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1. Introduction

In the 1960’s, the efforts of many mathematicians (Kodaira, Néron, Raynaud, Tate, Lichtenbaum, Sha-
farevich, Lipman, and Deligne-Mumford) led to a very elegant theory of preferred integral models for both
(positive-genus) curves and abelian varieties. This work was largely inspired by the theory of minimal models
for smooth proper algebraic surfaces over algebraically closed fields [2]. There are some very special integral
models, called minimal regular proper models for curves and Néron models for abelian varieties. Excellent
references on these topics are [3] and [11], as well as [4] and [1], and we will provide an overview of the main
definitions and results below. Elliptic curves occupy a special place in these theories, as they straddle the
worlds of both curves and abelian varieties. Thus, an elliptic curve over the fraction field K of a discrete
valuation ring R has both a Néron model and a minimal regular proper model over R. Moreover, it has an
abstract minimal Weierstrass model over R that is unique up to unique R-isomorphism.

It is natural to ask how the preferred models for elliptic curves are related to each other. A tricky aspect is
that minimal Weierstrass models are (usually) defined in a manner that is a bit too explicit and is lacking in
an abstract universal property, whereas both Néron models of abelian varieties and minimal regular proper
models of smooth (positive-genus) proper curves are characterized by simple abstract universal properties.
The key aspects of the story (including all necessary background on regular models of curves) are presented
in [11] in complete detail, so these notes may be viewed as a complement to the discussion in [11] (I will
generally refer to [1], [3], and [4] for results that are also proved in [11] because the former are the references
from which I learned about these matters, before [11] was written; the reader may well find that [11] is more
useful and/or more understandable than these notes).

We begin in §2 with a brief summary of the theory of Weierstrass models of elliptic curves. The main
point is to formulate the theory in a manner that eliminates the appearance of Weierstrass equations; this
is accomplished by using Serre duality over the residue field, generalizing the use of Riemann–Roch to free
the theory of elliptic curves from the curse of Weierstrass equations. In §3, we provide an overview of the
theory of integral models of smooth curves, with an emphasis on minimal regular proper models. The theory
of minimal Weierstrass models is addressed in §4, where we give an abstract criterion for minimality of a
Weierstrass model; this criterion (which was brought to my attention by James Parson, and is technically
much simpler than my earlier viewpoint on these matters) is expressed in terms of R-rational maps. In §5
we switch to the category of abelian varieties and we present the basic definitions and existence theorem
concerning Néron models, and we deduce some relations between Weierstrass models and Néron models.
The basic properties of relative dualizing sheaves and arithmetic intersection theory are summarized in
§6 and §7, and we apply these notions in §8 to establish some additional conceptual characterizations of
minimal Weierstrass models (e.g., in terms of rational singularities). In particular, we provide a conceptual
explanation for why Tate’s algorithm does not require the computation of normalizations.

In these notes, a singularity on a curve over a field k is a point not in the k-smooth locus, rather than
a point in the non-regular locus. The reason for this distinction is that there are examples of Weierstrass
cubics over k that are regular and not smooth (these can only exist when k has characteristic 2 or 3; see the
discussion following Theorem 5.5), and we want to consider these as singular.
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2. Weierstrass models

Let R be an arbitrary discrete valuation ring, K its fraction field, and k its residue field. Let E be an elliptic
curve over K. As is well-known [14, Ch. VII, §1], there exist projective planar curves (in dehomogenized
form)

(2.1) y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6

that are abstractly K-isomorphic to E with the identity point corresponding to [0, 1, 0], and such that all aj ’s
lie in R. We would like to give an abstract definition of such curves so that we can eliminate the appearance
of equations. This provides a clarity to the theory akin to the abstract definition of an elliptic curve. We
begin with an ad hoc explicit definition that we shall soon promote to a more abstract setting.

Definition 2.1. A planar integral Weierstrass model of E (over R) is a pair (W, i) where W is a closed
subscheme in P2

R defined by an equation as in (2.1) and i is an isomorphism W/K ' E carrying [0, 1, 0] to
the identity in E(K). A morphism (W, i)→ (W ′, i′) between such planar models of E is an R-map W →W ′

over R that respects the K-fiber identifications i and i′ with E.

Remark 2.2. Morphisms between planar integral Weierstrass models of an elliptic curves are not a priori
required to be induced by a projective-linear change of coordinates on P2

R. We will prove that this additional
property is automatically satisfied, and that all morphisms are isomorphisms.

We usually suppress the explicit mention of i. Planar integral Weierstrass models satisfy some nice
properties, as we now summarize. Clearly they are R-proper, and the monicity of the leading terms in (2.1)
implies that they are R-flat. The geometric theory insures that the 1-dimensional special fiber of such a W
is geometrically irreducible and geometrically reduced, and is even smooth away from possibly one geometric
point. A less obvious property is:

Lemma 2.3. Let E be an elliptic curve over K, and let W be an arbitrary planar integral Weierstrass model.
The scheme W is normal.

Proof. To prove normality, we use Serre’s criterion “R1 + S2” for normality (see [12, p. 183] for a discussion
of Serre’s homological conditions Ri and Si, and their applications to criteria for reducedness and normality
of noetherian rings). Since W is R-flat, it is automatically R-smooth away from the closed non-smooth locus
in the special fiber. Thus, W is R-smooth away from possibly one geometric closed point in the special fiber.
In particular, W is regular in codimension ≤ 1 (this is Serre’s condition R1). To check S2, the R-flatness
reduces us to checking condition S1 on the special fiber. The special fiber is an integral curve, so S1 is clear.
Thus, W is normal. �

Definition 2.4. An abstract integral Weierstrass model for E (over R) is a pair (W, i) consisting of a proper
flat R-scheme W and an isomorphism i : W/K ' E such that W is normal and the special fiber Wk is 1-
dimensional, geometrically irreducible, and smooth at the reduction ε(k) ∈W (k) of the unique ε ∈W (R) =
E(K) extending the identity; in particular, Wk is generically smooth. A morphism (W, i) → (W ′, i′) is an
R-map W →W ′ that respects i and i′ on the K-fibers.

Obviously every planar integral Weierstrass model for E is an abstract integral Weierstrass model. We will
relate abstract and planar integral Weierstrass models, but first let us observe that maps between abstract
integral Weierstrass models satisfy a strong condition:

Example 2.5. Consider a morphism f : W ′ → W between abstract integral Weierstrass models of E. Such
an f must be an isomorphism. Indeed, the image of f is closed (by properness) and contains the generic fiber
(since fK is an isomorphism), so f is surjective since R-flatness forces the K-fibers to be dense. It follows
that the map fk between irreducible 1-dimensional special fibers must be quasi-finite, so f is a quasi-finite
and proper map. Thus, f is finite. Since W is normal and f is a birational isomorphism, we conclude that
f must be an isomorphism.

Note also that R-flatness and R-separatedness ensure that there can be at most one map between abstract
Weierstrass models of E. Thus, in the above setup, f is the unique isomorphism between W and W ′; in this
sense, we may say that isomorphic abstract integral Weierstrass models of E are uniquely isomorphic.
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Here is an interesting property of abstract integral Weierstrass models:

Theorem 2.6. Let W be an abstract integral Weierstrass model of E. Let W sm be its R-smooth locus. The
invertible sheaf Ω1

W sm/R on W sm is globally free, and the R-module H0(W sm,Ω1
W sm/R) is free of rank 1.

Proof. The K-fiber Ω1
E/K is globally free since E is an abelian variety, so let ω be a global generator of

Ω1
E/K . Let η be the generic point of Wk. Since Wk is generically smooth and W is normal, the local ring

OW,η is a discrete valuation ring and a uniformizer is given by a uniformizer of W . The stalk of Ω1
W sm/R at

η is a free module of rank 1 over OW,η, and so we may uniquely scale ω by a power of a uniformizer of W
such that it is a generator of this stalk. Thus, on the normal connected noetherian scheme W sm, the line
bundle Ω1

W sm/R has ω as a section defined in codimension ≤ 1. Since any normal noetherian domain is the

intersection of its localizations at height 1 primes, it follows that ω uniquely extends to a global section of
Ω1
W sm/R that is moreover a global generator.

