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Introduction

The proof of the semistable Taniyama-Shimura Conjecture by Wiles [22] and Taylor-Wiles [21] uses as
its central tool the deformation theory of Galois representations. In [6], Diamond extends these methods,
proving that an elliptic curve E/Q is modular if it is either semistable at 3 and 5 or is just semistable at 3,
provided that the representation

ρE,3 : Gal(Q/Q(
√
−3))→ Aut(E[3](Q)) ' GL2(F3)

is absolutely irreducible. His proof relies on extending the scope of the deformation-theoretic tools. The
remaining obstacle to having an unconditional proof of the Taniyama-Shimura Conjecture is to understand
cases which do not satisfy semistability conditions. Examples of such cases are not difficult to find. For
example, E1 : y2 = x3 + 15x − 15 isn’t semistable at 3 or 5, nor are any of its quadratic twists. Also,
E2 : y2 = x3 + 5x is semistable at 3, has no semistable quadratic twists at 5, and ρE2,3|Gal(Q/Q(

√
−3))

is absolutely reducible (since Gal(Q(E2[3])/Q(
√
−3)) ' Z/4). In either of these cases, consider the twist

X(ρEi,3)/Q of X(3)/Q by the cohomology class arising from

ρEi,3 ∈ Homcont(Gal(Q/Q),GL2(Z/3))→ H1(Gal(Q/Q),Aut(X(3)/Q)).

This twist has connected components which are smooth curves of genus 0 and there is a Q-rational point
xEi corresponding to Ei/Q and the choice of 3-torsion basis implicit in ρEi,3. The component containing xEi
is isomorphic to P1

Q. Choosing rational points on this component which are 3-adically and 5-adically close
to xEi gives infinitely many non-CM, non-isogenous examples of elliptic curves over Q violating Diamond’s
hypotheses.

The aim of this paper is to develop the deformation theory further so that it can be applied to the study
of non-semistable cases. Applications of these results to the study of the modularity of elliptic curves over Q
will be explained in [3]. We now outline the role of our deformation theory in this argument (details will be
given in [3]). Suppose that E/Q has semistable reduction at 3. Using results of Diamond, it can be shown
that either ρE,5 is reducible, in which case E/Q is modular, or else ρE,5 is irreducible and modular. Moreover,
in this latter case, if E/Q has potentially ordinary or potentially multiplicative reduction at 5, then E/Q is
modular. In the potentially supersingular case at 5, one can show that, at the expense of replacing E/Q
by a twist, it can be assumed that E/K has good reduction, with K = Q5(51/3). Now one is in a position
to try to apply Wiles’ methods with p = 5, and with his ‘flat’ deformation problem over Qp replaced by a
‘potentially flat’ deformation problem that involves a finite extension K/Qp with absolute ramification index
e(K) ≤ p− 1. This deformation problem will be precisely formulated and studied in the present paper.

We now give the setting for our main deformation-theoretic result. Consider a continuous representation
ρ : Gal(Qp/Qp) → GL2(k), with k a finite field of characteristic p. We make no hypotheses on det ρ|Ip ,
nor do we make any semisimplicity or irreducibility hypotheses. Fix a finite extension K/Qp inside of Qp

for which e(K) ≤ p − 1 and assume that the restricted representation ρ|Gal(Qp/K) is the generic fiber of a

finite flat OK-group scheme G for which G and the Cartier dual Ĝ are both connected. Letting M denote
the Dieudonne module of the closed fiber of G, we assume that the sequence of groups

0→M/VM
F→M/pM = M →M/FM → 0
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is exact (this holds when G is the p-torsion of a p-divisible group over OK). The motivating example is when
k = Fp and ρ is the p-torsion representation arising from an elliptic curve E/Qp

with supersingular reduction
over K.

Our first main result is the classification of all ρ which can arise. There is a slight technicality in the
description of the reducible cases, so we first set up some notation. For x ∈ k×, let ηx : Gal(Qp/Qp)→ k×

be the unique continuous unramified character sending arithmetic Frobenius to x. For a, b ∈ k× and distinct
n,m ∈ Z/(p− 1), consider non-semisimple representations of the form(

ηaω
m ∗

0 ηbω
n

)
.

By using a k-linear analogue of Tate duality and the relation between H1 and Ext1, we see that as long
as m 6= n + 1 or a 6= b, there is exactly one such representation (up to isomorphism), which we denote
by ρa,b,m,n. When m = n + 1 and a = b, there are exactly |k| such representations, up to k[Dp]-module
isomorphism. The classification of possible ρ is given by:
Theorem All ρ are either absolutely irreducible or are reducible with a trivial centralizer (i.e., Endk[Dp](ρ) =

k), with the latter case only possible when e does not divide p− 1. The complete list of ρ is as follows:
(i) ρ|Ip ⊗k k ' ψm ⊕ ψmp, where em ≡ e mod p2 − 1 and ψ : Ip → F×p2 ⊆ k

×
is a fundamental character of

level 2. These cases are absolutely irreducible.
(ii) Choose n ∈ Z/(p−1) satisfying ne ≡ i+1 mod p−1 with 0 ≤ i ≤ e−2 (so e ≥ 2). Assume e|(i+1)(p+1)
and define m = n + 1 − (i + 1)(p + 1)/e mod p − 1 (so me = e − (i + 1) mod p − 1 and m 6= n). Note that
m = n+ 1 if and only if e = (p+ 1)/2, n = (p− 1)/2 mod p− 1, p ≡ 1 mod 4. The reducible ρ which occur
are precisely the representations ρa,b,m,n for aribitrary a, b ∈ k× and for m,n as above with m 6= n + 1 or
a 6= b, together with the unramified k-twists of a certain non-semisimple Fp-representation of the form

ρ '
(
ω(p+1)/2 ∗

0 ω(p−1)/2

)
when p ≡ 1 mod 4, e = (p+ 1)/2.

We don’t have a more explicit description of the ‘exceptional’ reducible case when p ≡ 1 mod 4, e =
(p+ 1)/2.

Fix a mixed characteristic complete discrete valuation ring O with residue field k (i.e., we are given a ring
extension W (k)→ O which is finite and totally ramified). Consider deformations ρ : Gal(Qp/Qp)→ GL2(R)
of ρ, with (R,mR) a complete local noetherian O-algebra with residue field k. We say that ρ is OK-flat if for
all n ≥ 1, each finite quotient ρ|Gal(Qp/K) mod mn

R is the generic fiber of a finite flat OK-group scheme (we’ll
check that these OK-group schemes are necessarily connected with a connected dual and are canonically
unique). Since ρ has a trivial centralizer, there is a universal OK-flat deformation ρuniv : Gal(Qp/Qp) →
GL2(Runiv

K (ρ)). Our second main result is:

Theorem There is an abstract isomorphism of O-algebras

Runiv
K (ρ) ' O[[T1, T2]].

The central technical tool in our proofs is a generalization to the ramified case of Fontaine’s ‘module-
theoretic’ description [8] of finite flat group schemes in the unramified case; more precisely, we need a
generalization which applies in the case e ≤ p−1. We have worked out such a generalization, and the details
of this theory can be found in [2]. This is quite critical. Keep in mind that in the motivating example from
elliptic curves over Q, we have e = 3, p = 5.

The determination of the universal deformation ring generalizes an earlier theorem of Ramakrishna [15],
who studied the case e = 1 and odd p. It is interesting to note that the arguments in [15] for irreducible ρ
work when p = 2, since Fontaine has results for p = 2 analogous to the results for odd p that Ramakrishna
invoked. Ramakrishna also considers e = 1 cases without connectedness hypotheses on the group schemes.
Our methods should carry over to such cases as long as e < p−1, but we have not carried this out and so do



RAMIFIED DEFORMATION PROBLEMS 3

not know what the results are in these other cases. The method for determining the universal deformation
ring by ‘counting points’ is based on the method used by Ramakrishna.

One application we give of the ‘abstract’ structure of the universal deformation ring is the following: the
determinant character det ρuniv restricts to ε|IK on IK . Also, for a continuous character χ : Dp → O× with
χ mod mO = det ρ and χ|IK = ε|IK , suppose we consider only deformations ρ : Gal(Qp/Qp) → GL2(R)
for which det ρ : Dp → R× is equal to χ. Then this restricted functor is representable, with universal
deformation ring abstractly isomorphic to O[[T ]]. The critical technical input here is Fontaine’s work on
representations coming from p-divisible groups (this is needed particularly in cases when ρ does not admit
an unramified k-twist with field of definition Fp, since these cases cannot be reduced to the case O = Zp).

I am grateful to F. Diamond and R. Taylor for encouragement to make some results more explicit, and
to R. Ramakrishna and J.-M. Fontaine for proving the foundational results needed in the theory of ‘flat’
deformations of Galois representations. Most importantly, I would like to thank my advisor Andrew Wiles
for proving Fermat’s Last Theorem and thereby giving me an opportunity to work on some very exciting
mathematics.

Notation For every prime p, we fix an algebraic closure Qp of Qp, with Fp the residue field of the valuation
ring, and we let Dp denote the topological group Gal(Qp/Qp) and let Ip denote the inertia subgroup (so

Dp/Ip ' Ẑ). For K a finite extension of Qp inside of Qp, IK denotes the inertia subgroup of GK
def=

Gal(Qp/K) ⊆ Dp. We adopt the notation Qpn for the unique unramified extension of Qp of degree n inside
of Qp, with Dpn = GQpn

the corresponding open subgroup of Dp. We let Frobpn ∈ Dpn denote any element
whose image in Aut(Fp) is x 7→ xp

n

. The completion of Qp is denoted Cp, though for a finite extension
K/Qp inside of Qp we will sometimes write CK for Cp when we wish to just consider the GK-module
structure rather than the Dp-module structure. All GK-modules are topological, with the topology always
clear from the context.

There are several Galois characters that we will need to use. The local p-adic cyclotomic character is
denoted ε : Dp → Z×p , and ω = ε mod p. For a topological ring R, x ∈ R×, and K ⊆ Qp a finite extension
of Qp, we let

ηK,x : GK → R×

denote the unique unramified character sending arithmetic Frobenius to x (for K = Qp, this is abbreviated
to ηx). If L ⊆ Qp is totally ramified of finite degree over K, note that ηK,x|GL = ηL,x. We let ψ : Ip � F×p2

denote the fundamental character of level 2, which is the canonical tame character given by

Ip � Itame
p ' lim←−F×pn → F×p2 .

This lifts to a character ψ0 : Dp2 → F×p2 which sends Frobp2 to −1. For any totally ramified finite extension

K/Qp inside of Qp, ψK : IK → F×p2 denotes the fundamental character of level 2 for K, so ψ|IK = ψ
e(K/Qp)
K .

The fundamental character of level 1 for K is denoted ψ1,K : IK → F×p .
For any local ring R, we let mR denote the maximal ideal. If we have a fixed separable closure of the

residue field, then we write Rsh for the strict henselization. If K is a field complete with respect to a non-
trivial discrete valuation, we write Kun for the fraction field of a strict henselization of the valuation ring.
For any field k, we let k[ε] = k[T ]/(T 2) denote the ring of ‘dual numbers’; there is no risk of confusion with
the cyclotomic character ε. We sometimes write ε1, ε2, . . . for basis vectors in the context of Honda systems,
but this too should cause no confusion.

If X → S is a morphism of schemes, this is sometimes denoted X/S . If S′ → S is another S-scheme, we
sometimes let X/S′ denote the S′-scheme X ×S S′. If S = Spec(A), we write X/A or XA instead. For a
finite fppf commutative group scheme G/S , we write Ĝ/S for the Cartier dual group scheme. We say that a
finite fppf commutative group scheme G/R over a henselian local base ring R is unipotent if the Cartier dual
is connected, and likewise for p-divisible groups Γ over such a base. The connected-étale sequences of G/R
and Γ/R show that Γ is connected (resp. unipotent) if and only if Γ[p] is, and this can be checked on the
closed fiber.
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For a field K with a fixed choice of separable closure Ks, we identify finite étale commutative K-group
schemes with finite discrete Gal(Ks/K)-modules. If K has characteristic 0 and is the fraction field of a
discrete valuation ring OK , we say that a finite Gal(Ks/K)-module ρ is OK-flat if ρ is the generic fiber
of a finite flat OK-group scheme. If K is a perfect field of characteristic p > 0, then for G/K a finite p-
power order commutative K-group scheme, we let M(G) denote the Dieudonne module of G, as constructed
in [7, Ch III]. This is a finite-length W (K)-module with the structure of a module over the Dieudonne
ring DK = W (K)[F, V ] (non-commutative for K 6= Fp), generated by the relations FV = V F = p and
Fa = Frob(a)F , V a = Frob−1(a)V for all a ∈ W (K), where Frob : W (K) ' W (K) is the usual Frobenius
map (lifting absolute Frobenius on K).

For n ∈ Z and two perfect fields k1, k2 with characteristic p, and O a mixed characteristic complete
discrete valuation ring with residue field k2, we let t 7→ t(p

n) denote the nth iterate of the map

Frob⊗1 : W (k1)⊗Zp O 'W (k1)⊗Zp O;

the same notation is used for the induced map modulo mm
O for any positive integer m. Because our matrix

representations have entries in W (k)-algebras and not just Zp-algebras, we will sometimes need to use
modified Dieudonne rings of the form (W (k1) ⊗Zp O)[F, V ] = Dk1 ⊗Zp O in which F and V commute with
the action of O. The context should make it clear when this occurs; e.g., whether we are working with Dk

or W (k)[F, V ] = W (k)[X,Y ]/(XY − p).
In addition to the theory developed in [2], which we will use constantly (and whose notation we also use),

we assume familiarity with the basic formalism of the deformation theory of Galois representations and we
sometimes use a common abuse of notation by treating deformations as liftings rather than as equivalence
classes of liftings. This should cause no confusion and simplifies the exposition.

Review of Honda Systems

We give here a rapid review of some basic facts from the theory of finite Honda systems. For complete
details, see [2]. Fix a mixed characteristic complete discrete valuation ring (A′,m) with a residue field k
that is perfect of characteristic p. Define A = W (k). Assume e(A′) ≤ p − 1. We consider the category
FFA′ of finite flat commutative A′-group schemes with p-power order, and let FFcA′ , FFuA′ denote the full
subcategories which consist of connected and unipotent objects, respectively. The (contravariant) Dieudonne
module functor M gives an equivalence of abelian categories between finite commutative k-group schemes G
with p-power order and Dk-modules with finite A-length (in fact, p`A(M(G)) is equal to the order of G). The
theory of finite Honda systems gives an analogous functor on FFA′ , as we now explain.

A general construction due to Fontaine associates to any Dk-module M a certain A′-module MA′ . The
idea is to manufacture an A′-module with a structure resembling F and V operators (which, strictly speaking,
won’t make sense if e(A′) > 1 since there is in general no canonical meaning of ‘Frobenius-semilinearity’ on an
A′-module). The definition is as follows. Define M (1) = A⊗AM as an A-module, where A→ A is absolute
Frobenius. We have A-linear maps F0 : M (1) →M , V0 : M →M (1), with F0V0 = pM , V0F0 = pM(1) . Define
MA′ to be the direct limit of the diagram

m⊗AM
VM,A

′

−→ p−1m⊗AM (1)

ϕM,A′

0 ↓ ↑ ϕM,A′

1

A′ ⊗AM
FM,A

′

←− A′ ⊗AM (1)

in the category of A′-modules, where ϕM,A′

0 , ϕM,A′

1 are the obvious ‘inclusion’ maps (which might not be
injective!), VM,A′(λ ⊗ x) = p−1λ ⊗ V0(x), FM,A′(λ ⊗ x) = λ ⊗ F0(x). More explicitly, MA′ is the quotient
of (A′ ⊗AM)⊕ (p−1m⊗AM (1)) by the submodule

{(ϕM,A′

0 (u)− FM,A′(w), ϕM,A′

1 (w)− VM,A′(u)) |u ∈ m⊗A N, w ∈ A′ ⊗AM (1)}.

There are canonical A′-linear maps FM,A′ : p−1m ⊗A M (1) → MA′ and VM,A′ : MA′ → A′ ⊗A M (1) (the
latter induced by 1⊗V0 on A′⊗AM and p⊗ id on p−1m⊗AM (1)), and when A′ = A this can all be identified



RAMIFIED DEFORMATION PROBLEMS 5

with the A-module M with its structure as a Dk-module. In general, the A′-modules given by the kernels
and cokernels of FM,A′ , VM,A′ are annihilated by m and so can be viewed as k-vector spaces.

When M has finite A-length, then MA′ has finite A′-length and the functor M  MA′ is exact on the
category of Dk-modules with finite A-length. If G is an object in FFA′ , one can define a certain natural A′-
submodule LA′(G) of ‘logarithms’ inside of M(G/k)A′ . We define LMA′(G) = (LA′(G),M(G/k)). We define
the category PSHf

A′ finite pre-Honda systems over A′ to consist of triples (L,M, j) with M a Dk-module
with finite A-length, L an A′-module, and j : L → MA′ an A′-linear map. We define the full subcategories
PSHf,c

A′ and PSHf,u
A′ of connected and unipotent objects to consist of the objects which satisfy the extra

condition that the action of F (respectively V ) on M is nilpotent. These are convenient abelian categories,
but do not lie at the heart of the matter.

We define the full subcategory SHf
A′ of finite Honda systems over A′ to consist of those objects in PSHf

A′

for which the canonical k-linear map
L/mL→ coker FM,A′

is an isomorphism and VM,A′ ◦j is injective (and in this case, the map j is automatically injective, so it is
usually dropped from the notation and we identify L with an A′-submodule of MA′). It is important to note
that in the presence of the first condition, the second condition is equivalent to the natural k-linear map

L[m]⊕ ker VM →MA′ [m]

being an isomorphism [2, Lemma 2.7]. One defines the categories of connected and unipotent finite Honda
systems (denoted SHf,c

A′ , SHf,u
A′ ) in a similar manner. The full subcategories of objects killed by p are

denoted S̃H
f

A′ , etc. The categories such as ‘finite pre-Honda systems with descent data’ (denoted DPSHf
A′ ,

etc.) are defined in [2, §5]
For any G in FFA′ with e(A′) < p − 1 (resp. in FFcA′ , FFuA′ with e(A′) ≤ p − 1), the finite pre-Honda

system LMA′(G) is in fact a finite Honda system (and is connected/unipotent if and only if G is). The
contravariant functor LMA′ : FFA′ → SHf

A′ is fully faithful and essentially surjective when e(A′) < p− 1. If
we restrict to the categories of connected objects, or unipotent objects, then the resulting functors (denoted
LM c

A′ , LM
u
A′) are fully faithful and essentially surjective when e(A′) ≤ p − 1. What is important to also

note is that in these cases, all of the relevant categories are abelian, with kernels and cokernels on the group
scheme side given by the usual scheme-theoretic constructions (which yield flat results!), and on the module
side the functors such as SHf

A′ → PSHf
A′ , etc. are exact. This enables one to carry out explicit computations

with short exact sequences in terms of Honda systems.
For more detailed discussions of base change in terms of Honda systems, as well as convenient criteria to

determine when an abstractly constructed finite pre-Honda system is actually a finite Honda system, etc.,
see [2].

