MORE EXAMPLES

BRIAN CONRAD

Some important examples and explications of Grothendieck duality which should have been included in
Chapter 5 of [C1] were overlooked. Several such topics are treated here. One question which can be asked
about the trace map H" (X, Q% /k) — k for a proper smooth scheme X of pure dimension n over a field k
is how it relates to the trace map for a smooth divisor. Generalizing a little, one can ask whether there is
an analogous statement if one replace “smooth” with “CM”. This matter is addressed in the relative case
in §1, and the answer winds up involving a sign of (—1)"~1. In a different direction, one can ask how the
Grothendieck trace map for a proper smooth variety over C is related to a “topological” trace map defined
in terms of topological Poincaré duality, as in [C1, (2.3.4)]. They do not agree, but instead are off by a sign
of (—1)". In the projective case, one can analyze this problem quite pleasantly by using Bertini’s theorem,
induction, and the divisor compatibility treated in §1, once one has also worked out the analytic analogue of
§1. We work out such an analogue in §2, and the answer winds up involving a sign of (—1)", a contrast with
the sign of (—1)"~! in the algebraic case, and it is this discrepancy of —1 that ultimately leads to the sign of
(—=1)™ when comparing the Grothendieck and topological traces in the projective algebraic case (since each
of the n hyperplane slices contributes a sign of —1 in the comparison, but everything agrees in dimension 0).

Despite naive impressions, our sign of (—1)™ in the analytic/algebraic trace comparison is consistent with
the lack of such a sign in the analytic/algebraic comparison given in the appendix to [D]. The explanation
for the consistency is given in the pp. 33, 36 remarks in [C2]. The analytic/algebraic comparison in the
general proper case can be reduced to the projective case (and even just the case of projective spaces!) by
using local cohomology, as we explain in §3. Finally, in §4 we work out the comparison between the residue
map and the Chern class map for line bundles on curves (where the Chern class is viewed with values in the
ground field rather than in Z).

I am grateful to deJong, Ogus, and Serre for asking me questions about these topics, and to P. Sastry
and Y. Tong for convincing me that one could use local cohomology to replace the use of alterations in the
comparison of the analytic/algebraic traces.

1. TRACE MAPS AND COBOUNDARIES: SCHEME CASE

Consider a commutative diagram of schemes

pD—ox
DY
S

in which f is proper CM of pure relative dimension n > 0 and j is a closed immersion which is transversally
regular relative to S of pure relative codimension 1, so g is proper CM of pure relative dimension n — 1 > 0.
Let wy and w, denote the respective relative dualizing sheaves for f and g. There are canonical trace
morphisms

Vg R"gu(wg) = Os, vp:R"fulwy) — Os
which are of formation compatible with arbitrary base change, and likewise there are canonical base change
compatible isomorphisms wy ~ Q%;é,, Wy Q}/S when g and f are smooth. Using [C1, (3.6.11)], there is a
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canonical isomorphism of &'p-modules
Wy =~ gitt}zfx (j*ﬁp,wf)
which is of formation compatible with base change on S. Moreover, using the fundamental local isomorphism
from [C1, (2.5.1)], there is a canonical isomorphism of &p-modules
Eaty, (j:Op,wy) = wi(D)|p

which is compatible with arbitrary base change on S. Putting these together, we get a canonical isomorphism
of O'p-modules

(L.1) wi(D)|p ~ w,

which is compatible with arbitrary base change on S and for smooth f and g recovers exactly the classical
Koszul isomorphism C}dc from [C1, case (c), pp.29-30]. This explicit description of (1.1) in the smooth case
rests on the fact that [C1, (3.6.11)] recovers [C1, (3.5.7)] in the smooth case and that [C1, Lemma 3.5.3]
should have no sign (this lack of sign was observed by Gabber: the mistake in the proof is that d¢ A dz in
[C1, line 12, p. 164] should be dx A dt, thereby contributing another sign of (—1)"(N*”) to leave no sign in
the final result).

Using (1.1), we arrive at a canonical short exact sequence
(1.2) 0— ws = ws(D) = juwg — 0

which is compatible with base change on S and is exactly the classical such sequence in terms of sheaves of
top degree relative differential forms in the smooth case, with the right map locally described by

(1.3) (dt/t) An— ju(nlp)

It now makes sense to consider the diagram

(1.4) Rn_lg*(wg) — Rn_lf*(j*wg)
”/gl l(;
Os 7 R"f.(wy)

in which ¢ is the connecting homomorphism in the long exact cohomology sequence attached to (1.2). The
theorem we wish to prove is:
Theorem 1.1. The diagram (1.4) is (—1)"~1-commutative.