It remains to show that OW sm has R as its ring of global sections. Since W is a connected normal
noetherian scheme and W sm has complement of codimension ≥ 2 in W , we conclude that a global section
of OW sm uniquely extends to a global section of OW . Thus, we just have to prove H0(W,OW ) is equal to R.
Since this R-algebra is finite and flat, it is enough to check its rank is 1, and this follows from the equality
K = H0(E,OE). �

Definition 2.7. A global generator of Ω1
W sm/R is called an invariant differential on W sm; such elements are

unique up to R×-multiple.

Now we are readily to link the planar and abstract theories.

Theorem 2.8. Let W be an abstract integral Weierstrass model of E. There exists a planar integral Weier-
strass model W ′ ↪→ P2

R of E and an R-isomorphism W 'W ′ respecting K-fiber identifications with E.

Note that an isomorphism from an abstractW onto a planarW ′ must carry the identity ε ∈ E(K) = W (R)
to [0, 1, 0], as can be checked on K-points (where it follows from the requirements in the definition of a planar
model). For a relative version of the theorem, with the base SpecR replaced by an arbitrary scheme S and
with W replaced by a proper, flat, and finitely presented S-scheme having reduced and irreducible geometric
fibers of arithmetic genus 1, see [7].

Proof. Since Wk is generically smooth, it satisfies Serre’s condition R0 (regularity in codimension ≤ 0).
Moreover, since W is normal (and so satisfies Serre’s condition S2), R-flatness of W ensures that Wk satisfies
Serre’s condition S1. Since “R0 + S1” is Serre’s criterion for reducedness, we conclude that Wk is reduced
(and not just generically reduced). However, a reduced and generically-smooth finite-type k-scheme must be
geometrically reduced. Thus, Wk is even geometrically reduced. The section ε ∈ W (R) lies in the smooth
locus of W , as this may be checked on the special fiber (where the k-smoothness of the reduction of ε is
part of the definition of an abstrat integral Weierstrass model). Thus, the coherent ideal of the section ε
is invertible on W . We write O(ε) to denote the inverse of this ideal, and O(nε) to denote its nth tensor
power.

The strategy to find a planar embedding is to imitate the proof that relative elliptic curves admit Weier-
strass models locally on the base. Such models will be found by using Serre duality over k, generalizing the
role of the Riemann-Roch theorem in the construction of Weierstrass models for elliptic curves. Let ωWk/k

be the (coherent) dualizing sheaf on Wk. We claim that ωWk/k is a torsion-free OWk
-module on the integral

curve Wk. If not, then it contains a nonzero coherent subsheaf supported at a closed point. Hence, it is
enough to prove that coherent sheaves with finite support do not admit nonzero maps to ωWk/k. By duality,
for any coherent sheaf F on Wk, the composite

HomW (F , ωWk/k)→ Homk(H1(Wk,F ),H1(Wk, ωWk/k))→ Homk(H1(Wk,F ), k)

(defined by the trace map H1(Wk, ωWk/k) → k) is an isomorphism. In particular, if H1(Wk,F ) = 0 then
HomW (F , ωWk/k) = 0. Applying this to F with finite support, we get the desired result.
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Since ωWk/k is torsion-free on the integral curve Wk, the map OWk
→ ωWk/k associated to any nonzero

global section of ωWk/k must be injective. Note that on the dense open k-smooth locus U ⊆Wk, we have

ωWk/k|U ' ωU/k = Ω1
U/k,

so ωWk/k is generically invertible on Wk. Hence, any nonzero map OWk
→ ωWk/k is injective and has cokernel

with finite support.
The reduction e ∈Wk(k) of ε lies in the smooth locus of Wk, and hence has an invertible ideal sheaf. Let

O(e) denote the inverse of this ideal sheaf, and define the twisted sheaf

F (Ne) = F ⊗OWk
O(e)⊗N

for any N ∈ Z and any OWk
-module F . We claim that

(2.2) H0(Wk, ωWk/k(−ne)) = 0

for n > 0. Suppose there is a nonzero global section, so we get a short exact sequence

(2.3) 0→ OWk
→ ωWk/k(−ne)→ F → 0

where F is coherent with 0-dimensional support. By the constancy of the Euler characteristic in flat families,

χ(OWk
) = χ(OWK

) = χ(OE) = 1− 1 = 0,

so the short exact sequence (2.3) implies

χ(ωWk/k(−ne)) = χ(F ) = dim H0(Wk,F ) ≥ 0.

However, by Serre duality on Wk we have a perfect duality pairing

Hi(Wk,OWk
(ne))×H1−i(Wk, ωWk/k(−ne))→ H1(Wk, ωWk/k)→ k,

and so (see [3, 9.1/1])

χ(ωWk/k(−ne)) = −χ(O(ne)) = −deg(ne)− χ(OWk
) = −n− 0 < 0,

a contradiction.
By duality, we conclude from (2.2) that H1(Wk,O(ne)) vanishes for all n > 0. The vanishing of

H1(Wk,O(ne)) implies (by the theory of cohomology and base change) that the finite R-module H0(W,O(nε))
is free for all n > 0 and its formation commutes with base change on R; in particular, the reduction of
H0(W,O(nε)) maps isomorphically onto H0(Wk,O(ne)) for n > 0. Since

h0(O(ne)) = h0(O(ne))− h1(O(ne)) = χ(O(ne)) = n

for n > 0, H0(W,O(nε)) is free of rank n for n > 0. For example, the map R→ H0(W,O(ε)) between rank-1
R-modules must be an isomorphism because its reduction is an isomorphism (as this is an injection between
1-dimensional vector spaces over k).

We can now use the usual argument (as with Riemann-Roch for elliptic curves) to find a basis {1, x, y}
of H0(W,O(3ε)) such that {1, x} is a basis of H0(W,O(2ε)). Moreover, since {1}, {1, x}, and {1, x, y}
reduce to bases of the corresponding H0’s on Wk, by picking a local parameter t along the section ε (i.e.,
a local generator of the invertible ideal of this section) we see that the t-adic expansions of x and y begin
x = v/t2 + . . . and y = v′/t3 + . . . with v, v′ ∈ R×. Hence, we may multiply x and y by units of R so
that x = 1/t2 + . . . and y = 1/t3 + . . . . We may now proceed in the usual way to deduce that there is a
Weierstrass relation

(2.4) y2 + (a1x+ a3)y = x3 + a2x
2 + a4x+ a6

with ai ∈ R. Let us define

f(x, y) = y2 + (a1x+ a3)y − (x3 + a2x
2 + a4x+ a6).

Since any integer ≥ 2 may be expressed in the form 2a+ 3b with nonnegative integers a and b, we conclude
that the graded domain

S =
⊕
n≥0

H0(W,O(nε)) =
⊕
n≥0

Sn
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is generated over S0 = R over by the elements 1, x, y in respective degrees 1, 2, 3. Thus, we have a surjection
of domains

ϕ : R[x, y, w]/(w3f(x/w, y/w))� S(3) def
=
⊕
n≥0

S3n

defined by w 7→ 1 ∈ S3, x 7→ x ∈ S3, y 7→ y ∈ S3. The line bundle O(ε) on W is ample, as this may be
checked on the geometrically irreducible fibers, and hence [8, II, 4.6.3] the canonical map

W → Proj(S) ' Proj(S(3))

is an isomorphism. Thus, the map ϕ defines a closed immersion from proper R-flatW = Proj(S) = Proj(S(3))
into the zero scheme C of (2.4) in

Proj(Sym(H0(W,O(3ε))) ' P2
R

such that ε 7→ [0, 1, 0]. The formation of the closed immersion W ↪→ C commutes with base change on R,
so the R-flatness of the (finitely presented) source and target implies that W → C is an isomorphism if and
only if the induced maps on fibers are isomorphisms (here we use the fibral flatness criterion). However,
on fibers over points s ∈ SpecR it is clear that Ws ↪→ Cs is a closed immersion between integral proper
k(s)-curves, and so this map must be an isomorphism (we can even deduce a posteriori by dimension reasons
that ϕ must be an isomorphism, though this is irrelevant). �

Corollary 2.9. Let W and W ′ be two planar integral Weierstrass models of E. There is at most one
isomorphism between W and W ′ as models of E, and (with respect to the given closed immersions of W and
W ′ into P2

R) such an isomorphism is induced by a unique R-automorphism of P2
R defined by

(2.5) [x, y, w] 7→ [u2x+ rw, u3y + sy + tw,w]

with r, s, t ∈ R and u ∈ R×.