1. The Deformation Problem

1.1. Formulation of Problem.
Fix a prime p and a finite field k with characteristic p, as well as a representation ρ : Dp → GL2(k). Choose

a subfield K′ ⊆ Qp with finite degree over Qp and with absolute ramification index e = e(K′) ≤ p− 1. We
write A′ the for valuation ring of K′ and κ for the residue field of A′.

Assume that ρ|GK′ is A′-flat, and in fact that it is the generic fiber of a finite flat group scheme G(ρ|GK′ )/A′
which is connected and unipotent. We claim that under these conditions, G(ρ|GK′ ) is unique up to canonical
isomorphism (and is the unique finite flat A′-group scheme with generic fiber ρ|GK′ ).

The only point to check for this uniqueness is that any finite flat A′-group scheme G with generic finite
ρ|GK′ must be connected (this is actually only an issue if e(K′) = p−1), in which case we can use Raynaud’s
full faithfulness theorem, which asserts that passage to the generic fiber is fully faithful on the category
of finite flat commutative connected A′-group schemes [2, Lemma 4.1]. Assume otherwise, so G admits a
non-trivial étale quotient Gét (with p-power order, and therefore unipotent). Passing to generic fibers, this



6 BRIAN CONRAD

gives rise to a non-zero unramified quotient of ρ|GK′ , viewed as an Fp-representation space. By the full
faithfulness in Raynaud’s theorem for unipotent group schemes, this generic fiber quotient map must be
induced by a non-zero map from the unipotent (and connected) G(ρ|GK′ ) to the étale Gét. This is impossible.

Note that if K′ is an unramified extension of a subextension K ′/Qp with valuation ring A′, then ρ|GK′ is
A′-flat by Galois descent from Spec(A′) to Spec(A′). For details about Galois descent formalism over rings
in the limited context we need, see [1, Example B, §6.2]. The reason Galois descent is applicable here is
because of Raynaud’s full faithfulness theorem for passage to the generic fiber for finite flat commutative
group schemes [2, Lemma 4.1]. In down-to-earth terms, any Galois descent data on the generic fiber ring
as a K′-group scheme must respect the subring of the A′-group scheme which we start with. Moreover,
the finite flat A′-group scheme G(ρ|GK′ ) with generic fiber ρ|GK′ is unique up to canonical isomorphism, is
connected and unipotent, and we have canonically

G(ρ|GK′ )×A′ A
′ ' G(ρ|GK′ )

as A′-group schemes. We will often abuse notation and write things like M(ρ|GK′ ) rather than M(G(ρ|GK′ )/κ);
because of the uniqueness of G(ρ|GK′ ), no confusion is possible.

The final hypothesis we impose is that for M = M(ρ|GK′ ), the canonical sequence of groups

(1) 0→M/VM
F→M = M/p→M/FM → 0

is exact. Because of how formation of Dieudonne modules behaves with respect to base change of the perfect
base field (see [7, Ch III, §2.2, Prop 2.2(i)] for the case of a finite algebraic extension; the case of a general
extension follows from this — see the proof of [2, Thm 4.6]), the exactness property (1) depends only on ρ|IK′

(this amounts to checking (1) after applying ⊗κκ). In particular, for K′ and K ′ as above, ρ|GK′ satisfies the
exactness condition (1) if and only if ρ|GK′ does. We will later describe which ρ arise.

An important point to note here is that if k′/k is a finite extension, then ρ satisfies the above hypotheses
if and only if ρ′ = ρ ⊗k k′ does. The ‘only if’ direction is seen by choosing a k-basis for k′. For the
‘if’ direction, we use the method of scheme-theoretic closure to see that ρ|GK′ arises from a closed finite
flat subgroupscheme of ρ′|GK′ . Since a closed flat subgroupscheme of a finite flat connected and unipotent
commutative A′-group scheme is again connected and unipotent, it remains to check that the exactness
condition on Dieudonne modules descends. By choosing a k-basis of k′, this is readily seen.

Fix a mixed characteristic discrete valuation ring O with residue field k and let C(O) denote the category
of complete local noetherian O-algebras with residue field k (and morphisms are local maps of O-algebras).
We make the following general definition:
Definition 1.1.1. The functor

FK′,O = FK′,O(ρ) : C(O)→ Set

is defined by letting FK′,O(R) be the set of all deformations ρ of ρ to GL2(R) such that for all n ≥ 1,
ρ|GK′ mod mn

R is the generic fiber of a finite flat group scheme Gn(ρ|GK′ ) over A′. An element in FK′,O(R)
is called an OK′-flat deformation of ρ.

The result [15, Prop 1.1] shows that FK′,O is a functor in the obvious manner. The ramification hypothesis
on K′ ensures that Gn(ρ|GK′ ) is unique up to canonical isomorphism if it exists, so our deformation problem
is a reasonable one. Indeed, by [2, Lemma 4.1], we need only to check that Gn(ρ|GK′ ) is necessarily connected.
This is checked by a slight generalization of the above proof that G(ρ|GK′ ) is connected, as we now explain.
Use the method of scheme-theoretic closure [16, §2.1, §2.2] and the filtration of ρ mod mn

R by powers of mR

to get a filtration of Gn(ρ|GK′ ) by finite flat group schemes whose successive quotients have generic fibers
which are quotients of ρ|GK′ . In a short exact sequence of finite flat A′-group schemes, if any two objects
are connected, so is the third. Thus, it suffices to show that a quotient of the Fp[GK′ ]-module ρ|GK′ cannot
arise as the generic fiber of a finite flat A′-group scheme with a non-trivial étale quotient. This follows from
Raynaud’s full faithfulness theorem for unipotent A′-group schemes.

We note that by the method of scheme-theoretic closure, subrepresentations and quotients of the generic
fiber representation of a finite flat commutative OK′ -group scheme are again OK′ -flat. This is often used
without comment.
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1.2. Changing the Data.
Assume that ρ has trivial centralizer (we will prove this in Theorem 2.2.1). By [15, Thm 1.1], FK′,O(ρ)

satisfies Schlessinger’s criteria. Thus, a universal OK′ -flat deformation

ρuniv : Dp → GL2(Runiv
K′,O(ρ))

exists. Our main task is to determine the structure of the universal deformation ring Runiv
K′,O(ρ). When

det ρ|Ip = ω|Ip , ρ is irreducible, K′ = Qp, O = W (k), and p 6= 2, it is proven by Ramakrishna in [15,
Thm 3.1] that the universal deformation ring is (abstractly) isomorphic to O[[T1, T2]].

An argument due to Faltings explains how the deformation ring changes if we enlarge the residue field k
or the ‘coefficient ring’ O. Consider an extension O→ O′ inducing a finite extension k → k′ on residue fields,
so the representation ρ′ = ρ⊗k k′ : Dp → GL2(k′) has a trivial centralizer and satisfies the same hypotheses
as ρ (with k′ replacing k). Let R = Runiv

K′,O(ρ) and R′ = Runiv
K′,O′(ρ

′) be the corresponding deformation rings.
Since O → O′ is a finite flat local map, the ring O′ ⊗O R is a complete local noetherian O′-algebra with
residue field k′. Using the A′-flat ρ′-deformation O′ ⊗O ρ

univ and the universality of ρ′univ, we get a natural
local O′-algebra map

rO,O′ : R′ → O′ ⊗O R.

A related map is defined as follows. The extension of scalars k[ε]→ k′[ε] gives rise to a natural map of sets
FK′,O(ρ)(k[ε]) → FK′,O′(ρ′)(k′[ε]) which is compatible with the intrinsic k- and k′-vector space structures,
so in terms of deformation rings, this induces a k′-linear map of dual spaces

rO,O′ : (mR/(m2
R,mOR))∗ ⊗k k′ → (mR′/(m2

R′ ,mO′R
′))∗.

It is straightfoward to check that rO,O′ is exactly the map obtained by applying HomC(O′)(−, k′[ε]) to rO,O′
and composing with the inverse of the canonical k′-linear isomorphism k′ ⊗k V ∗ ' (k′ ⊗k V )∗ for the finite-
dimensional k-vector space V = mR/(m2

R,mOR).
Lemma 1.2.1. The maps rO,O′ and rO,O′ are isomorphisms. Also, Runiv

K′,O′(ρ
′) ' O′[[T1, . . . , Tn]] as an

O′-algebra if and only if Runiv
K′,O(ρ) ' O[[T1, . . . , Tn]] as an O-algebra.

Proof. See [22, Ch 1, pp.457-8] for an outline of Faltings’ proof that rO,O′ is an isomorphism (for complete
details, see [3, Thm 1.1]). From this it follows that rO,O′ is an isomorphism, by applying HomC(O′)(−, k′[ε])
to rO,O′ . For the second assertion, the ‘only if’ direction is clear. To prove the ‘if’ direction, note that by
[13, Thm 23.7(i)], R is a priori regular of dimension n+ 1 because the local map R→ R⊗O O′ is finite flat
and O′[[T1, . . . , Tn]] is regular with dimension n + 1. Also, since rO,O′ is an isomorphism, the k-dimension
of mR/(m2

R,mOR) is n. Lifting a basis to mR, we get a surjective O-algebra map O[[T1, . . . , Tn]] → R. By
dimension considerations, the kernel is 0. �

An important consequence of this lemma is that when studying the tangent spaces of deformation functors
and proving structure theorems for deformation rings, we often do not really lose any generality by working
with O = W (k) or replacing k by a subfield to which the representation ρ descends (note that descending
the field of definition of ρ does not harm any of the original hypotheses).

2. Some Applications of Finite Honda Systems

2.1. Preliminaries.
Recall that any two finite extensions K1, K2 of Qp inside of Qp with the same tame absolute ramification

index have the same composite with Qun
p . By Galois descent of valuation rings and Raynaud’s full faithfulness

results [2, Lemma 4.1], it follows that the corresponding flat deformation functors FK1,O(ρ) and FK2,O(ρ)
are the same. Also, since IK1 = IK2 , the two Theorems in the Introduction are insenstive to replacing K1

by K2. Thus, our problem depends on K′ only through e = e(K′ /Qp) (recall that the Dieudonne module
hypothesis (1) depends only on ρ|IK′ ), so we can choose a convenient K′ if we so desire. For example, we
can take K′ to be the Galois closure of a totally ramified finite extension K ′/Qp with e = e(K ′) ≤ p − 1,
so K′ = K ′(ζe) and e(K′) = e(K ′) also. We often immediately reduce to the case of such special K′ in our
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proofs, and we generally indicate this by saying that we choose K′ to be of special type (and this implicitly
includes a choice of K ′ too).

We introduce some notation in the case of a K′ of special type. Pick such K′ and K ′. Since K ′/Qp is
totally tamely ramified, in general we can fix a choice of uniformizer π such that πe = pu0 with u0 ∈ Z×p .
It will often be enough to work with K ′ in place of K′. The fact that OK′ has residue field Fp makes K ′

somewhat useful in calculations; on the other hand, K′ /Qp is Galois, a fact that is useful also. Trivially K ′

and Qp(ζe) are linearly disjoint over Qp, so Gal(K′ /K ′) ' Gal(Qp(ζe)/Qp). Hence,

Gal(K′ /Qp) ' Gal(K′ /Qp(ζe))oGal(K′ /K ′) ' µe oGal(Qp(ζe)/Qp),

with µe = µe(Qp), and we have the usual semidirect product structure

σ · ζ · σ−1 = ζσ

for ζ ∈ µe and σ ∈ Gal(Qp(ζe)/Qp) (and ζσ denotes the canonical action of σ on ζ ∈ µe(Qp)). This will be
used frequently.

Let m and n denote the maximal ideals of A′ and A′ respectively, and let κ = A′/n ' Fp(ζe) denote
the residue field of A′ (so we identify µe with µe(κ)). At this point we will begin to use the results and
notation introduced in [2], with A′ there equal to our A′ above, so A now denotes Zp. The categories of
finite (pre-)Honda systems and finite (pre-)Honda systems with descent data are defined as in [2, §5].

Let LMA′(ρ) def= (L,M) be the p-torsion object in SHf,c
A′ corresponding to the generic fiber ρ|GK′ ; as we

noted in §1.1, this is unique up to canonical isomorphism [2, Lemma 4.1]. Where convenient, we’ll later use
the analogous notation LMA′(ρ) for the Honda system of the descended finite A′-group scheme (the unique
one with generic fiber ρ|GK′ ). Let D(ρ) be the descent data on LMA′(ρ) obtained from ρ|GK′ via ρ, as in

the discussion in [2, §5], so (LMA′(ρ),D(ρ)) is an object in D̃PSH
f

A′ .
Before stating the next lemma, we need to restrict the Honda systems we consider. Since our representation

spaces admit an action of O, we only wish to consider finite Honda systems which admit an action of O. We
let SHf

A′,O, DPSHf
A′,O, etc. denote the categories whose underlying objects are finite Honda systems over

A′, finite pre-Honda systems over A′ with ‘descent data’, etc. equipped with the structure of a map from
O to the endomorphism ring of the object (compatible with the Honda system structures, the descent data,
etc.). Morphisms are required to respect the action of O. These new categories are abelian and the ‘forget
the O-action’ functors are visibly exact. As an example, when O = W (k), (LMA′(ρ),D(ρ)) is an object in

D̃PSH
f

A′,W (k). In order to allow for the case O 6= W (k), the definitions of P̃SH
f

A′,O and D̃PSH
f

A′,O should
include an mO-torsion hypothesis, not just a p-torsion hypothesis.

We will sometimes need to consider a finite extension of scalars k → k′. It is very important to interpret
this in terms of Honda systems with descent data. This requires some care to treat rigorously. Since k′/k
is separable, there is a natural k-linear section Trk′/k : k′ → k, so there is a natural k-linear surjective map
ρ′ = ρ⊗k k′ → ρ. By contravariance, we get a k-linear injective map

LMA′(ρ)→ LMA′(ρ⊗k k′),

visibly compatible with the descent data on both sides. Thus, we get a k′-linear map

LMA′(ρ)⊗k k′ → LMA′(ρ⊗k k′),

where the left side is defined in the obvious manner (preserving the Honda system conditions, which were
k-linear at the start). Moreover, there is an obvious descent data D(ρ)⊗ 1 defined on the left side and this
makes the map a morphism in the category in DSHf

A′,O. We claim this is an isomorphism.
It is not important that the k-linear section k′ → k was taken to be the trace map; the claim certainly

holds for all such sections if it holds for a single one (since Homk(k′, k) is 1-dimensional over k′). However,
using the trace is technically convenient due to the transitivity and Galois invariance properties of traces.
By transitivity, we see that in order to check that the above map is an isomorphism, we can check over a
larger finite extension k′′/k over k′/k. Thus, we are reduced to the case in which k′/k is a finite Galois
extension (the point here is that the argument we are giving can be applied to settings in which the residue
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fields are merely perfect of characteristic p and not necessarily finite). The isomorphism condition can be
checked on the Dieudonne module parts. Let G and G′ be the Fp-group scheme closed fibers of G(ρ|GK′ )
and G(ρ′|GK′ ) respectively, so there are natural actions of k and k′ on G and G′ respectively. Also, there is
a natural ‘semilinear’ right action of Gal(k′/k) on G′.

The epimorphism G′ → G is Gal(k′/k)-equivariant, because the trace map k′ → k is Gal(k′/k)-invariant.
Thus, we get a k-linear injection M(G) ↪→ M(G′) which is invariant under the semilinear left Gal(k′/k)-
action on the finite-dimensional k′-vector space M(G′) induced by M-functoriality. Our task is to show that
the natural k′-linear map k′ ⊗k M(G)→ M(G′) is an isomorphism. Since k′ ⊗k M(G′)Gal(k′/k) = M(G′), it
is enough to show that the k-linear injection M(G) ↪→M(G′)Gal(k′/k) is an isomorphism. In other words, we
need to check that dimk(M(G)) = dimk′(M(G′)). Since our group schemes are over Fp, [2, Thm 4.4] implies

dimk M(G) = dimk ρ = dimk′ ρ
′ = dimk′ M(G′),

as desired. We will frequently use this compatibility with finite extension of scalars on k.
The tangent space

tFK′,O(ρ) = (FK′,O(ρ))(k[ε])

is naturally a k-vector space [17, Lemma 2.10]. The following lemma will be essential, and is an application
of [2, Theorems 3.6, 4.1, 4.9].
Lemma 2.1.1. For K′ of special type, there is a canonical isomorphism of k-modules

tFK′,O(ρ) ' Ext1

D̃PSH
f

A′,O
((LMA′(ρ),D(ρ)), (LMA′(ρ),D(ρ))).

2.2. Initial Description of ρ.
Fix an algebraic closure k of k.
Twisting ρ by an unramified continuous character χ : Dp → k× has no effect on our original hypotheses on

ρ, nor does it affect the flat deformation ring, because the property of being A′-flat can be checked on Ip or
even IK′ (and deformations of ρ and ρ⊗χ are related via twisting by the unramified Teichmüller lifting of χ).
Thus, if some unramified twist of ρ⊗k k can be defined over Fp, then it is enough to consider the deformation
ring attached to the associated 2-dimensional Fp-representation. Before we explain how to reduce to this
case in some situations, we introduce some representations which make explicit which Fp-representations
will arise from our ‘descent’.

Choose an integer m. The representation

ρm : Dp → GL2(Fp)

is defined to be the unique Fp-descent of the two-dimensional semisimple Fp2-representation IndDpDp2
(ψm0 ).

The uniqueness of ρm follows from the Brauer-Nesbitt Theorem. The existence follows from the fact that
IndDpDp2

(ψm0 ) has all characteristic polynomials with Fp coefficients (because the ‘twist’ of ψ0 by Frobp ∈ Dp

is ψp0), and this allows one to carry out a descent argument in which the obstruction vanishes because the
Brauer group of a finite field is trivial. A more conceptual argument (which ultimately reduces to the same
vanishing result for Brauer groups) is given in [5, Lemme 6.13].

We have the following two useful facts, which we will prove shortly:
Theorem 2.2.1. Either ρ is absolutely irreducible or is reducible with a trivial centralizer.

Theorem 2.2.2. Assume ρ is absolutely irreducible. For some unramified character χ : Dp → k
×

and some
integer m, there is an isomorphism of k[Dp]-modules

(ρ⊗k k)⊗ χ ' ρm ⊗Fp k.

