discussion preceding Proposition 2.13. Let B
′

= B′ mod 2 on M′/2M′.
By [S73, Ch. V, §2.1, Thm. 2], r − s ≡ QB′(m′0) mod 8 where m′0 ∈ M′ lifts

the unique m′0 ∈ M′/2M′ such that B
′
(m′0, ·) = QB′ mod 2 on M′/2M′. Thus,

we seek to prove QB′(m′0) ≡ 1 mod 8.
As we saw in Remark 2.12, there is a Z2-isomorphism ϕ : qZ2 ' qn. The

map On(Z2)→ On(F2) = SOn(F2) is surjective since SOn is Z2-smooth, and
On(F2) acts transitively on the set of maximal isotropic subspaces (as we
saw in the proof of Proposition 2.13), so ϕ may be chosen such that ϕ mod 2
carries V onto any desired maximal isotropic subspace. Hence, we can choose
V to correspond to the span of the standard basis vectors e1, e3, . . . , en−2 in
⊕n−1
j=0 F2ej , so m′0 = e0. We may therefore choose m′0 to lift e0 mod 8 via the

mod-8 reduction of the Z2-isomorphism ϕ, so QB′(m′0) ≡ qn(e0) mod 8. But
qn(e0) = 1, so necessity of the signature condition for odd n is proved.

Example 2.14. — Consider (M, q) with odd rank n = 2m+ 1 > 3 such that
disc(q) = ±2. Let (r, s) be the signature of qR.

Assume r = s ± 1, so we are in the indefinite case since r + s = n > 3.
By uniqueness for a given indefinite signature (see Theorem A.1). (M, q) is an
orthogonal direct sum of (Z,±x2) and m hyperbolic planes over Z. Thus, in
such cases the semisimple Z-group SO(q) = SO(−q) is a Chevalley group (this
applies to q = q2m+1).

Suppose |r−s| > 1, so the Q-fiber of SO(q) is not split (as even the R-fiber
is not split, since ±qR is non-split due to signature reasons and hence we can
argue as in Example 2.9). Thus, for n = r + s > 3 with integers r, s > 0
satisfying r − s ≡ ±1 mod 8 and r − s 6= ±1, we obtain Z-models of non-split
connected semisimple Q-groups of type B(n−1)/2.

Summary. For a quadratic lattice (M, q) that is non-degenerate over Z
(i.e., disc(q) = ±1 for even rank, and disc(q) = ±2 for odd rank), SO(q) is a
semisimple Z-group. If the signature (r, s) satisfies |r− s| > 1 then SO(q)Q is
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non-split; such (M, q) exist if and only if r − s ≡ 0,±1 mod 8. Later we will
see other examples of Z-models of non-split semisimple Q-groups.

(In Proposition 4.4 we will show that for any quadratic lattice (M, q) that
is non-degenerate over Z, the Z-isomorphism class of SO(q) determines the
isomorphism class of (M, q) up to negating q. Furthermore, a semisimple Z-
group whose generic fiber is a Q-form of SOn for n > 3 must be SO(q) for
such an (M, q), as we will explain in Remark 4.11.)

3. Cohomological formalism and Z-groups

Non-abelian Galois cohomology is a useful formalism for understanding the
structure of and possibilities for connected semisimple groups over interesting
fields (see [S97, III]). We need to apply a version of this over rings when
studying semisimple Z-groups.

We begin our discussion by summarizing some general non-abelian coho-
mological constructions and terminology for reductive group schemes over any
non-empty scheme S. This requires working systematically with the étale
topology on S, and it differs significantly from the case of fields in that finite
étale covers of S are generally not cofinal among all étale covers, even if S is
the spectrum of a Dedekind domain (e.g., consider Zariski refinements of finite
étale covers). The cases of most interest to us are S = Spec(A) where A is a
field or principal ideal domain (such as a number field, local field, or Z). Some
additional details on this formalism are provided in [SGA3, XXIV] and [Co2,
7.1.4, 7.1.9].

Let G0 be a reductive S-group, and ZG0 its scheme-theoretic center. There is
a smooth separated S-group AutG0/S representing the automorphism functor
of G0 (on the category of S-schemes). The conjugation action of G0 on
itself factors through an action of the semisimple S-group Gad

0 := G0/ZG0

on G0 that identifies Gad
0 as an open and closed subgroup scheme of AutG0/S0

.

The quotient sheaf OutG0/S := AutG0/S/G
ad
0 for the étale topology on S is

represented by a separated étale S-group that is locally constant for the étale
topology on S. The diagram of S-groups

(3.1) 1→ Gad
0 → AutG0/S → OutG0/S → 1

is short exact for the étale topology on S-schemes. If S is noetherian, normal,
and connected (e.g., Spec(k) for a field k, or Spec(Z)) then considering closures
of points in the generic fiber shows OutG0/S has S-finite connected components
(see [SGA3, X, 5.14] or the proof of [Co2, 7.1.9]).

Example 3.1. — Suppose G0 is split, so we may choose a split (fiberwise)
maximal S-torus T0 ⊂ G0 whose Gm-dual is identified as a constant étale
sheaf MS for a finite free Z-module M such that the nontrivial T0-weights on
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g0 arise from the Z-dual M∨ ⊂ HomS(T0,Gm) and the root line bundles ga
(a ∈ Φ(G0,T0) ⊂ M∨−{0}) are trivial. Let B0 ⊃ T0 be the Borel S-subgroup
PG0(λ) for a cocharacter λ ∈ M ⊂ HomS(Gm,T0) not annihilated by any
a ∈ Φ(G0,T0) [Co2, 5.2.2].

Let (R,∆) denote the associated based root datum. Choose a pinning (i.e.,
a trivialization of the line bundle ga for each a ∈ ∆). The subgroup functor of
AutG0/S consisting of“pinned automorphisms”(i.e., those that respect (T0,B0)
and the pinning) maps isomorphically onto OutG0/S and is identified with the
constant S-group Aut(R,∆)S associated to the automorphism group of the
based root datum. Hence, (3.1) splits as a semi-direct product, giving an
isomorphism

(3.2) Gad
0 o Aut(R,∆)S ' AutG0/S

depending on (T0,B0) and the pinning. (See [SGA3, XXIV, 1.3(iii)] or [Co2,
7.1.9(3)] for details.)

Example 3.2. — Suppose S = Spec(k) for a field k, so the étale k-group
OutG0/k corresponds to a continuous action of Gal(ks/k) on the discrete group
OutG0/k(ks) = Aut(R,∆), where (R,∆) is the based root datum associated to
(G0)ks . For a theoretical understanding of how the Galois group acts on (R,∆)
without a split hypothesis on G0, it is best to work with the canonical based
root datum associated to G0 as in [Co2, 7.1.2]. A more concrete description
is provided by the formalism of the “∗-action” as explained in [T1, §2.3].

Consider S = Spec(Z). Since Z is noetherian and normal, the connected
components of OutG0/Z are finite étale over Spec(Z). But π1(Spec(Z)) = 1, as
we noted in the proof of Lemma 1.1, so OutG0/Z must be a constant Z-group
(even if G0 is not split). Likewise, the schematic center ZG0 is a Z-group of
multiplicative type [Co2, 3.3.4], so since Z is a noetherian normal domain
with trivial étale fundamental group it follows that ZG0 is Gm-dual to the
constant sheaf on (Spec(Z))ét associated to a finitely generated abelian group
[Co2, B.3.6] (even if G0 is not split).

Example 3.3. — Let (M, q) be a quadratic lattice with rank n > 3, and as-
sume it is non-degenerate over Z. Let GO(q) denote the orthogonal similitude
group scheme; i.e., points of GL(M) that preserve q up to a unit scaling fac-
tor. (Define GOn := GO(qn).) This is a smooth Z-group [Co2, C.3.11]. Since
GO(q) is generated by O(q) and the central Gm, clearly SO(q) is normal inside
GO(q). The resulting conjugation action of GO(q) on SO(q) makes the central
subgroup Gm act trivially and so defines a Z-homomorphism

PGO(q) := GO(q)/Gm → AutSO(q)/Z.

(Define PGOn := PGO(qn).) This is an isomorphism [Co2, Lemma C.3.12].
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The adjoint quotient SO(q)ad is identified as a subgroup of PGO(q) in the
evident manner. For even n (allowing n = 8) the quotient group OutSO(q)/Z is
the constant group O(q)/SO(q) = Z/2Z and for odd n we have OutSO(q)/Z = 1
(see [Co2, C.3.11]).

The set of isomorphism classes of reductive S-groups G that are isomorphic
to G0 étale-locally on S is in bijection with the pointed Čech cohomology set

H1(Sét,AutG0/S) = lim−→
S′/S

H1(S′/S,AutG0/S)

where S′ varies through a cofinal set of étale covers of S and H1(S′/S, ·) is
defined in terms of Čech 1-cocycles relative to S′ → S (see [SGA3, XXIV,
1.18], [Ha, 1.3], or [Co2, (7.1.1)]). The isomorphism class of G thereby
corresponds to an element

c(G) ∈ H1(Sét,AutG0/S)

that is functorial with respect to base change on S. We write

d(G) ∈ H1(Sét,OutG0/S)

to denote its image via AutG0/S → OutG0/S.

Example 3.4. — Assume S = Spec(k) for a field k, so H1(k,AutG0/k) can

be identified with the Galois cohomology set H1(Gal(ks/k),Aut((G0)ks)). An
explicit 1-cocycle representing the class c(G) is given by the procedure in the
proof of [Co2, 7.1.1] (or see [S97, III, §1.1–1.3]). If G0 is semisimple then
d(G) is represented by the conjugacy class of the continuous homomorphism
Gal(ks/k)→ Aut(R,∆) ⊂ Aut(Dyn((G0)ks) given by the“∗-action” [T1, §2.3]
of the Galois group on the Dynkin diagram of (G0)ks .

Example 3.5. — Let G → S be an affine group scheme. The set of iso-
morphism classes of right G-torsors E → S satisfying E(S′) 6= ∅ for an étale
surjection S′ → S is H1(S′/S,G). This identification uses that G is S-affine to
ensure that the descent datum encoded by an element of the set Z1(S′/S,G)
of Čech 1-cocycles relative to S′/S is effective. Passing to the limit over étale
covers, H1(Sét,G) is the set of isomorphism classes of G-torsors E→ S for the
étale topology. The same formalism carries over using the fppf topology.

For smooth S-affine G, the natural map of sets H1(Sét,G)→ H1(Sfppf ,G) is
bijective. This amounts to the assertion that any fppf right G-torsor E → S
admits sections étale-locally on S. To prove this assertion, note that by fppf
descent for the property of smoothness, E → S inherits smoothness from
G → S. Smooth surjections of schemes always admit sections étale-locally
on the base [EGA, IV4, 17.16.3(2)], so E is indeed a torsor for the étale
topology when G is smooth.
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Example 3.6. — To bring the previous example down to earth, H1(Sét,O2m)
is identified functorially in S with the set of isomorphism classes of pairs (V, q)
where V is a rank-2m vector bundle on S and q : V → OS is a (fiberwise)
non-degenerate quadratic form. This identification assigns to each (V, q)
the Isom-scheme Isom((O⊕2m

S , q2m), (V, q)) that is a right O2m-torsor via pre-

composition with the O2m-action on O⊕2m
S . For O2m+1 = µ2 × SO2m+1 we

have an analogous result for (V, q) of rank 2m + 1, but we must use the fppf
topology if 2 is not a unit on S (as µ2 is not S-smooth in such cases).

Consider the special case S = Spec(R) for a principal ideal domain R with
fraction field K. Let n > 0 be an integer, and assume either n is odd or
char(K) 6= 2. Let (M, q) be a fiberwise non-degenerate quadratic space over
R of rank n > 0, so O(qK)/SO(qK) = µ2 (using that char(K) 6= 2 if n is
even; see [Co2, Rem. C.2.11]). We have a well-defined element disc(q) ∈
(R− {0})/(R×)2 ⊂ K×/(K×)2.

The canonical map O(qK) → µ2 induces f : H1(R,O(q)) → H1(K, µ2) =
K×/(K×)2 that lands inside R×/(R×)2 and is made explicit as follows: for any
fiberwise non-degenerate (M′, q′) of rank n, the isomorphism class of the right
O(q)-torsor Isom(q, q′) is carried by f to the class of the ratio disc(q′)/disc(q).
As a special case, the natural map H1(R,On) → R×/(R×)2 carries the class
of (M′, q′) to the class of disc(q′)/disc(qn), and the presence of disc(qn) here
cannot be ignored since it is generally not in (R×)2.

Returning to the setting above Example 3.4, the S-group G is called a pure
inner form of G0 if c(G) is in the image of H1(Sét,G0). Under the weaker
hypothesis that c(G) is in the image of H1(Sét,G

ad
0 ), we say that G is an inner

form of G0.

Example 3.7. — Assume S = Spec(k) for a field k. The “pure inner form”
condition means that G is constructed from G0 by modifying the canonical
ks/k-descent datum on (G0)ks via 1-cocycles in Z1(ks/k,AutG0/k) arising from
1-cocycles valued in G0(ks). The “inner form” condition means that we can
instead get G by using a 1-cocycle valued in Gad

0 (ks).
A 1-cocycle of the latter type lifts to a 1-cochain valued in G0(ks) if k is

perfect or if ZG0 is smooth (equivalently, char(k) does not divide the order
of the torsion part of the geometric character group of ZG0), but it generally
does not lift to a 1-cocycle valued in G0(ks).

Computations with Čech 1-cocycles show (as in [Co1, Prop. B.3.2] over
fields, via a method also applicable over schemes) that the exact sequence
(3.1) gives an exact sequence of pointed sets

Aut(G0)\OutG0/S(S)→ H1(Sét,G
ad
0 )→ H1(Sét,AutG0/S)→ H1(Sét,OutG0/S)
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in which the final map carries c(G) to d(G). Thus, d(G) = 1 if and only if G is
an inner form of G0. Also, if G0 is split then the semidirect product structure
in Example 3.1 shows that Aut(G0)→ OutG0/S(S) is surjective, so the map

H1(Sét,G
ad
0 )→ H1(Sét,AutG0/S)

between pointed sets has trivial kernel in such cases. However, in those cases
this map can fail to be injective, even over fields:

Example 3.8. — Consider G0 = SLn over a field k, with n > 1. The
map Gad

0 → AutG0/k is the natural map PGLn → AutSLn/k defined by the

conjugation action of PGLn = GLn/Gm on SLn. The induced map on H1’s
carries the Brauer class of a rank-n2 central simple algebra A over k to the
isomorphism class of the k-group SL1(A) of units of A with reduced norm 1.

If A is a division algebra whose Brauer class is not of order dividing 2 then
the opposite algebra Aopp defines a different Brauer class from that of A but
their associated k-groups SL1(Aopp) = SL1(A)opp and SL1(A) are k-isomorphic
(via inversion). Thus, we get counterexamples to injectivity when k admits
central division algebras A of rank n2 whose class in Br(k) is not killed by
2. It is a consequence of class field theory that such division algebras exist
over any global or non-archimedean local field when n > 2 ([AT, X, Cor. to
Thm. 6], [S79, XIII, §3, Cor. 3]).

For any semisimple group scheme G→ S, there is a unique central isogeny

G̃ → G where G̃ is a semisimple S-group with simply connected fibers (see
[Ha, §1.2] or [Co2, Exer. 6.5.2]). The canonicity of this central cover identifies
AutG/S with a closed and open S-subgroup of Aut

G̃/S
. In the split case,

the resulting equality (G̃)ad = Gad thereby yields an inclusion between the

constant outer automorphism schemes of G and G̃, corresponding to the
natural injective homomorphism from the automorphism group of a semisimple
root datum into the automorphism group of the associated root system.

We now specialize the preceding considerations to the special case S =
Spec(Z). Let G0 be a reductive Z-group. The Z-group OutG0/Z is constant
by Example 3.2, and it is not Z-finite when ZG0 has fiber dimension > 1.
The pointed set H1(Z,OutG0/Z) is therefore trivial due to the vanishing of
π1(Spec(Z)) and:

Proposition 3.9. — If S is a connected normal noetherian scheme and Γ
is a group then H1(Sét,ΓS) is identified with the set of conjugacy classes of
continuous homomorphisms from π1(S) into the discrete group Γ.

Proof. — By the formalism of étale fundamental groups and étale sheaf theory,
conjugacy classes of continuous homomorphisms π1(S) → Γ correspond to
isomorphism classes of Γ-torsors for the étale topology on S that are split by a
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finite étale cover. The set H1(Sét,ΓS) classifies the set of isomorphism classes
of ΓS-torsor sheaves F on Sét. Thus, it suffices to show that every such F is
represented by an étale S-scheme E→ S that is a disjoint union of finite étale
S-schemes (so E(S′) 6= ∅ for some finite étale cover S′ → S).

We may choose an étale cover S′ → S of finite type such that F (S′) is
non-empty. The torsor property gives that FS′ is represented by the constant
S′-scheme ΓS′ , so F is an étale descent over Sét of the functor on S′ét represented
by ΓS′ . Such a descent is necessarily an algebraic space E étale over S, and
this algebraic space is S-separated since ΓS′ is S′-separated.

The locally noetherian algebraic space E can be covered by quasi-compact
open subspaces, each of which is necessarily quasi-finite and separated over
the scheme S and hence is a scheme [Knut, II, 6.15]. Thus, E is a scheme
étale over S. Since E→ S becomes constant over an étale cover of the normal
noetherian S, the connected components of E are finite étale over S by [SGA3,
X, 5.14] (or see the proof of [Co2, 7.1.9]).

For general reductive Z-groups G0, we have just shown that the map
H1(Z,G ad

0 ) → H1(Z,AutG0/Z) is surjective. Before we discuss the conse-
quences of this, we digress to prove Proposition 1.3, as the necessary tools
are now in place.

Proof. — (of Proposition 1.3) Let G0 be the Chevalley group over Z with Q-
fiber G0 having the same root datum as G, so (G0)K ' G, and let G be
an R-model of G. Since G0 contains a split fiberwise maximal Z-torus T0,
it contains a Borel Z-subgroup B0 (by the same dynamic procedure with a
sufficiently generic cocharacter λ as at the start of Example 3.1).