Since we already have seen that any morphism between abstract integral Weierstrass models must be
an isomorphism, we conclude that the coordinate-changes “(x, y) 7→ (π2rx, π3ry)” between planar integral
Weierstrass models as in [14] are merely rational maps that are not globally-defined scheme morphisms for
r 6= 0. We will analyze these rational maps in §4.

Proof. The elements {1, x, y} constitute an R-basis of the finite free rank-3 R-module H0(W,O(3ε)) and these
sections generate the ample O(3ε), as we may check on the special fiber. In a similar manner, we see that the
pair {1, x} satisfies an analogous property for O(2ε), and that the finite free rank-1 R-module H0(W,O(ε))
is equal to R. This all implies that the given cubic embedding of W into P2

R is just a coordinatization of
the canonical closed immersion W ↪→ P(H0(W,O(3ε))) using a basis {1, x, y} of H0(W,O(3ε)) such that x
and y satisfy the following conditions:

• {1, x} is a basis of H0(W,O(2ε));
• if t is a local generator of the invertible ideal cutting out the section ε in the smooth locus, then the
t-adic expansions

x =
v

t2
+ . . . , y =

v′

t3
+ . . .

have v, v′ ∈ R× satisfying v3 = v′
2
.

The pair (v, v′) is well-defined up to the transformation (v, v′) 7→ (u2v, u3v′) for u ∈ R×, due to possible
changes in the choice of t.

With this intrinsic description of the data that encodes a planar model, we deduce immediately (as in
the classical case of elliptic curves over a field) that the possible choices (x′, y′) for a given W are precisely
those obtained from the given (x, y) by exactly the standard invertible coordinate-changes over R as in the
dehomogenization of (2.5). To choose such an (x′, y′) is exactly to give an isomorphism from W to a planar
integral Weierstrass model W ′ of E; this yields the desired description of all isomorphisms among planar
models. �
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It follows from this corollary that if W is an abstract integral Weierstrass model of E, then the nonzero
element ∆ = ∆(a1, . . . , a6) ∈ R arising from an isomorphism of W onto a planar integral Weierstrass model
depends on the planar model only up to R×-multiple. We call any such ∆ a discriminant of W , so ord(∆)
is intrinsic to W . If we choose an isomorphism of the abstract W onto a planar model, we get two pieces
of data from the planar equation: a preferred element ∆ ∈ R and a preferred invariant differential ω (as
constructed from the equation in the standard manner; see Definition 2.7). For our purposes, the important
consequence of this fact is that the resulting generating section

∆ω⊗12 ∈ H0(E, (Ω1
E/K)⊗12)

is independent of the choice of auxiliary planar equation: this follows from the standard transformation laws
for discriminants and invariant differentials under change in a Weierstrass embedding of an elliptic curve as
in (2.5), thereby proving:

Corollary 2.10. Let W and W ′ be abstract integral Weierstrass models of E. The R-lines

H0(W sm,Ω1
W sm/R),H0(W ′

sm
,Ω1

W ′sm/R) ⊆ H0(E,Ω1
E/K)

satisfy the inclusion

H0(W sm,Ω1
W sm/R) ⊆ H0(W ′

sm
,Ω1

W ′sm/R)

if and only if ord(∆) ≥ ord(∆′).

We will now use the simpler terminology Weierstrass model (of E over R) to mean an abstract integral
Weierstrass model. The preceding discussion shows that it is well-posed to define a minimal Weierstrass
model of E to be a Weierstrass model W whose associated discriminant attains minimal normalized order
among all Weierstrass models of E. In §4, we will prove that any two Weierstrass models W and W ′ of E
satisfying

H0(W sm,Ω1
W sm/R) = H0(W ′

sm
,Ω1

W ′sm/R)

are necessarily isomorphic. In particular, this gives an equation-free proof of the uniqueness of minimal
Weierstrass models (proved in [14, VII, 1.3] by direct calculation with Weierstrass equations and transforma-
tion laws, though these explicit descriptions can be obtained in our approach a posteriori by using Corollary
2.9).

3. Minimal regular proper models of curves

A K-curve is a proper K-scheme C that is geometrically connected and 1-dimensional. An R-curve is a
proper flat R-scheme C whose generic fiber is a K-curve. Note that the special fiber Ck is automatically
a k-curve. Indeed, Stein factorization ensures that the special fiber must be geometrically connected, and
the 1-dimensionality follows from [8, IV3, 13.2.3]. We will generally consider only R-curves whose K-fiber is
smooth (such as an elliptic curve).

Definition 3.1. If X is a separated K-scheme, an R-model of X is a pair (X , i) where X is a flat and
separated R-scheme and i : X/K ' X is a K-isomorphism. If X is a regular scheme, it is a regular R-model
of X (and likewise for the properties of being normal, R-proper, finite type, etc.).

A morphism of R-models (X , i)→ (X ′, i′) is a map f : X →X ′ over R such that i′ ◦ fK = i.

Note that an R-model of a reduced separated K-scheme is reduced (due to R-flatness), and a proper R-
model of a K-curve is an R-curve. Also, a morphism between models is unique if one exists (as can be seen
via a graph argument, since the separatedness hypothesis forces graph morphisms to be closed immersions).
Thus, we can put a partial ordering on the category of R-models of a separated K-scheme X by saying that
one model (X , i) dominates another model (X ′, i′) if there exists a map of models X → X ′; this is a
partial ordering with isomorphisms as “equality” because a self-map of an R-model must be the identity (so
if two R-models dominate each other, then the unique domination maps between them must be mutually
inverse isomorphisms). With these concepts understood, we generally omit the explicit mention of i unless
there is a danger of confusion.



MINIMAL MODELS FOR ELLIPTIC CURVES 7

Remark 3.2. Beware that, by Example 2.5, the Weierstrass models of an elliptic curve are only related by
domination when they are isomorphic; in particular, it is not true that minimal Weierstrass models are the
minimal objects with respect to domination in the class of Weierstrass models of a fixed elliptic curve.

Example 3.3. If (C , i) is a proper R-model of C and Z is a closed subscheme of C (such as a closed point)

with support in Ck, then the blow-up C̃ = BlZ(C ) of C along Z is a proper R-scheme equipped with a map

π : C̃ → C that is an isomorphism over the complement of Z; in particular, πK is an isomorphism. From
the construction of the blow-up it is clear that the blow-up has structure sheaf that is torsion-free over R,

and so it is R-flat. Thus, (C̃ , i◦πK) is a proper R-model of C that dominates (C , i) and is rarely isomorphic
to (C , i); e.g., blowing up a closed point in the special fiber gives a non-isomorphic model. In particular, it
is very easy to make many proper R-models that dominate a given one without being isomorphic to it.

Example 3.4. Let C be a proper R-model of a smooth K-curve C (e.g., we can take C to be the closure in PN
R

for a closed embedding C ↪→ PN
K). Since C must be reduced, it is reasonable to consider its normalization

C̃ → C . This is a finite map, though the proof of finiteness requires extending scalars to R̂ to reduce to the

excellent case. We conclude that C̃ is proper and R-flat. Since the generic fiber C of C is already normal,

it follows that the normalization C̃ of C is a proper normal R-model of C in the evident manner.

Example 3.5. Here is a more interesting construction of normal proper R-models. Let C be a smooth K-
curve. Since it is proper and K-smooth, there exists a finite separable map C → P1

K . Consider the composite
map C → P1

K ↪→ P1
R. This expresses K(C) as a finite separable extension of the function field K(t) of the

connected normal finite-type R-scheme P1
R. Thus, the normalization of P1

R in K(C) is a finite map C → P1
R,

and its generic fiber is identified with C → P1
K . In this way, C is a normal proper R-model of C, and it is

even projective.