Before giving the general proof, we consider a concrete example with n = 1. If X is a proper smooth
connected curve over an algebraically closed field k and if D = {z} is a closed point of X, then there is a
canonical short exact sequence

0 — Q) — Vi (2) — k(z) = 0
in which k(x) denotes the structure sheaf of the reduced closed subscheme {2} and the map to k(z) is the
residue map at x. By [C1, Thm B.2.2], the Grothendieck trace map H!(X, Qk/k) — k is the negative of the
classical residue map (defined by computing the sheaf cohomology of Qﬁ( Ik in terms of the classical two-term
flasque resolution). Thus, in this case the theorem asserts that the composite map

k=H(X, k(z)) — H(X, Q% ) — k,

with the second map the residue map, is multiplication by —1. This can be checked by hand, using a Cech
cohomology calculation as in [C1, p. 289]. Now we prove the general case.

Proof. Before we begin the proof, we discuss a special case. Suppose S = SpecZ, D = P%_l, X =Py, and
j: D < X isthemap [to,...,tn—1] — [to,- .., tn—1,0]. In this case, one can use the explicit Cech cohomology
description of the Grothendieck trace on projective space [C1, (2.3.3), Lemma 3.4.3(TRA3), (3.4.13)] and
an explicit coboundary computation in Cech cohomology to easily compute directly that (1.4) commutes
up to (—1)"~! in this special case. This calculation of course rests on the fact that in the smooth case the
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sequence (1.2) is exactly the classical sequence one expects in terms of differential forms, resting on (1.3).
With the sign determined in this special case, it now suffices to prove the general case up to an abstract
undetermined universal sign depending only on n (and not on S, f, g, or j). The advantage of this is that
when analyzing various diagrams in derived categories, we can freely move translation functors through total
derived functors without too much worry and in general can ignore most formal combinatorics of signs in
homological algebra. Such “sloppiness” in what follows will at worst introduce an ambiguity governed by a
universal sign depending only on n, and hence is harmless for what we need to do. It should be remarked
that although we will give a rather abstract-looking proof with derived categories, if we were only interested
in the smooth (rather than CM) case then we could give a more explicit and down-to-earth proof by using
Lemma 3.5.3 and the concrete interpretation of the connecting homomorphism from Hom to Ext! in terms
of short exact sequences representing elements of Ext!.

Note also that everything under consideration, including (1.1) and (1.2), is of formation compatible with
base change on S, so by standard arguments from EGA IV3, §8ff, we may assume S is an artin local scheme,
so S admits a normalized residual complex Z[0], where .# is the coherent sheaf associated to an injective
hull of k(s) over the local artin ring &g s, with s the unique point of S. We will now base our analysis on the
formulation of duality theory in terms of residual complexes [C1, §3.2ff]. This frees us from the specificity
of differential forms and permits a more conceptual (but also quite abstract) argument than in the smooth
case alone.

Evaluation of the general isomorphism of d-functors ¢' ~ j'f' on @s[0] yields a canonical isomorphism

wyln —1] = j° (wyln])

in D(D) which, essentially by definition, recovers (1.1) up to universal signs depending only on n. This
isomorphism fits into the top row of the following commutative diagram in D(S) which encodes the general
transitivity of the derived category trace:

Ryg.(wg[n — 1]) —— Rf.Rj.j"(wy[n])

ml |

Os Rf.(wynl)

Trf

After passing to H®’s, the left and bottom maps recover v and 7y respectively, up to a universal sign
depending on n (the ambiguity arising from the need to specify certain universal conventions for defining
isomorphisms such as H°(C*[j]) ~ H7(C*®) when relating ordinary derived functors to total derived functors).
Since such universal signs are of no concern to us, we're reduced to proving that, up to a universal sign
depending on n, the derived category connecting homomorphism

(1.5) 0 jawg[n — 1] = wyn]
arising from the mapping cone of (1.2) coincides with the derived category map
(1.6) Jewgn —1] ~ Rij’wyln] — wyln],

where the second step here is induced by the derived category trace Tr; (see [C1, (1.3.3)ff] for the relationship
between classical connecting homomorphisms and mapping cones).

We now formulate everything in terms of residual complexes. Recall from [C1, (3.3.17)] that the functor
4 on residual complexes is 2 omx (j.Op,-), viewed with values in complexes of &p-modules. We will let
42 denote this functor on complexes of arbitrary @x-modules, so j° = R(j2). Using [C1, (3.3.6)], we have

canonical isomorphisms
(1.7) wiln] = AHom(f 5, f2.9)
in D(X) and
woln — 1] = A om(g".F ,g2F) = Homi (5" .7, 55 2.7
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in D(D), so we get an isomorphism
(1.8) Juwgln — 1] = Hom% (f* 7, j.j5 [ F)

in D(X). Note that since .# is coherent, all of these .7 om-sheaves are quasi-coherent (though we will never
need this fact).