The usefulness of Theorem 2.2.2 lies in the fact that when ρ is irreducible, the study of its ‘flat’ deformation
theory can be reduced to the case k = Fp, which drastically simplifies the descent calculations we will carry
out later. Thus, the complications really arise in order to treat reducible representations. We note in passing
that Raynaud’s classification of finite flat group schemes with simple generic fibers allows us to determine
exactly which m arise in Theorem 2.2.2. The precise result is:
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Corollary 2.2.3. Choose an irreducible continuous representation ρ : Dp → GL2(k). There exists a con-
nected and unipotent finite flat commutative group scheme G/A′ for which the sequence

0→M(G/k)/V F→M(G/k)/p→M(G/k)/F → 0

is exact and G(Qp) ' ρ|GK′ as GK′-modules if and only if ρ|Ip ⊗k k ' ψm⊕ψmp, where em ≡ e mod p2− 1.
In particular, det ρ|IK′ = ω|IK′ , ρ is absolutely irreducible, and ρ|IK′ ⊗k k ' ρ1|IK′ ⊗Fp k (and this latter

condition is equivalent to the conditions in the first part).

Proof. Without loss of generality, K′ is of special type. We first prove the ‘only if’ direction. We at least
know that ρ is absolutely irreducible; passing to a finite extension of scalars and and replacing ρ by an
unramified twist without loss of generality, we may assume ρ = ρm ⊗Fp k for some m. It is easy to compute
that det ρm = ωmσm, with σm : Dp → F×p the unique unramified character for which σm(Frobp) = (−1)m+1.
The condition that ρm be absolutely irreducible is equivalent to requiring that the character ψm0 be distinct
from its Frobenius twist g 7→ ψm0 (Frobp g Frob−1

p ) = ψmp0 (g), so this says that m 6≡ 0 mod p+ 1. Finally, the
A′-flatness condition, or equivalently the A′-flatness condition, can be checked on IK′ , over which ρm splits
(after extension of scalars to Fp2). Since ψ0|IK′ = ψeK′ , by Raynaud’s classification [16, Thm 3.4.3] we get
the constraint em = a+ pb with 0 ≤ a, b ≤ e.

Next, we determine when an A′
sh-group schemes G with generic fiber ψemK′ : IK′ → F×p2 is connected with

a connected dual (in which case G is unique up to canonical isomorphism). By considering separately the
cases when ψemK′ takes values in F×p and when it does not, we need to rule out the possibility of this character
or its Cartier dual being the generic fiber of an étale group scheme. By Raynaud’s classification of finite
group schemes with simple generic fibers (including the case e = p−1), this becomes the condition that ψemK′
and its Cartier dual are trivial. That is, we want

em 6≡ 0 mod p2 − 1.

Now we impose the extra exactness hypothesis on the Dieudonne module of the closed fiber. In view of
the connectedness and unipotence, together with dimFp

M(G/Fp) = 2 and the fact that the sequence (1) is
always at least right exact, exactness is equivalent to saying that F and V both have non-zero action on M .
Equivalently, using the formulation of Cartier duality in terms of Dieudonne modules [7, Ch III, §5.3, Cor 2],
the action of F is non-zero on both M and the dual Dieudonne module M∗ attached to the Cartier dual
group scheme. Thus, if we can write down the affine rings of the A′sh-group schemes with generic fibers ψemK′
and ωψ−emK′ = ψ

(p+1−m)e
K′ , we need only ensure that the closed fiber rings do not have the augmentation ideal

killed by the pth power map.
By [16, Thm 3.4.1], the affine ring corresponding to ψemK′ = ψa+pb

K′ is

A′
sh[X1, X2]/(Xp

1 − δ1X2, X
p
2 − δ2X1),

where ord(δ1) = a, ord(δ2) = b, and 0 ≤ a, b ≤ e < p (here, ord denotes the normalized order function on
the discrete valuation ring A′sh). Thus, we must have (by the F 6= 0 condition on closed fiber) either a or b
vanishing, yet by connectedness at least one of these must not vanish. This yields a = 0, 0 < b ≤ e or b = 0,
0 < a ≤ e. Applying the same considerations to the dual, where a and b are replaced by e − a and e − b
respectively, we see that the possibilities for (a, b) are (0, e), (e, 0). This corresponds to em ≡ e, pe mod p2−1.
Replacing m by mp if necessary, we may suppose em ≡ e mod p2 − 1 (which implies m 6≡ 0 mod p+ 1).

It is straightfoward to run the argument in reverse to see that all ρ having the desired form as k[Ip]-modules
do indeed satisfy the required irreducibility and A′-flatness conditions. For any such ρ, we have

det ρ|IK′ = ψ
(em)(p+1)
K′ = (ψeK′)

p+1 = (ψ|IK′ )
p+1 = ω|IK′

(recall ψK′ = ψK′ on IK′ = IK′). It is straightfoward to check that the conditions in the Corollary are
equivalent to saying that ρ|IK′ ⊗k k ' ρ1|IK′ ⊗Fp k.

�

With the corollary settled, we return to the theorems:
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Proof. (of Theorem 2.2.1) First we claim that if ρ is irreducible, then it is automatically absolutely irreducible.
If not, then after a finite extension of scalars we are in the case of a reducible ρ ' χ1⊕χ2, which has non-trivial
centralizer. More generally, if ρ is reducible, so

ρ '
(
χ2 ∗
0 χ1

)
,

it remains to show that ρ has trivial centralizer. As we shall see via an intricate Honda system computation
in §2.3, χ1 6= χ2. Thus, the condition of ρ having a trivial centralizer is equivalent to ρ not being a split
extension of χ2 by χ1. So assume ρ ' χ1 ⊕ χ2. We seek a contradiction.

We claim that the χi are ramified. If some χi is unramified, then it can be expressed as the generic fiber
of a finite étale p-power order group scheme G over Zp, so over K′ we have a non-zero group scheme map
between the generic fibers of the étale G ×Zp A′ and the connected G(ρ|GK′ ). Since both of these group
schemes are unipotent, this generic fiber map comes from a non-zero map between the group schemes over
A′ [2, Lemma 4.1]. But there are no non-zero group scheme maps between a connected group scheme and
an étale one. By a similar argument, the χi have ramified Cartier duals.

Thus, χi = ωniηi with ηi : Dp → k× unramified and ni ∈ Z/(p − 1) satisfying ni 6= 0, 1 (in particular,
p 6= 2). Using scheme-theoretic closure, each χi is the generic fiber of a finite flat A′-group scheme Gi, fitting
into a short exact sequence of finite flat commutative A′-group schemes

(2) 0→ G2 → G(ρ|GK′ )→ G1 → 0.

Since the middle term is connected with a connected dual, the same holds for each Gi. We claim that the
closed fiber of each Gi is a product of copies of αp/κ. In terms of Dieudonne modules, this says simply that
the actions of F and V on the Dieudonne module of the closed fiber Gi/κ are zero. This can be checked over
an algebraic closure of κ, so by the compatibility of Dieudonne modules and base change of the (perfect)
base field, it is enough to check that the geometric closed fibers of the Gi’s are products of αp’s.

Passing to a geometric closed fiber corresponds to passage to the closed fiber of the base change to the
strict henselization of A′. On the generic fiber, base changing to A′

sh corresponds to restriction to the inertia
group. That is, we need to look at ωni ⊗Fp k restricted to IK′ . Picking an Fp-basis for k, we are reduced to
checking that if ωni |GK′ is the generic fiber of a finite flat A′-group scheme G, then G has geometric closed
fiber αp. If not, then the geometric closed fiber is µp or Z/p. Passing to duals if necessary, it follows that
the geometric closed fiber of G(ρ|GK′ ) or its dual has a non-trivial étale factor, contrary to connectedness.

We want to translate (2) into the language of Dieudonne modules, assuming K′ to be of special type
without loss of generality. Recall that K ′ has residue field Fp and every finite flat A′-group scheme equipped
with a generic fiber descent to Qp (or even K ′) admits a canonical descent to an A′-group scheme. This
enables us to apply [2, Thm 4.4] to conclude that the Dieudonne module M of the closed fiber of G(ρ|GK′ )
has the structure of a 2-dimensional k-vector space on which F and V act linearly and the Dieudonne module
Mi of the closed fiber of the A′-descent of Gi has the structure of a 1-dimensional k-vector space on which F
and V act as zero (here is where the above αp result is used). In other words, applying the Dieudonne module
functor to the closed fiber of the A′-descent of (2) yields a short exact sequence of k[F, V ] = k[X,Y ]/(XY −p)
modules

(3) 0→M1 →M →M2 → 0.

This sequence is certainly split, since ρ|GK′ is split. But in fact this sequence cannot be split. Indeed, it
splits if and only if F and V act as zero on M ; but this possibility is ruled out by the hypothesis that the
sequence (1) is exact!

�

Now we prove Theorem 2.2.2.

Proof. This is a standard argument, which we reproduce for completeness. Since ρ ⊗k k is irreducible and
therefore semisimple, the normality of Ip in Dp implies that ρ|Ip is semisimple and therefore tame. Thus, the



12 BRIAN CONRAD

absolutely irreducible ρ is abelian on tame inertia, so the conjugation action of Frobenius on tame inertia
yields

ρ|Ip ⊗k k ' ψ′ ⊕ ψ′
p

with ψ′
p2

= ψ′, so ψ′ = ψm0 |Ip for some m. This gives

ρ|Dp2 ⊗k k ' ψm0 χ1 ⊕ ψmp0 χ2

with χi : Dp2 → k
×

unramified characters. Since Ẑ has no non-trivial 2-torsion, we can construct an
unramified square root of χ−1

1 ; twisting through by this, we may suppose

ρ|Dp2 ⊗k k ' ψm0 ⊕ ψ
mp
0 χ

with an unramified χ : Dp2 → k
×

.
Since ρ is absolutely irreducible, it is now clear that

ρ⊗k k ' IndDpDp2
(ψm0 )⊗Fp2 k ' ρm ⊗Fp k,

as desired.
�

2.3. Translation into Honda systems.
As a warm-up for the descent computations we will later need to perform with Honda systems, we would

like to illustrate the procedure by describing the possible ρ which can arise. This also involves standardizing
some notation we always will use in our descent calculations. In the reducible case, we suppose we have an
exact sequence

0→ χ2 → ρ→ χ1 → 0.
In the case of K′ of special type, we want to determine all possibilities for LMA′(ρ) and the descent data,
as well as for LMA′(ρ). We will then translate this into a more representation-theoretic description and will
easily remove the special type condition on K′.

By using scheme-theoretic closure, we know that in the reducible cases, each χi|GK′ is the generic fiber
of a connected, unipotent A′-group scheme Gi, fitting into the exact sequence (2). On the closed fibers this
gives a non-split Dieudonne module sequence, as argued earlier. Since the only simple finite flat commutative
group schemes over Zun

2 with 2-power order are µ2 and Z/2, neither of which is connected and unipotent,
we see that p 6= 2 in the reducible cases.

Since (3) does not split, either F or V is non-zero on M . In fact, both are non-zero. Indeed, by the
exactness (1) it is enough to show that neither FM nor VM can fill up all of M . Since the closed fiber of
G(ρ|GK′ ) and its Cartier dual are both connected, the description of Cartier duality in terms of Dieudonne
modules [7, Ch III, §5.3, Cor 2] shows that both F and V act in a nilpotent manner on M . Hence,
FM,VM 6= M, 0. Pick e2 /∈ kerF and define e1 = Fe2 6= 0, so kerF = ke1 and {e1, e2} is an ordered k-basis
of M , with respect to which we have

F =
(

0 1
0 0

)
, V =

(
0 s−1

0 0

)
,

with s ∈ k×.
The condition that the Dieudonne module sequence (3) is induced by a sequence of finite flat group schemes

over A′, and even over A′, imposes serious constraints. We will now use the full force of the classification
established in [2] in order to compute what the actual constraints are. The resulting computation will be
lengthy. In the reducible cases, let (Li,Mi) = LMA′(χi) be the finite Honda system over A′ attached to the
unique finite flat A′-group scheme with generic fiber χi|GK′ . The exact sequence

(4) 0→ (L1,M1)→ (L,M)→ (L2,M2)→ 0

is what we want to study in the reducible cases. On the level of Dieudonne modules, it is just the sequence
(3), made ‘explicit’ with the ordered k-basis {e1, e2} of M , where e2 necessarily maps to a k-basis e2 of M2

and e1 is necessarily a k-basis of M1.
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Before carrying out our study of (4), we need to give a somewhat explicit description of what LMA′(ρ)
looks like. The reducibility is not relevant for this part. View the (A′/p)⊗Fp k-module MA′ as a quotient of
(A′ ⊗AM)⊕ (p−1m⊗AM (1)) by the submodule

{(u1 ⊗ a1e1 + u2 ⊗ a2e2 − w2 ⊗ b2e1, w1 ⊗ b1e1 + w2 ⊗ b2e2 − p−1u2 ⊗ s−1a2e1)|ui ∈ m, wi ∈ A′, ai, bi ∈ k},

as in its definition [2, §2] (here, we’ve also invoked the explicit matrix formulas for F and V as k-linear
maps). At this point, a word of warning should be given about the M (1) term above. Since A = Zp, so
Frobenius on A is trivial, M (1) is the same as M as a k-module. However, we will shortly be making base
changes that enlarge the residue field from Fp to κ, so in the calculations done after base change it will be
very important to remember this twisting by Frobenius (since over W (κ) it cannot generally be ignored). A
possible source of confusion below is that we have two finite fields floating around, with very different roles:
there is the field κ from the closed fiber of A′ and there is the field k from the generic fiber representation
space; F and V act κ-semilinearly and k-linearly.

Let ε1 denote the image of (1 ⊗ e2, 0) in the quotient MA′ and let ε2 denote the image of (0, p−1π ⊗ e2)
in the quotient MA′ . It is easy to check that the (A′/p)⊗Fp k-module map

((A′/p)⊗Fp k)ε1 ⊕ ((A′/p)⊗Fp k)ε2 →MA′

is surjective and so by a length comparison, using [2, Lemma 2.1], this is an isomorphism. In particular,
MA′ is free of rank 2 as an (A′/p) ⊗Fp k-module. Note that the residue class of (1 ⊗ e1, 0) in MA′ is equal
to (p/π)ε2 and the residue class of (0, p−1π ⊗ e1) in MA′ is equal to sπε1. Also, note that ε2 is not entirely
canonical, as it involves a choice of π. This will be important below for our descent calculations.

Since L surjects onto coker FM , L = ((A′/p) ⊗Fp k)(ε1 + αε2) for some α ∈ (A′/p) ⊗Fp k ' k[π]/πe.
Making the change of basis e2  e2 + te1 for t ∈ k, we get the change

α (1− αtsπ)−1(α− tp/π),

so we can (and do) always suppose either that α = 0 (which ‘rigidifies’ the choice of basis up to scaling
{e1, e2} by the same element of k×) or that α = aiπ

i + πi+1(. . . ) for a unique ai ∈ k× and 0 ≤ i ≤ e − 2,
with ai and i independent of the choice of basis {e1, e2} as above. In particular, α = 0 whenever e = 1.
We emphasize that from now on we only work with bases such that one of the above conditions holds (and
exactly one of these conditions can hold). This is visibly compatible with base change of Honda systems.

Making the étale base change A′ → A′, we obtain LMA′(ρ) = (L,M) with

M = W (κ)⊗AM = (κ⊗Fp k)e1 ⊕ (κ⊗Fp k)e2

and the maps F , V are semilinear with respect to κ, linear with respect to k, and satisfy F (e1) = V (e1) = 0,
F (e2) = e1, V (e2) = s−1e1 [7, Ch III, §2, Prop 2.2(i)]. Also, L ⊆ A′ ⊗A′ MA′ ' MA′ is given by A′ ⊗A′ L.
See [2, Lemma 4.7] for more details.

We encode ρ as descent data (relative to A → A′) on the finite Honda system (L,M) over A′. This is
nothing other than a Gal(Qp(ζe)/Qp) ' Gal(κ/Fp)-semilinear action of Gal(K′ /Qp) on M such that the
induced action on MA′ takes L back to itself. In order that the descent to A′ is LMA′(ρ), we need to require
that the action of Gal(K′ /K ′) ' Gal(κ/Fp) on M = W (κ)⊗AM is the usual semilinear one fixing M . The
only issue is how Gal(K′ /Qp(ζe)) ' µe acts on the pair (L,M) (recall that the isomorphism with µe is given
by the scaling action on π, denoted πζ = ζπ). We must keep in mind the constraint arising from L, which
says that the induced semilinear action on MA′ must take L isomorphically back to itself.

We now examine the reducibile cases in more detail. Consider the short exact sequence of (A′/p)⊗Fp k-
modules

(5) 0→ (M1)A′ →MA′ → (M2)A′ → 0.

Let’s makes this more explicit. Let x1 ∈ (M1)A′ denote the class of (1 ⊗ e1, 0), let x2 ∈ (M1)A′ denote the
class of (0, p−1π ⊗ e1), let y1 ∈ (M2)A′ denote the class of (1 ⊗ e2, 0), and let y2 ∈ (M2)A′ denote the class
of (0, p−1π ⊗ e2). It is fairly straightfoward to check that

((A′/m)⊗Fp k)x1 ⊕ ((A′/me−1)⊗Fp k)x2 = (M1)A′ , ((A′/m)⊗Fp k)y1 ⊕ ((A′/me−1)⊗Fp k)y2 = (M2)A′ .
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The short exact sequence of (A′/p)⊗Fp k-modules (5) is characterized by

x1 7→ (p/π)ε2, x2 7→ sπε1, εi 7→ yi.

Just as in our analysis of L in the general setting, we see that L1 is generated over (A′/p) ⊗Fp k by
x1 + βx2 for some β ∈ (A′/p) ⊗Fp k. The element x1 + βx2 ∈ L1 maps to (p/π)ε2 + βsπε1 in MA′ . Since
L1 = (M1)A′ ∩L by [2, Thm 4.3], we see that βsπα = p/π in (A′/p)⊗Fp k. Hence, α 6= 0 and β 6= 0 (in fact,
β has non-zero image in (A′/me−1)⊗Fp k), so we may consider the unique representative of α of the form

aiπ
i + · · ·+ ae−1π

e−1

(with all ar ∈ k, ai ∈ k×), with 0 ≤ i ≤ e− 2. This is very important. In particular, this shows that α 6= 0
in the reducible cases.

We can write β = bjπ
j(1 + π(. . . )) with bj ∈ k× and 0 ≤ j ≤ e − 2. Since x1 is m-torsion, we can

scale x1 + βx2 by (1 + π(. . . ))−1 so that we may (and do) suppose β = bjπ
j for a canonical bj ∈ k× and

0 ≤ j ≤ e − 2 independent of the choice of basis e2. The condition βsπα = p/π gives i + j + 2 ≡ 0 mod e
and bjsai = u−1

0 in k. Since 0 < i+ j + 2 < 2e, we conclude that α = aπi + πi+1(. . . ) for a unique a ∈ k×,
0 ≤ i ≤ e− 2 and β = (asu0)−1πe−2−i.