We have seen in Example 3.4 and Example 3.5 that normal proper R-models of smooth K-curves C are
rather easy to construct, and by Lemma 2.3 we we can obtain models of this type for elliptic curves by
considering Weierstrass models. Suppose we are given a normal proper R-model C of C. It may happen
that C is not minimal in the sense that there exists a map h : C → C ′ to another normal proper R-model
such that h is not an isomorphism. Such a map cannot be finite, since a finite birational map between
normal connected noetherian schemes is an isomorphism. Hence, since hK is an isomorphism and proper
quasi-finite maps are finite, the map hk must crush some irreducible component of Ck to a closed point in
C ′k. This process of contraction of special-fiber components can only continue finitely many times, and hence
we eventually reach a normal proper R-model of C that dominates no others (except those to which it is
isomorphic).

Definition 3.6. Let X be a proper and normal R-curve. Let Z be a union of irreducible components of
Xk. A blow-down (or contraction) of Z in X is a morphism π : X → X ′ to a proper normal R-curve X ′

such that π sends the connected components of Z to pairwise distinct closed points and π has quasi-finite
restriction to the other irreducible components of Xk.

If π : X → X ′ is a blow-down of Z, then Z is determined by π (as it is the set of positive-dimensional
fibers of π) and the topological space of X ′ is the quotient of the topological space of X where each connected
component of Z is replaced with a single point. Since normality forces OX′ = π∗OX , we see that the pair
(X,Z) uniquely determines π without needing to specify the scheme structure on Z. For normal projective
surfaces over an algebraically closed field, Artin initiated the modern study of the existence problem for
blow-downs (in the category of schemes, and then later algebraic spaces). It is a somewhat less subtle issue
to determine if a blow-down exists in the case of arithmetic curves: it always does when Z is a proper subset
of Xk and R is henselian [3, 6.7/3,4]. Since this will be important later on, we record the result here:

Proposition 3.7. If X is a normal proper R-curve and R is henselian then X admits a blow-down π : X →
X ′ of any union Z of a proper subset of the set of irreducible components of Xk.

For our purposes, what matters is the universal property: if f : X → Y is a map of R-schemes and f
sends each connected component of Z to a point, then f uniquely factors through the blow-down of Z (if
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the blow-down exists). Indeed, the factorization in the category of locally ringed spaces is clear, and the
category of schemes is a full subcategory of the category of locally ringed spaces.

For our purposes, it is more interesting to investigate regular proper models such that irreducible compo-
nents of the special fiber cannot be contracted without losing regularity:

Definition 3.8. A minimal regular proper model of a smooth K-curve C is a regular proper R-model C
such that any domination map C → C ′ to another regular proper R-model of C is an isomorphism.

This concept of minimality is inspired by the theory of minimal models of smooth proper algebraic surfaces
over a field. It is not obvious if C admits any regular proper model. It is also not obvious if a given regular
proper R-model of C can dominate more than one minimal regular proper R-model, nor is it a priori evident
how two minimal regular proper models of C are related to each other.

Example 3.9. Let C = P1
K , and let C and C ′ be equal to P1

R. We make C into a minimal regular proper
R-model of C by taking i : CK ' C to be the identity on P1

K . We make C ′ into a minimal regular proper
R-model of C by taking i′ : C ′K ' C to be an automorphism α in PGL(2,K) = AutK(P1

K). Using the
universal property of P1 and the calculation Pic(P1

A) = Z · O(1) for any local ring A (such as A = R), it
follows that (C ′, i′) dominates (C , i) if and only if α is in the image of the map PGL(2, R)→ PGL(2,K), in
which case these R-models are isomorphic.

The map PGL(2, R) → PGL(2,K) is not surjective; e.g., elements of GL(2,K) with determinant of odd
normalized order in K× do not admit a K×-scaling in GL(2, R). Thus, there are many non-isomorphic
minimal regular proper R-models of P1

K . This is the reason that the theory of regular proper R-models for
smooth K-curves is not as clean for genus zero as it is for positive genus.

Néron investigated minimal regular proper models of elliptic curves over discrete valuation rings. The
case of higher genus was taken up by Lichtenbaum and Shafarevich. Combining their work with results of
Lipman concerning resolution of singularities for excellent 2-dimensional schemes, the following theorem is
obtained:

Theorem 3.10 (Minimal models theorem). If C is a smooth K-curve with positive genus, then a minimal
regular proper model Creg exists and is unique. In particular, Creg is dominated by all regular proper R-models
of C.

Remark 3.11. The theorem provides a universal property for the minimal regular proper model Creg of C:
for every regular proper R-model C of C, there is a unique map C → Creg as R-models of C.

The proof of the minimal models theorem consists of two very different parts. First, it must be proved that
some regular proper R-model exists. As we saw above, in Example 3.5, a normal proper (even projective)
R-model C exists. Fix a choice of such a model. A natural strategy for making a regular proper R-model is
to resolve singularities on C . It can be proved (taking some care if R is not excellent) that there are only
finitely many non-regular points on C0 = C , and all of these are closed points in the special fiber; blow up C0

at each of these. The blow-up might not be normal, so we normalize it. It can be proved (taking some care
if R is not excellent) that this normalization map is finite, and so it gives us another normal proper R-model
C1 dominating the blow-up of the first normal proper R-model C0. We repeat the process. Lipman proved
that in finitely many steps this canonical process reaches a regular proper R-model; see [1] for an exposition
of the proof of Lipman’s theorem (this reference assumes that R is excellent, and it imposes the condition
[k : kp] < ∞ when K has positive characteristic p, but these restrictions can be removed a posteriori by
using the fact that the K-fiber is smooth).

Remark 3.12. One can refine Lipman’s construction by contracting certain divisors if necessary, to reach a
resolution resolution C reg → C that is dominated by all others; it is called the minimal regular resolution.
The existence of this resolution is proved in [6, Thm. 2.2.2] and in [11, §9.3.4, Prop. 3.32]. Beware that in
general Lipman’s construction need not be the minimal resolution (i.e., some contractions can be necessary)
although in the presence of rational singularities (to be defined in §8) it is minimal; see [11, §9.3.4, Rem. 3.34]
and references therein. (In [11, §8.3, Exer. 3.27(a)] it appears to be asserted that Lipman’s resolution is
minimal, but that is an error.)
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By construction, C reg is projective if C is projective (in fact, it is a general elementary result of Licht-
enbaum that regular proper R-curves are automatically projective). The uniqueness of the minimal regular
resolution guarantees, by an elementary gluing argument, that C reg → C is an isomorphism over the maximal
open subscheme of C that is regular, so in particular of its maximal open subscheme that is R-smooth.

With a regular proper (even projective) R-model in hand, we can pass to a minimal one. There remains
the key problem of uniqueness of such a minimal model when C has positive genus. This uniqueness rests
on a systematic study of maps between regular proper R-models (especially the Factorization Theorem and
Castelnuovo’s criterion for contractibility of regular models); see [4] for a nice exposition of the proof of this
uniqueness.

Example 3.13. If W is an integral Weierstrass model of an elliptic curve E over K, then its minimal regular
resolution W reg is a regular proper R-model of E, but W reg is often not minimal. We will prove that W is
a minimal Weierstrass model if and only if W reg is the minimal regular proper model of E.

Remark 3.14. The assignment C  Creg is not functorial on the category of smooth K-curves (with finite
morphisms). Indeed, the minimal regular proper model Creg is only characterized by a universal property
among proper R-models of C, and not among R-curves in general. In particular, if f : C ′ → C is a finite
map of smooth K-curves that is not an isomorphism, then C ′

reg
is not (via f) an R-model of C and so we

cannot argue via universal properties of Creg that f extends to a morphism of R-models C ′
reg → Creg. An

explicit counterexample is the projection X1(p)→ X0(p) for p = 11 or p > 13, with R = Z(p); see [6, §1.1].