The Borel K-subgroup B = (B0)K ⊂ (G0)K = G = GK gives rise to a
K-point on the scheme BorG /R of Borel subgroups of G . By the valuative
criterion for properness, this K-point extends to an R-point since BorG /R is
R-proper and R is Dedekind. Thus, B = BK for a Borel R-subgroup B ⊂ G .

Consider the Isom-functor

I := Isom((G0,B0)R, (G ,B))

that assigns to any R-scheme Y the set of Y-group isomorphisms (G0)Y ' GY

carrying (B0)Y onto BY. This functor is a sheaf for the étale topology. We
want to show that I has an R-point, as then G ' (G0)R, concluding the proof.

Note that I has a natural right action by the group functor A :=
Aut(G0,B0)R/R that is a sheaf on the étale site of Spec(R). This action makes
I an A -torsor for the étale topology because any reductive group scheme
splits étale-locally on the base and any two Borel subgroups of a reductive
group scheme become conjugate étale-locally on the base. Thus, it suffices to
show that the class of I in the pointed set H1(R,A ) of isomorphism classes
of right A -torsor sheaves on (Spec(R))ét is trivial.
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Let Θ denote the automorphism group of the based root datum associated to
the split Z-group (G0,B0,T0), or equivalently to the split K-group G. Using
the semi-direct product structure (3.2) in Example 3.1 applied to G0, the
automorphism functor A over (Spec(R))ét is an extension of the constant R-
group ΘR by the R-pullback of the Borel subgroup Bad

0 := B0/ZG0 ⊂ G ad
0 since

a Borel subgroup of a reductive group scheme is its own normalizer scheme
[Co2, Cor. 5.2.8]. Consider the resulting exact sequence of pointed sets

H1(R, (Bad
0 )R)→ H1(R,A )→ H1(R,ΘR).

The class of I in the middle term is trivial over K since I (K) is non-empty by
design of B. The image of this class in H1(R,ΘR) has trivial restriction over K
and hence is trivial, due to Proposition 3.9 (since π1(Spec(K))→ π1(Spec(R))
is surjective, as R is a normal noetherian domain). Hence, we just have to
prove the vanishing of H1(R, (Bad

0 )R). By choosing a composition series of
Bad

0 over Z with successive quotients Ga and Gm (see [Co2, Prop. 5.1.16])
this reduces to the vanishing of Pic(R)

Returning to the study of a general reductive Z-group G0 (not necessarily a
Chevalley group) with generic fiber denoted G0, classes in H1(Z,G ad

0 ) satisfy
a strong local triviality property upon restricting them to Zp:

Proposition 3.10. — Let R be a complete discrete valuation ring with finite
residue field F. For any smooth affine R-group H with connected fibers, the
set H1(R,H ) is trivial.

Proof. — By Example 3.5, it suffices to show that if E → Spec(R) is an H -
torsor for the étale topology then E(R) is non-empty. By descent theory,
E→ Spec(R) is a smooth surjection since H is a smooth R-group. Since the
special fiber EF over F is an HF-torsor, by Lang’s theorem for homogeneous
spaces under smooth connected groups over finite fields [Bor, 16.5(i)] (or see
[DGa, III, §5, 7.5] with smoothness relaxed to finite type) it follows that
E(F) is non-empty. But Zariski-locally on the source, any smooth map factors
through an étale map to an affine space, so Hensel’s Lemma implies that any
rational point in the special fiber of a smooth scheme over R lifts to an R-point;
see [EGA, IV4, 18.5.17].

Corollary 3.11. — Let H be a smooth affine Z-group with connected fibers.
Any class in the image of H1(Z,H ) → H1(Q,HQ) has trivial image in
H1(Qp,HQp) for every prime p.

Proof. — Apply base-change functoriality of Čech cohomology with respect
to the compositions Z → Zp → Qp and Z → Q → Qp and use Proposition
3.10 with R = Zp.
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We have shown that every class in H1(Z,AutG0/Z) arises from H1(Z,G ad
0 ), so

applying Proposition 3.10 and Corollary 3.11 to G ad
0 gives that the restriction

(3.3) H1(Z,AutG0/Z)→ H1(Qp,AutG0/Qp
)

is trivial for all primes p. Thus, every Z-form of G0 has Qp-fiber isomorphic
to (G0)Qp for all p. But there is a Chevalley group that is a Z-form of G0, so
by Lemma 1.1 we see that (G0)Qp is split for all p.

We finish our preliminary discussion of Z-models with a useful description
of simply connected semisimple Z-groups.

Proposition 3.12. — Any simply connected semisimple Z-group is a direct
product

∏
Gi where each Gi is a simply connected semisimple Z-group with

absolutely simple fibers.

Proof. — By [Co2, 6.4.4], any fiberwise nontrivial simply connected semisim-
ple group over a non-empty scheme S is a Weil restriction RS′/S(H) for a finite
étale cover S′ → S and a simply connected semisimple S′-group H whose fibers
Hs′ are absolutely simple. In the case S = Spec(Z), necessarily S′ is a dis-
joint union of copies of Spec(Z) (by Minkowski’s theorem). For any scheme
S and disjoint union S′ =

∐
Si of finitely many copies Si of S, any S′-scheme

X′ has the form X′ =
∐

Xi for an Si-scheme Xi. It is easy to check via the
functorial characterization of Weil restriction that as functors on S-schemes,
RS′/S(X′) =

∏
Xi.

4. The generic fiber

Consider a connected reductive Q-group G admitting a Z-model G (under-
stood to be reductive). We shall prove that G is split over Zp for all primes
p (improving on the observation after Corollary 3.11 that GQp is split for all
p). We will also show that G is a pure inner form of a split group over Q (see
Lemma 4.7), and by a more sophisticated version of the same arguments we
will even prove that G is a pure inner form of a Chevalley group over Z (see
Remark 4.8).

Let G0 be the split form of G over Z (i.e., the Chevalley group with the
same root datum as GQ), and let G0 = (G0)Q, so G0 is the split form of

G over Q. Let c(G) ∈ H1(Q,AutG0/Q) and d(G) ∈ H1(Q,OutG0/Q) be the
associated cohomology classes as above Example 3.4. Define c(G ) and d(G )
over Z similarly.

Lemma 4.1. — The class d(G) is trivial; i.e., G is an inner form of G0.

Proof. — We have already given a proof of this result using the cohomolog-
ical formalism over Z: by Proposition 3.9 we have H1(Z,OutG0/Z) = 1, so
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d(G ) = 1 and hence d(G) = 1. But that argument rests on the entire ap-
partus of the automorphism scheme over rings, rather than just over fields
(where it is more classical). So we now give another proof via Galois-theoretic
considerations over fields (also using the theory of reductive group schemes
over discrete valuation rings). The arithmetic content will remain exactly the
same: Minkowski’s theorem that every number field K 6= Q is ramified at
some prime.

Note that d(G) is a conjugacy class of homomorphisms from Gal(Q/Q) into
Aut(R,∆). If K/Q is the finite Galois extension cut out by this conjugacy
class, we want to show K = Q. By Minkowski’s theorem, if K 6= Q then some
rational prime is ramified in K and hence the local class dp(G) := d(G)|Qp =

d(GQp) ∈ H1(Qp,Aut(R,∆)) at such a prime p is ramified (i.e., nontrivial on
the inertia group at p). Thus, to prove K = Q it suffices to show that d(G)
is unramified for all p. But G is reductive over Z, so it is reductive over the
completion Zp, and a reductive group over Zp splits over a finite unramified
extension [SGA3, XIX, 6.1] (or see [Co2, 5.2.14]). Hence, G splits over a
finite unramified extension of Qp, so dp(G) is unramified for all p.

We have already seen that GQp is split for all primes p. This property,
which makes no reference to reductive groups over rings, forces G to be an
inner form of G0. Indeed, this is a consequence of a more general result over
any global field (where Minkowski’s theorem on extensions unramified at finite
places is not available):

Proposition 4.2. — Let k be a global field. Any connected reductive k-group
H that splits at all finite places must be an inner form of the split k-group H0

of the same type.

Proof. — We have to prove triviality of the class d(H) ∈ H1(k,Aut(R,∆)),
where (R,∆) is the based root datum of H0. The task is to show that a
continuous homomorphism from Gal(ks/k) into a discrete group is trivial if
it is trivial at all finite places (i.e., trivial on all decomposition groups at
finite places). The image of such a homomorphism is a finite Galois group
Gal(k′/k), so it suffices to show that any such Galois group is generated by its
decomposition groups at the finite places.

The subgroup of Gal(k′/k) generated by such decomposition groups is nor-
mal and thereby corresponds to a finite Galois subextension K/k for which
all decomposition groups are trivial. In other words, all finite places of k
are totally split in K, which forces [K : k] = 1 by the Chebotarev Density
Theorem.

By [Co2, 5.3.1, 5.3.3], there is a natural central isogeny T × G ′ → G over
Z, where G ′ is a semisimple normal Z-subgroup of G (the derived group) and



22 BRIAN CONRAD

T is the maximal central Z-torus in G . All Z-tori are split, as we explained
in the proof of Lemma 1.1. Thus, to classify the possibilities for G over Z,
or even for its generic fiber G over Q, it is reasonable to concentrate on the
semisimple case, which we now do.

Any semisimple group over a scheme S is a central quotient of a simply
connected semisimple S-group that is unique up to unique isomorphism; this
follows via étale descent from the split case, which in turn is deduced from the
Existence and Isomorphism Theorems (see [Co2, Ex. 6.5.2]). Note also that
a semisimple Z-group is a pure inner form of a Chevalley group if its simply
connected central cover is. Thus, for our purposes (especially to describe the
generic fibers of semisimple Z-groups) there is no loss of generality in focusing
on the simply connected case.

In view of Proposition 3.12 (which breaks down completely over integer
rings of number fields other than Q), we also lose no generality by restricting
attention to describing the connected semisimple Q-groups G that are abso-
lutely simple, simply connected, and admit a Z-model. These Q-groups can
be characterized without reference to Z-models, as follows. We have shown
that any such G is split over Qp for all rational primes p, and the converse
holds by applying the following with R = Z:

Lemma 4.3. — Let R be a Dedekind domain with fraction field K, and H
a connected reductive K-group that is split over the fraction field K∧m of the
completion R∧m at every maximal ideal m of R. There exists a reductive R-
group H such that H 'HK.

Proof. — By direct limit arguments (viewing K as a direct limit of its finitely
generated R-subalgebras R[1/r]), we can extend H to a smooth affine group
with connected fibers over Spec(R[1/r]) for some nonzero r ∈ R. Since
the generic fiber H is reductive, by openness of the locus of reductive fibers
(see [SGA3, XIX, 2.5(i)] or [Co2, 3.1.9(1), 3.1.12]) this group has reductive
restriction over some dense open locus Spec(R[1/r′]) ⊂ Spec(R[1/r]) (with a
nonzero r′ ∈ (r)). For each maximal ideal m dividing (r′), a split R∧m-model
of the split K∧m-fiber specifies an Rm-model for H [BLR, 6.2/D.4(b)]. These
finitely many local models glue to the R[1/r′]-model to define a reductive group
over R with generic fiber H (cf. the proof of [BLR, 1.4/1]).

To summarize, for the purpose of describing generic fibers of reductive Z-
groups the essential task is to describe all connected semisimple Q-groups G
that are absolutely simple, simply connected, and split over Qp for all p. (In
§6 we will address the construction of explicit Z-models.) This makes no
reference to group schemes over rings other than fields.

In the setting of Lemma 4.3 with R = Z, it is natural to wonder if the
Z-group H is determined up to isomorphism by the Q-isomorphism class of
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H. When HR is R-anisotropic (or equivalently, when H(R) is compact), there
can exist several such H that are not isomorphic as Z-groups. This is classical
for special orthogonal groups in the definite case. Before we discuss that, it is
convenient to record the ambiguity in passing from a non-degenerate quadratic
lattice to its special orthogonal group.

Proposition 4.4. — Let (M, q) be a quadratic lattice that is non-degenerate
over Z. The isomorphism class of the Z-group SO(q) determines the isomor-
phism class of (M, q) up to replacing q with −q

Proof. — Let n > 1 be the rank of M. The cases n 6 2 are elementary
(necessarily q ' ±qn), and the cases n > 3 are a consequence of [Co2, C.3.13]
since Pic(Spec(Z)) = 1 and Z× = {±1}.

Since (M, q) is determined by its signature in the indefinite case, as we
discussed in §2, Proposition 4.4 implies that for integers r, s > 0 with r− s ≡
0,±1 mod 8 and n := r+s > 3 there is exactly one Z-form of SOn with positive
R-rank min(r, s). In the R-anisotropic case this uniqueness breaks down in a
very interesting way: there is an abundance of Z-forms (up to isomorphism)
but their Q-fibers are all the same, as we now explain. (See Proposition 4.10
for a generalization.)

Consider definite quadratic lattices (M, q) of rank n > 3; assume n is as
required for the existence of such quadratic spaces. The Minkowski–Siegel
mass formula ensures the existence of many non-isomorphic pairs (M, q) for
large n. Hence, accounting for the sign ambiguity in the dependence of (M, q)
on SO(q) as in Proposition 4.4, there are at least half as many isomorphism
classes among the Z-groups as there are among the quadratic lattices (M, q).
Thus, for large n the mass formula provides many pairwise non-isomorphic
Z-groups SO(q) whose Q-fibers are R-anisotropic Q-forms of SOn.

Proposition 4.5. — All such lattices (M, q) are isomorphic to each other
over Q, up to negating q. In particular, the Q-fibers SO(q)Q coincide up to
Q-isomorphism.

Proof. — Negate q if necessary so that disc(q) = disc(qn) (with sign

(−1)n(n−1)/2). Choose a prime p. We will first show that the isomor-
phism class of (M, q)Qp is the same for all such (M, q)’s. This class is in the

image of H1(Zp,On) → H1(Qp,On), using fppf cohomology (which coincides
with the corresponding étale cohomology by Example 3.5 except for odd n
over Zp when p = 2, as in such cases the Zp-group On = µ2 × SOn is flat but
not smooth).

For odd n we have On = µ2 × SOn, and H1(Zp, SOn) = 1 by Proposition
3.10. But H1(Zp, µ2) → H1(Qp, µ2) is the map Z×p /(Z

×
p )2 → Q×p /(Q

×
p )2 that
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is injective, so for odd n the isomorphism class of (M, q)Qp is determined by
its image under the natural map

H1(Qp,On)→ H1(Qp, µ2) = Q×p /(Q
×
p )2.

As in Example 3.6, this map carries the class of (M, q)Qp to the class of
disc(q)/disc(qn) = 1, so for odd n the isomorphism class of (M, q)Qp is the
same for all (M, q) under consideration.

Suppose instead that n is even, so the Zp-group On is an extension of Z/2Z
by SOn. The diagram of pointed sets

H1(Zp, SOn)→ H1(Zp,On)→ H1(Zp,Z/2Z)

is exact, so in view of the vanishing of H1(Zp,SOn) it suffices to show that
the class of (M, q)Zp has trivial image in H1(Zp,Z/2Z). The restriction map

H1(Zp,Z/2Z)→ H1(Qp,Z/2Z) = H1(Qp, µ2) is injective (as it is “Z/2Z-dual”

to the surjection of Gal(Qp/Qp) onto its maximal unramified quotient), so
we just have to compute the image of the class of (M, q)Qp under the map

H1(Qp,On)→ H1(Qp, µ2). This image is disc(q)/disc(qn) = 1, as for odd n.
We have shown that for each prime p, the isomorphism class of (M, q)Qp

is the same for all (M, q)’s. The isomorphism class of (M, q)R is the unique
definite one of rank n with discriminant having the same sign as disc(qn). By
the Hasse–Minkowski theorem, it follows that the isomorphism class of (M, q)Q
is the same for all such (M, q) with a given rank n > 3, so the Z-groups SO(q)
all have the same Q-fiber.

Remark 4.6. — For some exceptional types (F4 and E8, each of which has
trivial fundamental group), in §6 and §7 we will find that there are non-
isomorphic Z-forms that are anisotropic over R (and so have isomorphic Q-
fibers, by Proposition 4.10 below).

Let G be a connected semisimple Q-group that is absolutely simple, simply
connected, and split over Qp for every p. Let G0 be the split form of G over
Q, so G is an inner form of G0 by Proposition 4.2. That is, c(G) is the image
under H1(Q,Gad

0 )→ H1(Q,AutG0/Q) of a class c′ ∈ H1(Q,Gad
0 ).

We can do better: such a c′ can be chosen such that c′|Qp is trivial for all
p. Indeed, we know that G admits a Z-model G , and d(G ) = 1 by Proposition
3.9, so c(G ) arises from a class ξ ∈ H1(Z,G ad

0 ). It follows from Proposition
3.10 that ξ|Zp = 1 for all p, so c(GZp) = 1 for all p, which is to say that GZp

is split for all p. Moreover, by Corollary 3.11, the class c′ := ξQ has trivial
restriction over every Qp, so c′ is of the desired type. Such a c′ that is trivial
over every Qp will be shown to arise from H1(Q,G0) in the proof of:

Lemma 4.7. — The Q-group G is a pure inner form of the split group G0.
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Proof. — The Hasse principle for adjoint semisimple groups [PR, §6.5,
Thm. 6.22] says that the map of sets

H1(Q,Gad
0 )→

∏
v

H1(Qv,G
ad
0 )

is injective, so the class c′ ∈ H1(Q,Gad
0 ) is determined by its restriction c′∞

in H1(R,Gad
0 ) (since the local classes c′p = c′|Qp are trivial by hypothesis). In

particular, c′∞ determines the Q-isomorphism class of G (as this isomorphism
class is the image of c′ in H1(Q,AutG0/Q)). For example, if c′∞ = 1 then
G ' G0 as Q-groups.