The crucial point is that the complex on the right side of the isomorphism (1.7) is concentrated in degrees
from —n to 0, and not only gives a flasque resolution of w[n] but even consists of j2-acyclics (so it is suitable
for computing ;°(w f[n])). To check this acyclicity, we observe that j2 has cohomological dimension 1, so we
just have to check that if ¢ is a local equation for D in X then multiplication by ¢ on J€om% (f*#, #) is
a surjective map for any injective &x-module #. For this, we just need ¢ not to be a zero-divisor on f*.
(over the open where ¢ is defined). But . lives on S and

0— Ox(—D)— Ox — j.Op — 0

is a short exact sequence with all terms S-flat, so it is clear that ¢ is not a zero-divisor on f*.#. As a
consequence, with the resolution (1.7) we see that applying j. to w,[n— 1] =~ j°(w[n]) yields an isomorphism
which explicates to be exactly (1.8). This is very important,

Using [C1, Thm 3.4.1(3), Lemma 3.4.3(TRA2)] and the canonical inclusion j,j® — id, we get a commu-
tative diagram in D(X)

Jewg[n — 1] ———— Rj.j’w[n] wyn]

. -

HomX (f* I, jjo [2I) ——= HomX (f* I, [2.7)

in which the top row is (1.6) and the left column is (1.8). Since we need to identify (1.6) with (1.5), we are
reduced to proving the commutativity in D(X) of the diagram

(L9) Juwgln — 1] wyln]

Nl lN

HomX (f*F,jujd f2I) ——= Hom (f* I, [AF)

at least up to a universal sign depending only on n, where the bottom row is the canonical map of complexes,
the top row arises from the mapping cone construction, and the left column is (1.8), which we have noted
essentially amounts to the coupling of the “definition” wy, = é"xt}((ﬁp,w}c) and the j®-acyclic resolution
(1.7). Now the trick is to carefully explicate d in terms of a mapping cone complex involving terms as in the
bottom row of the diagram. Once this is done, everything will fall into place.

Let &* denote the canonical 2-term complex &x — Ox (D) concentrated in degrees —1 and 0, so via the
contravariance of Zom in the first variable there is a canonical identification in the derived category

N:E®F <= RA om% (Op|—1], F*) —— j, 5> 7*[1]
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for any complex .#* of Ox-modules. When .#* = .#0], this recovers on H?’s exactly the classical method
of computing an &at! via a Koszul resolution (up to universal sign). Thus, we get a universally sign-
commutative diagram in D(X):

weln =1] —=ws(D)[n = 1] ——=&* @ ws[n — 1] —— w[n]

:Tn

(e’ wyln = 1])[1]

wiln — 1] — wy(D)[n — 1] ——> juwyln — 1]

in which the top row is the mapping cone complex of the bottom row. In particular, going up the right
column and then to the term wy[n] at the end of the top row computes § up to a universal sign. Since the
left column of (1.9) also involves passing through the isomorphism j.wgn — 1] ~ j, JPw ¢[n] and using the

j®-acyclic resolution (1.7), up to universal signs we can identify (1.9) with the outside edge of the diagram

~

j*jb(wf[n]) — &° @wyln —1] wyn]

l |

Juf? Hom (f* I, fAI) —== E* @ HomX (f* I, [2I) 1] —= HomX ("7, [>F)

HomS(f* I, 5322 F)

The commutativity of the top part of this diagram follows from functoriality and the universal sign-
commutativity of the bottom part is obvious. This completes the proof.
[ |

2. TRACE MAPS AND COBOUNDARIES: ANALYTIC CASE

On the analytic side we will be able to use cohomology with compact supports to localize our problems
(provided we set things up in adequate generality), and in this way will be able to reduce some questions
to the case of an open ball, where explicit computations can be carried out. Let C denote a fixed algebraic
closure of R, equipped with its unique structure of topological field over R (the only structure which is
relevant for the basic definitions in complex analysis). Let X be a paracompact Hausdorff manifold over C
of pure dimension n > 0 and let j : Y < X be a complex submanifold of pure dimension n — 1. Note that
we do not make any connectedness assumptions, for either X or Y. This ensures that we can use Bertini’s
theorem in subsequent applications to bring ourselves down to dimension 0 without worry. Let wx = Q%
and wy = Qﬁ_l denote the sheaves of top degree holomorphic differential forms on X and Y respectively,
and let the Oy-module wy,x denote the normal sheaf for Y in X (i.e., the dual of the invertible &y-module
Sy | F2, where Sy = ker(Ox — j.Oy)). For any local generator t of %y, we let ¢V denote the corresponding
local dual basis for wy,x over Oy. There is a canonical isomorphism

(2.1) wy x ® jrwx ~ wy

locally determined by
" @5 (dt An) = nly,

where t is a local equation for Y in X.
By applying wx ®g, (-) to the canonical exact sequence

0—0x — Ox(Y) = wy/;x =0
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with the right map given locally by 1/t — ¢V, we therefore get an exact sequence
0—-wxy mwx(Y)—wy =0

from which arises a C-linear coboundary map

(2.2) §:H Y, wy) — HY (X, wx).