4. A geometric characterization of minimal Weierstrass models

Let E be an elliptic curve over K, and let E = Ereg be its minimal regular proper model. Let W be
a Weierstrass model. In order to link up E and minimal Weierstrass models, we need to find an abstract
criterion for a Weierstrass model of E to be a minimal Weierstrass model. This will be given in terms
of R-rational maps, so we first digress to discuss the relative concept of a rational map. This requires a
preliminary definition.

Definition 4.1. Let X a flat R-scheme that is of finite type and has geometrically integral fibers. An open
subscheme U ⊆ X is R-dense if Us ⊆ Xs is dense for all s ∈ SpecR.

It is clear that if two R-maps X ⇒ Y agree on U then they coincide, and moreover the property of
R-denseness is preserved by base change to another discrete valuation ring. Note also that an intersection of
two R-dense opens is an R-dense open. The concept of R-denseness can be vastly generalized over arbitrary
base schemes with much weaker restrictions on fibers (see [8, IV4, §11.10, §20]).

Example 4.2. Let W be an integral Weierstrass model of an elliptic curve E over K. Any open subscheme
U ⊆W that meets the special fiber is R-dense.

To define the relative notion of a rational map, let X and Y be R-schemes such that Y is R-separated
and X is R-flat and of finite type over R with geometrically integral fibers. If U,U ′ ⊆ X are R-dense opens
and f : U → Y and f ′ : U ′ → Y are R-maps, let us say (U, f) and (U ′, f ′) are equivalent if there exists an
R-dense open V ⊆ U ∩U ′ such that f |V = f ′|V . This is obviously an equivalence relation, and an R-rational
map is an equivalence class of such pairs; we write [(U, f)] to denote the equivalence class of a pair (U, f).
It is clear how to define base change (on R) for R-rational maps. Composition of R-rational maps is usually
not defined.

We claim that if (U, f) is equivalent to (U ′, f ′) then f and f ′ coincide on U ∩ U ′. To check this, we
rename U ∩U ′ as X and rename V as U to reduce to showing that R-maps X ⇒ Y agreeing on an R-dense
open U ⊆ X must be equal. Since Y is R-separated, such equality follows from the fact that the graph
maps X ⇒ X ×R Y are closed immersions and X is R-flat. We conclude by gluing that any R-rational map

ϕ = [(U, f)] is represented by a unique pair (Ũ , f̃) with the property that U ′ ⊆ Ũ for all (U ′, f ′) equivalent

to (U, f). We call Ũ the domain of definition of the R-rational map ϕ. By abuse of notation we shall write

ϕ : X → Y to denote f̃ : Ũ → Y (since I do not know the TEX command to make a broken right arrow).
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Lemma 4.3. Let W and W ′ be integral Weierstrass models of E. Let Γ ⊆ W ×R W ′ be the closure of the
graph of the isomorphism of K-fibers WK ' E 'W ′K . If either projection Γ→W or Γ→W ′ is quasi-finite
then both projections are isomorphisms and W 'W ′ as models of E.

If W and W ′ are not isomorphic, then the special fiber of Γ has exactly two irreducible components C and
C ′ and both are geometrically irreducible. Moreover, these components may be labelled so that the surjective
projections Γ→W and Γ→W ′ crush C ′ and C to respective closed points w0 ∈W and w′0 ∈W ′.

Proof. Suppose that Γ→ W is quasi-finite. By construction, Γ is a proper R-flat model of E, so the quasi-
finite projection to W must be a finite birational map and hence is an isomorphism (since W is normal).
The composite

W ' Γ→W ′

is a morphism of models, and we have seen in Example 2.5 that a morphism between Weierstrass models
must be an isomorphism. Thus, we may now assume that both (necessarily surjective) projections

Γ→W, Γ′ →W ′

have a positive-dimensional fiber over some closed points on the special fibers of W and W ′, and so Γ has
at least two irreducible components in its special fiber.

It remains to check that the special fiber of Γ has exactly two irreducible components after base change
to a separable closure on the residue field. Since the formation of Γ commutes with the flat base change to a
strict henselization, we may assume that R is henselian with separably closed residue field. In this case (or
more generally, for henselian R) we shall prove that Γ has at most two irreducible components in its special
fiber.

Let W reg →W and W ′
reg →W ′ be minimal regular resolutions, so these contain W sm and W ′

sm
as open

subschemes (as minimal regular resolutions are always isomorphisms over the R-smooth locus, and even over
the open regular locus). In W reg ×R W ′reg, consider the closure of the graph of the identification of the
K-fibers of W reg and W ′

reg
. If W is a resolution of singularities of this closure, then W is a regular proper

model of E that dominates both W reg and W ′
reg

.
The projections

W →W reg, W →W ′
reg

between regular integral models are surjective proper birational maps, and so (by the valuative criterion
for properness) are isomorphisms over the generic points of the special fibers of the targets. Thus, R-dense
opens in W sm and W ′

sm
may be found inside of W . Let Z and Z ′ be the irreducible components in the

special fiber of W that arise from the special fibers of W sm and W ′
sm

. Since R is henselian, we may form
the blow-down

W → W̃

that contracts all special-fiber irreducible components except for Z and Z ′, so W̃ is a normal proper model
of E equipped with projections to W and W ′ as models of E. The resulting map

W̃ →W ×RW ′

clearly must factor through Γ and so it surjects onto Γ. We conclude that Γk has at most two irreducible

components, as this is true for W̃k. �

Let W and W ′ be non-isomorphic Weierstrass models of E. Since W and W ′ are normal, and so have
discrete valuation rings as local rings at the generic points of their special fibers, the valuative criterion for
properness ensures that there exist R-rational maps φ : W → W ′ and φ′ : W ′ → W extending the K-fiber
identifications with E. Let w0 ∈W and w′0 ∈W ′ be the codimension-2 points such that the projections

π : Γ→W, π′ : Γ→W ′

have their unique positive-dimensional fibers over w0 and w′0. We call w0 and w′0 the fundamental points of
φ and φ′, due to:

Lemma 4.4. The domain of definition of φ is W − {w0}, and the domain of definition of φ′ is W ′ − {w′0}.
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Proof. The surjective proper map π−1(W − {w0}) → W − {w0} is a quasi-finite birational map between
integral schemes, and W − {w0} is normal. It follows from Zariski’s Main Theorem that this restricted
projection is an isomorphism, so W − {w0} is naturally realized as an open subscheme in Γ and hence (by
composition with Γ→W ′) admits an R-morphism to W ′ that extends the K-fiber identification. It follows
that φ has domain of definition containing W − {w0}. The domain of definition cannot be W , since a
morphism between Weierstrass models is necessarily an isomorphism and we are assuming that W and W ′

are not isomorphic as models of E. �

By the proof of Lemma 4.3, we see that φ(Wk − {w0}) = {w′0} and φ′(W ′ − {w′0}) = {w0}.

Theorem 4.5. Let W and W ′ be non-isomorphic Weierstrass models of E, and let w0 ∈ W and w′0 ∈ W ′
be the resulting fundamental points. Exactly one of w0 or w′0 is a smooth point, and if w0 ∈ W sm then w0

reduces to the identity section in Wk and we have a containment of R-lines

(4.1) H0(W sm,Ω1
W sm/R) ⊆ H0(W ′

sm
,Ω1

W ′sm/R)

inside H0(E,Ω1
E/K); this containment is not an equality.

Proof. If w0 is not smooth, then the R-rational map φ : W → W ′ is defined at the identity and preserves
identity sections (as this may be checked on the K-fibers), so {w′0} = φ(W − {w0}) must be the reduction
of the identity section on W ′. Hence, w′0 is a smooth point. This shows that at least one of w0 and w′0 must
be in the smooth locus, and that when one of these is non-smooth then the other reduces to the identity
section on the k-fiber.