Let Z := ZG0 be the center of G0, giving an exact sequence of pointed sets

H1(Q,Z) // H1(Q,G0) // H1(Q,Gad
0 )

δ // H2(Q,Z).

The center of a split simply connected semisimple group is Cartier dual to the
fundamental group of the root system, so the Q-group Z is isomorphic to µn
for some n > 1 or µ2 × µ2 (by inspection of the classification of irreducible
root systems). Since H2(k, µd) = Br(k)[d] for any field k and integer d > 0,
H2(Q,Z) is equal to Br(Q)[n] or Br(Q)[2]×Br(Q)[2]. Local restriction at each
place v of Q carries δ(c′) to δv(c

′
v) ∈ H2(Qv,Z) for c′v := c′|Qv .

By global class field theory, any Brauer class over a global field has local
invariants in Q/Z that vanish at all but finitely many places and sum to 0,
so a global class that is locally trivial away from one place is globally trivial.
Thus, since δp(c

′
p) = 1 for all primes p, we conclude that δ(c′) = 1, so the

class c′ (whose archimedean component c′∞ determines the isomorphism class
of the group G over Q) is in the image of H1(Q,G0). This says that G is a
pure inner form of G0 over Q.

Remark 4.8. — A variant of the preceding proof gives more: any Z-model
G of G is a pure inner form of the split form over Z. That is, if G0 is the split
simply connected Z-group of the same type as G then we claim that the class
of G in H1(Z,AutG0/Z) arises from H1(Z,G0). We have already seen that the

class of G arises from H1(Z,G ad
0 ) (this is the vanishing of d(G )), so it suffices

to show that the map H1(Z,G0)→ H1(Z,G ad
0 ) is surjective.

The central extension

1→ ZG0 → G0 → G ad
0 → 1

is a short exact sequence for the fppf topology over Spec(Z), and degree-
1 Čech-cohomology with coefficients in a smooth affine group is the same
for the étale and fppf topologies (as we noted in Example 3.5). The Z-
group ZG0 is Cartier dual to the finite abelian fundamental group of the
root system [Co2, Ex. 5.1.7]. Explicitly, by inspection of the classification
of irreducible root systems, it is either µn for some n > 1 or µ2 × µ2. As is
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explained in the proof of Theorem A.1, there is a connecting map of pointed
sets δ : H1(Z,G ad

0 ) → H2(Z,ZG0) whose kernel is the image of H1(Z,G0).
Hence, it suffices to show that H2(Z, µd) = 1 for any integer d > 0, which is
Lemma A.4.

Let G0 be a connected semisimple Q-group that is split, simple, and simply
connected. The map H1(Q,G0) → H1(R,G0) is bijective: surjectivity holds
for any connected linear algebraic group over Q [PR, §6.5, Prop. 6.17], and the
vanishing of H1(Qp,G0) for all p (theorem of Kneser–Bruhat–Tits: [PR, §6.1,
Thm. 6.4], [BT, Thm. 4.7(ii)]) reduces the injectivity to the Hasse principle
for simply connected semisimple groups [PR, §6.1, Thm. 6.6]. The pointed set
H1(R,G0) is finite, and (especially for the exceptional types) can be computed
using methods of Serre [S97, III, §4.5] and Borovoi [Brv].

For a class c∞ ∈ H1(R,G0), the image in H1(Q,AutG0/Q) of the associated

c ∈ H1(Q,G0) classifies a Q-form G of G0 split at all finite places. (If
c∞ = 1 then c = 1 and the corresponding G is G0.) Such a G admits a
Z-model, by Lemma 4.3, and we have seen that every Q-form of G0 admitting
a Z-model must arise in this way for some c∞. Thus, the R-groups that
arise from Q-forms of G0 admitting a Z-model are classified by the image of
H1(R,G0)→ H1(R,AutG0/R).

We claim that every such G as a Q-group is determined up to Q-
isomorphism by the R-group GR. To prove this, it is sufficient (but not
necessary) to show that GR determines the class c∞ ∈ H1(R,G0) with which
we began, so we first show:

Lemma 4.9. — The natural map of sets H1(R,G0) → H1(R,AutG0/R) is
injective except possibly for types Bn with n > 3 and Dn with n > 4.

Proof. — For types A and C there is nothing to do since for any field k (such
as k = R) we have H1(k,SLn) = 1 by [S79, X, §1] and H1(k, Sp2n) = 1 by
[S97, III, 1.2, Prop. 3]. For types E8, F4, and G2 the map of H1’s is bijective
since G0 → AutG0/R is an isomorphism by (3.2).

It remains to treat types E6 and E7. In both cases, computations with the
methods of Borovoi [Brv] yield that H1(R,G0) has size 2. Thus, it suffices to
show that in each case the map of pointed sets H1(R,G0)→ H1(R,AutG0/R)

has trivial kernel. The map H1(R,Gad
0 ) → H1(R,AutG0/R) has trivial kernel

since AutG/k(k) → OutG/k(k) is surjective for any split connected reductive
group G over any field k (using pinned automorphisms; see (3.2)). Thus, it is
equivalent to show that H1(R,G0) → H1(R,Gad

0 ) has trivial kernel. In other
words, we need to show that the connecting map δ : Gad

0 (R)→ H1(R,ZG0) is
surjective.

For type E6 we have ZG0 = µ3, so H1(R,ZG0) = 1. This settles the case
of E6. For type E7 we have ZG0 = µ2, so H1(R, µ2) has order 2. Hence,
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it is equivalent to show that δ is nontrivial, which in turn is equivalent to
the map G0(R) → Gad

0 (R) not being surjective. But G0(R) is connected
(because it is generated by subgroups of the form SL2(R), as for any split
simply connected semisimple R-group, or alternatively because of Cartan’s
general theorem that the space of R-points of a simply connected semisimple
R-group is connected), so it suffices to show that the topological space of R-
points of the adjoint split R-group of type E7 is disconnected. More generally,
for any split connected semisimple R-group G0 with split maximal R-torus

T0 and simply connected central cover G̃0 in which T0 has split maximal R-

torus preimage T̃0, π0(G0(R)) = coker(T̃0(R) → T0(R)) = H1(R, µ) where

µ denotes ker(G̃0 → G0). For G is adjoint of type E7 we have µ = µ2, so
#π0(G0(R)) = 2 in such cases.

Proposition 4.10. — Let G be a connected semisimple Q-group that is ab-
solutely simple and simply connected. If G admits a Z-model then G is de-
termined up to isomorphism by GR, and the R-groups arising in this way
correspond to the image of H1(R,G0) → H1(R,AutG0/R) for the split simple
simply connected semisimple R-group G0 that is a form of GR.

In particular, for any reduced and irreducible root system Φ, there is at
most one connected semisimple Q-group G = GΦ that is absolutely simple
and simply connected such that GQ has root system Φ and GR is anisotropic

(equivalenty, G(R) is compact). The split Q-form of GΦ is the only one that
admits a Z-model and has split R-fiber with root system Φ.

Proof. — As we saw via (3.3), the existence of a Z-model implies that GQp

is split for all p. The uniqueness of G over Q with a given Killing–Cartan
type for which GR either anisotropic or split follows from the rest because
anisotropic and split forms over R are unique. Hence, by Lemma 4.9 and the
discussion preceding it, we just need to prove that G is determined by GR for
types Bn with n > 3 and Dn with n > 4. Such a G is a form of SpinN for some
N > 7. (The argument below will work for any N > 3.)

Since the Q-form G of SpinN is a pure inner form by Lemma 4.7, the map

h : H1(Q, SpinN)→ H1(Q,AutSpinN/Q
)

carries the class of some SpinN-valued 1-cocycle c to the isomorphism class of
the Q-form G. The associated SON-valued 1-cocycle c can be used to twist
the quadratic space (QN, qN) into a non-degenerate quadratic space (W, q)
over Q of dimension N, and h carries the class of c to the class of Spin(q).
Hence, G = Spin(q) for some (W, q). (Note that the Q×-multiples of q need
not arise via this twisting process, though such multiples give rise to the same
spin group over Q.)
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The class ξ ∈ H1(Q,ON) of (W, q) is carried by

H1(Q,ON)→ H1(Q, µ2) = Q×/(Q×)2

to disc(q)/disc(qN) and is in the image of H1(Q,SpinN) by design, so it comes
from H1(Q,SON) and hence disc(q) = disc(qN) in Q×/(Q×)2. Likewise, since

δ : H1(Q, SON)→ H2(Q, µ2) = Br(Q)[2]

kills the image of H1(Q,SpinN), the Hasse-Witt invariants for (W, q) at all
places are trivial.

The only local invariant of (W, q) in the Hasse–Minkowski theorem that
has not been uniquely determined is the signature (r, s). The R-group GR

determines (r, s) up to possibly swapping r and s: min(r, s) is the R-rank of
GR = Spin(qR) (as we may compute via the isogenous quotient SO(qR)), and
max(r, s) = N−min(r, s).

The sign (−1)s of disc(q) is the same as that of disc(qN), so the parity of
s is uniquely determined. This eliminates any swapping ambiguity for odd
N = r + s since r and s have opposite parity in such cases. Thus, for odd
N the group GR determines the Q-isomorphism class of (W, q) and hence of
G = Spin(q).

Suppose N is even, so the quadratic space (W,−q) has the same discrim-
inant and the same local Hasse–Witt invariants as (W, q) since (Q2n, q2n) '
(Q2n,−q2n) (by negating the standard basis vectors ej of Q2n for j of a
fixed parity). But (W,−q) realizes the swapped signature, so by the Hasse–
Minkowski theorem the only possibilities for G realizing a given GR are Spin(q)
and Spin(−q). These Q-groups are isomorphic, so we are done.

Remark 4.11. — For any integer N > 3, the pure inner forms of SpinN over
Z are the Z-groups Spin(q) for (fiberwise) non-degenerate quadratic lattices
(M, q) with rank N. Indeed, by Remark 4.8 every such Spin(q) is a pure inner
form of the Chevalley group SpinN with the same Q-fiber, and conversely a
twisting argument as done with the map h in the preceding proof shows that
every pure inner form of SpinN is given by Spin(q) for some (M, q). By similar
reasoning, the Z-groups SO(q) for such quadratic lattices (M, q) exhaust the
set of isomorphism classes of semisimple Z-groups with Q-fiber a form of SON,
for any N > 3.

Proposition 4.4 shows that the Z-group SO(q) determines the isomorphism
class of (M, q) up to negating q, and we claim that the same holds for Spin(q).
That is, if (M′, q′) is another such quadratic lattice of rank N with Spin(q′) '
Spin(q) over Z then necessarily q′ ' ±q. To prove this, it is sufficient that such
an isomorphism between the spin groups over Z descends to an isomorphism
between the special orthogonal group quotients.

Since Spin(q′) and Spin(q) are separately étale-locally isomorphic to SpinN

in such a way that their special orthogonal group quotients are carried to
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the same quotient SON, it is sufficient that the kernel of the central isogeny
SpinN → SON is stable under AutSpinN/Z

, or equivalently is stable under the
action of OutSpinN/Z

. This outer automorphism group is the constant group
associated to the diagram automorphisms, so case-checking of the B and D
root systems shows that such stability holds except when N = 8 (triality).

In the case N = 8, the possible signatures over R are the indefinite (4,4) and
the definite (8,0) and (0,8). The R-rank of Spin(q) determines the signature
up to negating q, so in the indefinite cases we are done because the signature
determines the isomorphism class in such cases (as discussed in §2; also see
Theorem A.1). In the definite cases, the Minkowski–Siegel mass formula for
positive-definite even unimodular lattices shows that the only examples in rank
8 are the quadratic spaces of discriminant ±1 arising from the even unimodular
E8 root lattice and its negative-definite analogue.

We now describe the groups GR for G as in Proposition 4.10 (also see [G96,
Table 1.3]). First we treat the classical types. As explained in the proof of
Lemma 4.9, for types A and C necessarily GR is split. For types B and D, the
R-groups that arise from absolutely simple and simply connected semisimple
Q-groups admitting a Z-model are Spin(r, s) with r−s ≡ ±1 mod 8 for type B
and r− s ≡ 0 mod 8 for type D. These congruences can be found in two ways.
One way is by using Remark 4.11 and the determination of the signatures of
non-degenerate quadratic spaces over Z as discussed in §2. Another way is
to describe H1(R, Spinn) using the methods of Serre and Borovoi and then
compute the image of the map H1(R,Spinn)→ H1(R,AutSpinn/R

).
Now we turn to the exceptional types. For G2 one gets both real forms (of

ranks 0, 2), and for F4 one gets all three real forms (of ranks 0, 1, 4). For E6

one gets precisely the real inner forms (of ranks 2, 6), and for E7 one gets real
forms of ranks 3, 7 but not those of ranks 0, 4. Finally, for E8 one gets every
real form (of ranks 0, 4, 8).

Remark 4.12. — The R-forms described above are the R-groups arising
from absolutely simple and simply connected semisimple Q-groups G that
admit a (reductive) Z-model. Such G may arise as the generic fiber of several
semisimple Z-groups that are pairwise non-isomorphic over Z. For example,
in types B and D this happens with definite quadratic lattices (M, q) that
are non-degenerate over Z, due to Proposition 4.4. We shall see additional
examples in §6 for type F4 (and many for type E8 in §7 by more indirect
means).

By Proposition 4.10, H1(R,G0) parameterizes the set of isomorphism classes
of Q-fibers of simply connected semisimple groups over Z with absolutely
simple fibers. The proof ultimately rested on the triviality of the fundamental
group π1(S) and the Brauer group H2(S,Gm) for S = Spec(Z). (The triviality
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of Br(Z) expresses the fact that a Brauer class for Q that is split at all finite
places is globally split.) These groups need not be trivial for S = Spec(A)
when A is the ring of integers in a general number field K, and that makes the
description of the generic fibers of semisimple groups over such A much more
involved when K 6= Q (and it seems hopeless to give a general answer; in [Ha]
the case of split generic fiber over Dedekind domains is studied).

5. Coxeter’s integral octonions

To build non-split semisimple Z-groups going beyond §2, we shall use
one remarkable structure: Coxeter’s integral order R in Cayley’s definite
octonions, whose definition we review below (also see [G96, §4] or [EG97,
§1]). The automorphism scheme of R will turn out to be the unique semisimple
Z-group of type G2 that is R-anisotropic. What is even more striking is that
the order R can be used to construct Z-models of absolutely simple non-split
connected semisimple Q-groups of other exceptional types; see §6 below.

We refer the reader to Appendix B for a review of general background related
to octonion algebras over rings, including a discussion of the split octonion
algebra ΛR over any (commutative) ring R and proofs that any automorphism
of the underlying algebra of an octonion R-algebra respects the octonionic
norm and conjugation (as is classical over fields) and that any octonion R-
algebra is isomorphic to ΛR étale-locally over Spec(R).

Cayley’s definite octonion algebra was first described as a non-associative
algebra with anti-involution over R, but its multiplication table actually gives
an algebra O over Q. As a rational vector space of dimension 8, it has the
form

O = Q · 1⊕Q · e1 ⊕ · · · ⊕Q · e7

with the multiplication law determined by

e2
i = −1,

ei · ei+1 · ei+3 = −1,

where in the last identity the subscript is calculated modulo 7 and the multi-
plication among the indicated ordered triples is associative. This gives seven
copies of Hamilton’s rational quaternion algebra inside O. If three distinct
elements ei do not lie in one of these quaternion algebras, one finds that they
anti-associate. For example,

(e1 · e2) · e3 = −e1 · (e2 · e3).

There is an algebra anti-involution x 7→ x∗ of O called conjugation that is
defined by e∗i = −ei, and the trace and norm

Tr(a) = a+ a∗, N(a) = a · a∗ = a∗ · a
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take values in Q, with every a ∈ O satisfying a2 − Tr(a) · a + N(a) = 0. In
particular, if a 6∈ Q then Q[a] is a quadratic field.

The norm N : O → Q is a positive-definite quadratic form and N(aa′) =
N(a)N(a′), so O is an octonion division algebra (see Definition B.4). Its
associated bilinear form is

〈x, y〉 := (x+ y) · (x+ y)∗ − x · x∗ − y · y∗ = x · y∗ + y · x∗ = Tr(x · y∗).

Although multiplication in O is not associative, it is trace-associative in the
sense that Tr((x · y) · z) = Tr(x · (y · z)) for all x, y, z ∈ O. This is a general
property of octonion algebras (as reviewed in Appendix B).

Lemma 5.1. — The automorphism scheme AutO/Q is connected semisimple
of type G2 over Q. It is is R-anisotropic and split over Qp for all primes p.

Proof. — The first assertion is a special case of Theorem B.14 (which is classi-
cal over fields), according to which the split property over Qp is a consequence
of the fact (explained in Example B.3) that OQp is a split octonion algebra for
every p. Since the norm N is positive-definite and AutO/Q is a closed subgroup
of the orthogonal group O(O,N) over Q, the R-anisotropicity follows.

Remark 5.2. — Up to isomorphism, the Cayley octonion algebra O is the
unique non-split octonion algebra over Q. By Corollary B.15 this amounts to
showing that there is a unique non-split Q-form of G2. Since G2 is its own
automorphism scheme, we have to show that H1(Q,G2) has two elements. By
the Hasse principle for simply connected semisimple groups as we discussed
after Remark 4.8, H1(Q,G2) → H1(R,G2) is bijective. Over any field, a
non-split form of G2 is anisotropic [Spr, 17.4.2]. Thus, the uniqueness of the
R-anisotropic form of any connected semisimple R-group completes the proof.

An order in O is a Z-lattice containing 1 and stable under multiplication. It
is automatically stable under the conjugation. Indeed, obviously Q meets any
order in Z, and if a ∈ O is in an order but not in Q then Z[a] is an order in the
quadratic field Q[a], so x2 − Tr(a)x + N(a) must be the minimal polynomial
of a over Q, forcing Tr(a) ∈ Z, so the conjugate a∗ = Tr(a)− a also lies in the
order. In particular, the trace and norm are Z-valued on any order in O. By
Proposition B.9, every order in O is contained in a maximal one.