Now return to the general (i.e., possibly irreducible) case. We have descent data on LMA′(ρ), compatible
with the short exact sequence (4) when ρ is reducible. The condition that the W (κ)-linear action [ζ] on
M = W (κ)⊗AM ' κ⊗Fp M commutes with F and V (for ζ ∈ µe) is that

[ζ] =

(
d

(p)
ζ cζ
0 dζ

)
,

where cζ , dζ ∈ κ⊗Fp k, dζ is a unit, and d
(p2)
ζ = dζ . For σ ∈ Gal(K′ /K ′) ' Gal(κ/Fp) we have

(6) σ(dζ) = dζσ , σ(cζ) = cζσ

from the condition [σ] ◦ [ζ] = [ζσ] ◦ [σ]. The multiplicative property [ζ1] ◦ [ζ2] = [ζ1ζ2] yields

(7) cζ1ζ2 = d
(p)
ζ1
cζ2 + dζ2cζ1 ,

and ζ 7→ dζ is a group map from µe(κ) to µe(κ⊗Fp k).
It is easy to compute that the ζ-semilinear automorphism [ζ]A′ : MA′ 'MA′ is given by

[ζ]A′(ε1) = dζε1 + cζ(p/π)ε2, [ζ]A′(ε2) = ζ(d(p)
ζ ε2 + c

(p)
ζ sπε1),

so
[ζ]A′(ε1 + αε2) = (dζ + ζαζc

(p)
ζ sπ)ε1 + (cζ(p/π) + ζαζd

(p)
ζ )ε2.

Hence, [ζ]A′ takes L to itself (inside of MA′ ' A′ ⊗A′MA′) if and only if the following relation holds, which
we’ll call (for ease of reference) the Fundamental Relation:

(8) α(dζ + ζαζc
(p)
ζ sπ) = cζ(p/π) + ζαζd

(p)
ζ .

In particular, we see that cζ = 0 for all ζ ∈ µe in cases with α = 0 (which, as we will see below, is equivalent
to ρ being irreducible).

Suppose now that ρ is reducible, so α = aπi + · · · 6= 0. Since i+ 1 ≤ e− 1, p/π vanishes modulo mi+1, so
if we reduce the Fundamental Relation modulo mi+1 then the cζ terms go away and we get

aidζ = ζi+1aid
(p)
ζ

in κ⊗Fp k, with ai ∈ k×, so therefore

(9) dζ = ζi+1d
(p)
ζ .

Iterating this twice and recalling that d(p2)
ζ = dζ , we obtain ζ(i+1)(p+1) = 1 for all ζ ∈ µe, so

(10) e|(i+ 1)(p+ 1).
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The final condition on the Honda system is that A′⊗A′ L1 must be stable under [ζ]A′ (this is required by
the definition of descent data in the context of Honda systems). This translates into the constraint that

(p/π)(d(p)
ζ ε2 + c

(p)
ζ sπε1) + βζsζπ(dζε1 + cζ(p/π)ε2) = (p/π)d(p)

ζ ε2 + βζsζπdζε1

must be a multiple of (p/π)ε2 + βsπε1. This is equivalent to having a relation of the form

β(d(p)
ζ + π(. . . )) = βζζdζ

in (A′/ne−1)⊗Fp k. Since β = (asu0)−1πe−2−i, this is equivalent to having

(11) d
(p)
ζ = ζ−i−1dζ

in κ⊗Fp k. By (9), this automatically holds.
Next we check that in the reducible cases, χ1 and χ2 have non-isomorphic Honda systems with descent

data over K′, so χ1 6= χ2. This is the important unproven fact mentioned in the proof of Theorem 2.2.1, and
therefore completes the proofs of Theorem 2.5 and Corollary 2.6. In order to analyze these Honda systems
with descent data, we compute

[ζ]A′(x1) = d
(p)
ζ x1, [ζ]A′(x2) = ζdζx2,

[ζ]A′(y1) = dζy1, [ζ]A′(y2) = ζd
(p)
ζ y2.

Thus, if we have an isomorphism between LMA′(χ1) and LMA′(χ2) compatible with the descent data (i.e.,
if χ1 = χ2), then dζ = d

(p)
ζ for all ζ ∈ µe, and also i = e−2− i, so i+1 = e/2 (in particular, e must be even).

Since dζ = ζi+1d
(p)
ζ for all ζ ∈ µe, it follows that ζe/2 = ζi+1 = 1 for all ζ ∈ µe. This is a contradiction and

therefore proves that necessarily χ1 6= χ2.
As a final basic observation, we check that in the irreducible cases, necessarily α = 0 (so α = 0 is equivalent

to ρ being irreducible). We can make a finite extension of scalars on k, so by Corollary 2.2.3 we can assume
ρ|GE ' ρ1|GE ⊗Fp k for E/K ′ some unramified finite extension inside of Qp (with valuation ring OE and
uniformizer π). Since e(A) = 1, certainly the Honda system LMA(ρ1) = (L0,M0) has its own α parameter
equal to 0, so the same holds after applying ⊗Fpk. Let e1

1, e
1
2, ε

1
1, ε

1
2 denote basis vectors associated to

LMA(ρ1⊗Fpk). Let kE denote the residue field of E, so the isomorphism LMOE (ρ1⊗Fpk|GE ) ' LMOE (ρ|GE )
gives rise to a (kE ⊗Fp k)[F, V ]-module isomorphism of Dieudonne modules

(kE ⊗Fp k)e1
1 ⊕ (kE ⊗Fp k)e1

2 → (kE ⊗Fp k)e1 ⊕ (kE ⊗Fp k)e2

given by e1
1 7→ ae1, e1

2 7→ be1 + a(p)e2, for some a ∈ (kE ⊗Fp k)× and b ∈ kE ⊗Fp k. This yields

ε11 7→ a(p)ε1 + bp/πε2,

so we must have α = (a(p))−1bp/π in (OE/p)⊗Fp k, so α is a multiple of πe−1 in (A′/p)⊗Fp k. But we have
already set up the choices of bases so that when α 6= 0, there is a non-zero πi term appearing in α with
i < e− 1. Thus, we must have α = 0, as desired.

2.4. Classification of Possible ρ. The computational method in the analysis of the reducible possibilities
will now be carried out in more detail, in order to get a more precise description of (L,M) = LMA′(ρ).
In particular, we will interpret the parameter a as an ‘unramified’ factor and the parameters i and dζ as
‘ramified’ factors which determine ρ up to unramified twisting. If we replace e2 by e2 + te1 for t ∈ k, this
gives rise to

(12) cζ  cζ + t(d(p)
ζ − dζ), α (1− αtsπ)−1(α− tp/π).

Observe as before that when α 6= 0, the ‘lowest order term’ aπi in α is unaffected by changing e2, and so
is ‘intrinsic’ (note that essentially the only other way to change the basis is to scale e1 and e2 by the same
element of k×). Keep in mind that the reducible cases are precisely the ones with α 6= 0.

Our first task in this section is to explicitly describe the characters occuring in the reducible cases.
More generally, consider the following finite Honda system over K ′. Define M = k with F = V = 0, so
MA′ = ((A′/m) ⊗Fp k)z1 ⊕ ((A′/me−1) ⊗Fp k)z2, with z1 the class of (1, 0) and z2 the class of (0, p−1π).
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Define L to be the submodule generated by z1 + aπiz2 for some 0 ≤ i ≤ e − 2 and a ∈ k×. It is readily
checked that this is a finite Honda system over A′. The associated representation χ : GK′ → k× will be
computed below.

The descent data for a Dp-representation requires us to base change to A′ and let σ ∈ Gal(K′ /K ′) act
on W (κ) ⊗Zp M ' κ ⊗Fp k as usual. The ‘unknown’ part is [ζ], which acts via a ζ-semilinear map which
sends 1 to some dζ ∈ κ⊗Fp k. Note that changing the k-basis of M has no effect on dζ . The necessary and
sufficient conditions on dζ are that ζ 7→ dζ is a Gal(κ/Fp)-semilinear map from µe(κ) to µe(κ ⊗Fp k) and
dζ = ζi+1d

(p)
ζ . Note that dζ is independent of the choice of k-basis of M . The next theorem interprets the

Honda system parameters in terms of Galois representations.
Theorem 2.4.1. The character χ above is equal to ηK′,a−1χ−p/πi+1 , where the character χx : GK′ → F×p
gives the action on the (p− 1)th roots of x in Q

×
p . In particular, χ|IK′ = ψe−i−1

1,K′ .
Suppose we are given a descent of χ to a continuous character χ0 : Dp → k×, via some data ζ 7→ dζ on

the Honda system for χ|GK′ . Then any A′-flat continuous character χ′0 : Dp → k× is an unramified twist of
χ0 if and only if χ′0|GK′ has the same descent data dζ on its Honda system over A′.

Proof. Using the fact that F and V act as 0 on M = k, the explicit knowledge of the F and V torsion in
the formal group scheme ĈWFp unravels all of the complications implicit in [2, Thm 1.9, Remark 4.2], so
the k[GK′ ]-module χ has for its underlying group the group of all Fp-linear maps

(13) φ : k → π1/pOCK′/πOCK′

such that for all b ∈ k,
φ̂(b) + (πi+1/p)̂φ(ab)

p
∈ CK′

lies in πOCK′ . Here, φ̂(·) denotes a lifting to π1/pOCK′ , and the action of k and GK′ are the obvious ones,
using the respective actions on k and CK′ in (13).

Since [2, Thm 4.4] guarantees that this abstract k[GK′ ]-module is a 1-dimensional k-vector space, in order
to study the action of g ∈ GK′ on φ 6= 0, we need to determine for which χ(g) ∈ k× we have the congruence
g(φ̂(1)) ≡ ̂φ(χ(g)) mod πOCK′ . By using extension of scalars (or rather, descent of scalars), we can assume
k = Fp(a) = Fp[a]. Say [k : Fp] = m, so {1, a, . . . , am−1} is an Fp-basis for k and knowledge of φ comes
down to knowledge of φj = ̂φ(aj) ∈ π1/pOCK′ for j ∈ Z. Defining ` = e− i− 1 (so 1 ≤ ` ≤ e− 1 ≤ p− 2),
we write ordπ(φj) = rj/p with j ∈ Z, rj ∈ Q, 1 ≤ rj ≤ p, so we must have

φj + u0π
−`φpj+1 ∈ πOCK′ .

If rj+1 = p then rj = p so by iteration φ = 0. Since φ 6= 0, we have 1 ≤ rj < p for all j. This forces
rj+1 = ` + rj/p for all j. Sending j → ∞, we get rj = `p/(p − 1) for all j, so ordπ(φj) = `/(p − 1) for all
j. A careful check of powers of π shows that it is safe to iterate the congruences in π1/pOCK′/πOCK′ . This
gives

φj ≡
(
−u0

π`

)1+p+···+pm−j−1

φp
m−j

m mod πOCK′ .

Let Xm + tm−1X
m−1 + · · ·+ t0 ∈ Fp[X] be the minimal polynomial of a, so we must have

φm +
m−1∑
j=0

tj

(
−u0

π`

) pm−j−1
p−1

φp
m−j

m ≡ 0 mod π.

If we choose a (p− 1)th root w of −u0/π
` in CK′ (coming from a choice of (p− 1)th root of π, to be precise)

and define wj = wφj ∈ O×CK′
, then we arrive at the conditions

wj ≡ wp
m−j

m mod πp/(p−1)

and

wm +
m−1∑
j=0

tjw
pm−j

m ≡ 0 mod πp/(p−1).
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That is, if we define the separable polynomial Pa(X) = X + tm−1X
p + · · · + t0X

pm ∈ Fp[X] (and note
t0 6= 0), we see that wm is the reduction of the Hensel’s Lemma lift to OCK′/p of a unique root of Pa and
then wj ≡ wp

m−j

m for 0 ≤ j ≤ m − 1 determines the other wj ’s. In particular, this construction sets up a
bijection between elements of our abstract 1-dimensional k-vector space and the pm roots to Pa in Fp.

Let’s first determine the answer on IK′ , where things are a little simpler. The assertion of the Theorem is
that we get the character ψ`1,K′ . For g ∈ IK′ , the action of g on Fp is trivial. Choose the lifts (g(φ))j to be
g(φj). It follows from the formula for wm in terms of φm, as well as the condition g(wm) ≡ wm mod mOC

K′
,

that (g(φ))m = (ψ`1,K′(g)(φ))m. The formula for wj in terms of wm now yields

(g(φ))j = (ψ`1,K′(g)(φ))j

for 0 ≤ j ≤ m− 1. In other words, g(φ) and ψ`1,K′(g)φ have the same values on the Fp-basis 1, a, . . . , am−1,
so g(φ) = ψ`1,K′(g)φ. Since φ was arbitrary in our representation space, this shows that the IK′ -action is via
ψ`1,K′ , as desired.

Now consider a general g ∈ GK′ . Since we have checked things over IK′ , it is enough to choose g which
is a Frobenius element, so g induces the pth power map on Fp. To avoid ambiguity, we write wj(φ) and
wj(φa), so

g(wj(φ)) ≡ wj(φ)p ≡ wm(φ)p
m−(j−1)

≡ wj−1(φ) ≡ wj(φa) mod mOC
K′
,

where φa(x) def= φ(a−1x). In fact, it readily follows that the above congruence must hold modulo p (since Pa
is separable, with roots lifting uniquely to roots in OCK′/p), so

g(φj) ≡
w

g(w)
(φa)j mod pOCK′ .

Since w/g(w) = g(w−1)/w−1 = χx(g) for g = −π`/u0 = −p/πi+1, we’re done.
Finally, we need to show that if χ0, χ

′
0 : Dp → k× are two characters of the type we are considering, then

χ0 and χ′0 are related by an unramified twist if and only if the parameters dζ , d′ζ are the same. In other
words, we need to work out the Honda system interpretation of the equality χ0|Ip = χ′0|Ip . This is equivalent
to saying that for some large N (taken to be divisible by f without loss of generality) χ0|GEN = χ′0|GEN ,
where EN = Qp(ζpN−1) is the degree N unramified extension of Qp inside of Qp (note that Qp(ζe) ⊆ EN
when f |N). This equality amouts to having an isomorphism of the Honda systems attached to χ0 and χ′0
on GK′EN , compatible with the Honda system descent data for the totally ramified extension K ′EN/EN .
Note that A′ lies inside of the valuation ring A′N of K ′EN ' K ′ ⊗Qp

EN .
Since K ′EN/K

′ is unramified, we readily compute that the Honda systems over A′N have Dieudonne
module parts kN ⊗Fp k (where kN = FpN denotes the residue field of K ′EN ) and lattices L and L′ spanned
over (A′N/p)⊗Fp k by z1 + aπiz2 and z1 + a′πiz2 respectively (for a, a′ ∈ k×), where z1 is the class of (1, 0)
and z2 is the class of (0, p−1π) as above (the values of i must be the same for χ0 and χ′0, since we have seen
above that the inertial restriction determines i). The linear disjointness of K′ and EN over Qp(ζe) implies
that the descent data relative to K ′EN/EN are ‘the same’ as that we originally have for K′ /Qp(ζe), which
is to say that this data is given by 1 7→ dζ , d

′
ζ ∈ (A′N/p)⊗Fp k.

The isomorphism of k[GK′EN ]-modules χ0|GK′EN ' χ
′
0|GK′EN translates into a map 1 7→ v ∈ (kN⊗Fpk)×,

which has the effect z1 + aπiz2 7→ vz1 + av(p)πiz2. Thus, the necessary and sufficient condition for ‘L-
compatibility’ is v(p) = (a′/a)v, while descent data compatibility is the condition dζ = d′ζ for all ζ. As long
as N is so large that (a′/a)N = 1, then a solution v ∈ (kN ⊗Fp k)× exists (see the discussion at the beginning
of §4 for more details). In terms of characters, this condition says exactly that the unramified factors of χ0

and χ′0 should coincide on GEN , which is what we expect. This completes the proof.
�

Lemma 2.4.2. When ρ is reducible, then e does not divide p− 1. Consider K′ of special type. There exists
a choice of basis {e1, e2} such that α = aπi and cζ = 0 for all ζ ∈ µe; this basis is unique up to scaling e1

and e2 by the same element of k×.
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Proof. We may assume that K′ is of special type. Recall the Fundamental Relation from before,

(14) α(dζ + ζαζc
(p)
ζ sπ) = cζ(p/π) + ζαζd

(p)
ζ .

Since ρ is reducible, α 6= 0 and e > 1. If e|(p− 1), then κ = Fp(ζe) = Fp, so d(p)
ζ = dζ . Thus, dζ = ζi+1dζ ,

so ζi+1 = 1 for all ζ. Since 0 ≤ i ≤ e− 2, this gives a contradiction if we take ζ to be a primitive eth root of
unity. Thus, e can’t divide p− 1 in reducible cases.

If we can find a basis for which cζ = 0 for all ζ, then it follows from (14) that for this basis, α has the
desired form. We will show that

cζ = t(dζ − d(p)
ζ )

for some t ∈ k. Replacing e2 by e2 − te1 then gives the sought-after basis for which cζ = 0 for all ζ. Using
(7) and cζ1ζ2 = cζ2ζ1 , we see that for a primitive eth root of unity ζ0 and any ζ ∈ µe,

cζ = t(dζ − d(p)
ζ )

with t = cζ0/(dζ0 − d
(p)
ζ0

) (the denominator is a unit in κ⊗Fp k since dζ0 = ζi+1
0 d

(p)
ζ0

and ζ0 is a primitive eth
root of unity).

Taking ζ to be another primitive eth root of unity, we see that the definition of t can be given using any
choice of primitive eth root of unity. We now use this to see that t ∈ κ⊗Fp k actually lies in k. All we need to
check is that σ(t) = t for σ ∈ Gal(κ/Fp). But by (6), σ(cζ) = cζσ and similarly σ(dζ) = dζσ , σ(d(p)

ζ ) = d
(p)
ζσ ,

so σ(t) = t, using the primitive eth root of unity ζσ in place of ζ to define t.
The uniqueness of the basis {e1, e2} follows from the transformation formula (12) for cζ (since dζ =

ζi+1d
(p)
ζ 6= d

(p)
ζ for ζ a primitive eth root of unity).

�

We can now completely describe the reducible ρ’s (the irreducible cases having been worked out earlier).
Suppose K′ is of special type. We have worked out conditions on Honda systems over A′; it remains to
determine the possible descent data parameters dζ and to then compute the associated representations of
Dp. Since we can write χ1|Ip = ωn|Ip for a unique n ∈ Z/(p − 1), we get upon restriction to IK′ that
ψne1,K′ = ψi+1

1,K′ , so the existence of n ∈ Z/(p− 1) such that

ne ≡ i+ 1 mod p− 1

is certainly a necessary condition on i. For such n, there exists a unique r ∈ Z/e such that

ne+ r(p− 1) ≡ i+ 1 mod e(p− 1).