In order to avoid sign confusion, let us explicate a couple of things related to integration. For a complex
manifold Z with local holomorphic coordinates z1,..., %y, and a choice of i = v/—1 € C, the orientation
1A% > 0 of the underlying R-manifold of C induces as usual an orientation on the R-manifold underlying Z
(called the i-orientation of Z), independent of the choice of local holomorphic coordinates. This corresponds
of course to the “positivity” of the smooth “R-valued” differential form

(2.3) (idzg AdZ1) A -+ A (idzg A dZm)

on the underlying R-manifold, and (2.3) depends on the choice of ¢ up to a sign of (—1)™.
For such paracompact Hausdorff Z with pure dimension m, the resulting integration map

/ :H?*™(Z,C) - C
z

therefore depends on the choice of i up to a sign of (—1)™, so the map

def 1 2
Tr, . H2™(Z,C) — C
o G 20

is independent of the choice of :. Without such independence, this could not possibly be compatible with
any purely algebro-geometric construction over C. Likewise, since the holomorphic deRham complex gives
a resolution of the constant sheaf C, the spectral sequence for hypercohomology gives rise to a Hodge-to-
deRham spectral sequence

HY(Z,9%) = H™(Z,C)
that may be computed using the classical Hodge-deRham double complex of fine sheaves &/2'? of type-
(p, q) smooth C-valued differential forms on the underlying R-manifold. In particular, we get a canonical
isomorphism
£z H™(Z,Q%) ~H>™(Z,C).

Now consider the diagram

(2.4) H N (Y, wy ) —— H (X, wx)
zlﬁy §Xl~
H:""V(v,C) H"(X,C)
ml Tx

with top row as in (2.2). The first thing we wish to prove is:
Theorem 2.1. The diagram (2.4) commutes up to a sign of (—1)™.

Proof. Although the main case of interest is perhaps when X and Y are compact, by working more generally
with compactly supported cohomology we shall be able to reduce ourselves to a local calculation on the unit
ball in C™. In order to carry out the localization, let U C X be open and let V = j=1(U) = UNY be the
open overlap with Y. Recall that for any sheaf .# on X there is a canonical map

(2.5) H(U, Z|v) — HY(X,.F)
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uniquely determined by universal é-functoriality and the evident specification in degree 0. More specifically,
if # — .7° is a fine resolution (e.g., the d-resolution Q% — &%) then so is F|y — F*|y and

L (U, 7% y) = T(X, 7°)

induces the canonical §-functorial map (2.5) on compactly supported cohomology. Using this explication, as
well as the functorial construction of the Hodge-to-deRham spectral sequence in terms of the double complex
(@7**,0,0) of fine sheaves, we see that the diagram (2.4) for the pair (X,Y") is compatible with the analogous
diagram for the pair (U, V).

Thus, to prove the theorem for (X,Y") it is enough to prove it for a set of pairs (U,, V4, ) such that the
maps

2" (V,, C) — HX" (Y, C)

have images spanning Hz(nfl)(Y, C) as a C-vector space. Moreover, we can replace X with any open
neighborhood of Y. Since we can take Y to be connected (as cohomology with compact supports take
disjoint unions to direct sums), we then have that

HX"=D(v,C) ~ HX"~ (Y, C)

for any small open ball V' in Y. In this way, we see that we may reduce ourselves to the case in which X is
the “ball” of points z € C™ for which |z;| < 1 for all j, and Y is the (n — 1)-dimensional “ball” in here cut
out by the condition z,, = 0.

We now carry out the analysis by making an explicit exact sequence of fine resolutions over the short
exact sequence

0—-wxy mwx(Y)—wy =0
as defined above. We certainly have the @x-linear d-resolutions
wyxy — sz;"

and

wx (V) = A2 (V) a2 @0y Ox(Y).

Since z,, is nowhere a zero-divisor on d)g’o and all &/F'? are locally free over ,527)3’0, we see that
Tor?ﬁx’w (Ox.z/2n, 957%) =0

forall z € X, i > 1, and p,q > 0. Thus,
Jox = JUAY = AR o

is a resolution, visibly by fine sheaves (of 2y’ /z,-modules).
Thus, we get a natural diagram with exact rows and resolutions in the columns:

(2.6) 0 JZ/;’. %;’.(Y) — > Wy/Xx ®j*d;’. —0
0 wx wx(Y) ——wy/x @ j'wx ——0

In order to connect up this diagram with (2.1), we must link up the right column of (2.6) and the fine
resolution wy — MQFI”, compatibly with (2.1). Let 7 : X — Y be the holomorphic projection

(z1,.-y2n) — (21, -+, Zn-1,0),
so o j is the identity on Y. Consider the map of sheaves
%;L*l,q N WY/X ®j*£{;,q
defined on local sections by

(2.7) Nz, @5 (dz, ATN).
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Since 9(dz, A 1) = —dz, A 7*0n, in order to define a commutative diagram of fine resolutions
(2.8) Ay ——wy x @ "
Wy ——>wy/x @ jwx

we replace (2.7) with
(2.9) N gqzy @ 55 (dzn ATN)

in degree g, with 441 = —¢4 and g9 = 1 (to respect augmentation), so ¢, = (—1)? for all g. By the general
theory of fine resolutions on paracompact Hausdorff spaces, we conclude that the maps between the two
columns in (2.8) induce isomorphisms on I'.(Y] -)-cohomology in all degrees.