By Corollary B.12, the maximal orders in O are precisely the orders that are
octonion Z-algebras when equipped with the restriction of the norm (so the
norm defines a structure of unimodular lattice). Hence, by Theorem B.14, the
automorphism scheme of a maximal order in O is a semisimple Z-group of type
G2. Thus, to make an explicit semisimple Z-group with Q-fiber G := AutO/Q,
we will use a specific maximal order R in O.
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The obvious order

S = Z · 1 + Z · e1 + · · ·+ Z · e7

is maximal at all primes except p = 2; equivalently, the trace pairing Tr(xy∗) =
〈x, y〉 on S has discriminant that is a power of 2. Indeed, defining e0 = 1, the
elements ei are pairwise orthogonal and satisfy 〈ei, ei〉 = 2, so the discriminant
of the quadratic lattice S is 28.

We obtain a maximal order R containing S by choosing an index i mod 7
and adjoining the Hurwitz elements in the three evident copies of Hamilton’s
rational quaternions which contain ei. For example, if i = 1, we adjoin to S
the three elements

h1 = (1 + e1 + e2 + e4)/2

h2 = (1 + e1 + e3 + e7)/2

h3 = (1 + e1 + e5 + e6)/2

as well as products among these. This defines an order R containing S with
R/S ' (Z/2Z)4. An additional additive generator is

h4 = (e1 + e2 + e3 + e5)/2

(i.e., R is spanned over Z by S and h1, . . . , h4). This is Coxeter’s Z-order.
For future reference, we note that the element

(5.1) α = (1 + e1 + e2 + · · ·+ e7)/2 = h1 + h2 + h3 − (1 + e1)

lies in R. (It satisfies the quadratic equation α2 − α+ 2 = 0.)
The positive-definite quadratic form N : O → Q restricts to a quadratic

form q : R → Z whose associated symmetric bilinear form is the restriction
to R of 〈x, y〉 = Tr(xy∗). In particular, q(x) = 〈x, x〉/2 for all x ∈ R. Since
the discriminant of the quadratic lattice S is equal to 28 and the index of S
in R is 24, it follows that the trace pairing is unimodular on R, so (R, q) is
non-degenerate over Z.

By unimodularity, R is an octonion algebra over Z with respect to the
restriction q of the norm on O, and it is maximal as a Z-order in O. Thus, by
Theorem B.14, the automorphism scheme G = AutR/Z with R-anisotropic Q-
fiber G = AutO/Q of type G2 is a semisimple Z-group (of type G2). In Example
7.2 we will establish an integral version of Remark 5.2: up to isomorphism, R
is the unique non-split octonion algebra over Z.

Remark 5.3. — Since (R, q) is a positive-definite non-degenerate quadratic
space over Z with rank 8, it must be the E8 root lattice. Likewise, the Z-
submodule R0 of elements of trace zero is a positive-definite quadratic lattice
that is non-degenerate over Z, so it is isomorphic to the E7 root lattice.
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Multiplication in R is trace-associative, so we can define a trilinear form
R3 → Z by

(5.2) (x, y, z) 7→ Tr(x · (y · z)) = Tr((x · y) · z).

This 3-form is alternating on the sublattice R0, so it induces a map ∧3R0 → Z.

For our work with other exceptional types, it is convenient to relate the
Coxeter order R in the definite octonion algebra O over Q and the standard
split octonion algebra Λ over Z that is a maximal order in the split octonion
algebra over Q (as discussed in Appendix B):

Proposition 5.4. — For every prime p, RZp ' ΛZp as octonion algebras
over Zp.

Proof. — By Example B.3, RQp is split as an octonion algebra over Qp. By
Proposition B.11, every maximal order in a split octonion algebra over the
fraction field of a discrete valuation ring is a split octonion algebra over the
valuation ring. Hence, RZp ' ΛZp .

6. The construction of some non-split examples

The following result is derived in [G96, Prop. 1.2] from work of Tits [T2],
and we shall explain how it is a consequence of Lemma 4.7.

Proposition 6.1. — If G is the Q-fiber of a semisimple Z-group then every
finite-dimensional representation of GQ descends to a representation V of G

over Q. Moreover, if V′ is another Q-descent of the same representation over
Q then V′ ' V as G-representations over Q.

If VQ is irreducible and admits an invariant non-degenerate quadratic form
then V admits a G-invariant non-degenerate quadratic form, unique up to
Q×-scaling.

Proof. — We can pass to the simply connected cover of G so that G is simply
connected, and for the existence aspect we may focus our attention on the de-
scent of irreducible representations since any finite-dimensional representation
of a connected semisimple group over a field of characteristic 0 is completely
reducible (as we see via semisimplicity of its Lie algebra).

Let us prove uniqueness of the Q-descent up to isomorphism. The set
HomG(V,V′) of G-equivariant linear homomorphisms is a finite-dimensional
Q-vector space, and its formation commutes with any extension of the ground
field. Viewing it as an affine space over Q, the locus of isomorphisms is Zariski-
open. This open locus contains a Q-point (i.e., VQ ' V′

Q
), so it is non-empty

and hence contains a Q-point. This establishes the desired uniqueness.
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Likewise, a non-degenerate invariant quadratic form is equivalent to a sym-
metric equivariant isomorphism to the dual, so in the absolutely irreducible
case Schur’s Lemma provides the Q-descent for an invariant non-degenerate
quadratic form (upon finding a Q-descent for the representation) and ensures
its uniqueness up to Q×-scaling.

Let G0 be the split Q-form of G. The construction of highest-weight repre-
sentations works for split semisimple Lie algebras over any field of character-
istic 0, so also for split simply connected semisimple groups over any field of
characteristic 0. Thus, any finite-dimensional irreducible representation ρ of
(G0)Q = GQ over Q descends to a representation ρ0 : G0 → GL(V0) over Q.

By Lemma 4.7, there is a 1-cocycle c : Gal(Q/Q)→ G0(Q) that twists G0

into G. Composition of c with ρ0 defines a modified Galois descent datum on
the Q-vector space (V0)Q. Such a descent datum arises from a Q-structure V

on (V0)Q, so ρ descends to a representation G→ GL(V) over Q.

The fact that all representations (V, ρ) of G over Q descend to Q suggests a
method to construct semisimple integral models of G (generally not Q-split, or
equivalently not R-split): for a faithful ρ any lattice M in V defines a Z-model
GL(M) of GL(V), and the Zariski closure of G in GL(M) is a Z-flat affine
finite type Z-group with Q-fiber G. We can try to prove that this Z-group is
semisimple (in particular, Z-smooth with connected fibers).

Example 6.2. — For Cayley’s 8-dimensional Q-algebra O of definite oc-
tonions, the automorphism scheme G = AutO/Q is an R-anisotropic con-
nected semisimple Q-group of type G2 equipped with a faithful representation
G ↪→ GL(O).

Let R be Coxeter’s integral octonions, a lattice in O that is a maximal order.
By Theorem B.14, the automorphism scheme G = AutR/Z is a semisimple Z-
group of type G2, and its generic fiber is G. By construction, the Z-flat G is
a closed subscheme of GL(R). Thus, G is the Zariski closure of G in GL(R)
via the faithful representation of G on O = RQ.

It is hard to analyze Zariski closures, so we will usually build Z-models by a
procedure that yields a closed subgroup scheme of GL(M) having the correct
Q-fiber but not a priori Z-flat. This often turns out to be the Zariski closure,
as follows.

We will find faithful representations G→ GL(V) over Q such that the sub-
group G of GL(V) is defined by the preservation of some low-degree elements
in the tensor algebra on V and its dual. Some examples of this situation
are the standard representations of the classical groups (using determinants,
symplectic forms, and quadratic forms) and the minuscule representations of
the exceptional groups (cf. [DGr]). If these tensors can be defined integrally
on M and are suitably non-degenerate on M/pM for all primes p then it is
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reasonable to try to prove that the closed Z-subgroup scheme G of automor-
phisms of M preserving these integral tensors is a semisimple Z-group (in
which case by Z-flatness G must coincide with the Zariski closure in GL(M)
of GQ = G ⊂ GL(V)).

The case of G2 has already been addressed in Example 6.2. To construct
non-split simply connected semisimple Z-groups of types E6 and F4 in this
way, we will use a lattice M in a representation V of dimension 27 and the
associated lattice End(M) of rank 272 = 729. Verifying that Z-groups built
in this way are smooth with connected reductive fibers is a local problem,
so Proposition 5.4 will reduce the problem to computations with the split
octonion algebra Λ over Z rather than with R. (See [GS, (3.17) in §2.3] for
the use of E6-constructions with the Coxeter order R to build the non-split
semisimple Z-group of type E7 via a 56-dimensional representation. The case
of E8 is discussed in [G96, §6] using a 248-dimensional representation.)

We first treat the case of the unique non-split simply connected Q-group of
type E6 that admits a Z-model; this has R-rank equal to 2 (see [G96, Table
1.3]). The construction rests on the notion of an Albert algebra, so let us recall
the definition.

For a field k with characteristic 6= 2, 3, consider a commutative but not
necessarily associative k-algebra C with multiplication ◦ having a 2-sided
identity e. We say that C is a J-algebra if it is equipped with a non-degenerate
quadratic form q : C → k satisfying three properties: q(e) = 3/2, q(x ◦ x) =
q(x)2 when Bq(x, e) = 0, and Bq(x ◦ y, z) = Bq(x, y ◦ z) for all x, y, z ∈ C.
Such a triple (C, ◦, q) is called reduced if it contains a nontrivial idempotent
(i.e., there exists x ∈ C − {0, e} satisfying x ◦ x = x). The quadratic form q
on C gives rise to a cubic form det ∈ Sym3(C∗) via inspection of the constant
term of an analogue of the Cayley–Hamilton theorem [SV, Prop. 5.1.5]. An
explicit formula for this cubic form is

(6.1) det(x) = Bq(x ◦ x, x)/3− q(x)Bq(x, e) + Bq(x, e)
3/6.

Informally, reduced J-algebras fall into two classes: those that can be con-
structed in a simple way from finite-dimensional non-degenerate quadratic
spaces over k, and those that are built using 3× 3 matrices over composition
algebras over k. (See [SV, Thm. 5.4.5].) Members of the latter class can have
dimension 6, 9, 15, or 27, and are precisely the reduced J-algebras for which
the cubic form det is absolutely irreducible over k [SV, Cor. 5.4.6].

The 27-dimensional examples of this type arise from octonion algebras over k
and are called Albert algebras (or exceptional Jordan algebras). We will focus on
Albert algebras over Q and finite fields. The reason for our interest in Albert
algebras is that automorphisms preserving their associated tensors give rise to
simply connected groups of types E6 and F4 over fields with characteristic not
2 or 3.
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Remark 6.3. — By [SV, 5.3.10], automorphisms of an Albert algebra (i.e.,
linear automorphisms of the underlying vector space preserving the multipli-
cation) preserve the quadratic form q and hence also preserve the cubic form
det. There is a converse: the algebra automorphisms are precisely the linear
automorphisms that preserve the identity e and the cubic form [SV, 5.9.4].

Consider the 27-dimensional Q-vector space V of 3× 3 Hermitian matrices
over O:

(6.2) A =

 a z y∗

z∗ b x
y x∗ c


(The Hermitian condition implies that a, b, c ∈ Q.) This has a commutative
non-associative multiplication defined by A ◦ A′ := (1/2)(AA′ + A′A) (where
AA′ and A′A denote the usual product of octonionic matrices), with 2-sided
identity element e given by the standard matrix identity element. Equipping
V with the non-degenerate quadratic form

Q(A) = Tr(A ◦A)/2 = (1/2)(a2 + b2 + c2) + N(x) + N(y) + N(z),

this satisfies the axioms to be a J-algebra.
For diagonal A,A′ ∈ V, clearly A ◦ A′ is the usual matrix product. Hence,

V contains nontrivial idempotents, so it is a reduced J-algebra. It is in fact
an Albert algebra, denoted H(O; 1, 1, 1) in the notation of [SV, §5.1], and by
[SV, (5.11)] the cubic form is:

(6.3) det(A) = abc+ Tr(xyz)− a ·N(x)− b ·N(y)− c ·N(z).

Example 6.4. — For the space V of matrices as in (6.2), consider the Q-
group G := Aut(V,det)/Q of points of GL(V) preserving the cubic form det
(but not necessarily the identity). This is a connected semisimple group that
is simply connected of type E6, by [SV, 7.3.2]. The same holds for any Albert
algebra over any field of characteristic 6= 2, 3 in place of (V,Q) over Q.

We claim that GR is not split. Note that H := AutO/Q is a Q-subgroup of
G via

(a, b, c, x, y, z) 7→ (a, b, c, h(x), h(y), h(z))

for h ∈ H, and HR is the anisotropic R-form of G2. The maximal compact
subgroups of the group of R-points of a split R-group of type E6 is of type
C4 [Kn, C.4]. Thus, if GR is split then the connected compact subgroup
H(R) of type G2 is contained in a maximal connected compact group of type
C4. In view of the categorical equivalence between the categories of connected
compact Lie groups and R-anisotropic connected reductive R-groups, to show
that GR is not split it suffices to show that the anisotropic R-form of G2 has
no nontrivial R-homomorphism to the anisotropic R-form of Spad

8 . Hence, it
suffices to show that there is no nontrivial C-homomorphism from G2 to Spad

8 .
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Such a map lifts to a nontrivial homomorphism from the simply connected
G2 into the simply connected central cover Sp8. But over C there is only
one nontrivial 8-dimensional representation of G2, and it has no invariant
symplectic form. Hence, GR is not split.

To extend the Q-group G in Example 6.4 to a semisimple Z-group, we
introduce an integral structure on V relative to which the cubic form is integral.
Let M ⊂ V be the lattice of matrices A as in (6.2) for which a, b, c ∈ Z and
x, y, z ∈ R. In an evident manner, MZ[1/6] equipped with the quadratic form
Q|M over Z[1/6] is an “Albert algebra over Z[1/6]” for which the associated
cubic form arises from the integral cubic form det : M → Z obtained by the
restriction of det : V→ Q. Let

(6.4) G = Aut(M,det)/Z

be the closed Z-subgroup of GL(M) defined by preservation of the cubic form.
This is an affine finite type Z-group with Q-fiber G.

Proposition 6.5. — The Z-group G is semisimple (so Z-smooth with con-
nected semisimple fibers) and simply connected of type E6.

Proof. — Since the Q-fiber is known to be a connected semisimple Q-group
that is simply connected of type E6, by the Z-flatness criterion in Lemma
B.13 it suffices to show that GFp is connected reductive for every prime p.
For p 6= 2, 3, M/pM equipped with the quadratic form QFp is an Albert
algebra whose cubic form is detFp . Thus, by [SV, 7.3.2], if p 6= 2, 3 then
GFp = Aut(M/pM,detFp )/Fp

is connected semisimple and simply connected of

type E6 (smoothness is shown in step (e) of the proof of [SV, 7.3.2]). It
follows that GZ[1/6] is a simply connected semisimple Z[1/6]-group of type E6.

The theory of Albert algebras is delicate in characteristics 2 and 3, so we
now give an alternative approach that applies to all primes on an equal footing.
Since RZp ' ΛZp as octonion algebras for all p (Proposition 5.4), our problem
over Z is equivalent to one in which the split octonion algebra Λ replace the
role of R. To be precise, we define a lattice M0 of 3 × 3 Hermitian matrices
over Λ similarly to M over R, and we equip M0 with the integral cubic form δ
that is defined similarly to the formula in (6.3), using the trace and norm on
Λ. The Z-group scheme

(6.5) G0 = Aut(M0,δ)/Z

becomes isomorphic to G over Zp for every p, so our task is equivalent to
the assertion that G0 is reductive over Z (necessarily simply connected and
semisimple of type E6, in view of our knowledge of the geometric fiber in
characteristic 0). We will prove that G0 is the simply connected Chevalley
group of type E6.
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The data (M0, δ, e) that underlies the definition of G0 is a pointed finite free
module of rank 27 equipped with a cubic form. This is the Freudenthal model
for exceptional Jordan algebras. We will work with the Tits model: the triple
(M0, δ, e) where M0 := Mat3(Z)⊕3,

(6.6) δ(u, v, w) := det(u) + det(v) + det(w)− Tr(uvw)

for u, v, w ∈ Mat3, and e := (1, 0, 0). A Z-linear isomorphism M0 ' M0

carrying (δ, e) to (δ, e) is given in [GY05, §2], so G0 is thereby identified with
the closed Z-subgroup of G 0 ⊂ GL(M0) = GL27 defined by preservation of δ.
(This closed Z-subgroup is denoted H in [GY05, §3].) The proof that the
affine finite type Z-group G 0 is semisimple is technical, so we refer the reader
to Appendix C for the details (where a maximal Z-torus is also given).

A refinement of the preceding construction will yield groups of type F4.
The motivation comes from the theory of Albert algebras: over any field not
of characteristic 2 or 3, the automorphism scheme of an Albert algebra (i.e.,
the scheme classifying linear automorphisms that preserve the multiplicative
structure, without any assumption concerning preservation of the quadratic
form) is connected semisimple of type F4 [SV, 7.2.1]. The smoothness of this
automorphism scheme implies (by consideration of its field-valued points and
Remark 6.3) that the automorphism scheme preserves the quadratic and cubic
forms associated to the Albert algebra.

As a particular case, the automorphism scheme Aut(V,◦)/Q of the multi-
plicative structure on the Albert algebra (V, ◦,Q) is a connected semisimple
Q-group of type F4. To construct different forms of F4 inside a common
form of E6, we will use varying Albert algebra structures (◦′,Q′) on the same
27-dimensional vector space such that the associated cubic forms as in (6.1)
coincide.