By renaming if necessary, we may assume that w0 is a smooth point. Thus, the unique morphism
W ′ − {w′0} → W extending the identity on K-fibers lands inside of W sm (since on special fibers this map
has image {w0}). By pullback, we thereby get an inclusion

H0(W sm,Ω1
W sm/R)→ H0(U ′,Ω1

U ′/R) = H0(W ′
sm
,Ω1

W ′sm/R)

with U ′ the complement of {w′0} in W ′
sm

(so U ′ = W ′
sm

if w′0 is a non-smooth point); the equality of
sections of Ω1 over U ′ and over W ′

sm
follows from the fact that Ω1

W ′sm/R is invertible and W ′
sm

is normal

with the open subset U ′ having complement of codimension ≥ 2.
Let us now show that the inclusion of R-lines of invariant differentials on W sm and W ′

sm
cannot be an

equality, and so it will follow (by running through the preceding argument with the roles of W and W ′

reversed) that w′0 cannot be a smooth point on W ′ when w0 is smooth on W . The key is that nonzero
invariant differentials on the smooth locus of a Weierstrass model are generators of Ω1, and so an equality
in (4.1) implies that the R-map

U ′ ⊆W ′ − {w′0} →W sm

between smooth R-curves satisfies the vanishing condition Ω1
U ′/W sm = 0. To obtain a contradiction, we pass

to special fibers to conclude that the map between integral k-curves

U ′ ⊆W ′k − {w′0} →W sm
k

is unramified. This is absurd, since an unramified morphism has discrete fibers and this map is a constant
map onto a point w0 ∈W sm

k . �

We now obtain many nice corollaries. The first corollary shows that the discriminant ideal of a Weierstrass
model W of E, or equivalently its R-line of invariant differentials in H0(E,Ω1

E/K), determines W up to

isomorphism as a model of E:

Corollary 4.6. Let W and W ′ be integral Weierstrass models of E, and let ∆ and ∆′ be associated discrim-
inants in R. The inclusion (4.1) holds if and only if ord(∆) ≤ ord(∆′), and this inequality is an equality if
and only if W and W ′ are isomorphic.

If W and W ′ are non-isomorphic as models of E and w0 ∈W and w′0 ∈W ′ are the associated fundamental
points for the R-rational maps W → W ′ and W ′ → W extending K-fiber identifications, then w0 is non-
smooth if and only if ord(∆) ≥ ord(∆′).
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Proof. Use Corollary 2.10 and Theorem 4.5. �

In words, the preceding corollary says that a Weierstrass model W is “more minimal” than a Weierstrass
model W ′ if and only if the R-rational map W ′ → W has non-smooth fundamental point on W ′, or equiv-
alently if and only if this R-rational map contains the identity section in its domain of definition (in which
case W ′

sm
is the domain of definition).

Corollary 4.7. Let W be a Weierstrass model of E with minimal regular resolution W reg, and let E be a
minimal regular proper model of E. The unique map W reg → E is an isomorphism if and only if W is a
minimal Weierstrass model of E.

In particular, the minimal regular resolution of a minimal Weierstrass model is a minimal regular proper
model of E.

Proof. We may make a base change to Rsh, so we can assume that R is strictly henselian. Thus, we
can contract special-fiber components in normal proper R-models of E, and all irreducible k-schemes are
geometrically irreducible. Define X to be the contraction of E away from the unique irreducible component
of Ek containing the point e ∈ E (R) = E sm(R) that extends the identity in E(K). By construction, X is a
normal proper model of E with geometrically irreducible special fiber that is smooth at the reduction of the
identity section; i.e., X is an abstract integral Weierstrass model of E.

Since W is likewise obtained from W reg by contracting all irreducible components of the special fiber
that do not contain the reduction of the identity section, it suffices to show that X is a minimal Weierstrass
model of E. By Corollary 4.6, we just have to check that the canonical R-rational map W → X is defined
on W sm. Since W sm is naturally an open subscheme of W reg, we have a morphism

W sm ⊆W reg → E → X,

and so we are done. �

Here is a characterization of open subschemes of the smooth loci in general Weierstrass models of E:

Corollary 4.8. Let X be a smooth separated R-scheme with K-fiber E such that Xk is connected and the
identity section in E(K) extends into X(R). There exists an integral Weierstrass model W of E such that
X is an open subscheme of W sm as models of E.

Proof. The problem may be checked over a covering of X by quasi-compact opens with connected special
fiber, so we may assume X is quasi-compact and hence of finite type over R. Let us first show that it suffices

to consider the situation after base change to R̂. Suppose there is a Weierstrass model W ′ over R̂ such that
X/R̂ is an open subscheme in W ′. Since an integral Weierstrass model is determined up to isomorphism

by its discriminant ideal, by slightly changing the coefficients of a planar Weierstrass model for W ′ we may
find a Weierstrass model W for E over R such that X occurs as an open subscheme of W after base change

to R̂. Let Γ ⊆ X ×R W be the closure of the K-fiber isomorphism XK ' E ' WK . The formation of Γ

commutes with the flat base change to R̂, so the projection Γ → X is an isomorphism because it becomes

an isomorphism after the fpqc base change to R̂. Hence, we get a morphism

X ' Γ→W

that becomes an open immersion after base change to R̂, and so is an open immersion (necessarily landing
in W sm since X is R-smooth). This completes the reduction to the case of a complete base R. Thus, we
now assume that R is complete.

By the Nagata compactification theorem, there exists an open immersion X ↪→ X with X proper over
R. We may replace X with the schematic closure of X, so we can assume that X is R-flat. By resolution
of singularities, we may assume that X is regular. Thus, we have an open immersion of X into a regular
proper model of E. The contraction W of X away from the connected component containing the smooth and
irreducible Xk is a normal proper model of E such that Wk is irreducible and contains a smooth dense open
Xk that has a k-rational point (the existence of such a contraction uses the condition that R is complete,
and hence henselian). This forces Xk to be geometrically irreducible, so Wk is geometrically irreducible.
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Thus, W is an abstract integral Weierstrass model of E. By construction the map X → W is a quasi-finite
and separated birational isomorphism between integral schemes, so normality of W forces this map to be an
open immersion (by Zariski’s Main Theorem). �

5. Néron models

Let us now leave the category of curves, and instead consider the category of abelian varieties. We again
work with R and K as before, and we wish to study R-models of an abelian variety A over K. Néron’s
brilliant idea is to abandon the properness property of A in the search for a good model, and to instead pay
close attention to its smoothness. It was known by Néron’s time that if an abelian variety admits a proper
smooth R-model A , then the group law automatically extends to an R-group scheme structure on A . Néron
essentially ignored the problem of extending the group law and instead discovered that there are very nice
smooth separated finite-type models that are often non-proper.

Definition 5.1. A Néron model of A is a smooth R-model A that satisfies the Néron mapping property:
for any smooth R-scheme Z, the natural map

HomR(Z,A )→ HomK(ZK , A)

is bijection.

A very important example is Z = SpecR; in this case, the Néron mapping property says that the natural
map A (R) → A(K) is a bijection. That is, from the viewpoint of the valuative criterion for properness
on the level of K-points (but not K ′-points for the fraction field of an arbitrary local extension R → R′ of
discrete valuation rings), A behaves as if it were proper. As a special case, we see that the identity point
e ∈ A(K) uniquely extends to a point ẽ ∈ A (R).

It is a tautology that the Néron model is unique up to unique isomorphism, and that it commutes with
the formation of products over R; that is, if A and B are Néron models of abelian varieties A and B, then
A ×R B is a Néron model of A ×K B. Taking the special case B = A and applying the Néron mapping
property to the multiplication map m : A ×K A → A on the generic fiber, we see that this map uniquely
extends to an R-morphism

m̃ : A ×R A → A ,

and likewise the inversion ι on A uniquely extends to an involution ι̃ of A . The Néron mapping property
implies that the resulting structures (ẽ, m̃, ι̃) on A constitute a commutative R-group scheme structure,
since the relevant identities among morphisms from smooth R-schemes to A may be checked on the K-fiber
(due to the Néron mapping property).

The fundamental existence theorem, and the main result in [3], is:

Theorem 5.2 (Néron). The Néron model of an abelian variety exists, and it is separated and finite type
over R, as well as quasi-projective.

The quasi-projectivity is a byproduct of the construction, but it can also be proved abstractly [3, 6.4/1]
that any smooth separated finite-type group scheme over a discrete valuation ring is necessarily quasi-
projective.