Now we are ready to chase through the snake lemma using (2.6) and (2.8) to explicate going around (2.4)
from the middle of the left column, across the top, and down to the middle of the right column. Pick a

compactly supported (n — 1,n — 1)-form 7 on Y representing a class in Hg(n_l)(Y, C), so (2.9) leads us to
consider
(2.10) (—=1)" 12 @ j*(dzn, A7),

a compactly supported global section of wy, x ®j *,Qf;’”ﬂ (note the support is still in Y, whence its compact-
ness). The general nonsense concerning fine sheaves ensures that (2.10) lifts to a compactly supported global
section § of o7 ' (Y) via the (n — 1)th row of (2.6), and moreover 96 € T'.(/y"(Y)) must actually be
inside of I'c(#/y"). Let w € T'o(#/’™) denote this element. This represents a cohomology class in H2" (X, C)
which is the image of our initial class of  upon going around (2.4) from the middle left, up across the top,
and down to the middle right. Thus, the desired (—1)™-commutativity of (2.4) says exactly

ﬁ /X ©T (;;z;’)fl /y "’

Recalling the sign of (—1)"~! that entered into the above “construction” of w from 7, we could alternatively
have chosen 6 € T'o(«/¢ ™ (Y)) with
0o — 2y @ j*(dzn A1) € Te(wy/x @ j "1
under (2.7), and then for wy = 90y € To(y") C Te(y" (Y)) we want

(2.11) ﬁ/xwoz (27;%//7

More specifically, in order to avoid “denominators” (i.e., simple poles along Y') in the construction, we
choose 6; € To(/y" ) with
(2.12) 01— 7 (dzy A1)
under I‘C(;zf;’”fl) — Fc(j*,d;’”fl) and then by general theory we must have 06, = z,wp for some wy €
Ic(o/¢™). We then wish to prove (2.11) for this wg. We shall prove the more precise statement

-1
n=s5- wo

211 |zn|<1

(where we just “integrate out z,”), and so by Fubini’s Theorem (2.11) will follow.
Now it is time for the local computation. We may uniquely write

(2.13) n=gdzy Adzy A--- AdZp_1 ANdzp_1
for a compactly supported g and

01= frda Adzy Adey Ao AdZg Adeg A AdZ, Adz,
k=1



MORE EXAMPLES 9

for compactly supported f;’s, where the ~ means we delete that term. But we selected 6, so that its image
in j ey s
J5(dzy AT ) = j (gdzn AdZy Adzy A - AdZp—1 Adzp_q),
which involves no terms of type
dzp Adz Adzg A AdZp Adzg A~ AdZ,_ 1 Adz,_1
for k£ < n. Thus, by consideration of bases of sheaves of modules, it follows that for 1 < k < n all terms
*(fadzn AdZy Adzg A AdZp Adzg A AdZ, A dzn)

vanish. Hence, since the only thing that matters for the choice of 6 is its lifting property (2.12) with respect
to j*(dz, A 7*n), we may suppose fr = 0 for all £ < n. That is, we may suppose

(214) 01 :fdzn/\dfl /\le/\'”/\dEn,l /\dZn,1

for a compactly supported f.
Using (2.13), (2.14), and the property 7 o j = idy, the condition (2.12) says exactly that

(2.15) (21, o2) = g(21, - 2n1) + 200

for some p € I'(X, ng)g’o). Note that g as a function of (z1,. .., z,) is not compactly supported, so ¢ generally
won’t have compact support either. In any case, we compute from (2.15) that

of Oy
(2.16) 05 = s

SO
9(21,--~72n—1) = f(Zlv--wZn—l»O)

1 of/o0z

= _/ I/ Z”dznAdzn
211 lzn|<1 Zn —
1

= 02 420 A dz,
21 ., 1<1 O%Zn
1 0

= 5 _T@dzn/\dznv

21 |zn|<1 Zn

where the second equality uses the fact that f has compact support (thereby killing the boundary integral
in the generalized Cauchy integral formula).