Define δζ = ζr ⊗ 1 for ζ ∈ µe. It is easy to check that δζ = ζi+1δ
(p)
ζ and ζ → δζ is a Gal(κ/Fp)-equivariant

homomorphism from µe(κ) to µe(κ ⊗Fp k). Thus, the ratio ∆ζ = dζ/δζ is another such homomorphism,
except it satisfies ∆(p)

ζ = ∆ζ , so in fact ∆ζ takes values in k ⊆ κ⊗Fp k. In other words, dζ = ζ−r ⊗ xζ , with
ζ 7→ xζ a homomorphism from µe(κ) to k× satisfying xζσ = xζ for all ζ ∈ µe(κ) and σ ∈ Gal(κ/Fp). That
is, xζp = xζ for all ζ ∈ µe(κ). But xζp = xpζ , so necessarily xζ ∈ F×p , and bringing it across the tensor, we
have

dζ = ζr
′
⊗ 1,

with r′ ∈ Z/e satisfying (p− 1)r′ ≡ i+ 1 mod e.
We want to work out the relationship between r′ and n. In fact, it will turn out that r′ = r.

Lemma 2.4.3. For r ∈ Z/e satisfying r(p − 1) ≡ i + 1 mod e, the descent data dζ = ζr on the A′ Honda
system attached to χ−p/πi+1 |GK′ gives rise to a descended character ηvωn : Dp → F×p , where v ∈ F×p and
n ∈ Z/(p− 1) is the unique solution to

ne+ r(p− 1) ≡ i+ 1 mod e(p− 1).
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Proof. Note that the existence and uniqueness of an n ∈ Z/(p−1) satisfying ne+r(p−1) ≡ i+1 mod e(p−1)
is clear, given that r(p−1) ≡ i+1 mod e. The dζ data does encode the descent of χ−p/πi+1 to some character
ηvω

n : Dp → k×. In order to compute n, it is enough to restrict to Ip. If we identify Ip with the absolute
Galois group of the completion E of Qun

p , then the calculations in the proof of Theorem 2.4.1 go through
with E in place of EN there. This reduces us to a problem entirely over E.

More precisely, consider n ∈ Z/(p − 1) the unique solution to ne + r(p − 1) ≡ i + 1 mod e(p − 1). The
character ωn : GE → F×p has the property that ωn|GK′E is the generic fiber of a finite flat group scheme
G/OK′E with order p. This gives rise to a Honda system (L,M) over OK′E with descent data down to OE .
Since µe ' Gal(K ′E/E) and M = Fp (with vanishing F and V operators), the descent data is determined
by a group homomorphism µe → F

×
p given by dζ = ζr

′
for some r′ ∈ Z/e. We need to show that r′ = r.

Let L = K ′E and fix the lift of r to Z in the range 0 < r < e and then choose the lift n ∈ Z so
that ne + r(p − 1) = i + 1 in Z. By [16, Thm 3.4.1], the finite group scheme H over E with generic fiber
representation ωn|Ip has affine E-algebra E[X]/(Xp−pnX) (with augmentation ideal generated by X). Thus,
ωn|GL is the generic fiber representation of a finite L-group scheme with affine L-algebra L[X]/(Xp−pnX) '
L[X]/(Xp − πneX) ' L[Y ]/(Y p − πi+1Y ), where Y = π−rX. By [16, Prop 3.3.2], the unique finite flat OL-
group scheme G with generic fiber ωn|Ip has affine OL-algebra O(G) = OL[Y ]/(Y p − πrY ).

For ζ ∈ µe ' Gal(L/E), consider the L-group scheme isomorphism

G/L ' G/L ×L L

arising from using the base change ζ : L → L and the fact that G/L = H ×E L. By Raynaud’s full
faithfulness theorem, this isomorphism extends to a unique isomorphism of OL-group schemes G ' G×OL OL
(using ζ : OL ' OL as the base change). On the closed fiber, this becomes an Fp-group scheme isomorphism
αp ' αp which is induced on ‘points’ by multiplication by some dζ ∈ F

×
p (look at the endomorphism ring of

the Dieudonne module). It is this dζ which we must compute.
Since Y = πrX, it follows from unwinding the above constructions that Y 7→ ζrY realizes the unique

ζ-semilinear OL-algebra automorphism O(G) → O(G) lifting G/L ' G/L ×L L. On the level of the closed
fiber group scheme Spec(Fp[Y ]/Y p), the induced map is given by Y 7→ ζrY . In terms of the definition of
the Fp-module structure on M(G/Fp) = M(αp/Fp), this translates into multiplication by ζr ∈ Fp on the
Dieudonne module. Thus, dζ = ζr.

�

Now we can give the list of reducible ρ which arise. Before stating the precise result, it will be convenient
to introduce some notation. Choose v, w ∈ k×, n,m ∈ Z/(p−1), and define χ2 = ηvω

m, χ1 = ηwω
n. Assume

χ2 6= χ1, ωχ1 (i.e., v 6= w or m 6= n, n + 1), so H1(Dp, χ
−1
1 χ2) is a 1-dimensional k-vector space (by Tate

duality). In this case, all non-zero elements in this space correspond to isomorphic k[Dp]-modules. Indeed,
for any group H and any two distinct homomorphisms ξ1, ξ2 : H → L× to the multiplicative group of a field
L, all isomorphic representations ρ1, ρ2 : H → GL2(L) which are non-trivial extensions of ξ1 by ξ2 fit into a
commutative diagram

0→ ξ2 → ρ1 → ξ1 → 0
a ↓ ↓ ↓ b

0→ ξ2 → ρ2 → ξ1 → 0

where the outer columns are multiplication by a, b ∈ L×. In other words, ρ2 ∈ Ext1
L[H](ξ1, ξ2) is obtained

from ρ1 by mutliplication by ab−1. Thus, the L-span of ρ1 in this Ext1-space consists of all the extensions
which are isomorphic to ρ1 as an L[H]-module. The same argument applies if we consider H a topological
group and we work with L[H]-modules with the discrete topology with respect to which the action of H is
continuous.

Thus, for v 6= w or m 6= n, n+ 1 we can define ρv,w,m,n to be the unique (up to isomporphism) non-split
k[Dp]-module which is an extension of χ1 by χ2. Recall that the reducible cases must have e not dividing
p− 1, and in particular e > 2.
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Theorem 2.4.4. For p ≡ −1 mod 4, the reducible possibilities for ρ are precisely the representations ρv,w,m,n
with arbitrary v, w ∈ k× and with m,n ∈ Z/(p− 1) satisfying en = i+ 1 mod p− 1 for some 0 ≤ i ≤ e− 2,
e|(i+1)(p+1), and m = n+1− (i+1)(p+1)/e (these conditions always force m 6= n, and for p ≡ −1 mod 4
they force m 6= n+ 1 also).

If p ≡ 1 mod 4, the reducible ρ which arise are the ones given by the above list of ρv,w,m,n’s for v 6= w or
m 6= n+ 1, together with the unramified twists of a certain non-semisimple Fp-representation of the form(

ω(p+1)/2 ∗
0 ω(p−1)/2

)
when e = (p+ 1)/2.

Proof. We may assume as usual that K′ is of special type. Suppose we are given a reducible

ρ '
(
χ2 ∗
0 χ1

)
satisfying all of our group scheme conditions, and we introduce the parameters a, i, s, u0, dζ as before. Writing
χ2|Ip = ωm|Ip , χ1|Ip = ωn|Ip , Theorem 2.4.1 implies that en = i+ 1 mod p− 1 (with 1 ≤ e− (i+ 1) ≤ e− 1).
Our earlier descent computations demonstrated the necessity of the condition e|(i+ 1)(p+ 1). Also, Lemma
2.4.3 implies that the descent data dζ = ζr ⊗ 1 attached to χ1 has r ∈ Z/e satisfying

ne+ r(p− 1) ≡ i+ 1 mod e(p− 1).

Since χ2 has descent data d(p)
ζ = ζrp ⊗ 1 and has ‘α’ parameter with the power πe−i−1, we must have

me+ pr(p− 1) ≡ e− i− 1 mod e(p− 1).

Since e|(i+ 1)(p+ 1), it readily follows that m = n+ 1− (i+ 1)(p+ 1)/e in Z/(p− 1).
Using 0 ≤ i ≤ e− 2 and e ≤ p− 1, it is easy to check that m,n ∈ Z/(p− 1) are distinct, and m = n+ 1

if and only p ≡ 1 mod 4, with e = (p + 1)/2, n = (p − 1)/2, i = (p − 3)/2. The Honda system and descent
data computations show that knowledge of either diagonal character determines the other character up to
aribitrary unramified twisting and that knowledge of both characters determines the entire (nonsemisimple)
representation of Dp. By varying a, s ∈ k×, we can freely change the ‘unramified’ factors of χ1 and χ2. In
particular, when m = n+1 and a = b, our representation is an unramified k-twist of a certain non-semisimple
extension of ω(p−1)/2 by ω(p+1)/2 over Fp; since OK′ -flatness is insensitive to unramified twisting over Qp,
this completes the proof that our list includes all possibilities.

To see that everything we list above really does arise, what we need to check is that if we are given
v, w,m, n satisfying the list of conditions, then there is a ρ occuring which is an extension of ηvωm by ηwωn.
Define a = v−1, s = w(au0)−1, α = aπi, β = (asu0)−1πe−1−i. Also, define dζ = ζr ⊗ 1, with r ∈ Z/e the
unique solution to

ne+ r(p− 1) ≡ i+ 1 mod e(p− 1)

(it is easy to check that such an r exists since ne ≡ i+ 1 mod p− 1). This gives us a Honda system (L,M)
over A′ whose base change to A′ is equipped with descent data down to Zp which realizes a representation
that is an extension of χ1 by χ2, where χ1 and χ2 are off from ηvω

m and ηwω
n by unramified characters.

Changing a and s appropriately gives what we want.
�

3. Tangent Space Calculations

Until otherwise specified, throughout this section we assume that K′ is of special type.
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3.1. Analysis of a Kernel.
Let M = M(ρ|GK′ ) and let E(M) def= Ext1

k[F,V ](M,M), where the ring k[F, V ] has F and V commuting
with k. Using Galois descent on the closed fiber, we see that there is a natural map of sets

tFK′ (ρ)
→ E(M),

where the left side is the tangent space to the deformation functor FK′(ρ) = FK′,O(ρ). The explicit defi-
nition of the group structure and functoriality of Ext1 for any (small) abelian category — that is, not the
(compatible) definition using projective or injective resolutions, if that’s also available — shows that this is
actually a map of k-vector spaces. We introduce this map because E(M) looks easier to manage than the
tangent space.

Definition 3.1.1. We say that ρ is degenerate if the group homomorphism

ζ 7→ d−1
ζ d

(p)
ζ ∈ µe(κ⊗Fp k)

is either trivial or else does not have its image entirely inside of µe(κ). Otherwise, we say that ρ is non-
degenerate.

The meaning of non-degeneracy is that for some 0 ≤ ` ≤ e− 2, dζ = ζ`+1d
(p)
ζ for all ζ (in which case ` is

unique). This always occurs in reducible cases. We will later see that in all degenerate cases, dζ = d
(p)
ζ for

all ζ.

Theorem 3.1.2. The k-vector space E(M) is 2-dimensional. The natural map of k-vector spaces

tFK′ (ρ)
→ E(M)

is injective if we are in the degenerate case. There is a 1-dimensional kernel if we are in the non-degenerate
case.

Remark 3.1.3. The fact that Ext1 admits a group structure in an explicit bifunctorial manner is absolutely
critical to our argument and the importance of this fact cannot be overestimated. Also, by using k[ε]-
deformations of the form ρ ⊗k (1 + ηε) for η : Dp → k a continuous unramified additive character, we see
that the tangent space is a priori at least 1-dimensional.

Proof. For any N ′ representing an element in E(M), we can write

N ′ = ke1 ⊕ ke2 ⊕ ke1 ⊕ ke2

as a k-module, where the first two factors give the copy of M sitting inside N ′ and ei projects onto ei in the
quotient M of N ′. The remaining data (up to the non-canonical choice of k-linear section to N ′ � M) is
the action of F and V on N ′. Since our extension sequence

0→M → N ′ →M → 0

is compatible with these actions, we just need to specify F (ei) and V (ei) so that FV = V F = 0 on N ′

and F (ei), V (ei) lift F (ei), V (ei) respectively in the quotient M ' N ′/M . We compute that F (e1) = ae1,
F (e2) = be1 − cse2 + e1, V (e1) = ce1, and V (e2) = de1 − as−1e2 + s−1e1. If we make the change of basis

e1  −ae2 + e1, e2  −be2 + e2,

we can suppose that a = b = 0 and with these constraints the values of c and d are unaffected by any further
permissable change of the ei’s (i.e., e1  ue1 + e1, e2  ve1 + ue2 + e2, u, v ∈ k). Thus, elements of E(M)
are parameterized by (c, d) ∈ k×k, so this Ext space has dimension 2 over k (and (c, d) = (0, 0) corresponds
to the trivial element).

We now must determine the kernel of tFK′ (ρ)
→ E(M). We pick an element in the kernel and try to show

it is the trivial element in tFK′ (ρ)
. We will study this by carrying out a very explicit descent computation.

We do not know of any more conceptual method that could be used instead.
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Choose an object (λ′,N′) in the kernel, with descent data D. By the usual Galois descent reasoning from
A′ down to A′, we can suppose that this object is the base extension (from A′ to A′) of an object (Λ′, N ′)
in Ext1

P̃SH
f

A′,W (k)

((L,M), (L,M)), so N ′ = M ⊕M as a k[F, V ]-module. In particular,

N′ = W (κ)⊗A N ′ = (κ⊗Fp k)e1 ⊕ (κ⊗Fp k)e2 ⊕ (κ⊗Fp k)e1 ⊕ (κ⊗Fp k)e2

as (κ⊗Fp k)[F, V ]-modules and

N ′A′ = MA′ ⊕MA′ = ((A′/p)⊗Fp k)ε1 ⊕ ((A′/p)⊗Fp k)ε2 ⊕ ((A′/p)⊗Fp k)ε1 ⊕ ((A′/p)⊗Fp k)ε2

as (A′/p)⊗Fp k-modules, with Λ′ ⊆ N ′A′ of the form

Λ′ = ((A′/p)⊗Fp k)(ε1 + αε2)⊕ ((A′/p)⊗Fp k)(γε2 + ε1 + αε2)

for some γ ∈ (A′/p)⊗Fp k. We define ε1, ε2, ε1, ε2 to be the residue classes in N ′A′ of the respective elements
(1⊗e2, 0), (0, p−1π⊗e2), (1⊗e2, 0), (0, p−1π⊗e2) (viewing N ′A′ as a quotient of (A′⊗AN ′)⊕(p−1m⊗AN ′(1))).
Recall also that A′ ⊗A′ (N ′A′) ' N′A′ compatibly with A′ ⊗A′ Λ′ ' λ′ [2, Lemma 4.5].

For σ ∈ Gal(K′ /K ′) ' Gal(κ/Fp), the descent data D has σ acting on N′ in the usual κ⊗Fp k-semilinear
manner (k-linear and fixing e1, e2, e1, e2). As for ζ ∈ Gal(K′ /Qp(ζe)) ' µe, [ζ] : N′ → N′ is a map of
Dκ/p = κ[F, V ]-modules and k-modules, with κ-linearity holding because ζ has a trivial image in Gal(κ/Fp).
Also, [ζ1] ◦ [ζ2] = [ζ1ζ2], [σ] ◦ [ζ] = [ζσ] ◦ [σ], and [ζ]A′ : N′A′ → N′A′ carries λ′ back to itself. In addition,
[ζ] must act in accordance with the descent data on M ⊆ N′ and on M ' N′ /M. With respect to the above
ordered κ⊗Fp k-basis {e1, e2, e1, e2} of N′, let’s write the matrix for the κ⊗Fp k-linear [ζ] as

[ζ] =


d

(p)
ζ 0 xζ yζ
0 dζ zζ wζ

0 0 d
(p)
ζ 0

0 0 0 dζ

 .

Since N′ = M⊕M ' W (κ) ⊗A (M ⊕M) as (κ ⊗Fp k)[F, V ]-modules, we can write down the explicit
‘matrices’ for the semilinear maps F and V on N′. The condition that [ζ] commutes with F and V gives
xζ = w

(p)
ζ = w

(p−1)
ζ and zζ = 0. From [σ] ◦ [ζ] = [ζσ] ◦ [σ] we get σ(wζ) = wζσ , σ(yζ) = yζσ , while

[ζ1] ◦ [ζ2] = [ζ1ζ2] yields

(15) wζ1ζ2 = dζ1wζ2 + dζ2wζ1 , yζ1ζ2 = d
(p)
ζ1
yζ2 + dζ2yζ1 .

In particular, w1 = 0 and by induction it is easy to see that wζn = ndn−1
ζ wζ for n ≥ 1, so

0 = w1 = wζe = ede−1
ζ wζ .

This forces wζ = 0, so xζ = 0. It remains to consider yζ ∈ κ⊗Fp k and γ ∈ (A′/p)⊗Fp k.
A simple computation gives

[ζ]A′(ε1) = dζε1, [ζ]A′(ε2) = ζd
(p)
ζ ε2

(for the latter, recall the presence of M′
(1) in the definition of M′A′) and

(16) [ζ]A′(ε1) = yζ(p/π)ε2 + dζε1, [ζ]A′(ε2) = sζπy
(p)
ζ ε1 + ζd

(p)
ζ ε2.

Thus, [ζ]A′(γε2 + ε1 + αε2) = ζsπαζy
(p)
ζ ε1 + (ζγζd(p)

ζ + yζ(p/π))ε2 + dζε1 + ζαζd
(p)
ζ ε2. In order for this to

stay inside of
λ′ = ((A′/p)⊗Fp k)(ε1 + αε2)⊕ ((A′/p)⊗Fp k)(γε2 + ε1 + αε2),

we see that the condition is

(17) yζ(p/π) = γdζ − ζγζd(p)
ζ + ζααζsπy

(p)
ζ

in (A′/p)⊗Fp k (recall that αζd(p)
ζ = ζi+1d

(p)
ζ aπi = dζaπ

i = dζα).
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At this point, it is convenient to observe that what we have done do far does not depend on our choice of
k[F, V ]-module splitting. Below we will have to be a little more careful about which splitting we choose (in
terms of trying to count possibilities up to equivalence), so we record here the possible splittings: they are

(18) e1  ue1 + e1, e2  ve1 + ue2 + e2,

with u, v ∈ k. This has the effect

ε1  uε1 + (p/π)vε2 + ε1, ε2  sπvε1 + uε2 + ε2

and hence

(19) yζ  yζ + v(d(p)
ζ − dζ), γ  γ − (p/π)v + α2sπv.