Example 5.3. By [3, 1.2/8, 7.4/5], the Néron model A of an abelian variety A is proper over R (and so is an
abelian scheme over R) if and only if A 0

k is k-proper, and moreover any abelian scheme over R is the Néron
model of its generic fiber. In this case (i.e., the case of a proper Néron model) we say A has good reduction.
For elliptic curves, this is equivalent to the naive notion of good reduction in terms of minimal Weierstrass
models having unit discriminant in R.

We now turn to the special case of elliptic curves and consider how the Néron model can be related to
the minimal regular proper R-model. Let E be an elliptic curve over K, and let E be its minimal regular
proper model. By the valuative criterion for properness, the identity e ∈ E(K) extends uniquely to a point
ẽ ∈ E (R). Since E is regular, the R-section ẽ must lie in the relation smooth locus: if O is the complete

local ring of E at the closed point of ẽ, then A is a 2-dimensional regular local R̂-algebra, and there is a
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canonical section O → R̂ defined by ẽ; the kernel is a height-1 prime that must be principal, and upon

choosing a generator t we obtain a map R̂[[t]] → O that is surjective (by completeness) and hence injective
(by dimension reasons). This description of the complete local ring says exactly that the section ẽ lies in
the R-smooth locus of E . We conclude that the Zariski-open R-smooth locus E sm in E not only contains
the entire K-smooth generic fiber E, but it also meets the special fiber (at ẽ(k)); it can happen that (the
possibly reducible) Ek is not generically reduced, and so the non-smooth locus in the special fiber Ek may
contain some generic points of Ek (i.e., the non-smooth locus might not be 0-dimensional).

By the Néron mapping property of the Néron model N(E), there is a unique map of smooth R-models
E sm → N(E). On the other hand, if W is a Weierstrass model of E then its minimal regular resolution
W reg is a regular proper model of E. By the universal property of the minimal regular proper model E of
E, W reg dominates E . Thus, we arrive at two canonical maps

W reg → E , E sm → N(E)

as R-models of E. This canonical procedure links the Néron model of E as an abelian variety, the minimal
regular proper model of E as a smooth K-curve, and the Weierstrass models of E.

One of the motivating questions we posed at the start was the problem of the relationship between N(E)
and E sm. The precise link is the following result:

Theorem 5.4. The canonical map E sm → N(E) is an isomorphism. In particular, if W is a minimal
Weierstrass model then N(E) is the R-smooth locus on the minimal regular resolution of W .

Proof. See [3, 1.5/1] for a proof when R is strictly henselian, a situation to which the general case can be
reduced. �

We will not require this theorem, but instead shall prove the following result that concerns identity
components:

Theorem 5.5. Let E be an elliptic curve over K, N(E) its Néron model, and W a minimal Weierstrass
model. Let N(E)0 be the open R-subgroup of N(E) obtained by removing non-identity components in the
special fiber. The canonical map

W sm → N(E)

factors through N(E)0 and is an isomorphism of W sm onto N(E)0.
The Néron model N(E) is proper (i.e., E has good reduction in the sense of abelian schemes) if and only

if Wk is smooth, in which case N(E) = W , and for an algebraic closure k of k we have N(E)0
k
' Ga (resp.

N(E)0
k
' Gm) and only if the geometric singularity on Wk is cuspidal (resp. nodal).

The final part of this theorem says that the ad hoc definitions of good, additive, and multiplicative
reduction in the sense of [14] coincide with the intrinsic statements that the identity component of the
special fiber of the Néron model is geometrically an elliptic curve, an additive group, and a multiplicative
group respectively.

Proof. If N(E) is proper then it is an elliptic curve, and so is clearly a minimal Weierstrass model of E.
Thus, in such cases N(E) = W and Wk is smooth. Conversely, if Wk is smooth then W is an elliptic curve
over R with K-fiber E, and so E has good reduction. This settles the relationship between N(E) and W in
cases with good reduction or smooth Weierstrass models.

In the general case, the map W sm → N(E) clearly factors through N(E)0, so we get a map W sm → N(E)0

that we want to be an isomorphism. By Corollary 4.6 and Corollary 4.8, there is an integral Weierstrass model
W ′ of E and an open immersion N(E)0 ↪→ W ′

sm
as models of E. The composite morphism W sm → W ′

sm

represents an R-rational map φ : W → W ′. We claim that W ′ must be minimal, so φ is an isomorphism
and we therefore have morphisms

W sm → N(E)0, N(E)0 →W sm

that are mutually inverse (as this may be checked on K-fibers), completing the proof that N(E)0 = W sm.
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Let us suppose that W and W ′ are not isomorphic, so by minimality of W we must have ord(∆) < ord(∆′).
By Corollary 4.6, the fundamental point of φ on W has to be smooth. This contradicts the fact that φ has
domain of definition W sm.

For the second part of the theorem, it remains to consider the case when W is not smooth. By what
has just been proved, we know N(E)0k = W sm

k . However, we know from the geometric theory of singular

Weierstrass curves that the k-fiber W sm
k

is an affine curve whose smooth compactification has one point

(resp. two points) at infinity if and only if the singularity on Wk is cuspidal (resp. nodal). The smooth k-

group N(E)0
k

is therefore a smooth 1-dimensional connected affine algebraic group over k that has one point

(resp. two points) at infinity in its smooth compactification if and only if the singularity on Wk is cuspidal
(resp. nodal). However, it is a basic fact in the theory of algebraic groups that a smooth 1-dimensional
connected affine algebraic group over an algebraically closed field is isomorphic to exactly one of Ga or Gm,
and these cases can be distinguished geometrically based on the number of points at infinity on their smooth
compactifications (namely, one and two points respectively). �

Let us clarify several aspects of Theorem 5.5. Let W be a minimal Weierstrass model of E. The geometric
theory (as in [14]) ensures that Wk has a unique geometric singularity, say with ξ ∈Wk the associated closed
point, and so if k(ξ)/k is separable (e.g., if k is perfect) then ξ must be k-rational. However, it can happen
that this point is not k-rational. Let us analyze the possibilities.

If f(x, y) is an affine Weierstrass equation for Wk and k does not have characteristic 2, then ∂f/∂y =
2y + a1x + a3 is a nonzero linear form, so its intersection with the cubic curve is a degree-3 k-finite closed
subscheme in P2

k that contains ξ. This implies [k(ξ) : k] ≤ 3, so in residue characteristics not equal to 2 or 3
it is automatic that k(ξ)/k is separable, and hence ξ is k-rational. In residue characteristic 3, since we may
put the Weierstrass equation over k in the form y2 = h(x) it is clear that the geometric singularity at ξ must
be a cusp (and hence additive type) if ξ is not k-rational. In residue characteristic 2, the normal forms (as
in [14, App. A, Prop. 1.1]) show that if ξ is not k-rational then again the geometric singularity must be a
cusp. Hence, the only possibility for a singularity on Wk that is not k-rational is the case of additive-type
with k of characteristic 2 or 3. Let us show that both possibilities may happen for special fibers of minimal
Weierstrass models.

Consider p = 2 or 3, and suppose k is a non-perfect field of characteristic p, with a ∈ k not a pth power.
The Weierstrass cubics y2 = x3 − a (for p = 3) and y2 = x(x2 − a) (for p = 2) are regular k-curves that
are not smooth (the geometric singularity is at (a1/p, 0)). Conversely, it is clear (using the normal forms in
[14, App. A, Prop. 1.1] in the case of characteristic 2) that this construction gives all regular non-smooth
Weierstrass cubics (up to isomorphism): the key is that a k-rational point on a regular k-curve must be a
k-smooth point. We conclude that when the unique singularity is not k-rational, the Weierstrass cubic must
be regular.

Any lift of such a cubic to a Weierstrass model over R with smooth generic fiber E provides an example
of an elliptic curve E with a Weierstrass model W that is regular but has a singularity that is not k-rational
(and in fact gives all examples up to isomorphism). Such a regular proper R-model W is obviously minimal
since the special fiber is irreducible, so it is the minimal regular proper model of E. Theorem 4.7 implies
that such a W must be a minimal Weierstrass model of its generic fiber E. In these cases, N(E)k = W sm

k

is a smooth affine group that is geometrically isomorphic to Ga, but it is not k-isomorphic to Ga (since
the unique point at infinity on the regular compactification Wk of N(E)k is not k-rational, in contrast to
the case of the curve Ga over k). In particular, in cases of multiplicative reduction it is automatic that the
singularity on Wk is k-rational. Thus, Wk cannot be regular when there is multiplicative reduction.