There is an alternative description of the Q-group Aut(V,◦)/Q that is more
convenient for the construction of Q-forms of F4 admitting an integral model.
The key point is that over any field of characteristic not 2 or 3, the automor-
phisms of the multiplicative structure of an Albert algebra coincide with the
linear automorphisms of its underlying vector space that preserve both the
cubic form and the identity element [SV, 5.9.4]. This leads us to consider the
closed Q-subgroup scheme Aut(V,det,e)/Q ⊂ GL(V) defined by preservation of
the cubic form det and the identity e. This is the e-stabilizer under the action
on {det = 1} by the group G := Aut(V,det)/Q.

The closed subgroup schemes Aut(V,det,e)/Q and Aut(V,◦)/Q inside GL(V)
are both smooth (due to being Q-subgroups, so Cartier’s theorem applies)
and they have the same geometric points, so they coincide. In particular,
Aut(V,det,e)/Q is connected semisimple of type F4. The triple (V, det, e) has
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a natural integral structure (M,det, e), whereas the Albert algebra structure
(◦,Q) is harder to work with integrally beyond Z[1/6].

We will be interested in studying the automorphism scheme of (M,det, e),
as well as of (M, det,E) for any E ∈ M satisfying det(M) = 1. To explain
the motivation for introducing varying E, we recall that there is a general
construction (described in [SV, 5.9.2]) which takes as input an Albert algebra
and an arbitrary element e′ of the underlying vector space at which the
cubic form has value 1 and produces a new quadratic form qe′ and a new
multiplication law ◦e′ constituting a new Albert algebra structure on the same
underlying vector space such that the identity element for ◦e′ is e′ and the cubic
form built from qe′ and ◦e′ as in (6.1) coincides with the initial one. Hence,
for any e′ ∈ V satisfying det(e′) = 1, the e′-stabilizer Aut(V,det,e′)/Q ⊂ GL(V)
equals Aut(V,◦e′ )/Q and hence is also a Q-form of F4.

The Z-group scheme G := Aut(M,det)/Z is a (semisimple) Z-model of G
by Proposition 6.5, and non-split semisimple Z-groups of type F4 will be
constructed as stabilizer schemes

HE := Aut(M,det,E)/Z = StabG (E) ⊂ G ⊂ GL(M)

for varying E ∈ M such that det(E) = 1. Informally, HE is the automorphism
scheme of an Albert algebra structure on M with identity E, but we have not
defined a notion of Albert algebra when 6 is not a unit in the base ring. (See
[GY05, §2–§3] for a discussion of quadratic Jordan algebras over Z.)

Proposition 6.6. — For E ∈ M ∩ {det = 1}, the Z-group HE is semisimple
of type F4.

Proof. — As in the proof of Proposition 6.5, it suffices to check that for all
primes p, (HE)Fp is connected reductive with dimension independent of p
(namely, 52). Using the isomorphism RZp ' ΛZp , we may reduce to working
with ΛZp in the role of RZp for some E0,p ∈ (M0)Zp that might not arise from
M0. By working over algebraically closed fields k of positive characterstic,
our problem can be expressed in terms Λk, (M0)k, and some E0,k ∈ (M0)k on
which the cubic form δ has value equal to 1.

For G0 as in (6.5), the action of G0(k) on the hypersurface {δ = 1} ⊂ (M0)k is
transitive. (Such transitivity is proved for G0(Z) acting on the locus {δ = 1}
inside M0 as the main result in [Kru], and the proof via row and column
operations carries over with Z replaced by any field.) Thus, as E0,k varies
inside (M0)k with δ(E0,k) = 1, the stabilizer schemes HE0,k

are conjugate
inside (G0)k, so it suffices to work with E0,k arising from a single choice of
E0 ∈ M0 for which δ(E0) = 1. We choose E0 corresponding to the identity
matrix.
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Switching from the Freudenthal model to the Tits model (as in the proof
of Proposition 6.5), we shall work with E0 = (1, 0, 0) ∈ M0 and its scheme-
theoretic stabilizer

H E0
⊂ G 0 ⊂ GL(M0).

The cotangent space at E0 to the Z-flat hypersurface {δ = 1} in the affine
space of M0 is the quotient of M∗0 modulo the span of an explicit Z-linear
form. By computation (see [Yu]), this is a saturated Z-submodule, so the
Z-flat {δ = 1} is Z-smooth near E0 and hence is Z-smooth everywhere due to
the fiberwise transitive action by G 0.

By computation (see [Yu]), the surjective E0-orbit map G 0 → {δ = 1}
between smooth Z-schemes is surjective between tangent spaces over Z at
the identity and E0, so the stabilizer scheme H E0

is Z-smooth with relative

dimension 78−26 = 52. The generic fiber of H E0
is connected semisimple (by

the relation with automorphism schemes of Albert algebras, using ΛQ in place
of O), so by [Co2, Prop. 3.1.12] the fibers of H E0

→ Spec(Z) are connected
provided that their identity components are reductive. Hence, it suffices to
show that (H E0

)0
Fp

is reductive for all p (so unlike the arguments for type E6

in Appendix C, for the F4-cases we do not have to directly prove connectedness
of fibers in positive characteristic).

As in [GY05, §3], an explicit Z-subgroup

(6.7) (SL3)2/µ′ ↪→H E0
⊂ G 0

(with µ′ the diagonally embedded µ3) is defined by pre-composing the closed
Z-subgroup inclusion (C.1) with (g1, g2) 7→ (g1, g2, g2). The image under (6.7)
of the direct product of the diagonal tori in the SL3’s is a closed split Z-
subtorus S ⊂ H E0

of rank 4, so its Q-fiber is a split maximal Q-torus in

(H E0
)Q.

The geometric connectedness of the Q-fiber of H E0
implies that of the Fp-

fibers for all but finitely many p, so the union of the fibral identity components
of H E0

is an open Z-subgroup scheme H 0
E0

; this is Z-smooth but possibly
not affine.

Let h = Lie(H E0
) = Lie(H 0

E0
), and let Ψ be the root system for (H E0

)Q
with respect to S Q. Let I′ be the union of the bases of the root systems for the
SL3’s in (6.7) relative to their diagonal tori and upper unipotent subgroups.
The set I′ lies in a unique positive system of roots Ψ+ ⊂ Ψ, and consists of the
non-central vertices of the extended Dynkin diagram for the F4 root system Ψ
(with respect to Ψ+). The central vertex of the extended diagram is the long
simple positive root a0 that is adjacent to a short simple positive root.

A computation (see [Yu]) shows that for Z-basis elements X± of h±a0 ⊂
gl(M0),

[X+,X−] = ±Lie(a∨0 (∂t|t=1)),
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an element of Lie(S ) that is part of a Z-basis since no coroots are divisible in
the dual of the root lattice for type F4. Hence, [ha0 , h−a0 ] is a saturated Z-line
in h, so we can argue as in the proof of Theorem C.2 (especially applying
Lemma C.1 to (H 0

E0
,S )) to conclude that (H E0

)0
Fp

is semisimple of type F4

for every p.

Example 6.7. — Consider the semisimple Z-groups HE of type F4 for the
following E ∈ M satisfying det(E) = 1:0 0 1

0 −1 0
1 0 0

 ,

1 0 0
0 1 0
0 0 1

 ,

 2 α −1
α∗ 2 α
−1 α∗ 2


where α is defined in (5.1) and α2 − α+ 2 = 0.

To determine the R-rank for each of these, recall that the possible R-ranks
for type F4 are 0, 1, and 4. Since HE is contained in the Z-group G in (6.4)
whose Q-fiber G has R-rank 2, the R-rank of HE is either 0 or 1. The case
of rank 0 (i.e., compact group of R-points) occurs precisely when E is in the
cone of matrices that are positive-definite (in the sense that diagonal entries
are positive and 2×2 Hermitian minors obtained by removing the ith row and
column for i = 1, 2, 3 have evident “determinant” in R that is positive).

Consequently, among the above three matrices, the stabilizer of the first
gives a Z-model for a Q-form of F4 with R-rank 1 whereas the stabilizers of
the other two are R-anistotropic semisimple Z-groups of type F4. In particular,
these latter two examples have isomorphic Q-fibers. We will revisit these R-
anisotropic cases in Example 7.4.

7. Counting the integral models

Now we prove that the models of the simply connected groups of types G2,
F4, and E6 constructed in §6 exhaust the possible non-split forms of these
groups over Z.

First consider the case of E6, for which the only non-split simply connected
R-form that arises from a simply connected semisimple Z-form is the one with
R-rank 2. This R-form arises from the simply connected semisimple Z-group
G in (6.4), and we claim that G is the only such Z-group, up to isomorphism.
In view of the R-isotropicity, such uniqueness over Z can be deduced from the
theorem of strong approximation [PR, §7.4, Thm. 7.12] by a simpler version
of the arguments in Appendix A for indefinite spin groups. (The key input
needed over R is that the simply connected R-form G of E6 with R-rank 2
admits an automorphism not arising from Gad(R). This can be built using
“conjugate-transpose” on matrices A as in (6.2).) The uniqueness in the non-
split R-isotropic F4-case (with R-rank 1) goes in exactly the same way, and is
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even easier since the outer automorphism group for F4 is trivial (and similarly
one sees that the non-split R-isotropic cases E7 and E8 cases, which must have
respective R-ranks 3 and 4, are unique over Z).

In the other cases, the only non-split R-form that occurs is the R-anisotropic
one, for which there is a uniquely determined possibility for the generic fiber
G over Q (see Proposition 4.10). The types that arise are listed in Table
1; for types B and D this uses that there exists a rank-n definite quadratic
lattice that is non-degenerate over Z if and only if n ≡ 0,±1 mod 8. The only
types that arise for which OutG/Q 6= 1 are D4m. Our task is to enumerate the
semisimple Z-groups with Q-fiber isomorphic to a given G, and to do this we
will use the mass formula

(7.1)
∑ 1

#Gi(Z)
=

∏ 1

2
ζ(1− dj)

as stated in [G96, (5.1)].

Remark 7.1. — Let us explain the meaning of the terms on the two sides of
(7.1). The sum on the left in (7.1) is taken over the elements of the finite set

G(Q)\G(Q⊗Z Ẑ)/G (Ẑ)

where G is a choice of Z-model of G. A representative gi of a double coset

yields a Z-model Gi with Gi(Z) = G(Q) ∩ giG (Ẑ)g−1
i the corresponding finite

group (see [G99, Prop. 1.4]).
If OutG/Q = 1 (i.e., G is not of type D4m) then these integral models are

pairwise non-isomorphic as Z-groups and exhaust the set of semisimple Z-
groups with generic fiber isomorphic to G [G99, Prop. 2.1, 2.3]. For G of
type D4m, the collection remains exhaustive but there is a repetition of the
isomorphism class of the Z-group Spin(q) associated to the even unimodular
lattice (M, q) of rank 8m precisely when O(q)(Z) = SO(q)(Z), in which case
this isomorphism class occurs twice [G99, Prop. 2.5]. (The discussion of the
left side of (7.1) in [G96] has some errors.)

The product on the right side of (7.1) is taken over the degrees dj of the
invariant polynomials for the Weyl group of a maximal torus in G acting on its
reflection representation. For the R-anisotropic absolutely simple semisimple
Q-groups admitting Z-models, these degrees are given in Table 1. (For type
D4m, the final degree invariant is a repetition of 4m.)

Note that these degrees are all even, so the values ζ(1 − dj) of the Rie-
mann zeta function are non-zero rational numbers. Explicitly, ζ(1 − 2n) =
(−1)n|Bn|/2n, where B2n is the 2nth Bernoulli number. Since the sum of the
degrees is divisible by 4 in all cases, the product of zeta values is a positive
rational number.
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Type degrees

B4m−1 2, 4, 6, . . . , 8m− 2
B4m 2, 4, 6, . . . 8m
D4m 2, 4, 6, . . . , 8m− 2, 4m
G2 2, 6
F4 2, 6, 8, 12
E8 2, 8, 12, 14, 18, 20, 24, 30

Table 1.

The degrees of the invariant polynomials appear due to their relationship to
the orders of the finite groups G (Fp). For all primes p, the Zp-split property for
GZp implies that GFp is a split connected semisimple Fp-group that is simply
connected and simple, so

#G (Fp) = pN
∏

(pdj − 1).

where N is the number of positive roots. For example, when G = AutR/Z is
the R-anisotropic semisimple Z-group of type G2, we have

#G (Fp) = p6(p6 − 1)(p2 − 1).

Taking p = 2, we find that #G (F2) = 26337.

Example 7.2. — For G2 we have identified an R-anisotropic Z-model, the
automorphism scheme G := AutR/Z of Coxeter’s order R in the octonions
O. We know that the finite group G (Z) = Aut(R) injects into G (Fp) for
all sufficiently large p (since GLn(Zp) → GLn(Fp) has torsion-free kernel
for p sufficiently large, depending on n), so its order divides #G (Fp) =
p6(p6 − 1)(p2 − 1) for all sufficiently large p.

The gcd of these orders over all p > m for any m > 0 is easily checked to
be 26337. Hence, #G (Z) divides 26337 = 12096, so

1

#G (Z)
6

1

2
ζ(−1)× 1

2
ζ(−5) =

1

26337
6

1

#G (Z)
,

forcing equality throughout. In particular, there is a single term in the
mass formula, so G is the unique semisimple Z-group of type G2 that is R-
anisotropic. To be more precise, G is the unique non-Chevalley semisimple
Z-group of type G2, since (by Proposition 1.3 and Remark 5.2) the Q-fiber
of any such Z-group must be the R-anisotropic Q-group AutO/Q. It follows
from Corollary B.15 that R is the unique non-split octonion algebra over Z.

The group G (Z) = Aut(R) is identified in [ATLAS, p. 14] as an extension
of Z/2Z by the simple commutator subgroup of G2(F2), where the Z/2Z
quotient is represented by a non-central element of order 2 in Aut(R). I do
not know what methods were used to make this identification of finite groups;
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by using it, the reduction map f : Aut(R) = G (Z)→ G (F2) = G2(F2) can be
shown to be an isomorphism as follows.

The kernel of f is a normal subgroup whose order is a power of 2 (since the
kernel of reduction GLn(Zp) → GLn(Fp) is pro-p), but the above description
of Aut(R) in [ATLAS] implies that Aut(R) has no nontrivial normal 2-
subgroup, so ker f = 1. The description also implies that Aut(R) and G2(F2)
have the same size, since the commutator subgroup of G2(F2) has index 2, so
f is surjective as well.

Example 7.3. — Consider the simply connected semisimple Z-group G :=
Spin(E8) of type D4. The order of the finite group G (Z) divides #G (Fp) for
all sufficiently large primes p. The order of G (Fp) is equal to

p12(p2 − 1)(p4 − 1)2(p6 − 1)

for all primes p since the degrees of the invariants for the Weyl group are 2, 4,
4, and 6. The gcd of these sizes over all p > m for any m > 0 is easily checked
to be 21435527, so #G (Z) divides 21435527.

But
1

2
ζ(−1)× 1

2
ζ(−3)× 1

2
ζ(−3)× 1

2
ζ(−5) =

1

21435527
,

so exactly as in the previous example we conclude that there is a single term
in the mass formula, as we also saw in Remark 4.11 (using the classical mass
formula for positive-definite even unimodular lattices). By Remark 7.1, it also
follows that O(E8)(Z) = SO(E8)(Z).

The finite group G (Z) is identified in [ATLAS, p. 85] as a finite group of
the form 22.O+

8 (2). Here and below we use the notation of [ATLAS] for work

with finite groups, so O+
n (q) denotes the image of Spinn(Fq) in SOad

n (Fq) and
H.J denotes an extension of the group J by the group H (with the extension
structure of unknown nature).

Let (M, q) be the positive-definite quadratic space with disc(q) = 1 for which
(M,Bq) is the even unimodular E8 root lattice. The group G ∗ = O(q) is an R-
anisotropic Z-form of O8. The finite group G ∗(Z) coincides with W(E8) inside
GL(M), and by [Bou, VI, Exer. 4.1] its quotient by 〈−1〉 maps isomorphically
onto the group O(q)(F2) = O8(F2) that is an extension of Z/2Z by O+

8 (2), so
it has the same order as G (Z).

Example 7.4. — The case of F4 is more interesting. We consider the unique
Q-form G that is R-anisotropic and admits a Z-model. The invariants for the
Weyl group have degrees 2, 6, 8 and 12 and we find the mass is equal to

1

2
ζ(−1)× 1

2
ζ(−5)× 1

2
ζ(−7)× 1

2
ζ(−11) =

691

21536527213
.

Since this is not the reciprocal of an integer, there must be more than one
semisimple Z-group with Q-fiber isomorphic to G. By Proposition 6.6 and
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the remarks in Example 6.7, the Hermitian 3× 3 determinant-1 matrices over
R given by

I =

1 0 0
0 1 0
0 0 1

 , E =

 2 α −1
α∗ 2 α
−1 α∗ 2


yield respective simply connected semisimple Z-groups HI and HE of type
F4 as closed Z-subgroups of the unique non-split simply connected semisimple
Z-group of type E6 (given in (6.4)).

The integral points of these groups are identified on [ATLAS, pp. 85, 89]
if one accepts that the group schemes HE as considered in Proposition 6.6
coincide with automorphism schemes for certain quadratic Jordan algebras
over Z. Assuming that this identification is correct, we obtain isomorphisms
HI(Z) = 22.O+

8 (2).S3 and HE(Z) = 3D4(2).3 respectively. These two finite
groups have orders 21536527 and 212357213 respectively. Since

691

21536527213
=

1

21536527
+

1

212357213
,

HI and HE are the only R-anisotropic semisimple Z-groups of type F4 (grant-
ing that we have correctly identified the groups HI(Z) and HE(Z))! For more
details on HE and its relation with the Leech lattice, see [EG96].