Under the κ⊗Fp k-algebra isomorphism (A′/p)⊗Fp k ' (κ⊗Fp k)[π]/πe, we have

γ 7→ g0 + g1π + · · ·+ ge−1π
e−1

for suitable g0, . . . , ge−1 ∈ k (gi ∈ k because γ lies in (A′/p)⊗Fp k ⊆ (A′/p)⊗Fp k).
First assume that if α 6= 0, then 2(i+ 1) 6= e (we will come back to cases with α 6= 0, 2(i+ 1) = e at the

end; in terms of representation theory, these are the reducible cases in which the diagonal characters have
the same restriction to IK′). The transformation law (19) for γ shows that if we make a change of splitting
with v = ge−1u0 and take u ∈ k to be whatever we wish, we can assume that ge−1 = 0. Note that if α 6= 0
and 2(i+ 1) = e, then this goes through as long as a2su0 6= 1. This will be used below.

With the vanishing of ge−1 fixed, any further change of splitting (governed just by u ∈ k) has no effect
on our parameters yζ and γ. Since ge−1 = 0, and 2(i+ 1) 6= e if α 6= 0 (so γ = 0 if e = 1), the condition (17)
yields yζ = 0 and thus for 0 ≤ ` ≤ e− 2 (a vacuous condition when e = 1) that

g`(dζ − ζ`+1d
(p)
ζ ) = 0.

The non-degenerate case is precisely the condition that ζ 7→ d−1
ζ d

(p)
ζ is a non-trivial group map from µe to

µe(κ), which is equivalent to the existence of some 0 ≤ ` ≤ e − 2 such that dζ − ζ`+1d
(p)
ζ = 0 for all ζ (in

which case ` is unique, and for α 6= 0 we have ` = i). Since g` ∈ k is a unit in κ⊗Fp k precisely when g` 6= 0,

we conclude that in the degenerate case γ = 0, so there is a splitting in D̃PSH
f

A′,O, giving the injectivity.
In the non-degenerate case, there is a unique `0 in the allowed range for which g`0 ∈ k could be non-zero

(with `0 = i in cases where α 6= 0). In other words, elements of the kernel of the map tFK′ (ρ)
→ E(M) are

parameterized by an element g`0 ∈ k which is independent of the choice of k[F, V ]-module splitting chosen
at the start. This implies that there is a 1-dimensional kernel.

Finally, there remain the (necessarily non-degenerate) cases in which α = aπi 6= 0 and 2(i+ 1) = e. Since
2(i + 1) = e, dζ = ζi+1d

(p)
ζ = ζe/2d

(p)
ζ . If ζ0 is a primitive eth root of unity in κ, then dζ0 is a non-zero

solution to t(p) = −t in κ⊗Fp k. Let f denote the order of p in (Z/e)× (so |κ| = pf ).
We begin by checking that for x ∈ k×, the equation t(p) = xt has a non-zero solution in κ ⊗Fp k if and

only if xf = 1, in which case the set of solutions is 1-dimensional over k and all non-zero solutions are units.
It clearly suffices to check this statement with k in place of k. Pick an embedding of κ into k, so we have a
composite field κk. Under the canonical identification

κ⊗Fp k '
∏

j∈Z/f

κk,

if we write t = (t0, . . . , tf−1) for an element, then t(p) = (t1, . . . , tf−1, t0). Thus, t(p) = xt if and only if
tj = xtj−1 for all j ∈ Z/f . From this, it is clear that a non-zero solution exists if and only if xf = 1, in
which case the set of solutions is the k-span of (1, x, . . . , xf−1).

The existence of dζ0 6= 0 implies that (−1)f = 1 in k, so f is even. Comparing coefficients of π` on both
sides of (17) for 0 ≤ ` ≤ e− 2 and using 2(i+ 1) = e, we get

0 = g`(dζ − ζ`+1d
(p)
ζ ),
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so g` = 0 for ` 6= i, e− 1, with i = e/2− 1. That is, we have

γ = giπ
i + ge−1π

e−1.

Plugging this into (17), we get

u−1
0 yζπ

e−1 = (ζe/2y(p)
ζ a2s+ ge−1(dζ − d(p)

ζ ))πe−1.

Changing the lifts e1, e2 does not change gi and gives rise to

ge−1  ge−1 + v(−1 + a2su0), yζ  yζ + v(d(p)
ζ − dζ)

(where we may use the change of bases as in (18)).
Thus, when a2su0 6= 1 we can change e2 so that ge−1 = 0, in which case yζ = (ζe/2a2su0)y(p)

ζ . Supppose
instead that a2su0 = 1, so the value of ge−1 is ‘intrinsic’. Let’s show that necessarily ge−1 = 0 in these cases
too. Choosing for ζ a primitive eth root of unity ζ0 (so ζe/20 = −1) and dropping the ζ0 subscripts, we get

y = −y(p) + 2ge−1u0d,

so
y(p) = −y + 2ge−1u0d.

If we iterate the equation for y(p), using d(p) = −d, we get

y(pm) = (−1)my + (−1)m+12mge−1u0d

for all m ≥ 1. Setting m = f the equations y(pf ) = y and (−1)f = 1 yield

0 = −2fge−1u0d,

so ge−1 = 0 when a2su0 = 1. In terms of representation theory, the conditions α 6= 0, 2(i + 1) = e and
a2su0 = 1 are equivalent to ρ being reducible with diagonal characters have the same restriction to GK′ .

Now that we have modified the basis so that ge−1 = 0, we have γ = giπ
i for gi ∈ k and

yζ = ζe/2a2u0sy
(p)
ζ ,

(20) σ(yζ) = yζσ , yζ1ζ2 = ζ
e/2
1 dζ1yζ2 + dζ2yζ1 .

We will now find a better basis in which yζ = 0 for all ζ (in which case (14) ensures ge−1 = 0 with respect
to this new basis too).

Consider the condition
yζ0 = −a2u0sy

(p)
ζ0
,

with ζ0 a fixed primitive eth root of unity. For any solution yζ0 ∈ κ⊗Fp k to this equation, the remaining yζ
are uniquely determined by (20) as

yζ = (yζ0(2dζ0)−1)(dζ − d(p)
ζ ).

The leading coefficient t = yζ0(2dζ0)−1 is the same for any choice of primitive eth root of unity ζ0. Thus, for
σ ∈ Gal(κ/Fp) a Frobenius element, we compute

σ(t) =
yζσ0
2dζσ0

=
yζp0
2dζp0

= t,

so t ∈ κ⊗Fp k lies in k. Make the change e2  −te1 + e2 (and leave e1 alone). Using (19), this makes yζ = 0
for all ζ and at worst affects γ by changing ge−1. But as noted above, the vanishing of yζ for all ζ forces
ge−1 = 0.

Thus, the elements of the kernel of tFK′,W (k)(ρ)
→ E(M) are parameterized by gi ∈ k, as before.

�
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The above theorem shows that the determination of dimk tFK′ (ρ) is reduced to determining the dimension
of the image of tFK′ (ρ) in E(M). In other words, we must choose a representative sequence

0→M → N →M → 0

in E(M) and determine when we can construct an A′-submodule Λ′ ⊆ N ′A′ fitting into an exact sequence

0→ L′ → Λ′ → L′ → 0

compatible with 0 → MA′ → N ′A′ → MA′ → 0 in an obvious sense and such that for λ′ = A′ ⊗A′ Λ′ and
N′ = W (κ)⊗A N ′, the pair (λ′,N′) in Ext1

P̃SH
f

A′,O
((L,M), (L,M)) admits descent data D compatible with

D(ρ) on the two (L,M)’s. Our next task is to settle this issue. It will turn out that the image of tFK′ (ρ)

in the degenerate case, which is essentially the situation considered in [15] (for e = 1), is generally different
from the image in the non-degenerate case. This will ‘compensate’ for the distinction between these cases in
Theorem 3.1.2.

3.2. Analysis of an Image.

Theorem 3.2.1. The natural map tFK′ (ρ) → E(M) is surjective when dζ = d
(p)
ζ for all ζ. Otherwise, tF has

a 1-dimensional image in E(M). In degenerate cases, dζ = d
(p)
ζ must hold, so dimk tFK′ (ρ)

= 2 in all cases.

Proof. We will show that under the identification of sets E(M) ' k × k described earlier, the image of tF is
precisely the set of pairs (c, d) with c(dζ − d(p)

ζ ) = 0 for all ζ ∈ µe. This immediately implies the theorem
(with the image consisting of all pairs (0, d) in the non-degenerate case). The only other issue is to explain
why the degenerate cases must have dζ = d

(p)
ζ for all ζ. Consider a degenerate ρ, so ρ is irreducible. The

determination of the image and kernel of tFK′ (ρ)
→ E(M) shows that the cases we are trying to rule out are

precisely the ones for which dimk tFK′ (ρ) = 1 would hold (such cases are necessarily degenerate, if they occur
at all). This condition can be checked after making a base change on k. Since passing to an unramified twist
of ρ over a finite extension of k is all we need to do in order to descend the field of definition of ρ to Fp
(by Theorem 2.2.2), and this does not affect the dimension of the reduced cotangent space of the associated
OK′ -flat deformation ring (by Lemma 1.2.1), we may assume k = Fp. A degenerate case with k = Fp has to
have d−1

ζ d
(p)
ζ = 1 for all ζ!

Choose a representative N ′ of an element in E(M), so as we saw at the beginning of the proof of Theorem
3.1.2, we may write (using the same notation that was used there)

N ′ = ke1 ⊕ ke2 ⊕ ke1 ⊕ ke2,

with F (e1) = 0, F (e2) = −cse2 + e1, V (e1) = ce1, V (e2) = de1 + s−1e1.
In order to derive the constraint to be in the image of tFK′ (ρ)

, we essentially just have to repeat the
calculation in the proof of Theorem 3.1.2, exercising a little more care because we don’t necessarily have a
split sequence of k[F, V ]-modules anymore. We still can write

N′ = (κ⊗Fp k)e1 ⊕ (κ⊗Fp k)e2 ⊕ (κ⊗Fp k)e1 ⊕ (κ⊗Fp k)e2

as a κ ⊗Fp k-module, with base-extended actions of F and V . Also, from the exactness of the A′-module
sequence

0→MA′ → N ′A′ →MA′ → 0

we can still write (as an (A′/p)⊗Fp k-module)

N ′A′ = ((A′/p)⊗Fp k)ε1 ⊕ ((A′/p)⊗Fp k)ε2 ⊕ ((A′/p)⊗Fp k)ε1 ⊕ ((A′/p)⊗Fp k)ε2.

We need to find a suitable A′ ⊗AW (k)-submodule Λ′ ⊆ N ′A′ of the form

Λ′ = ((A′/p)⊗Fp k)(ε1 + αε2)⊕ ((A′/p)⊗Fp k)(γε2 + ε1 + αε2)

for some γ ∈ (A′/p) ⊗Fp k such that we can construct descent data D on (A′ ⊗A′ Λ′,N′) compatible with
the descent data D(ρ) on LMA′(ρ), and with [σ] acting as usual for σ ∈ Gal(K′ /K ′) ' Gal(κ/Fp).
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Our problem is to determine what conditions (if any) are imposed on (c, d) in order for appropriate
γ ∈ (A′/p) ⊗Fp k and D to exist, where for D the issue is to define Dκ-linear isomorphisms [ζ] : N′ → N′

compatible with D(ρ) and satisfying [ζ1] ◦ [ζ2] = [ζ1ζ2], [σ] ◦ [ζ] = [ζσ] ◦ [σ], and with [ζ]A′ : N′A′ → N′A′

taking λ′ def= A′ ⊗A′ Λ′ back to itself. We write a matrix for the hypothetical [ζ] as in the proof of Theorem
3.1.2. A simple semilinear matrix calculation shows that [ζ] commutes with the semilinear F and V if and
only if zζ = 0, xζ = w

(p)
ζ = w

(p−1)
ζ , and c(d(p)

ζ −dζ) = 0 (be careful to not confuse d ∈ k and dζ when checking
this calculation). It is critical to observe in this computation that c, d ∈ k are unaffected by Frob⊗1 on
κ⊗Fp k. As before, the conditions [σ] ◦ [ζ] = [ζσ] ◦ [σ] and [ζ1] ◦ [ζ2] = [ζ1ζ2] amount to the usual conditions
σ(wζ) = wζσ , σ(yζ) = yζσ , and the same formulas (15) for wζ1ζ2 , yζ1ζ2 as before. Once again, we can
conclude that necessarily wζ = 0.

The formulas (16) for the [ζ]A′(εj)’s remain the same, as do the allowed changes in e1 and e2, so it is easy
to check that the condition (17) carries over. Thus, taking all yζ = 0 and γ = 0 demonstrates the sufficiency
of the condition that c(dζ − d(p)

ζ ) = 0 for all ζ.
�

4. Deformation Rings

4.1. Structure Theorems.
We are now in a position to determine the structure of the OK′ -flat deformation ring of ρ.

Theorem 4.1.1. Let K′ be a finite extension of Qp inside of Qp with e(K′ /Qp) ≤ p− 1 and let ρ : Dp →
GL2(k) be a continuous representation. Assume that ρ|GK′ is the generic fiber of a finite flat A′-group scheme
which is unipotent and connected. For M = M(ρ|GK′ ), assume that the sequence of groups

0→M/VM
F→M →M/FM → 0

is exact. Then Runiv
FK′,O

(ρ) ' O[[T1, T2]].

Proof. Following Ramakrishna [15], we count the size of (FK′(ρ))(O/mn
O) for n ≥ 1. Since dimk tFK′,O(ρ) = 2,

the universal deformation ring is an O-algebra quotient of O[[T1, T2]] (say by a projection map Π). If we always
get the maximal possible answer |k|2(n−1) of O/mn

O-valued points, then any f ∈ O[[T1, T2]] for which Π(f) = 0
must satisfy f(t1, t2) ∈ mn

O for all t1, t2 ∈ mO, so f = 0, as desired. We could use Lemma 1.2.1 to reduce
the calculation to the case O = W (k). However, we want to show that the computation really can be done
directly over any O without resorting to a technical trick.

By [2, Thm 4.3], we need to count the number of equivalence classes of certain triples ((Λ′,M ′n), i,D)
with M ′n an O[F, V ]-module having underlying O-module O/mn

O × O/mn
O, Λ′ ⊆ (M ′n)A′ an A′-submodule

making (Λ′,M ′n) an object in SHf
A′,O, i : (Λ′[mO],M ′n[mO]) ' (L′,M) an isomorphism in P̃SH

f

A′,O, and

D a descent data relative to A → A′ on (λ′,M′n) (with λ′
def= A′ ⊗A′ Λ′, M′n

def= W (κ)⊗Zp M
′
n) such that

D encodes for its Gal(K′ /K ′)-action the descent from (λ′,M′n) down to (Λ′,M ′n). The extra condition we
demand on the triples we consider is that the base-extended isomorphism i′ : (λ′[mO],M′n[mO]) ' (L,M)

in P̃SH
f

A′,O takes the induced data from D on the left side over to D(ρ) on the right side (i.e., i′ is an

isomorphism in D̃PSH
f

A′,O).
Note that the compatibility of i′ with the action of Gal(K′ /K ′) is automatic, so we won’t have to bother

checking it when we trying to write down possibilities. The notion of equivalence among these triples is
defined in the obvious manner. The tricky part is to check that what we write down is really a Honda
system and not just a pre-Honda system. In order to handle cases with O 6= W (k), in which case p-torsion
is not the same as mO-torsion, we will need to prove an analogue of the second half of [2, Thm 4.9], adapted
to our particular setting.
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We begin by working out the possibilities for the Dieudonne modules. Choose a uniformizer πO of O,
so the multiplication-by-πO on M ′n induces an isomorphism of k[F, V ]-modules M ′n/mO 'M ′n[mO] 'M .
Thus, we can pick an O/mn

O-module basis e2, e1 = Fe2 of M ′n so that Fe1 = be1 + ce2 for some b, c ∈ mO

and V e2 = ue1 + de2 for some d ∈ mO and u mod mO = s−1 (of course, V e1 = V Fe2 = pe2). The conditions
V F = FV = p force c = pu−1 and d = −bu, so the possibilities for the Dieudonne module are given as
follows: choose b ∈ mO/m

n
O, u ∈ O/mn

O lifting s−1 ∈ k× and define M ′n = O/mn
O × O/mn

O with O-linear

F =
(

b 1
pu−1 0

)
, V =

(
0 u
p −bu

)
(matrices with respect to the standard ordered basis e1 = (1, 0), e2 = (0, 1) of M ′n over O/mn

O). It is
easy to check that M ′n is an O[F, V ]-module with M ′n[mO] ' M as such. We next need to define the
(W (κ)⊗Zp O)/mn

O-linear automorphisms
[ζ] : M′n 'M′n

such that [ζ1] ◦ [ζ2] = [ζ1ζ2], [σ] ◦ [ζ] = [ζσ] ◦ [σ]. Also, [ζ] must commute with F and V .
In the quotient A′ ⊗Zp O-module (M ′n)A′ , define ε1 to be the element represented by

(1⊗ e2, 0) ∈ (A′ ⊗AM ′n)⊕ (p−1m⊗AM ′
(1)
n ),

and define ε2 to be the element represented by (0, p−1π ⊗ e2). Just as in the tangent space analysis, it is
easy to see that the natural map of A′ ⊗Zp (O/mn

O)-modules

(A′ ⊗Zp (O/mn
O))ε1 ⊕ (A′ ⊗Zp (O/mn

O))ε2 → (M ′n)A′

is surjective and hence (via length considerations) is an isomorphism.
Constructing [ζ] to be commute with F and V is a more serious constraint (and we postpone for now the

definition of Λ′). We write

[ζ] =
(
xζ yζ
zζ wζ

)
≡

(
d

(p)
ζ 0
0 dζ

)
mod mO(W (κ)⊗Zp O)

with entries in W (κ) ⊗Zp (O/mn
O). The compatibility conditions with F and V give rise to the constraints

xζ = by
(p)
ζ + w

(p)
ζ , zζ = pu−1y

(p)
ζ , and (dropping the ζ subscripts for simplicity)

(21) b(y(p) − y) = w(p−1) − w(p),

(22) b2(y(p2) − y(p)) = b(w(p) − w(p2)) + pu−1(y − y(p2)),

(23) pu−1(y(p) − y(p−1)) = b(w(p−1) − w).

Using these last three equations, we compute

b(w(p−1) − w(p)) = b2(y(p) − y) = b(w − w(p))− b(w(p−1) − w),

so 2bw(p−1) = 2bw. Since p 6= 2, we obtain bw = bw(p). If b ∈ O/mn
O is non-zero, then we get w ≡

w(p) mod mO by looking at the ‘leading term’ of b. But w mod mO = dζ , so if there is some ζ such that
dζ 6= d

(p)
ζ , then we must set b = 0, so

[ζ] =

(
w

(p)
ζ yζ

pu−1yζ wζ

)
,

with yζ ∈ mO(W (κ)⊗Zp O), wζ ≡ dζ mod mO(W (κ)⊗Zp O), and w
(p2)
ζ = wζ , p(y

(p)
ζ − yζ) = 0.