Recalling that n = gdz; Adzy A--- AdZ,—1 A dz,—1, we conclude from this explicit “computation” of g
that

1 0
n=-— — I Az Adzn AdZ Adzr A AdZn1 Adzn_r.
276 Jiz <1 O%Zn
In order to conclude that n = fﬁ flz <190, it suffices to show
9o - -
wo = 9% dz, Ndz, ANdzy Adzy A--- ANdZp—1 ANdzp—1.
n

But by (2.14), (2.16), and the definition of wy we have

ZnWo = 591
= g(fdzn/\dzl ANdzi A+ ANdZp—1 /\dZn_l)
= g?fdzn ANdz, Ndzi Adzg A+~ ANdZp—1 Adzp—1

P
= 2, a%"dzn Adz, Adzy Adzy A AdZ,_1 Adzy_y
Zn

Now cancelling z, completes the proof of the Theorem.
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3. COMPARISON OF TRACES

Let X denote a smooth proper scheme over Spec(C), with pure dimension n > 0. Using the isomorphism
w§ ~ wxan, there is a natural diagram

(31) Hn(X,LUX) %Hn(Xan,WXan)

ml l”

C~——— H2n(Xan’g)
Trxan
Although Grothendieck’s generalization of GAGA in Exp. XIIT of SGA1 implies that the top horizontal
map is an isomorphism, we do not need this fact. We wish to investigate the nature of the commutativity
or otherwise of (3.1).

n

Theorem 3.1. The diagram (3.1) commutes up to a sign of (—1)™.

Proof. We first will use pure thought to prove the theorem up to a universal undetermined constant depending
only on n. This constant will then be computed by considering a single example in dimension n (namely,
P™). Choose a closed point z € X. We also view x as a (closed) point of X?*. By universal d-functor
considerations, there is a commutative diagram of §-functorial morphisms

(3.2) HY (X)) ————=H*(X, ")

N

{z} ()(an7 (.)an) . H.(Xan, (.)an)
The arguments near [C2, p. 6, line 14] show that the composite map
HY,, (X, wy) — H*(X,wx) =5 C

is equal to (—1)"Trx 1, where Trx r5) is the “local trace” defined by [C1, (A.2.16)]. If zy,...,z, are
sections of Ox on a neighborhood of x which induce a regular system of parameters in the local ring at x,
then the recipe in [C1, pp. 253—4] defines a “fraction”

dzi A+  ANdz,
nN=——"—"——""

o S (ex)

and [C1, Lemma A.2.1] implies that Trx ,(n) = 1. This computation makes essential use of Grothendieck’s
general theory of the residue symbol.

Since the vector space H"(X,wx) is 1-dimensional over C and there is a canonical isomorphism wq" =~
wxan, it makes sense to let n*" denote the image of n under the left vertical arrow in (3.2) and thus the
theorem for X is equivalent to the assertion that the composite map

1oy (X wxan) — HY(X™ wxan) 25 C
sends n*" to 1.
If U denotes a Zariski open around x on which z1, ..., z, are defined, then the analytic map

@‘iéf(zl,...,zn) UM — C"
is étale at x. Thus, for a sufficiently small open ball A,  of some radius r, > 0 around the origin in C"
we may identify A, with an open neighborhood of z in U?" via ¢. We wish to use this to prove that the
theorem for X is logically equivalent to a computation in local cohomology on the open unit ball in C™. By
universal §-functor arguments, if ¢ : V' — M is an open immersion between paracompact Hausdorff ringed
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spaces and z € V is a point, then we have a commutative d-functorial diagram

(3.3) H (Vo Olv) —=H2(V, ()v)
)

]

zx} (M’ ) > H; )

which is uniquely determined by the natural maps in degree 0. Here, the “variable” is an arbitrary O;-
module. Since the right vertical map admits a concrete description on the level of fine resolutions, we see
with the help of deRham resolutions that if ¢ : V' — M is an open immersion of paracompact Hausdorff
complex manifolds of pure dimension n, then composition with the map

He (Viwy) — HE (M, war)

carries Trp; over to Try .
Applying these considerations to the open immersion A, — X" we conclude that the theorem for X
is equivalent to the assertion that the composite

TrArm

(3.4) Hioy (A, wa,,) = HI(A,,wa,,) — C
sends the “fraction”
dz; A - Adzy,
(3.5) @ n A @n
Zl ... Zn
to 1, where z1,..., 2z, are the standard ordered coordinates on A, . Here we have implicitly used the fact

that the scheme-theoretic construction in [C1, p. 253] also makes sense in the complex analytic case, where
[C1, (A.2.18)] is viewed as simply a natural transformation of J-functors on sheaves of modules (generally
not an isomorphism) and the Koszul complexes in this construction are computed with module stalks over
local rings at points (as opposed to modules of sections over an open affine as in the scheme case with
quasi-coherent sheaves). In order to see that this Koszul construction really §-functorially computes the
module Ext’s in the analytic case, just as in the scheme case, one uses an erasable J-functor argument. This
analytic “fraction” construction is visibly compatible with analytificiation from the algebraic case.