The mass for the integral models of G becomes large as the degrees of
the invariant polynomials for the Weyl group increase. Indeed, for even
d the rational number 1

2ζ(1 − d) is equal to ζ(d)(d − 1)!/(2πi)d, which is

approximately (d−1)!/(2πi)d when d > 4. For G of type E8 the corresponding
product of the values 1

2ζ(1 − dj) is approximately 13934.49. Hence there are
at least 13935 pairwise non-isomorphic R-anisotropic semisimple Z-groups of
type E8 that have Q-fiber equal to G (by Proposition 4.10). Inside the adjoint
representation Lie(G) of G over Q, each Z-model G of G determines a positive-
definite quadratic lattice Lie(G ) ⊂ Lie(G) of rank 248 using the Z-valued
quadratic form q : X 7→ (−1/120)Tr(ad(X)2), and this lattice is equipped with
a G -invariant alternating 3-form ∧3(Lie(G ))→ Z defined by

X ∧Y ∧ Z 7→ Bq([X,Y],Z) = (−1/60)Tr(ad([X,Y])ad(Z))

= (1/60)(Tr(ad(Y)ad(X)ad(Z))

−Tr(ad(X)ad(Y)ad(Z))).

Probably most models G satisfy G (Z) = 1. If these groups generally are
trivial then it would be interesting to determine the others. Some examples
are constructed in [G96, §6].
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Appendix A

Indefinite quadratic lattices via group schemes

In this appendix, we use the cohomological formalism from §3 to prove a
classical fact in the theory of quadratic forms over Z:

Theorem A.1. — An indefinite quadratic lattice (M, q) non-degenerate over
Z is determined up to isomorphism by its signature.

The hypothesis of non-degeneracy over Z, or equivalently |disc(q)| ∈ {1, 2},
is essential. Setting aside the peculiar case of rank-2 quadratic lattices (M, q),
for which SO(q)Q is a torus rather than semisimple, in the case of ternary
quadratic lattices (i.e., rank 3) the size of the genus of (M, q) can be an
arbitrarily large power of 2 in the indefinite case as |disc(q)| grows. See [Ear]
for a discussion of this issue, as well as examples.

Proof. — The indefiniteness implies that the rank n is at least 2. For rank 2,
necessarily q ' q2. Indeed, (M, q) is a form of (Z2, q2) for the étale topology
since O2 is smooth, so the Isom-scheme I = Isom(q2, q) is a right torsor for
the Z-group scheme O2 that is an extension of Z/2Z by SO2 = Gm. Hence, it
suffices to show that H1(Z,O2) = 1, which in turn reduces to the vanishing of
H1(Z,Z/2Z) and H1(Z,Gm). The vanishing of H1(Z,Z/2Z) is a consequence
of Proposition 3.9 because π1(Spec(Z)) = 1, and the vanishing of H1(Z,Gm)
expresses the fact that the Dedekind domain Z has trivial class group. Thus,
we may and do focus on the case where n > 3, so SO(q) is a semisimple
Z-group scheme.

The signature determines the sign of the discriminant, and the parity of the
rank determines if |disc(q)| equals 1 or 2 (using the non-degeneracy hypothesis
over Z). Hence, if (M′, q′) is another such quadratic lattice with the same
signature then its discriminant coincides with that of (M, q). Consider the
Isom-scheme I = Isom(q, q′) over Z. This is an fppf right O(q)-torsor over Z.

Lemma A.2. — The class of I in H1(Z,O(q)) arises from H1(Z, SO(q)).

Proof. — If n is even then O(q)/SO(q) = Z/2Z, and H1(Z,Z/2Z) = 0, so the
case of even n is settled. Assume instead that n is odd, so O(q)/SO(q) = µ2. It
suffices to show that the map H1(Z,O(q))→ H1(Z, µ2) kills the class of I. By
fppf Kummer theory (reviewed in the proof of Lemma A.4 below), H1(Z, µ2) =
Z×/(Z×)2. The image in here of the class of I is disc(q)/disc(q′) = 1.

By Lemma A.2, there is an SO(q)-torsor I′ over Z whose class [I′] is carried
to that of I under the map

H1(Z,SO(q))→ H1(Z,O(q)).
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For every prime p we have H1(Zp,SO(q)) = 1 (Proposition 3.10), so I′Zp
is a

trivial torsor over Zp and hence so is IZp . In other words, for every p we have
I(Zp) 6= ∅, so q′Zp

' qZp . The signatures of q′ and q agree by hypothesis, so

q′Q ' qQ by the Hasse–Minkowski theorem. We want to deduce that q′ ' q
over Z.

Necessarily I′(R) is non-empty. Indeed, it suffices to check that the map
H1(R, SO(q)) → H1(R,O(q)) has trivial kernel. Such triviality amounts to
the surjectivity of the natural map O(q)(R)→ (O(q)/SO(q))(R) = {±1} (via
determinant), which is verified by inspection of a diagonal form for qR.

We shall lift the cohomology class [I′] to a class [̃I] ∈ H1(Z, Spin(q)) such

that Ĩ(R) is non-empty. This property is deeper than the lifting of [I] to [I′],
since the existence of an R-point in a lifted Spin(q)-torsor over Z will not be
automatic.

Consider the central extension of fppf affine Z-groups

(A.1) 1→ µ2 → Spin(q)→ SO(q)→ 1.

We aim to prove that H1(Z,Spin(q)) → H1(Z, SO(q)) is surjective, and to
understand its fibers (so as to control R-points). To clarify the cohomological
methods to be used, it is better to first consider a generalization of (A.1). Let

(A.2) 1→ C→ G
f→ G′ → 1

be a central extension of fppf affine group schemes over a scheme S. Using
fppf cohomology, there is a natural action of H1(S,C) on H1(S,G) arising
from the translation action on G by its central subgroup C. The description
of H1(f) via pushout of torsors along f (carrying the isomorphism class of a
right G-torsor E to the isomorphism class of E×G G′) makes it clear that the
H1(S,C)-action leaves H1(f) invariant, so each non-empty fiber of H1(f) is a
union of H1(S,C)-orbits.

Lemma A.3. — The action of H1(S,C) on each non-empty fiber of H1(f) is
transitive.

Proof. — Over the distinguished point in H1(S,G), such transitivity expresses
the exactness of the diagram of pointed sets

H1(S,C) // H1(S,G)
H1(f) // H1(S,G′)

associated to (A.2); see [Co1, Prop. B.3.2] for a proof of such exactness
(written over fields, but in a manner that works over any scheme).

Now consider a general right G-torsor E, and the fiber of H1(f) through the
class [E] of E. Let E′ = E×G G′ be the associated right G′-torsor obtained by
pushout. Since C is central in G, we have E′ = E/C, and EG := AutG(E) is
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an fppf form of G that naturally contains C with quotient E′G′ := AutG′(E′).
Denote the quotient map EG→ E′G′ as Ef .

The technique of “twisting by fppf torsors” (explained in [Co1, §B.3.2] over
fields, but in a style that works over any scheme) defines a natural H1(S,C)-
equivariant bijection tE : H1(S,G) ' H1(S, EG) carrying [E] to the distin-
guished point. (This corresponds to translation by −[E] in the commutative
case.) We likewise have tE′ , and it is easy to check that the diagram

H1(S,G)

tE
��

H1(f) // H1(S,G′)

tE′
��

H1(S, EG)
H1(Ef)// H1(S, E′G′)

commutes. Thus, the transitivity of the H1(S,C)-action on the fiber through
the class of E is a consequence of the exactness of H1(S,C) → H1(S, EG) →
H1(S, EG′).

There is also an exact sequence of pointed sets

H1(S,G)→ H1(S,G′)
δ→ H2(S,C)

with right term that is an instance of derived functor cohomology on abelian
fppf sheaves. (If G or G′ are S-smooth then their H1’s can be computed using
the étale topology as well, but when C is not S-smooth then Čech-theoretic
methods are insufficient to construct δ.) The key to constructing δ with the
desired exactness properties is that the derived functor H2 on abelian sheaves
has an interpretation in terms of gerbes (analogous to the interpretation of H1

via torsors); see [Co1, Prop. B.3.3] for a self-contained discussion of this issue
(written over fields, but in a manner that works verbatim over any scheme).

We conclude that if H2(S,C) = 0 then H1(S,G) → H1(S,G′) is sur-
jective with fibers that are the H1(S,C)-orbits. Hence, H1(Z,Spin(q)) →
H1(Z, SO(q)) is surjective with fibers that are the H1(Z, µ2)-orbits provided
that H2(Z, µ2) = 1. This vanishing is a special case of:

Lemma A.4. — For any integer d > 0, H2(Z, µd) = 1.

Proof. — The d-power Kummer sequence 1 → µd → Gm
td→ Gm → 1 is

exact for the fppf topology, so the general equality Picfppf(S) = Pic(S) for
any scheme (by fppf descent theory) and the vanishing of Pic(Z) imply that
H2(Z, µd) is identified with the d-torsion subgroup of the fppf cohomology
group H2(Z,Gm). It is a theorem of Grothendieck [BrIII, 11.7(1)] that for
any scheme S and integer i, the natural map Hi(Sét,G) → Hi(Sfppf ,G) is
bijective for any commutative smooth affine S-group G. By applying this with
S = Spec(Z) and G = Gm, we are reduced to proving the vanishing of the étale
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cohomology group H2(Z,Gm). Such vanishing is a consequence of calculations
with class field theory [Mil, III, Ex. 2.22(f)].

By inspection, H1(Z, µ2) → H1(R, µ2) is an isomorphism. Thus, H1(Z, µ2)
acts transitively on fibers for H1(R, Spin(q))→ H1(R, SO(q)). We know that
[I] lifts to a class [I′] ∈ H1(Z,SO(q)), and that [I′R] = 1. Hence, the fiber
over [I′R] = 1 in H1(R,Spin(q)) contains the trivial class. By using H1(Z, µ2)-

translations, we conclude that there is a right Spin(q)-torsor Ĩ over Z lying

over I′ (hence over I) such that Ĩ(R) is non-empty.
In the language of torsor pushouts,

I = Ĩ×Spin(q) O(q).

Thus, if Ĩ(Z) 6= ∅ then I(Z) 6= ∅, as desired. Since Ĩ(R) is non-empty,

Ĩ(Q) is non-empty because the natural map H1(Q,Spin(q))→ H1(R, Spin(q))
is injective: this injectivity is a consequence of the Hasse principle for sim-
ply connected semisimple Q-groups [PR, §6.1, Thm. 6.6] and the vanishing
theorem of Kneser–Bruhat–Tits for degree-1 cohomology of simply connected
semisimple groups over non-archimedean local fields ([PR, §6.1, Thm. 6.4],
[BT, Thm. 4.7(ii)]).

Now we combine the existence of a Q-point on Ĩ with strong approximation

(for indefinite spin groups) to find a Z-point on Ĩ. The indefiniteness hypoth-
esis on the signature implies that Spin(q)R is R-isotropic (since its central
isogenous quotient SO(qR) is certainly isotropic). Thus, exactly as in the
proof of Proposition 2.13, Spin(q)(Q) is dense in the space Spin(q)(A∞) of

points valued in the ring A∞ = Q ⊗Z Ẑ of finite adeles. But ĨQ ' Spin(q)Q
as affine Q-schemes of finite type since Ĩ(Q) is non-empty, so Ĩ(Q) is dense

in Ĩ(A∞). Using the Z-structure Ĩ on the Q-scheme ĨQ, we obtain the open

subset Ĩ(Ẑ) ⊂ Ĩ(A∞). This open set is equal to
∏
p Ĩ(Zp), and it is non-empty

because H1(Zp,Spin(q)) = 1 for every p (Proposition 3.10). The non-empty

intersection of the non-empty open set Ĩ(Ẑ) and the dense subset Ĩ(Q) is Ĩ(Z),
so we are done.

Appendix B

Octonion algebras over rings

An octonion algebra over a commutative ring R is a finite locally free R-
module A of rank 8 equipped with a quadratic form ν : A → R (called
the norm) and a possibly non-associative R-algebra structure admitting a
2-sided identity e such that (A, ν) is a non-degenerate quadratic space and
ν(xy) = ν(x)ν(y) for all x, y ∈ A.
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The element ν(e) ∈ R is idempotent, so Zariski-locally on Spec(R) it is
equal to 0 or 1, and it satisfies ν(x) = ν(x)ν(e) for all x ∈ A, so ν(e) = 1 since
ν is non-degenerate. Since R → A via r 7→ re is injective, we often write r
rather than re when viewing R inside A.

We define

〈·, ·〉 := Bν

to be the symmetric bilinear form associated to the norm form, and define the
conjugation

x∗ := 〈x, e〉 − x,
so e∗ = e and x∗∗ = x. The R-linear map T : A→ R defined by 〈·, e〉 is called
the trace. For all x ∈ A, clearly x+ x∗ = T(x) and

ν(x∗) = ν(T(x)e− x) = T(x)2ν(e)− 〈T(x)e, x〉+ ν(x)

= T(x)2 − T(x)〈e, x〉+ ν(x)

= ν(x).

Since A has even rank, non-degeneracy of the quadratic space (A, ν) implies
that 〈·, ·〉 is perfect. Using this, there are a number of basic identities whose
proofs over fields in [SV, §1.2–1.4] work verbatim over any commutative base
ring. In particular, as in [SV, §1.2–1.3],

(B.1) x2 − T(x)x+ ν(x) = 0

and xx∗ = ν(x) = x∗x for all x ∈ A, (xy)∗ = y∗x∗ for all x, y ∈ A, and

〈xy, z〉 = 〈y, x∗z〉, 〈x, yz〉 = 〈xz∗, y〉

for all x, y, z ∈ A. Setting y = e in this final identity, we get

〈x, y〉 = T(xy∗)

for all x, y ∈ A. Note that by the quadratic relation (B.1), for any x ∈ A the
R-subalgebra of A generated by x is commutative and associative.

The general identities (as in [SV, Lemma 1.3.3])

(B.2) x(x∗y) = ν(x)y = (yx)x∗

imply

〈xy, xz〉 = 〈y, x∗(xz)〉 = 〈y, ν(x)z〉 = ν(x)〈y, z〉
and likewise 〈xz, yz〉 = ν(z)〈x, y〉 for any x, y, z ∈ A, so (upon subtituting
z + w for z in this final identity) for any x, y, z, w ∈ A we have

(B.3) 〈xz, yw〉+ 〈xw, yz〉 = 〈x, y〉〈z, w〉.

One proves exactly as over fields in [SV, §1.4] the Moufang identities

(xy)(zx) = x((yz)x), x(y(xz)) = (x(yx))z, y(x(zx)) = ((yx)z)x
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and their consequences:

(B.4) x(xy) = x2y, (xy)y = xy2

and the alternating property of the trilinear associator

[x, y, z] = (xy)z − x(yz).

Note also that multiplication is trace-associative in the sense that T((xy)z) =
T(x(yz)):

T((xy)z) = 〈xy, z∗〉 = 〈x, z∗y∗〉 = 〈x, (yz)∗〉 = T(x(yz)).

The identity (B.1) says that A is a degree-2 algebra in the sense of [McC,
(0.6), (0.7)]. Since e is part of a basis of A Zariski-locally on Spec(R), the pair
(T, ν) consisting of a linear form T : A→ R and a quadratic form ν : A→ R
satisfying (B.1) for all x ∈ A is unique, by [McC, Prop. 2.2, Prop. 2.3(vi)].
This implies:

Proposition B.1. — Every R-algebra automorphism of (A, e) preserves ν,
and hence preserves T and the conjugation.

On Mat2(R), we have the standard involution x 7→ x∗ defined by conjugation
of the transpose against the standard Weyl element ( 0 1

−1 0 ). This is used in:

Definition B.2. — The split octonion R-algebra is the R-module ΛR :=
Mat2(R)⊕Mat2(R) equipped with the multiplication law

(x, y)(z, w) = (xz + wy∗, x∗w + zy)

and the norm form ν(x, y) = det(x)− det(y).

It is straightforward to check (using that xx∗ = det(x) on Mat2(R) and
x∗ = −x on sl2(R)) that ΛR is an octonion algebra with identity (1, 0),
trace (x, y) 7→ Tr(x) (usual matrix trace), conjugation (x, y)∗ = (x∗,−y), and
underlying quadratic space isomorphic to the standard split quadratic space
(R8, q8) of rank 8. Over a field, up to isomorphism the split octonion algebra
is the only one whose norm admits isotropic vectors (i.e., a ∈ A − {0} such
that N(a) = 0) [SV, 1.8.1].

Example B.3. — Let K be a non-archimedean local field. Every non-
degenerate quadratic space over K with dimension > 5 admits an isotropic
vector, so any octonion algebra over K is isomorphic to ΛK.

Definition B.4. — A pair of elements x, y in an octonion algebra (A, ν) over
R are inverse to each other if the R-linear left and right multiplication maps
`x, `y, rx, ry are invertible and satisfy `x = `−1

y and rx = r−1
y , and x ∈ A is

a unit if x admits a (necessarily unique) inverse. If R is a field then A is an
octonion division algebra if every nonzero element of A is a unit.
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By (B.2), an element x ∈ A is a unit if and only if ν(a) ∈ R×, in which
case ν(a)−1a∗ is the inverse of a. Thus, an octonion algebra over a field k
is a division algebra precisely when the norm is k-anisotropic (e.g., positive-
definite when k = Q,R). The units of an octonion algebra do not form a
group under multiplication because multiplication is non-associative.

The main result of this appendix is the following theorem over rings that
relativizes a classical fact over fields. The proof is an adaptation of the
argument over fields in [vdBS, (2.4)–(2.5)], bringing in some elementary
commutative algebra in order to control freeness of module structures.

Theorem B.5. — If an octonion algebra over a local ring R has underlying
quadratic space that is split then it is a split algebra; i.e., isomorphic to ΛR.
Every octonion algebra over a ring C becomes split over an affine étale cover
of C.

Proof. — We begin by explaining why the second part follows from the first,
so consider an octonion algebra over a ring C. Over some affine étale cover
Spec(C′) of Spec(C) we can split the underlying even-rank non-degenerate
quadratic space [SGA7, XII, Prop. 1.2]. By “spreading out” over Spec(C′),
we can identify the octonion algebra with ΛC′ Zariski-locally over Spec(C′)
provided that we can do so over the local rings of C′. Hence, it suffices to
apply the first assertion of the theorem to the local rings of C′.