Assume for now that dζ 6= d
(p)
ζ for some ζ, so dζ = ζi+1d

(p)
ζ for some 0 ≤ i ≤ e−2 (we’ll return to the other

case later). In particular, e > 1 and p 6= 2. We claim that the O/mn
O-basis of our original Dieudonne module

can always be chosen so that all yζ = 0 (and this is to be done without affecting things on mO-torsion). The
equality [ζ1][ζ] = [ζ][ζ1] yields

(w(p)
ζ1
− wζ1)yζ = yζ1(w(p)

ζ − wζ).
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Taking ζ1 to be a primitive eth root of unity, we have

w
(p)
ζ1
− wζ1 mod mO = d

(p)
ζ1
− dζ1 = (ζ−i−1 − 1)dζ ∈ (κ⊗Fp k)×,

so we may reciprocate to get

(24) yζ = q(w(p)
ζ − wζ)

for a constant q ∈W (κ)⊗Zp (O/mn
O); note that the definition for q can be given using any primitive eth root

of unity. This will be important shortly.
Since yζ1 ≡ 0 mod mO, we know q is divisible by πO. In fact, we claim that q(p) = q, so q ∈ 1⊗ (mO/m

n
O).

In order to compute q(p), we take σ ∈ Gal(κ/Fp) to be the Frobenius element and we use the relation
[σ][ζ] = [ζp][σ] in order to conclude that y(p)

ζ = yζp and w
(p)
ζ = wζp . Writing qζ1 to keep in mind the choice

of primitive eth root of unity used to define q, we conclude that q(p)
ζ1

= qζp1 . Using (24) with ζ = ζp1 , we see
that q(p) = q, as required.

Making the change of basis e1  e1 and e2  −qe1 + e2 does not affect the form of the matrices for F
and V (since b = 0) and has no affect mod mO since q ∈ mO/m

n
O. It is easy to compute that after this change

of basis, yζ = 0 for all ζ. Since [ζ]e = 1, we are forced to use the definition

(25) [ζ] =

(
δ

(p)
ζ 0
0 δζ

)
,

where δζ ∈W (κ)⊗Zp (O/mn
O) is the Teichmüller lift of dζ ∈ (κ⊗Fp k)×.

Since dimk tFK′,O(ρ) = 2, we want to find an extra parameter in addition to u. If α 6= 0, then i also
satisfies α = aπi in (A′/p) ⊗Fp k, with a ∈ k×. Define a = 0 if α = 0; for any value of α, define â ∈ O to
be the Teichmüller lift of a ∈ k. By suitable unit scaling and the fact that our Honda system must have its
mO-torsion isomorphic to its quotient by mO via mutliplication by πn−1

O , we have to have

Λ′ = (A′ ⊗A (O/mn
O))(ε1 + αnε2),

where αn mod mO = α. There is an obvious isomorphism (Λ′[mO],M ′n[mO]) ' (L,M) in P̃SH
f

A′,O. It will
be checked at the end that (Λ′,M ′n) lies in SHf

A′ . The condition on αn which ensures stability of λ′ under
[ζ]A′ is

αζn = ζiαn.

In other words, we need to have

αn = âπi + a1πOπ
i + · · ·+ an−1π

n−1
O πi,

with ai ∈ O Teichmüller lifts of arbitrary elements of k. This gives us |k|n−1 different definitions of αn, so
together with the choices of u, we have |k|2(n−1) objects, and these are the only possibilities.

Let’s check these are mutually non-isomorphic. We will show that there are no isomorphisms, even
ignoring the descent data compatibility (actually, one case will require special care, as we will see). We
proceed by induction on n, the case n = 1 being trivial. Choose two pairs (u(1), α

(1)
n ) and (u(2), α

(2)
n )

and an isomorphism ϕ between the corresponding objects. By induction, we have u(1) ≡ u(2) mod mn−1
O

and α
(1)
n ≡ α

(2)
n mod mn−1

O . Thus, ϕ mod mn−1
O can be viewed as an endomorphism of a representation

Dp → GL2(O/mn
O) whose residual form ρ has trivial centralizer. It is not hard to show that for any local

artin ring B and any group H, any group homomorphism ρ : H → GLN (B) which has trivial residual
centralizer must itself have trivial centralizer (induct on the length of the ring B, with the group H fixed).
Thus, we can scale ϕ by a unit in (O/mn

O)× so that its matrix is the identity mod mn−1
O . More precisely, we

have
ϕ(e(1)

1 ) = re(2)
1 + te(2)

2 , ϕ(e(1)
2 ) = ve(2)

1 + we(2)
2 ,
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where r ≡ w ≡ 1 mod mn−1
O , t ≡ v ≡ 0 mod mn−1

O . The condition that ϕ takes Λ′(1) isomorphically over to
Λ′(2) is that

α(2)
n (w + α(1)

n πv(u(1))−1) = vp/π + α(1)
n w.

If v = 0, then α(2)
n w = α

(1)
n w, so α(1)

n = α
(2)
n . Moreover, compatibility of ϕ with F and V yields r = w and

ru(1) = wu(2), so u(1) = u(2). Now suppose v 6= 0, so v = v0π
n−1
O for v0 ∈ (O/mn

O)×. Writing w = 1+w0π
n−1
O ,

we obtain
α(1)
n − α(2)

n = v0((p/π)⊗ πn−1
O − â2(u(1))−1π2i+1 ⊗ πn−1

O ).
Since every term on the left side lies in πi ⊗ O, with some 0 ≤ i ≤ e − 2, we must have (since v0 is a unit)
â 6= 0, 2i+ 1 = e− 1, α(1)

n = α
(2)
n , and 0 = u−1

0 − a2s in k, which is to say a2su0 = 1. These conditions say
exactly that ρ is reducible with diagonal characters coinciding on GK′ . Thus, as long as K ′ can be chosen
in the reducible cases so that the diagonal characters χ1 and χ2 of ρ are distinct on GK′ , it follows that we
have exactly |k|2(n−1) distinct O/mn

O-valued points in the non-degenerate cases (granting that the pre-Honda
systems we defined above really are Honda systems). In order to show that such K ′ can be chosen in the
reducible cases, recall that χ1 6= χ2. We need to check that if χ = χ1χ

−1
2 : Dp → k× is non-trivial, then

there exists a totally ramified degree e extension K ′/Qp inside of Qp so that χ|GK′ 6= 1. It is enough to
check that the intersection of all such fields K ′ is Qp. This is an easy exercise.

Postponing the Honda system check, let’s consider the degenerate cases with dζ = d
(p)
ζ for all ζ. We must

have α = 0 in these cases. Since it suffices to find |k|2(n−1) distinct O/mn
O-valued points of the deformation

functor, simply define [ζ] as before, and fortunately we will get enough points with this condition. Note that
even though we now allow for the possibility that b 6= 0 as a Dieudonne module parameter, [ζ] commutes
with F and V because dζ = d

(p)
ζ for all ζ!

Define Λ′ = (A′ ⊗Zp (O/mn
O))(ε1). We have in an obvious manner i : (Λ′[mO],M ′n[mO]) ' (L,M) in

P̃SH
f

A′,O. We will check at the very end of the proof that (Λ′,M ′n) lies in SHf
A′ . It is easy to check that

[ζ]A′ carries λ′ = A′ ⊗A′ Λ′ back to itself and so we clearly have a triple ((Λ′,M ′n), i,D) of the desired
sort (note that we have omitted b and u from the notation, but this should not cause confusion). There are
|k|2(n−1) of these triples, for the different values of b and u.

We claim that the objects ((λ′,M′n),D) are pairwise non-isomorphic in DPSHf
A′ (this is slightly stronger

than we need, since we aren’t even requring the isomorphisms to satisfy a compatibility on the p-torsion
parts). Suppose for two pairs (b, u) and (b′, u′), we have an isomorphism ϕ between the corresponding
objects. We write the action on the Dieudonne modules as

ϕ(e1) = re′1 + te′2, ϕ(e2) = ve′1 + we′2,

with r, t, v, w ∈ O/mn
O. One computes

ϕ(ε1) = wε′1 + v(p/π)ε′2, ϕ(ε2) = πvu−1ε′1 + (w + vb)ε′2.

The condition that ϕ(ε1) = (unit)ε′1 implies that w must be a unit and vp/π = 0 in A′ ⊗Zp (O/mn
O), so

v = 0 (treat e = 1 and e > 1 separately). Thus, vp = vb = vb′ = 0, and w is a unit. The commutativity of
ϕ with F , V allows us to solve r = b′v + w = w, t = vpu−1 = 0, and then br = rb′, ur = wu′. Since r = w
is a unit, we get b = b′, u = u′, as desired.

As a ‘double check’ on our work, let’s show directly that if we tried to use the parameter αn in the cases
with dζ ≡ d

(p)
ζ , we would not get |k|3(n−1) distinct O/mn

O-valued points (coming from b, u, αn). In fact, in
this case the condition on αn is αζn = ζ−1αn, which is to say αn = −vnp/π for some vn ∈ O/mn

O. The matrix(
vnb+ 1 vn
vnpu

−1 1

)
gives an isomorphism between the objects attached to the data (b, u, αn) and (b, u, 0).

Finally, we have to verify that the pre-Honda systems we wrote down above are in fact Honda systems.
We prove the general claim that if (L,M) is an object in PSHf

A′,O (with L → MA′ injective) for which
M ' (O/mn

O)⊕r as an O-module, L ⊆ MA′ is an O-module direct summand, and the mO-torsion pair
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(L[mO],M [mO]) lies in SHf
A′,O, then (L,M) is necessarily a Honda system over A′. Note that the exactness

of the functor N  NA′ on Dk-modules with finite W (k)-length [2, Lemma 2.2] gives rise to a natural
injection of A′ ⊗Zp O-modules

L[mO] ↪→ (MA′)[mO] ' (M [mO])A′

which is implicit in our consideration of the pair (L[mO],M [mO]) as an object in PSHf
A′,O.

We prove our claim by induction on n, the case n = 1 being trivial. By induction, we know that the
pair (L[mn−1

O ],M [mn−1
O ]) in PSHf

A′,O lies in SHf
A′,O. Due to the O-module structure of M and the direct

summand hypothesis on L, we can use multiplication by πO to get the following commutative diagram with
exact rows and injective columns

0→ L[mO] → L → L[mn−1
O ] → 0

↓ ↓ ↓
0→ (M [mO])A′ → MA′ → (M [mn−1

O ])A′ → 0

Consider the natural κ ⊗Fp k-linear map ξ : L/m → coker FM . The maps ξ′, ξ′′ for (L[mO],M [mO]) and
(L[mn−1

O ],M [mn−1
O ]) are isomorphisms, due to the Honda system property. The above commutative diagram

therefore gives a commutative diagram with right exact rows and columns ξ′, ξ, ξ′′. Therefore, ξ is at least
a surjection. Proceeding similarly with a left exact argument and recalling the definition of VM , the natural
κ⊗Fp k-linear map j : L[m]⊕ ker VM →MA′ [m] is an injection.

We need to show that the injection j is surjective and that the surjection ξ is injective. This will be
accomplished by an A′-length computation. Since ξ is surjective, [2, Lemma 2.4] implies that `A′(L/m) ≥
`Fp(kerF ), with equality if and only if ξ is an isomorphism. Note that this can be reformulated as

`A′(L[m]) ≥ `Fp(kerF ).

Since j is injective, using [2, Lemma 2.4, Lemma 2.7] it follows that

`A′(L[m]) + `Fp(kerV ) ≤ `Fp(kerV ) + `Fp(kerF )

with equality if and only if j is an isomorphism. To be precise, when e = 1 (so m-torsion is p-torsion)
we should replace the reference to [2, Lemma 2.7] with a reference to the proof of [2, Thm 1.1], where the
exactness hypothesis on our Diedonne module M is shown to automatically always hold, and in particular
that

`Fp(M [p]) = `Fp(M/pM) = `Fp(M/FM) + `Fp(M/VM) = `Fp(kerF ) + `Fp(kerV ).
Combining our inequalities, we see equalities are forced and so ξ and j are isomorphisms. This shows that

(L,M) is a Honda system over A′.
�

We can now prove a result about determinants of deformations. The most important ingredient in our
proof is Fontaine’s theorem on the ‘B-admissability’ of p-adic representations coming from p-divisible groups
[9, Thm 6.2]. The background (and notation) upon which Fontaine’s theorem rests is quite substantial, and
for reasons of space we cannot review it here. Thus, in the proof we will have to assume a familiarity with
[9], as well as [7] (we have tried to give precise references for exactly what we need, and hopefully this will
be somewhat helpful to the interested reader).
Theorem 4.1.2. (i) If ρuniv denotes the universal deformation, then

det ρuniv|IK′ = ε|IK′ .

(ii) If χ : Dp → O× is a continuous character with χ|IK′ = ε|IK′ and χ mod mO = det ρ, let Fχ denote the
subfunctor of FK′,O(ρ) given by the extra constraint that the determinant of a deformation coincides with χ
(in the evident sense). Then Fχ is representable, with universal deformation ring isomorphic to O[[T ]].

Proof. First we assume (i) and use it to deduce (ii). At least 1 dimension of tFK′,O(ρ) is filled up by k[ε]-
deformations of the form ρ ⊗k (1 + ηε), with additive continuous unramified characters η : Dp → k (see
Remark 3.1.3). Clearly Fχ is representable, and it follows that Fχ has a tangent space with dimension at
most dimk tFK′,O(ρ)−1 over k. Thus, RFχ is a quotient of a formal power series ring over O in dimk tFK′,O(ρ)−1
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variables. If we can show that dimRFχ ≥ dimk tFK′,O(ρ), then it follows from dimension theory that RFχ is
a formal power series ring over O in dimk tFK′,O(ρ) − 1 variables, as desired. Since χ and det ρuniv coincide
on Ip by (i), upon choosing Frobp ∈ Dp which represents Frobenius in Dp/Ip we have

RFχ ' RFK′,O/(r),

with r = det ρuniv(Frobp) − χ(Frobp). But a quotient of the formal power series ring RFK′,O by a proper
principal ideal has dimension at least dimRFK′,O − 1 = dimk tFK′,O(ρ). This finishes the proof of (ii).

Now we prove (i). Since [Ip : IK′ ] = e is relatively prime to p, ε−1χ is the product of an unramified
character and the Teichmüller lift of ω−1 det ρ. Replacing χ by an unramified twist without loss of generality,
we can assume that χ takes values in W (k)×. By [3, Thm 1.2] we may (and do) assume that O = W (k), a
finite étale extension of Zp. This will be important later.

Since the universal flat deformation ring is a formal power series ring over O in d = 2 variables, it suffices
to show that for all O-valued points, the corresponding ‘specialization’

ρ : Dp → GL2(O)

satisfies det ρ|IK′ = ε|IK′ . The desired result then follows from basic non-archimedean analysis (i.e., if
f, g ∈ O[[T1, . . . , Td]] satisfy f(t1, . . . , td) = g(t1, . . . , td) for all tj ∈ mO, then f = g). Observe how essential
the structure of the deformation ring is for this argument.

Without loss of generality, we can assume K′ is of special type. We know that ρ|GK′ is the generic fiber of
a p-divisible group Γρ over A′. Since ρ|GK′ and its Cartier dual are the generic fibers of connected unipotent
finite flat A′-group schemes, both Γρ and the dual p-divisible group Γ̂ρ are not étale (look at p-torsion). It is
enough to prove that if Γ/A′ is a p-divisible group for which Γ and Γ̂ are not étale and for which the generic
fiber representation ρ of Γ has the structure of a rank two O-module, then det ρ|IK′ = ε|IK′ . Here, we are
computing the determinant relative to the O-module structure.

Since it seems likely that there are reducible ρ which do not admit an unramified k-twist having field of
definition Fp, it does not seem that we can reduce to the case O = Zp. Thus, our analysis of the generic fiber
determinant is not a formal consequence of Raynaud’s work [16, Prop 4.3.1]. In order to handle the additional
module structure on the generic fiber, we instead need to use Fontaine’s work on p-divisible groups [9] (and
the arguments we give allow one to recover [16, Prop 4.3.1] for discrete valuation rings having characteristic
0 and an algebraically closed residue field with characteristic p).

In order to clarify ideas, we consider a much more general situation. It will be clear that the above
situation is included as a special case. To avoid conflicting with the notation in [7], we now abandon our
previous conventions about k, K ′, etc. (this will cause no confusion because we will not be referring back to
the above setting again). The new notation is as follows. Let K ′ be any characteristic 0 field complete with
respect to a non-trivial discrete valuation, and with a valuation ring A′ whose residue field k is perfect with
characteristic p. We let A = W (k) and K denote the fraction field of A. Denote by CK′ the completion of
an algebraic closure of K ′. Let Γ be a p-divisible group over A′ such that neither Γ nor the Cartier dual Γ̂ is
étale. Let K denote a finite extension of Qp with valuation ring O, and suppose that O acts on the Zp[GK′ ]-
module T p(Γ) = lim←−Γ[pn](CK′) in such a way that the associated K[GK′ ]-module V p(Γ) = Qp⊗ZpT p(Γ) has
K-dimension equal to 2. By Tate’s full faithfulness theorem [20, Thm 4], there is also a canonical O-action
on Γ.

We are interested in studying the action of GK′ on
∧2

K(V p(Γ)), where the exeterior power is taken with
respect to the K-vector space structure. We want to prove the action of IK′ is cyclotomic in certain cases.
By [9, Thm 6.2], we have a natural isomorphism in the category MFK′,B

D∗B(V p(Γ)) ' DK′(Γ).

The filtered K ′-module DK′(Γ) is defined to be the K-vector space D = K ⊗W (k) M(Γ/k), together with
the filtration of DK′ = K ′ ⊗K D ' K ′ ⊗A′ M(Γ/k)A′ [7, Ch IV, §2.3, Prop 2.1] defined by Di

K′ = DK′

for i ≤ 0, D1
K′ = LK′(Γ) [7, Ch IV, §5.2], and Di

K′ = 0 for i ≥ 2. We claim that LK′(Γ) is non-zero and
does not fill up all of DK′ . To see this, note that by [7, Ch IV, Prop 2.1, Prop 4.2(ii)] and the proof of [7,
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Ch IV, Prop 5.1], the K ′-vector space LK′(Γ) has dimension equal to dim(Γ). If LK′(Γ) = 0 then Γ is étale,
which we assumed is not the case. If LK′(Γ) = DK′ then dim(Γ) is equal to the W (k)-rank of M(Γ/k), which
is the height of Γ, which is always equal to dim(Γ) + dim(Γ̂). Hence, in this case dim(Γ̂) = 0, so Γ̂ is étale,
contrary to hypothesis.