Observe that the holomorphic functions y; = z;/r, are also local equations cutting out the reduced point
0, so the “fraction”

dy; A--- Adyy,
ylgn.yn

makes sense and coincides with (3.5) in local cohomology at the origin. The reason that (3.5) coincides with
(3.6) is not because of the suggestive fraction notation (which is purely symbolic) but rather because

(3.6)

dzi A Adzp =rpdys A - Adyn
in the stalk (wa,_)o at the origin and the natural isomorphism of Koszul complexes
K*(z, %0) ~ K*(y, %)

lifting the identity in degree 0 is given by multiplication by r7 in degree j (and hence multiplication by r; ™
in degree n).
Since (3.4) is intrinsically defined for any pointed paracompact Hausdorff manifold and is visibly functorial

with respect to isomorphisms, the isomorphism A, ~ A def A defined by

(Zl7~'~azn) = (Zl/rzv-uazn//rx)

identifies our local cohomology claim on A, concerning (3.4) and (3.5) with the analogous assertion on
the open unit ball A in C". Note that this equivalence rests on the equality of (3.5) and (3.6) in local
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cohomology on A, . Summarizing the conclusion of this general nonsense, the (—1)"-commutativity of (3.1)
for a fixed X is equivalent to the assertion that the composite

(3.7) H7, (A, wa) = HP (A wa) =5 C
sends (3.5) to 1, where z1, ..., z, denote the standard ordered holomorphic coordinates on the open unit ball

A in C". This latter statement is independent of X, so knowing the theorem in a single example is sufficient
to deduce the general case!

We now give a general induction-on-n proof in the projective case, using hyperplane slices and Theorems
1.1 and 2.1. The case n = 0 is clear, so we may (and do) assume n > 1. Since we only need to consider
the single case X = P", and Theorem 1.1 for a hyperplane P"~! embedded in P" is established by direct
computation as the first step in the proof of Theorem 1.1, for the argument that follows we only need this very
special (and down-to-earth) projective space case of Theorem 1.1. With these preliminary remarks made,
we now carry out the induction. Since n > 0, we may use Bertini’s theorem to find a smooth hyperplane
section j : Y — X (so Y is of pure dimension n — 1, typically disconnected if n = 1). We saw in Theorem
2.1 that the analytic coboundary map

san . Hn—l(yan7wYan) N Hn(Xan7ann)
satisfies
(3.8) TrXan o] (;an = (—1)nTrYan,
But by Theorem 1.1 (which we really only need in the easy case of P"~1 < P™), the (surjective!) algebraic
coboundary map

58 H (Y, wy) - H'(X,wx)

satisfies
(3.9) Trx 06%8 = (—=1)" 'Try

so the inductive hypothesis for Y, along with the surjectivity of §*', permits us to conclude that (3.1)
commutes up to a sign of

D" DD = (-
as desired. In more down-to-earth terms, (3.8) and (3.9) imply that each time we drop the dimension by
1, the analytic and algebraic theories have a discrepency of (—1)"(—1)""! = —1, and so since we have
compatibility upon reaching dimension 0 we conclude that the total discrepancy in dimension n is (—1)", as

desired.
[ |

Now that we have taken care of the general proper case over Spec(C), it is natural to ask about the relative
case. This will be almost a trivial consequence of what has gone before, but a little thought will be needed
to get around nilpotent issues. First let us formulate what is to be shown. In Grothendieck’s theory one has
a good notion of relative trace for proper smooth maps, compatible with arbitrary base change. Meanwhile,
the relative analytic trace goes as follows. If f : X — S is a proper smooth map between complex analytic
spaces and f has fibers of pure dimension n, the relative holomorphic deRham complex gives a resolution of
f~10g, and from this one gets a canonical g-linear isomorphism

R" £.(Q%)s) = R [.(f 7' 05) ~ R*" £.(C) ®¢ O

compatible with base change and recovering the classical isomorphism on fibers. Moreover, by keeping careful
track of orientations there is a unique C-linear isomorphism

(3.10) R?" f,(C) ~ C

which is the classical analytic trace on fibers (existence of (3.10) with the specified fiber properties is the
point here, of course). Putting these together, we get an @g-linear relative analytic trace map

Trxs : R" fu(Q%/5) = Os
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which respects base change and induces the usual analytic trace on fibers. It makes now sense to state:

Theorem 3.2. Let f be a proper smooth morphism between locally finite type C-schemes. Then
Trpan = (—1)"(Tryp)>".

Proof. By analytic/algebraic cohomology and base change, one immediately reduces to the case of a map
f: X — S where S = Spec(A) for a finite local C-algebra A. We can then also assume X is connected. We
have two A-linear trace maps

H (X, Q%/4) — A, HY(X™, Qe /4) — A
which we want to be (—1)"-compatible with respect to the A-linear GAGA isomorphism
H™ (X, % 4) = H" (X, Q%an 4).-

A priori we only know this compatibility modulo the maximal ideal of A. To make a comparison more
feasible, we shall use the crutch of a choice of section s € X(A) (which exists since X is A-smooth and
A is strictly henselian). Since analytification is compatible with formation of R om on coherent sheaves
(thanks to GAGA for &zt-sheaves), we have an easy compatibility between the algebraic trace map for the
closed immersion s and the analytic trace map for the closed immersion s** (the latter defined much like
the former in terms of formal manipulations with R om’s).