Let R be a local ring, with residue field k, and let (A, ν) be an octonion
algebra over R whose underlying quadratic space is isomorphic to (R8, q8). In
particular, A has an R-basis {ai} consisting of isotropic vectors. Since the
element e ∈ A is part of an R-basis, by perfectness of 〈·, ·〉 some a =

∑
riai

satisfies 1 = 〈e, a〉 =
∑
ri〈e, ai〉, so 〈e, ai0〉 ∈ R× for some i0. By unit scaling

of such an ai0 , we thereby obtain an isotropic a ∈ A that is part of an R-basis
of A and satisfies 〈e, a〉 = 1.

The pair {e, a} is part of an R-basis of A: by locality of R and freeness of
A it suffices to check this in Ak over the residue field k, and there we use that
〈e, a〉 = 1 and 〈a, a〉 = 2ν(a) = 0. Since ν(a − e) = ν(a) − 〈a, e〉 + ν(e) =
0− 1 + 1 = 0, the elements a and e− a provide a decomposition

e = x0 + y0

with isotropic x0, y0 ∈ A that satisfy 〈x0, y0〉 = 1. The split hypothesis on the
quadratic space over R has done its work.

The pair {x0, y0} is an R-basis of a direct summand H of A, either by
construction or by repeating the argument used with {e, a} above, and visibly
(H, ν) is a hyperbolic plane over R. In particular, 〈·, ·〉 is perfect on H, so by
perfectness of 〈·, ·〉 on the free R-module A it follows that A = H⊕H⊥ for the
orthogonal complement H⊥ of H in A that must be a free R-module of rank 6.
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Since ν(x0) = 0 and

T(x0) = 〈x0, e〉 = 〈x0, x0 + y0〉 = 2ν(x0) + 〈x0, y0〉 = 1,

we see that x∗0 = e− x0 = y0 and (via the relation (B.1) for x0) that x2
0 = x0.

Likewise, y2
0 = y0 and y∗0 = e − y0 = x0. Clearly x0y0 = x0(e − x0) = 0 and

y0x0 = 0, so x0 and y0 are orthogonal idempotents summing to e that are
swapped by conjugation. In particular, H⊥ is stable under left multiplication
by x0 and y0; e.g., if z ∈ H⊥ then

〈x0, x0z〉 = ν(x0)〈e, z〉 = 0, 〈y0, x0z〉 = 〈x∗0y0, z〉 = 〈y2
0, z〉 = 〈y0, z〉 = 0.

Hence, it is reasonable to consider the R-submodules

(B.5) M = {x ∈ H⊥ |x0x = x}, N = {y ∈ H⊥ | y0y = y}

inside H⊥.
By (B.4) and the idempotent property of x0 we see that x0M = M = x0H⊥,

and likewise y0N = N = y0H⊥. The condition in (B.5) defining M inside
H⊥ can also be written as “y0x = 0”, and similarly with N using x0. Since
A = H ⊕ H⊥, it follows that x0A = Rx0 ⊕ M and y0A = Ry0 ⊕ N (both
direct sums inside A). Thus, x0A is killed by left multiplication against y0

and likewise y0A is killed by left multiplication against x0, so x0A ∩ y0A = 0
since this intersection is killed by left multiplication against x0 + y0 = e.

Clearly A = x0A + y0A, so we conclude that the R-modules

M0 := x0A = Rx0 ⊕M, N0 := y0A = Ry0 ⊕N

satisfy M0 ⊕ N0 = A. Thus, M0 and N0 are each finite free modules, due
to being direct summands of the finite free module A over the local ring R,
so likewise their respective direct summands M and N are also finite free R-
modules. The equality M0 ⊕ N0 = A = H ⊕ H⊥ with H = Rx0 ⊕ Ry0 forces
the R-linear map M⊕N→ H⊥ to be an isomorphism.

We claim that the R-submodules M0 and N0 in A are isotropic in the sense
that 〈·, ·〉 has vanishing restriction to each. To check the isotropicity of M0,
note that if x, x′ ∈ M then

〈x, x′〉 = 〈x0x, x0x
′〉 = ν(x0)〈x, x′〉 = 0,

and for λ ∈ R we have

〈x, λx0〉 = λ〈x0x, x0e〉 = λν(x0)T(x) = 0.

Since moreover 〈x0, x0〉 = 2ν(x0) = 0, the isotropicity of M0 is established.
The case of N0 goes similarly.

Lemma B.6. — The free R-modules M and N have rank equal to 3.
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Proof. — Since M0 and N0 are direct summands of the finite free module A,
the induced k-linear maps (M0)k → Ak and (N0)k → Ak are injections onto
isotropic subspaces of the quadratic space (Ak, νk) ' (k8, q8) in which the
maximal isotropic subspaces have dimension 4. Thus, M0 and N0 have rank
6 4. Their ranks add up to 8, so each has rank equal to 4. Hence, their
respective direct summands M and N must be free over R of rank 3.

Lemma B.7. — Conjugation on A acts on M and N via negation, and

M = {x ∈ H⊥ |xx0 = 0}, N = {y ∈ H⊥ | yy0 = 0}.

Proof. — Since M ⊂ H⊥ ⊂ (Re)⊥, the trace vanishes on M. Hence, conju-
gation on M is negation. For x ∈ M, applying conjugation to the equality
x0x = x for all x ∈ M gives x∗x∗0 = x∗ for such x, or equivalently −xx∗0 = −x.
But x∗0 = e − x0 since T(x0) = 1, so −x(e − x0) = −x. Thus, xx0 = 0.
Similarly, yy0 = 0 for y ∈ N. This proves the containments “⊆” in place of the
desired module equalities.

To prove the reverse containments, since H⊥ = M + N it remains to show
that right multiplication rx0 by x0 acts injectively on N, and likewise for ry0
on M. But rx0 + ry0 is the identity map and ry0 |N = 0, so rx0 |N is the identity
on N. The case of ry0 goes similarly.

Lemma B.8. — If x, x′ ∈ M then xx′ ∈ N, and if y, y′ ∈ N then yy′ ∈ M. If
x ∈ M and y ∈ N then xy ∈ H.

Proof. — Since 〈x0, x〉 = 0 (as M ⊂ H⊥), (B.3) gives

〈x0, xx
′〉+ 〈x0x

′, x〉 = 〈x0, x〉〈e, x′〉 = 0.

But x0x
′ = x′, and 〈x′, x〉 = 0 since M is isotropic, so 〈x0, xx

′〉 = 0. Since
〈y0, x〉 = 0 (as M ⊂ H⊥) and y0x

′ = 0, likewise 〈y0, xx
′〉 = 0. Thus, xx′ ∈ H⊥.

The alternating property of associators gives that

x0(xx′)− (x0x)x′ = −(x(x0x
′)− (xx0)x′),

and we have x0x = x and x0x
′ = x′ since x, x′ ∈ M, so x0(xx′) = (xx0)x′ = 0

(by Lemma B.7). Thus, xx′ lies in {z ∈ H⊥ |x0z = 0} = N. The proof that
yy′ ∈ M proceeds similarly.

Finally, to show xy ∈ H, it is equivalent to show xy ∈ (H⊥)⊥ = (M⊕ N)⊥.
Hence, it suffices to show that 〈xy, x′〉 and 〈xy, y′〉 vanish for any x′ ∈ M and
y′ ∈ N. But 〈xy, x′〉 = 〈y, x∗x′〉 = −〈y, xx′〉, and this vanishes because xx′ ∈ N
and N is isotropic. Similarly, 〈xy, y′〉 = 〈x, y′y∗〉 = −〈x, y′y〉 = 0 since yy′ ∈ M
and M is isotropic.

Since 〈·, ·〉 is perfect on A and H, it is perfect on H⊥ = M⊕N with each of
M and N isotropic of rank 3. Hence, 〈·, ·〉 identifies M and N as R-linear duals
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of each other, so we can choose R-bases {x1, x2, x3} of M and {y1, y2, y3} of N
such that 〈xi, yj〉 = δij .

By Lemma B.8 we have x1x2 =
∑
λjyj for unique λj ∈ R. The dual-basis

property gives that λj = 〈x1x2, xj〉, and the isotropicity of M implies that
〈x1x2, x1〉 = ν(x1)〈x2, e〉 = 0 and 〈x1x2, x2〉 = ν(x2)〈x1, e〉 = 0, so x1x2 = λy3

for λ := 〈x1x2, x3〉 ∈ R. Likewise,

x2x3 = 〈x2x3, x1〉y1, x3x1 = 〈x3x1, x2〉y2.

Since x2 = 2ν(x) = 0 for x ∈ M, and conjugation on M is negation, it
follows that the trilinear form 〈xx′, x′′〉 on M is alternating. Hence,

〈x2x3, x1〉 = −〈x2x1, x3〉 = 〈x1x2, x3〉 = λ

and similarly 〈x3x1, x2〉 = λ, so

xixi+1 = λyi+2

with subscripts in {1, 2, 3} treated modulo 3. Likewise, xi+1xi = −λyi+2 by
applying conjugation, so this tells us how to multiply pairs in the R-basis
{x1, x2, x3} of M

Next, we turn to products xiyj and yixj between bases of M and N. The
products xiyj lie in H by Lemma B.8, so xiyj = λijx0 + λ′ijy0 for some

λij , λ
′
ij ∈ R. Hence,

λij = 〈xiyj , y0〉 = 〈xi, y0y
∗
j 〉 = −〈xi, y0yj〉 = −〈xi, yj〉 = −δij

since left multiplication by y0 on N is the identity map, and

λ′ij = 〈xiyj , x0〉 = 〈yj , x∗ix0〉 = −〈yj , xix0〉 = 0

since right multiplication by x0 on M vanishes (Lemma B.7). We have shown
that xiyj = δijx0, and in the same way one shows yixj = δijy0.

By design, left multiplication `x0 by x0 is the identity on M and kills N, and
by Lemma B.7 right multiplication rx0 by x0 kills M (so ry0 = 1 − rx0 is the
identity on M) and ry0 kills N (so rx0 = 1− ry0 is the identity on N).

The only remaining information for a complete description of the R-bilinear
multiplication law is the determination of products among elements in the R-
basis {y1, y2, y3} of N. But recall that x1x2 = λy3, so the alternating property
of associators gives that λ(y3y1) equals

(λy3)y1 = (x1x2)y1 = x1(x2y1)− ((x1y1)x2 − x1(y1x2))

= x1(0)− (−x0x2 − x1(0))

= x2.

This forces λ ∈ R× since x2 is part of an R-basis of A, so we may replace x3

with (1/λ)x3 and replace y3 with λy3 to arrange that λ = 1. Hence, y3y1 = x2,
and by the same arguments yiyi+1 = xi+2 (with subscripts in {1, 2, 3} treated
modulo 3).
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We have completely determined the multiplication law, and there are no
parameters at all. Hence, up to isomorphism there is at most one possibility
for the octonion R-algebra with split underlying quadratic space. But ΛR is
such an octonion algebra, so it is the only one. This completes the proof of
Theorem B.5.

Now we turn our attention to the situation over Dedekind domains. Let
R be a Dedekind domain with fraction field K, and let (O, ν) be an octonion
algebra over K. Before we study R-orders in O (i.e., R-lattices containing e
that are stable under multiplication), we prove:

Proposition B.9. — There exist R-orders in O. Every R-order lies in a
maximal one.

Proof. — We first show that R-orders exist. By choosing a K-basis of O
containing the identity e and expressing the K-bilinear multiplication in terms
of “structure constants” in K relative to this K-basis, denominator-chasing in
the structure constants produces a nonzero r ∈ R for which the chosen K-basis
spans an R[1/r]-order in O[1/r].

The problem is now localized to each of the finitely many maximal ideals
of R containing r, so we may assume R is a discrete valuation ring. Using the

bijective correspondence between R-lattices in O and R̂-lattices in O
K̂

(with

K̂ := Frac(R̂) = K ⊗R R̂), we may assume R is also complete. Hence, for
any finite extension K′ of K, the integral closure R′ of R in K′ is an R-finite
discrete valuation ring.

The R-lattices in a finite-dimensional K-vector space V are precisely the
finitely generated R-submodules that are open with respect to the natural
topology. Thus, for any finite extension K′ of K and R′-lattice L′ in VK′ ,
L′ ∩ V is an R-lattice in V. It therefore suffices to construct an order after a
finite extension on the ground field. Hence, we may assume O is split, so a
K-isomorphism O ' ΛK provides an R-order, namely ΛR. This completes the
proof of the existence of R-orders in general.

Now we return to the setting of a general Dedekind domain R, and consider
an R-order A in O. We need to show that A is contained in a maximal R-order.
The R-order A meets K in exactly R, so for any a ∈ A not in K we see that
R[a] is a finite flat commutative and associative R-algebra of rank 2 since it is
contained in the R-lattice A and a satisfies the monic quadratic relation

a2 − T(a)a+ ν(a) = 0

over K with a 6∈ K. This is the unique monic quadratic relation satisfied by a
over K. The characteristic polynomial of a-multiplication on R[a] is a monic
quadratic polynomial over R satisfied by a, so we conclude that T(a), ν(a) ∈ R.
Since a+ a∗ = T(a), it follows that a∗ ∈ A for any a ∈ A.
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To summarize, the trace T(x) = x+ x∗ and norm ν(x) = xx∗ are R-valued
on A, and A is stable under the conjugation. In particular, the non-degenerate
K-valued bilinear form 〈x, y〉 = T(xy∗) on O has R-valued restriction to A, so
A is contained in its own dual R-lattice A′ ⊂ O. Any R-order A# containing

A therefore satisfies A# ⊂ A#′ ⊂ A′, so by a noetherian R-module argument
we see that A is contained in a maximal R-order.

Example B.10. — Any octonion algebra A over a Dedekind domain R is
a maximal R-order in its generic fiber. Indeed, perfectness of the R-bilinear
trace pairing T(xy∗) on the octonion algebra over R implies that A is its own
dual R-lattice, so there is no room for it to be contained in a strictly larger
R-order.

As a special case, if R is a Dedekind domain with fraction field K then ΛR

is a maximal R-order in the split octonion algebra ΛK over K. Conversely:

Proposition B.11 (van der Blij, Springer). — Let R be a Dedekind do-
main with fraction field K. Every maximal R-order A in the split octonion
algebra ΛK over K is an octonion algebra over R with respect to the R-valued
restriction of the norm. If R is a discrete valuation ring then A is split and
Aut(ΛK) acts transitively on the set of maximal R-orders in ΛK.

In particular, if R→ R′ is an extension of Dedekind domains and K→ K′

the corresponding extension of fraction fields then scalar extension to R′ carries
maximal R-orders in ΛK to maximal R′-orders in ΛK′

Proof. — To prove that A is an octonion algebra, we have to check non-
degeneracy over R for A viewed as a quadratic space via the R-valued norm
form on A. Since the rank is 8, which is even, it is equivalent to check
perfectness of the R-bilinear trace pairing Tr(xy∗). We may localize to the
case that R is a discrete valuation ring, as this preserves maximality of an
order over the Dedekind base, so we now we may assume R is a principal ideal
domain.

It is shown in [vdBS, (3.1)–(3.3)], using a characterization of maximal
orders in terms of the quadratic form, that if R is a principal ideal domain
then any maximal order A admits an R-basis relative to which the underlying
quadratic space is (R8, q8). Thus, A has a norm form that is non-degenerate
over R, so A is an octonion algebra over R. Assuming moreover that R is
a discrete valuation ring, by Theorem B.5 the octonion algebra A must be
isomorphic to ΛR. In such cases, if A′ is any maximal R-order in ΛK then we
have isomorphisms A ' ΛR ' A′ as octonion algebras over R, so localizing to
K provides an automorphism of ΛK carrying A to A′.

Corollary B.12. — Let (O, ν) be an octonion algebra over the fraction field
K of a Dedekind domain R whose residue fields at maximal ideals are finite.
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Every maximal R-order A in O is an octonion algebra with respect to the
restriction ν|A : A→ R.

Proof. — The problem is to prove that the R-valued bilinear form T(xy∗) on
A is perfect. For this purpose we may localize to the case when R is a discrete

valuation ring, and then extend scalars to R̂ since this does not affect the
property of being a maximal order. Now K is a non-archimedean local field,
so O is a split octonion algebra (Example B.3). Thus, Proposition B.11 may
be applied to conclude.

The study of automorphism schemes of octonion algebras requires the fol-
lowing flatness criterion from [GY03, Prop. 6.1]:

Lemma B.13. — Let S be a connected Dedekind scheme and f : X → S a
finite type map with a section e ∈ X(S) such that each fiber Xs is reduced and
irreducible with dimension independent of s. Then f is flat.

Proof. — By localizing, we may assume S = Spec(R) for a discrete valuation
ring R with fraction field K. Let j : Z ↪→ X be the schematic closure of the open
immersion i : XK → X, so j is defined by the kernel I of the K-localization
map of quasi-coherent sheaves OX → i∗(OXK

). In particular, OZ ⊂ i∗(OXK
),

so OZ is torsion-free over the Dedekind R and hence Z is R-flat. It therefore
suffices to show that j is an isomorphism.

Any map to X from a flat R-scheme factors through Z because the ideal
I ⊂ OX consists of sections killed by K-localization, which is to say are R-
torsion. Hence, e : Spec(R)→ X factors through Z, so Z has non-empty special
fiber Z0. By R-flatness, dim Z0 = dim ZK, yet the K-fiber ZK = XK has the
same dimension as X0 by hypothesis, so the closed immersion j0 : Z0 ↪→ X0

is surjective since X0 is irreducible. Thus, j0 is defined by a nilpotent ideal,
yet X0 is reduced, so j0 is an isomorphism. Hence, j] : OX � j∗(OZ) becomes
an isomorphism modulo a uniformizer π of R, so R-flatness of j∗(OZ) implies

I /(π) = ker(j]0). This kernel vanishes since j0 is an isomorphism, so by
Nakayama’s Lemma the coherent I has vanishing stalks along the locus
X0 where π vanishes. It also has vanishing stalks along XK since jK is an
isomorphism, so I = 0. Hence, X = Z is R-flat.