The O-action on Γ gives rise to a K-action on the filtered module DK′(Γ) by functoriality, so DK′

acquires the structure of a K ′ ⊗Qp
K-module in which LK′(Γ) is a non-zero proper submodule. Now make

the hypothesis that E = K ′⊗Qp
K is a field. For example, this is true when K = Qp, or when K ′ is a totally

ramified finite extension of Qp and K is an unramified extension of Qp (this latter case is what arises in
the setting of interest — here is where we use our original reduction to the case where O is a ring of Witt
vectors). Also, dimK′ DK′ = dimK D is the height of Γ, which is equal to 2[K : Qp] = 2[K ′ ⊗Qp

K : K ′].
Thus, dimE DK′ = 2, so the non-zero proper E-subspace LK′(Γ) must therefore have E-dimension equal to
1 (and in a similar manner, we see that dimK′ D = 2).

Choose (non-canonically) a primitive generator a for the field extension K /Qp, so {1, a, . . . , a[K:Qp]−1} is
a Qp-basis of K, and is also a K ′-basis of E. There is a map of filtered modules

DK′(Γ)⊗DK′(Γ)→
⊕

(DK′(Γ)⊗DK′(Γ))

given by component maps x⊗ y 7→ x⊗ y+ y⊗x and x⊗ y 7→ ajx⊗ y+x⊗ajy for 1 ≤ j ≤ [K : Qp]−1. The
kernel of this map is a filtered module ∆ with K-action such that V ∗B(∆) '

∧2
K(V p(Γ)). It is straightfoward

to compute that the filtered module ∆ has filtration structure ∆i
K′ = ∆K′ for i ≤ 1 and ∆i

K′ = 0 for i ≥ 2.
Also, by [9, Thm 5.2(ii), Thm 6.2] the filtered K ′-module ∆ is B-admissable.

We want to show that the action of IK′ on V ∗B(∆) is ε|IK′ . Twisting by ε|−1
GK′

, the filtration degrees shift
down by 1, and so we want to show that a B-admissable filtered K ′-module ∆ with ∆i

K′ = ∆K′ for i ≤ 0
and ∆i

K′ = 0 for i ≥ 1 has trivial IK′ -action on V ∗B(∆). Define K ′′ = W (k)⊗W (k)K
′, the completion of the

maximal unramified extension of K ′, so GK′′ = IK′ . Define ∆′′ = W (k)⊗W (k) ∆ in the evident manner, a
filtered K ′′-module. If U is a finite-dimensional vector space over K ′′ = W (k)⊗W (k) K

′ with a continuous
semi-linear action of Gal(k/k), then the natural map of K ′′-vector spaces

W (k)⊗W (k) U
Gal(k/k) → U

is an isomorphism (one first checks injectivity by considering an element in the kernel which is a sum of
a minimal number of elementary tensors, and for surjectivity one uses continuity to find a stable lattice;
surjectivity is proven even for lattices by using Nakayama’s Lemma to reduce to a k-vector space setting,
which is then classical). We apply this to U = HomQp[IK′ ]

(ResGK′/IK′ (V ), B), with V = V ∗B(∆). The
continuity of the GK′ -action on U follows from the continuity of the GK′ -actions on V and on GK′ -stable
finite-dimensional K ′-subspaces of B. Thus, we see that ∆′′ ' D∗B(ResGK′/IK′ (V

∗
B(∆))). Using [9, §5.6], it

follows that the filtered K ′′-module ∆′′ is B-admissable, so we’re reduced to checking that a B-admissable
filtered K ′′-module D with Di

K′′ = DK′′ for i ≤ 0 and Di
K′′ = 0 for i ≥ 1 has associated representation

V ∗B(∆′′) of IK′ = GK′′ which is trivial.
Since K ′′ has valuation ring A′′ with algebraically closed residue field, we can apply [12, p. 105, Thm 1.7]

to see that there exists an étale p-divisible group Γ′′ over A′′ with ∆′′ ' DK′′(Γ′′). But then by [9, Thm 6.2],
V ∗B(∆′′) ' V ∗B(DK′(Γ

′′)) ' V ∗BD
∗
B(V p(Γ

′′)) ' V p(Γ′′). Since Γ′′/A′′ is étale and A′′ is strictly henselian, the
representation space V p(Γ

′′) is trivial.
�

4.2. Another Deformation Problem.
In the study of elliptic curves over Q in [3], there is a slight variant on our deformation problem which

turns out to be useful. After giving the relevant definitions, we explain how to modify the preceding
arguments in order to carry them over to the new deformation problem. Assume now that p is odd. Using
the same notation as in §1, we fix a quadratic (ramified) character χ on GK′ . Instead of considering ρ
whose restriction to GK′ is OK′ -flat (with connectedness and Dieudonne module hypotheses), together with
OK′ -flat deformations of ρ, we suppose that the OK′ -flatness conditions holding after twisting by χ. More
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precisely, we assume that χ⊗ ρ|GK′ is the generic fiber of a finite flat OK′ -group scheme which is unipotent
and connected, and we consider only deformations ρ of ρ for which χ ⊗ ρ|GK′ is OK′ -flat. We still include
the exact sequence hypothesis on the Dieudonne module coming from the OK′ -group scheme attached to
χ ⊗ ρ|GK′ . The entirety of §1.1 carries over to this new setting. We call this new deformation problem the
χ-twisted OK′ -flat deformation problem. It is easy to see that this deformation condition is independent of
which of the two ramified quadratic characters on GK′ we choose, and in fact the condition depends on K′

only through the value of e(K′) = e. Thus, we can again use K′ of special type in calculations.
A fortunate technical accident makes it possible to carry over the descent data formalism, though in a

slightly different form. Consider a finite Galois extension L/Qp and a finite commutative L-group scheme
Γ/L, with ρ = Γ(Qp) the associated GL-module. Let χ be a (continuous) character on GL with χ2 = 1 (we
say χ is quadratic, though we allow for the possibility that χ = 1). We want to describe, in terms of Γ/L
and ‘descent data’, what it means to extend χ⊗ ρ to a Dp-module. Note that if G is the generic fiber of a
finite flat OL-group scheme and χ is ramified, then χ⊗ ρ is almost never OL-flat. We do not want to work
over the quadratic extension of L cut out by a non-trivial ramified χ, since this has ramification index 2e(L)
and the case of interest for elliptic curves has e(L) = p− 1 already (and breaking the p− 1 bound ruins any
hope of applying the theory of finite Honda systems).

Descent theory says that giving a Dp-module structure to the twisted representation χ⊗ ρ is the same as
giving compatible L-group scheme isomorphisms

[σ] : Γχ ' (Γχ)σ,

where the σ subscript denotes base change by the automorphism σ : L ' L and Γχ is the finite commutative
L-group scheme attached to χ⊗ ρ. The ‘cocycle’ compatibility condition is

[σ1 ◦ σ2] = σ∗1([σ2]) ◦ [σ1].

To be completely explicit about the twisting by χ, if χ is non-trivial then Γχ is the descent of Γ ×L L(χ)
relative to the Galois extension L(χ)/L, using the descent data −1Γ × τ , where τ is the non-trivial element
in Gal(L(χ)/L); here we use the fact that Γ is commutative in an essential way (otherwise the action of
inversion on Γ would not respect the group scheme structure over L(χ)).

Define the quadratic character χσ on GL by

χσ(g) = χ(σ−1gσ),

where g ∈ GL and σ ∈ Dp is a lift of σ ∈ Gal(L/Qp). By considering Qp-valued points, it is a straightfoward
but slightly tedious exercise in unwinding the dictionary between finite étale L-algebras and finite sets with
continuous Gal(L/Qp)-actions to construct a natural isomorphism

iσ,χ,Γ : (Γχ)σ ' (Γσ)χσ

(the definition involves making a choice of lifting of σ to Dp, but then one checks that this choice does not
matter). We now mention two important properties of this isomorphism. For σ1, σ2 ∈ GL, the composite
map

(Γχ)σ1σ2 ' ((Γχ)σ2)σ1

(iσ2,χ,Γ)σ1−→ ((Γσ2)χσ2 )σ1

iσ1,χ
σ2 ,Γσ2−→ ((Γσ2)σ1)(χσ2 )σ1 ' (Γσ1σ2)χσ1σ2

is equal to iσ1σ2,χ,Γ. Also, for σ ∈ GL and two quadratic characters χ1 and χ2 on GL, the composite map

(Γχ1χ2)σ ' ((Γχ1)χ2)σ
iσ,χ2,Γχ1−→ ((Γχ1)σ)χσ2

(iσ,χ1,Γ)χσ2−→ (Γσ)χσ1χσ2 = (Γσ)(χ1χ2)σ

is equal to iσ,χ1χ2,Γ. These are proven by a very careful examination on the level of Qp-valued points. The
arguments are not difficult, but there are a lot of diagrams one needs to check, so we leave this to the reader
as an exercise. If our GL-modules have the structure of k[GL]-modules for a finite ring k, then the above
carries over for characters χ taking values in k×.

Instead of working with the isomorphisms [σ] above, we can twist through by χ−1 = χ in terms of Galois
representations, leaving us with L-group scheme isomorphisms

[σ]′ : Γ
[σ]χ−1
−→ ((Γχ)σ)χ−1

(iσ,χ,Γ)χ−1
−→ (Γσ)ξσ ,
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where ξσ = χσχ−1. The fortunate technical accident is that GL has exactly two ramified quadratic charac-
ters and one unramified non-trivial quadratic character, so the quadratic character ξσ is always unramified
(perhaps trivial) and ξσ2

σ1
= ξσ1 , so ξσ1σ2 = ξσ1ξσ2 . Thus, we have isomorphisms

jσ1,ξσ2 ,Γ
: (Γσ1)ξσ2

' (Γξσ2
)σ1

inverse to iσ1,ξσ2 ,Γ
. Twisting through [σ]′ by ξσ = ξ−1

σ , we get L-group scheme isomorphisms

[σ]′′ : Γξσ ' Γσ.

It is another tedious (but not difficult) argument with many diagrams to check that the ‘cocycle’ compatibility
condition on the isomorphisms [σ] above is exactly the condition that the composite map

Γξσ1σ2
' (Γσ1)σ2

[σ1]′′ξσ2−→ (Γσ1)ξσ2

jσ1,ξσ2 ,Γ−→ (Γξσ2
)σ1

σ∗1 ([σ2]′′)−→ (Γσ2)σ1 ' Γσ1σ2

is equal to [σ1σ2]′′. This final formulation is suitable for translation into the language of finite Honda
systems, since it only involves (isomorphism) base changes and unramified twists, both of which preserve the
OL-flatness condition and extend nicely from Spec(L) over to Spec(OL).

Consider K′ /Qp of special type. It is a straightfoward exercise to check that if Fp(ζe) = Fp(ζ2e) (i.e., e is
odd, ord2(e) = 1 and p ≡ 1 mod 4, or ord2(e) = r ≥ 2 and p ≡ 1,−1,−1 + 2r mod 2r+1), then the quadratic
ramified extensions of K′ are Galois over Qp and therefore ξσ = 1 for all σ ∈ Gal(K′ /Qp). In these cases, the
descent formalism on Honda systems is identical to that which we have already dealt with, so the ‘twisted’
flat deformation rings (with and without determinant restrictions) have the same formal power series ring
form as before. This is uninteresting from the point of view of elliptic curves over Q — the case of essential
interest is p = 3, e = 2. When Fp(ζe) 6= Fp(ζ2e) (so e is in particular even), then ξσ = 1 if and only if σ is
trivial on the unique quadratic subextension of K ′/Qp. We now assume that e|(p− 1). This has the effect
of making K ′ = K′ in the context of K′ of special type, so κ = Fp and GK′ = µe. From a technial point
of view, the elimination of Gal(K′ /K ′) will make it much easier to modify our previous work. Otherwise
new complications arise and we lack the motivation to deal with the additional mess. The main result is as
expected:
Theorem 4.2.1. Fix p 6= 2, e|(p− 1), K′ /Qp a finite extension with e(K′) = e, and χ a quadratic ramified
character on GK′ . Let ρ : Dp → GL2(k) be a continuous representation for which χ⊗ ρ is the generic fiber
of a connected and unipotent OK′-flat group scheme. Moreover, assume that this (unique) OK′-flat group
scheme has a closed fiber Dieudonne module M for which the sequence of groups

0→M/VM
F→M = M/pM →M/FM → 0

is exact.
Such a ρ is either absolutely irreducible or reducible with trivial centralizer. Thus, a universal deformation

χ-twisted OK′-flat deformation ring for ρ exists. This ring is isomorphic to O[[T1, T2]]. The determinant of
the associated universal deformation restricts to ε|IK′ on IK′ . If we fix a character δ : Dp → O× which
restricts to ε|IK′ on IK′ , then the ‘determinant δ’ subfunctor of the χ-twisted OK′-flat deformation functor
of ρ is represented by a quotient O[[T ]] of the universal deformation ring.

Proof. As usual, we may assume that K′ is of special type, so by our hypothesis on e, K′ = K ′ = Qp(π) with
πe = pu0 for u0 ∈ Z×p . Also, as explained above, we may assume Fp(ζe) 6= Fp(ζ2e). We will now explain how
to modify our calculations so that they carry over to this new setting. It is for this reason that we assume
e|(p− 1); any non-trivial contribution of Gal(K′ /K ′) ' Gal(κ/Fp) = Gal(Fp(ζe)/Fp) (in our old notation)
would create significant complications, so we omit consideration of these other cases. Thus, all we have to
work with in the descent computations are the ζ ∈ µe ' Gal(K′ /Qp(ζe)) = Gal(K′ /Qp). Recall that these
ζ act W (κ)-linearly on the Dieudonne modules.

Aside from the descent data dζ ’s, the residual analysis as in §2.3 carries over without change, so we
have (L,M) and (L,M), though these are now equal since A′ = K′. Let κ2/κ denote the unique quadratic
extension of κ = Fp, and let κ⊥ denote the −1-eigenspace in κ2 for the action of the non-trivial element of
Gal(κ2/κ). This is a 1-dimensional κ-vector space, so κ⊥ ⊗Fp k has the structure of a free rank one module
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over κ ⊗Fp k. From our above explicit description of χ-twisting on generic fiber group schemes, it follows
that making unramified twists to A′-flat representations translates into finite Honda systems as

(L,M)χ = (κ⊥[π](ε1 + αε2), (κ⊥ ⊗Fp k)e1 ⊕ (κ⊥ ⊗Fp k)e2)

(this is to be viewed inside of A′(χ) ⊗A′ (L,M), with A′(χ) the unramified degree 2 extension of A′ corre-
sponding to κ2/κ).

We compute the same form for the matrix of [ζ], except that when ζe/2 6= 1 (so ζ ∈ Gal(K′ /Qp) acts
non-trivially on the quadratic subfield of K′ /Qp, which is to say ξζ = χ, rather than ξζ = 1), we have the

matrix entries in κ⊥⊗Fp k. The same relation d(p2)
ζ = dζ still holds (though this is a tautology since κ2 = Fp2

in the present cases), and
dζ1ζ2 = dζ1dζ2 , cζ1ζ2 = d

(p)
ζ1
cζ2 + dζ2cζ1 ,

where the products are taken inside of κ2 ⊗Fp k. The condition that [ζ] be an automorphism is that dζ is
a κ ⊗Fp k-module generator of κ⊥ ⊗Fp k (resp. κ ⊗Fp k) when ζe/2 = −1 (resp. ζe/2 = 1). The formulas
for [ζ]A′ carry over, as does the Fundamental Relation. The rest of §2.3 still works (with κ⊥ replacing κ
in a few places), so we again recover the fact that α = 0 if and only if ρ is irreducible, e|(i + 1)(p + 1) in
the reducible cases, and ρ is absolutely irreducible or is reducible with a trivial centralizer. In particular, a
universal χ-twisted OK′ -flat deformation ring does indeed exist.

Since the first part of Theorem 2.4.1 makes no use of the descent data, it carries over to our new setting.
The proof of Lemma 2.4.2 still shows that we can find a basis {e1, e2} (unique up to k×-scaling) so that
α = aπi for some 0 ≤ i ≤ e − 2 and cζ = 0 for all ζ ∈ µe. The point is that if ζ0 is a primitive eth root of
unity, so ζe/20 = −1, then dζ0 − d

(p)
ζ0

= (1− ζ−i−1
0 )dζ0 is a κ⊗Fp k-module generator of κ⊥ ⊗Fp k (since dζ0

is such a generator, and 1− ζ−i−1
0 ∈ κ×). Thus, we can find t ∈ κ⊗Fp k = k such that cζ0 = t(dζ0 − d

(p)
ζ0

),
and by the same arguments (based on cζ1ζ2 = cζ2ζ1 and the fact that dζ ∈ µe(κ2 ⊗Fp k) ⊆ (κ2 ⊗Fp k)×) the
same t ∈ k works for all ζ ∈ µe. Replacing e2 by e2 − te1 gives the desired change of basis.

Now consider the tangent space calculations. If ζe/2 = −1, then dζ , d
(p)
ζ ∈ µe(κ2 ⊗Fp k) are κ ⊗Fp k-

generators of the rank one κ ⊗Fp k-module κ⊥ ⊗Fp k, so d−1
ζ d

(p)
ζ ∈ µe(κ ⊗Fp k) makes sense. We define

the notion of degeneracy for ρ as before. The proof of Theorem 3.1.2 still works (in fact, it is easier, since
we don’t have any non-trivial σ ∈ Gal(K′ /K ′) to worry about), except that in a couple of places where we
consider solutions to t(p) = xt in κ⊗Fp k, we need to work in κ2⊗Fp k. Also, all references to interpretation
of Honda system conditions in terms of ρ are irrelevant and are to be ignored. In a similar manner, the
proof of Theorem 3.2.1 carries over. Actually, degenerate cases never occur. The reason is that the proof of
Theorem 3.2.1 shows that the degenerate cases must have dζ = d

(p)
ζ for all ζ, so dζ ∈ k = κ⊗Fp k ⊆ κ2⊗Fp k.

But if ζe/2 = −1 then dζ ∈ κ⊥ ⊗Fp k. Since dζ 6= 0 for all ζ, the degenerate cases lead to a contradiction.
Therefore, we have dζ = ζi+1d

(p)
ζ for all ζ and some 0 ≤ i ≤ e− 2.

The proof of Theorem 4.1.1 is easily modified (we sometimes need to work over W (κ2) or the −1-eigenspace
of W (τ) in here), and is made simpler since we do not need to consider degenerate cases. The proof of
Theorem 4.1.2 remains valid once we twist through the specializations ρ|GK′ by χ. This has no effect on the
O-module determinant, but in the second part of the theorem, we should denote the character Dp → O× by
a letter other than χ in order to avoid confusion.

�
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