In other words, there are canonical compatible maps

Trg: A — H'(X, 0% ), Trem: A — H'(X* Q% )

which coincide under the GAGA isomorphisms. We first claim these maps are isomorphisms. It suffices
to check Tr, is an isomorphism, but Try is an isomorphism (thanks to the connectedness hypothesis) and
Try o Try : A — A is multiplication by a universal sign depending only on n. Thus, Tr, and Tren are
isomorphisms. It is therefore necessary and sufficient to show

Trpan 0 Trgan = (—1)"Try o T,

as A-linear endomorphisms of A. But observe that everything works modulo the maximal ideal of A; this is
where we make essential use of the fact that we have already handled the proper smooth case over Spec(C).
This verification on the closed fiber makes our problem logically equivalent to the following assertion purely
on the analytic side: our abstract A-linear endomorphism Tt fan 0 Trgan of A should be an extension of scalars
of a C-linear endomorphism of C. Looking back at the definition of Tryan in terms of a local system, our
problem is a special case of the following purely analytic assertion: if X is a proper smooth analytic space
of pure relative dimension n over a finite local C-algebra A and if s € X(A), then the canonical trace map

Try: A — H"(X, 0% ,) ~ A@c H*"(X,C)

sends 1 into H?"(X, C). The only sense in which this is more general than the preceding case is that we don’t
assume X to be “algebraic” (note that for “algebraic” X, all analytic sections s € X (A) are automatically
“algebraic” by GAGA).

By using cohomology with compact support and requiring the pure n-dimensional A-smooth X to be
merely paracompact Hausdorff rather than compact Hausdorff, we still have the A-linear Hodge-deRham
isomorphism for H?’s in top degree and hence we can contemplate the analgous assertion that

Tr,: A — HY (X, Q%) ~ Ac H (X, C)

sends 1 into H2"(X, C). We may of course assume X is connected without loss of generality. Then since the
underlying topological space of X is a smooth connected manifold, so H2"(U, C) — H2"(X, C) is an isomor-
phism for any connected open neighborhood U of the image point of s, our analytic claim for paracompact
Hausdorff X is equivalent to the special case when X is the open unit n-ball over A and s is the 0-section.
We conclude that it is necessary and sufficient to consider a single example in dimension n. Thus, we may
consider X = (P”)?" and any s € X(A) (e.g., s =10,...,0,1]). Looking back over the various equivalences
through which we have passed, we are reduced to considering the original question of comparing Tr; and
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Trpen for f: P — Spec(A). But now everything is a base change from a situation over Spec(C), so by base
change compatibility of Try and Tran we are reduced to the known case A = C!

4. CHERN CLASSES ON CURVES

Let k be an algebraically closed field and let X be a proper smooth connected curve over k. Using the
canonical isomorphism H!(X, %) ~ Pic(X) as in [C1, (B.4.1)] (and see the p. 284 remarks in [C2]), there
is a canonical composite map
(4.1) HY(X,0%) - Z—k

where the first step is determined by assigning to each line bundle .Z its degree. We will call (4.1) the Chern
class map because in the analytic situation when k = C it is a classical fact that (4.1) coincides with the
first Chern class of a line bundle (hence the title of this section), given by

H'(X, 0%) — H*(X™,Z(1)) = Z,
where we use the coboundary map arising from the canonical exponential sequence
0= Z(1) = Oxan 2 Ofun — 1
on the compact Riemann surface X*". We will now prove that by using the abelian sheaf map
dlog : 0% — Q)
defined by f — df/f, the Chern class map (4.1) is equal to the composite

resx

(4.2) H'(X,0%) — H'(X,Q% ) — F,
with resx,; equal to the residue map [C1, (B.1.2)] (also see the pp. 271, 275 remarks in [C2]).

The argument will ultimately reduce to the computation of the residue map in terms of Cech theory in
[C1, p. 289]. Tt suffices to consider the case £ = &(x1) for some ;1 € X (k), in which case we need to prove
that (4.2) sends the class of £ to 1 € k. Choose a rational function ¢ € k(X)) with a simple zero at z; and its
only other zeros (if any) at some other point o € X (k). In case X has genus 0, we require that ¢ not have
a pole at xg. Thus, the finite non-empty pole set P of t is a subset of X (k) which is disjoint from {zg, z1}.
Let Vo = X — (PU{xo}), Vi = X — {z1}, so {Vo, V1 } is an open affine covering of X which trivializes .
Z|v, has a free basis 1/t and Z|y, has a free basis 1. Thus, the Cech class in H'({Vp, V1}, 6%) for £ is
represented by the unit 1/(1/t) =¢ on Vo N V;. Since

dlog(tlvynvy ) = dt/t € Q5 (Vo N V1)

and the computation in [C1, p. 289] only requires that the second open set in the ordered open covering have
complement consisting of a single point, we conclude that

ves /i (dlog([£])) = res,, (dt/) = 1

since t has a simple zero at x1. This completes the proof of compatibility of the Chern class map and residue
map for curves.
[ ]
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