Theorem B.14. — For any octonion algebra A over a ring R, the affine
finite type automorphism scheme AutA/R of the algebra is a semisimple R-
group scheme of type G2. This R-group is split if A ' ΛR.

Proof. — To prove that AutA/R is a semisimple R-group of type G2, it suffices
to work étale-locally over Spec(R). Hence, by Theorem B.5 we may assume
A = ΛR. Using base change from Spec(Z), it remains to show that AutΛ/Z is
a split semisimple Z-group of type G2.
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By [SV, 2.3.5, 2.4.5], the automorphism scheme of an octonion algebra over
a field k is connected semisimple (in particular, smooth) of type G2. The
explicit construction in (the proof of) [SV, 2.3.1] provides a k-homomorphism
f : T → AutΛk/k from a 2-dimensional split k-torus T with ker f ' µ2, so
f(T) is a split maximal k-torus in AutΛk/k. Hence, AutΛ/Z → Spec(Z) has
fibers that are split connected semisimple groups of type G2. Lemma B.13
ensures that this Z-group is flat, hence semisimple. Since the Q-fiber is split,
by Proposition 1.3 the semisimple Z-group AutΛ/Z is a Chevalley group.

Corollary B.15. — For any ring R, the assignment A 7→ AutA/R is a bijec-
tion from the set of isomorphism classes of octonion algebras over R to the set
of isomorphism classes of semisimple R-groups of type G2.

Proof. — Since G2 = AutΛ/R, by Theorem B.5 the set of isomorphism
classes of octonion algebras over R is identified with the étale cohomology
set H1(R,G2). But G2 is its own automorphism scheme over Z by (3.2), so
this cohomology set also classifies isomorphism classes of semisimple R-groups
of type G2. Under this identification of the cohomology set as classifying
both structures over R, the cohomology class of A corresponds to the Isom-
scheme Isom(ΛR,A) as a right G2-torsor and the cohomology class of AutA/R

corresponds to the Isom-scheme Isom(AutΛ/R,AutA/R) as a right torsor for
AutΛ/R = G2. Hence, we just have to check that the map of Isom-schemes

Isom(ΛR,A)→ Isom(AutΛR/R,AutA/R)

is an isomorphism. By working étale-locally on R and using Theorem B.5 we
may assume A = ΛR, in which case the isomorphism assertion amounts to the
fact that G2 is its own automorphism scheme via conjugation action.

Appendix C

An explicit Chevalley group of type E6

As is explained in the main text, the proof of Proposition 6.5 reduces to
the analogue for the closed Z-subgroup scheme G 0 = Aut(M0,δ)/Z

⊂ GL(M0)
defined in terms of the Tits model for exceptional Jordan algebras over Z. Its
Q-fiber has been seen to be a simply connected semisimple group of type E6.
Our aim is to show that G 0 is a Chevalley group over Z. It is hard to see
(especially locally at 2 and 3) that this Z-group is flat or has connected fibers.

We first record a lemma concerning the behavior of certain roots and their
associated coroots under smooth degeneration of a reductive group over the
fraction field of a discrete valuation ring. This lemma will be applied to a
smooth group scheme that is not known to be affine.
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Lemma C.1. — Let R be a discrete valuation ring with fraction field K and
residue field k, and let G be a locally closed smooth R-subgroup of some GLn.
Assume GK is connected reductive and Gk is connected. Let T ⊂ G be a
closed split R-subtorus that is fiberwise maximal, and consider the weight space
decomposition

g = t⊕ (⊕a∈Φ ga)

over R for the T-action on g, where Φ := Φ(GK,TK).
Let a ∈ Φ ⊂ X(TK) = X(T) be a root such that the R-line [ga, g−a] ⊂ t

is saturated. Using the natural identifications X∗(TK) = X∗(T) = X∗(Tk)
and likewise for character groups, ak occurs in Φ(Gk/Ru(Gk),Tk) and its
associated coroot is (a∨)k.

The saturatedness hypothesis can fail; an example with residue characterisic
0 is the relative identity component of the degeneration of PGL2 to a connected
solvable group in [SGA3, XIX, §5].

Proof. — We may and do assume k = k. Let Ta ⊂ T be the unique R-
subtorus of relative codimension 1 that is killed by a. (It corresponds to the
quotient of X(T)/Za by its torsion subgroup.). Although G might not be
affine, for any closed R-subtorus S ⊂ G the scheme-theoretic centralizer ZG(S)
exists as a smooth closed R-subgroup scheme of G. Indeed, for affine G this
is a standard fact (see [SGA3, XI, 5.3] or [Co2, 2.2.4]), and more generally
G∩ZGLn(S) represents the centralizer functor. To check that this intersection
is R-smooth, we first note that smoothness of its fibers is clear by the theory
for smooth connected affine groups over fields, so the problem is to prove R-
flatness of ZG(S) in general. By the local flatness criterion, it suffices to check
on infinitesimal closed fibers over Spec(R). But these infinitesimal fibers are
affine, so smoothness over the artinian quotients of R follows from the known
affine case (over any base ring).

Let U = Ru(Gk). The R-group ZG(Ta) has connected fibers (see [Bor,
11.12]) and the scheme-theoretic intersection ZG(Ta)k ∩ U is smooth since it
is the centralizer for the natural Ta-action on the smooth affine k-group U, so
ZG(Ta)k ∩ U = Ru(ZG(Ta)k) by [Bor, 13.17, Cor. 1(a)] (which gives equality
on geometric points). Hence, the map

ZG(Ta)k/(ZG(Ta)k ∩U) = (ZG(Ta)k ·U)/U→ Gk/U

is a closed k-subgroup inclusion that contains Tk and has Lie algebra coinciding
with Lie(Gk/U)Ta . Consequently, we may replace G with ZG(Ta) to reduce
to the case Φ(GK,TK) = {±a}.

Let u = Lie(U). Clearly u is a Tk-stable subspace of

gk = (gk)a ⊕ (gk)−a ⊕ t,
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and u ∩ tk = 0 since U ∩ Tk = 1 scheme-theoretically, so by consideration of
weight space decompositions with respect to Tk we see that u ⊂ (gk)a⊕(gk)−a.
The quotient gk/u = Lie(Gk/U) is the Lie algebra of a connected reductive
k-group with maximal torus Tk, so its set of nontrivial Tk-weights is stable
under negation. Hence, the same holds for u.

By hypothesis [ga, g−a] is a saturated R-line inside t, so inside the special
fiber gk the 1-dimensional Lie subalgebras (gk)±a have commutator equal to
a line in tk. Hence, the lines (gk)±a cannot both lie in u. This leaves only
the option u = 0, which is to say U = 1. In other words, Gk is connected
reductive. (If we permit ourselves to apply the remarkable [SGA3, XVI,
5.2(i)], the relatively affine hypothesis in the definition of a reductive group
scheme can be relaxed to “separated and finitely presented” and hence G is
a reductive R-group, so we would be done. We prefer to avoid invoking that
deep result, and so will proceed without it via more elementary methods.)

Clearly Φ(Gk,Tk) = {±a} via the identification X(Tk) = X(TK), and we
have an associated coroot (ak)

∨ ∈ X∗(Tk) = X(TK) that we need to show
is equal to (a∨)k. Since GLn is a smooth affine R-group and Ta is a closed
R-subtorus, the quotient sheaf GLn/Ta for the étale topology on the category
of R-schemes is represented by a finite type affine R-scheme and the map
GLn → GLn/Ta is a Ta-torsor for the étale topology. (See [SGA3, VIII,
Thm. 5.1] or [Oes, III, §2.3].) By étale descent for locally closed immersions,
it follows that the central quotient R-group G := G/Ta exists as an R-smooth
locally closed subscheme of the affine R-scheme GLn/Ta, and G is R-smooth
since G is R-smooth.

The separated finite type smooth R-group G has T := T/Ta as a closed
fiberwise maximal R-subtorus, and its Lie algebra g is equal to ga⊕t⊕g−a. On
the fibers over K and k the formation of coroots attached to roots of connected
reductive groups is compatible with the formation of central quotients. Thus,
to prove that (a∨)k = (ak)

∨ it suffices to focus attention on the pair (G,T).
Since T has 1-dimensional fibers over Spec(R), a cocharacter of T is deter-

mined by its pairing against the character a. In particular, since 〈aK, (aK)∨〉 =
2 = 〈ak, (ak)∨〉, the cocharacter a∨ of T over R extending (aK)∨ has k-fiber
(ak)

∨.

Here is the main result of this appendix.

Theorem C.2. — The Z-group G 0 is simply connected and semisimple of
type E6.

Proof. — Letting µ ⊂ (SL3)3 be the diagonally embedded µ3, consider the
Z-homomorphism

(C.1) j : (SL3)3/µ ↪→ G 0 ⊂ GL(M0)
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as defined in [GY05, §3]:

j(g1, g2, g3) : (u, v, w) 7→ (g2ug
−1
3 , g3vg

−1
1 , g1wg

−1
2 ).

An fppf-local computation shows that ker j = 1, so j is a closed immersion
because any monomorphism of group functors from a reductive group scheme
to an affine group scheme of finite presentation is a closed immersion (see
[SGA3, XVI, 1.5(a)] or [Co2, Thm. 5.3.5]).

Let the closed Z-subtorus T 0 ⊂ G 0 be the image under (C.1) of the product
of the diagonal tori in the SL3’s, so its Q-fiber T0 is a split maximal Q-torus in
the 78-dimensional Q-fiber G0 = (G 0)Q of type E6. A tedious but elementary
fppf-local computation in GL(M0) using weight spaces in M0 and the cubic
form δ shows that T 0 is its own scheme-theoretic centralizer in G 0. This will
be used in our proof that G 0 has connected fibers over Spec(Z).

Denote the union of the bases of the root systems for the SL3’s in (C.1)
relative to their diagonal tori and upper unipotent subgroups as

(C.2) I ⊂ X(T 0) = X(T0).

This set lies in a unique positive system of roots Φ+ ⊂ Φ := Φ(G0,T0), and it
consists of the roots associated to non-central vertices of the extended diagram
for the E6 root system Φ with respect to Φ+.

There are two 27-dimensional fundamental representations for E6, swapped
by the nontrivial outer (i.e., diagram) automorphism. By inspection of the
highest T0-weight on (M0)Q relative to our choice of Φ+, the representation
(M0)Q is a 27-dimensional fundamental representation of the split simply
connected semisimple Q-group G0 of type E6.

Lemma C.3. — The fibers (G 0)Fp are smooth of dimension 78.

Proof. — Let e0 ∈ G 0(Z) denote the identity section. The cubic form δ is
given by an explicit formula (6.6), so preservation of δ on Z[ε]-points yields
explicit elements in the cotangent space e∗0(Ω1

GL(M0)/Z) = gl(M0)∗ = gl∗27 over

Z such that the quotient by their Z-span is the cotangent space e∗0(Ω1
G 0/Z

). By

computation (see [Yu]), the span of this set of linear forms over Z is saturated
in the Z-dual of gl(M0), so e∗0(Ω1

G 0/Z
) is a finite free Z-module. Hence, its

linear dual Lie(G 0) is a free module whose formation commutes with any base
change.

The flat closure in G 0 of the generic fiber G0 is a Z-flat closed subgroup
scheme. By Z-flatness, the fibers of this closed subgroup scheme over Spec(Z)
all have the same dimension, and this common dimension (namely, dim(G0) =
78) is a lower bound on the dimension of the fibers of G 0 over Spec(Z). But
we just saw that the Lie algebra of every fiber has dimension equal to the
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dimension for the smooth Q-fiber, so dim(G 0)Fp > dim Lie((G 0)Fp) for every
prime p. The opposite inequality always holds, so we are done.

Since the Q-fiber of G 0 is geometrically connected, so are the fibers at all
but finitely many primes. Hence, the union of the fibral identity components
of G 0 is a (possibly non-affine) open Z-subgroup scheme G 0

0 ⊂ G 0, and it is
Z-flat by Lemma B.13, so it is Z-smooth. However, it does not follow formally
from these properties that G 0 is Z-smooth, as it might fail to be Z-flat in
the presence of disconnected fibers. (As an illustration of what can go wrong,
the reduced closed Z-subgroup of SLn × (Z/2Z)Z obtained by removing the
open subscheme of SLn × {1}Z away from a single positive characteristic p is
a non-flat affine finite type Z-group that coincides with SLn over Z[1/p] and
has smooth disconnected Fp-fiber.)

The T 0-action on the finite free Z-module g := Lie(G 0) = Lie(G 0
0) decom-

poses g as a direct sum of weight spaces whose ranks and weights can be read
off from the Q-fiber. Hence, the saturated submodule Lie(T 0) ⊂ g coincides
with gT 0 and for each a ∈ Φ there is a rank-1 weight space ga ⊂ g such that

g = Lie(T 0)⊕ (⊕a∈Φ ga).

Thus, for any prime p, the line (ga)Fp is the a-weight space in gFp via the
natural identification of the character groups of T0 and (T 0)Fp . Note that
the Fp-torus (T 0)Fp is maximal in (G 0)Fp because its weight-0 space in gFp

is Lie(T 0)Fp = Lie((T 0)Fp) (or because T 0 is its own scheme-theoretic
centralizer in G 0).

Lemma C.4. — For any field k of characteristic p > 0, the identity compo-
nent of (G 0)k is a simple semisimple group of type E6.

Proof. — We may assume k is algebraically closed. Let G = (G 0)k, T =
(T 0)k, U = Ru(G) = Ru(G0), and u = Lie(U). Since Lie(T) = gT

k , the
T-weights that occur on u are nontrivial.

Since gk/u is the Lie algebra of the connected reductive k-group G0/U
containing T as a maximal torus, the set of nontrivial T-weights supported on
this quotient is stable under negation. The same therefore holds for u.

Let ∆ be the basis of Φ+ and choose a ∈ ∆ that is not a central vertex in the
Dynkin diagram (i.e., a also lies in the set I from (C.2)). The closed Z-subgroup
(C.1) provides a closed Z-subgroup SL2 ⊂ SL3 ⊂ G 0 whose Z-fiber is generated
by the ±aQ-root groups for (G0,T0). This SL2 meets T 0 in the diagonal Z-
subgroup D ⊂ SL2 and has Lie algebra sl2 ⊂ g over Z equal to g−a⊕Lie(D)⊕ga
with g±a equal to the D-root spaces in sl2. Hence, the root spaces g±a
have commutator equal to the saturated Z-line Lie(D) ⊂ sl2 ⊂ Lie(T 0). By
applying Lemma C.1 to (G 0

0,T 0)Z(p)
, a cannot occur as a T-weight in u and
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the coroot for ak with respect to (G0/U,T) equals the k-fiber (a∨)k of the
coroot a∨ via the natural identification X∗(T0) = X∗(T 0) = X∗(T).

Thus, up to sign, the only possibilities for T-weights on u are the roots
in Φ+ whose expansion in the basis ∆ involves the simple positive root a0

corresponding to the central vertex in the extended Dynkin diagram. Since
Φ(G0/U,T) contains the set I of roots corresponding to the non-central vertices
in the extended diagram of type E6, Φ(G0/U,T) rationally spans the character
group of T. Hence, the connected reductive group G0/U is semisimple.

We are going to compute the root datum for (G0/U,T) and see that it
agrees with the one attached to the Q-fiber (G0,T0). This would imply that
the connected semisimple group G0/U is simple of type E6, and then dimension
considerations force U = 1.

Our task is to show Φ(G0/U,T) admits ∆ as a basis and that (a∨)k is the
coroot attached to ak for each a ∈ ∆. We have already seen that ∆− {a0} ⊂
Φ(G0/U,T), and that if a ∈ ∆ − {a0} then the coroot attached to ak is the
k-fiber of a∨. The remaining task is to analyze a0.

A computation (see [Yu]) shows that for Z-basis elements X± of g±a0 ⊂
gl(M0),

[X+,X−] = ±Lie(a∨0 (∂t|t=1)).

This is part of a Z-basis of Lie(T 0) since no coroots are divisible in the dual
of the root lattice for type E6. Hence, [ga0 , g−a0 ] is a saturated Z-line in g, so
Lemma C.1 applied to (G 0

0,T 0)Z(p)
ensures that a0 ∈ Φ(G0/U,T) and (a0)k

has coroot (a∨0 )k. In particular, ∆ is a basis of Φ(G0/U,T) (see [Bou, VI,
§1.7, Cor. 3 to Prop. 20]), so we are done.

It remains to show that the geometric closed fibers of G 0 → Spec(Z) are
connected. For an algebraically closed field k of characteristic p > 0, consider
the smooth fiber G := (G 0)k and its maximal torus T := (T 0)k. By Lemma
C.4, G0 is simple and semisimple of type E6. The action of G on G0 is classified
by a k-homomorphism f : G → AutG0/k to the automorphism scheme of G0.

The closed subgroup scheme ker f ⊂ G centralizes G0 and hence centralizes T.
Since T 0 is its own scheme-theoretic centralizer in G 0, T is its own scheme-
theoretic centralizer in G (not just in G0). Thus, ker f ⊂ T ⊂ G0, so G is
disconnected if and only if f maps onto OutG0/k = Z/2Z.

We have to rule out the existence of g ∈ G(k) whose action on G0 is via
a nontrivial outer automorphism. Assume such a g exists. Its action on the
representation space (M0)k gives an isomorphism between the semisimplified
k-fiber of a 27-dimensional fundamental representation of E6 and its twist
under a nontrivial outer automorphism. Thus, the sets of T-weights (with
multiplicity) occuring in these representations coincide. This equality is a
characteristic-free assertion in character groups of maximal tori, from which it
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follows that a 27-dimensional fundamental representation of E6 in character-
istic 0 is isomorphic to its twist by the nontrivial outer automorphism of E6.
Since there is no such isomorphism in characteristic 0, there is no such g.
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Exposés sur la cohomologie des schémas”, North-Holland, Amsterdam, 1968, pp. 88–
188.

[Ha] G. Harder, Halbeinfache Gruppenschemata über Dedekindringen, Inv. Math. 4
(1967), pp. 165–191.
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