When there is additive reduction and the singularity on the special fiber of the minimal Weierstrass model
is k-rational, then the special fiber cannot be regular at the singularity. It can then be deduced by geometric
methods that N(E)0k ' Ga over k. Comparison with the geometric situation over k shows that when there

is multiplicative reduction then the normalization W̃k of Wk must be smooth with genus zero (and even a

projective line, since the singularity provides a k-rational point). In such cases, a geometric analysis of W̃k

shows that the local expansion of the equation of Wk at the k-rational singularity is a product of linear forms
if and only if the torus N(E)0k is isomorphic to Gm. That is, the concept of split multiplicative reduction in
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the sense of [14] is equivalent to split toric reduction in the sense of Néron models (i.e., N(E)0k is a k-split
torus).

6. Review of dualizing sheaves

Let us now review the construction of the relative dualizing sheaf for a flat map f : Y → S that is
locally of finite presentation and has Cohen-Macaulay fibers with a fixed pure dimension d; such a map is
called a Cohen-Macaulay morphism with pure relative dimension d, and if S is a Cohen-Macaulay scheme
(such as a regular scheme) then a locally finite-type S-scheme Y is Cohen-Macaulay over S if and only if
Y is Cohen-Macaulay. Cover Y by opens Ui such that there exist closed immersions of Ui into a smooth
S-scheme Zi whose non-empty fibers over S have a constant dimension Ni (e.g., we may take the Ui’s to
be open affines lying over open affines Vi in S, and take Zi to be an affine space over Vi). With a covering

chosen, the finite-type quasi-coherent sheaf E xtNi−d
Zi

(OUi
,ΩNi

Zi/S
) naturally lives on Ui, and (after a rather

non-trivial argument) these may be globally glued to a relative dualizing sheaf ωY/S on Y that is independent
of all choices and is naturally compatible with base change on S and étale localization on Y . In particular,
this sheaf is of Zariski-local nature on Y .

Example 6.1. If Y is S-smooth with pure relative dimension d, then there is a canonical isomorphism
ωY/S ' ΩdY/S . Note that in such cases, ωY/S is invertible. In general, if Y is a CM S-scheme whose fibers

over S have pure dimension d, then the fibers of Y over S are Gorenstein if and only if ωY/S is invertible. If
S is Gorenstein, then the fibers are Gorenstein if and only if Y is Gorenstein.

Example 6.2. If there is a closed immersion Y ↪→ Z into a smooth S-scheme Z with fibers of pure dimension
N , such as happens for Weierstrass models of elliptic curves over S = SpecR (with Z = P2

R and N = 2),
then

ωY/S = E xtN−dZ (OY ,Ω
N
Z/S).

The R-models E and W reg of E are certainly Gorenstein, as they are even regular, and the R-model W of
E is also Gorenstein because it is an R-flat hypersurface in a smooth R-scheme (here we use a Weierstrass
equation that puts W in P2

R). More generally, let us consider normal proper R-models X of E that are
Gorenstein, so ωX/R is invertible. The normality of X and invertibility of ωX/R imply that any section of
ωX/R that is defined in codimension ≤ 1 extends uniquely to a global section, and such an extended section
is a global generator if and only if it is so in codimension ≤ 1; this is due to the fact that any normal
noetherian domain is the intersection of its localizations at height-1 primes.

Now consider the special case when X = W is an arbitrary Weierstrass model of E. Let W reg → W be
the minimal regular resolution of W . Since W reg is thereby viewed as a regular proper R-model of E, by
the universal property of E there is a unique map of R-models p : W reg → E . As in [1, (1.6)], the general
machinery of Grothendieck duality provides a canonical map

(6.1) p∗ωW reg/R → ωE /R

that uniquely extends the canonical isomorphism on the K-fibers. This map is called the trace map and it
is injective (as may be checked over K). A key fact [1, (3.3)] is that the trace map fits into a short exact
sequence

0→ p∗ωW reg/R → ωE /R → E xt2X(R1p∗O, ωE /R)→ 0.

We claim that R1p∗O = 0, and hence the natural trace map p∗ωW reg/R → ωE /R is an isomorphism.
Granting this vanishing for a moment, we get an equality of R-lines

(6.2) H0(W reg, ωW reg/R) = H0(E , ωE /R)

in the 1-dimensional K-vector space H0(E,Ω1
E/K). However, we also may restrict any global section of

ωW reg/R to a section over the canonical copy of the R-smooth locus W sm of W as a Zariski-open in the
minimal regular resolution W reg of W , and in this way we get a restriction map

(6.3) H0(W reg, ωW reg/R)→ H0(W sm, ωW sm/R) = H0(W,ωW/R),
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where the final equality follows from the fact that ωW/R is an invertible sheaf on the normal W and that
the open W sm in W has complement that is supported in codimension ≥ 2.

To summarize, if R1p∗O = 0 then we get an inclusion of R-lines

H0(E , ωE /R) = H0(W reg, ωW reg/R) ⊆ H0(W,ωW/R)

in the 1-dimensional K-vector space H0(E,Ω1
E/K). We still need to prove:

Lemma 6.3. The sheaf R1p∗O vanishes.

Proof. This is an elementary special case of the general theory of rational singularities [10], since E is regular,
but we can avoid the general theory by giving a direct proof (using an argument of Lipman that occurs at
the start of the general theory).

By the factorization theorem for regular proper R-curves [4], the map p factors as a composite of blow-ups
at closed points in the special fiber. Thus, we shall consider a proper birational map p : Y ′ → Y between
connected regular 2-dimensional schemes such that p is a composite of n blow-ups at codimension-2 points
(necessarily closed) for some n ≥ 0, and we will prove that R1p∗OY ′ = 0. Such blowing up preserves
the property of being a connected regular 2-dimensional scheme, so we may may induct on n. The case
n = 0 is trivial. The general problem is local on Y , so we may assume Y is local. It is equivalent to prove
H1(Y ′,OY ′) = 0. Consider a factorization

Y ′
p′→ Ỹ

p̃→ Y

of p, where p′ is a single blow-up and p̃ is a composite of n− 1 blow-ups at codimension-2 points.
The Leray spectral sequence for p′ provides an exact sequence of low-degree terms

0→ H1(Ỹ , p′∗OY ′)→ H1(Y ′,OY ′)→ H0(Ỹ ,R1p′∗OY ′).

Since p′ is a proper birational map between normal irreducible schemes, p′∗OY ′ = OỸ . Thus, the first term
vanishes (by induction). To prove the vanishing of the middle term, we are reduced to proving the vanishing
of the final term. Thus, it is enough to prove the vanishing of R1p′∗OY ′ . This brings us to the case n = 1.

The coherent sheaf R1p′∗OY ′ is supported at the codimension-2 blow-up point on Ỹ . We may localize at
this point and rename the local base as Y to get to the following situation: the base Y = SpecA is a local
2-dimensional regular scheme, and p : Y ′ → Y is the blow-up of the closed point. We want to prove that
H1(Y ′,OY ′) = 0. We use an elementary C̆ech-theory calculation. Let {a, a′} be generators of mA, so the
blow-up Y ′ is covered by two affine opens U = SpecA[a/a′] and U ′ = SpecA[a′/a]. Let U be the ordered

open cover {U,U ′}, so H1(Y ′,OY ′) = H1(U,OY ′). The C̆ech complex consists of terms in degrees 0 and 1,

and it must be proved that every C̆ech 1-cocycle is a 1-coboundary. A typical cocycle has the form∑
i,j≥0

αij

( a
a′

)i(a′
a

)j
=
∑
i≥j

αij

( a
a′

)i−j
−
∑
i<j

(−αij)
(
a′

a

)j−i
with αij ∈ A. The right side is obviously a 1-coboundary, so we are done. �

It is natural to expect that the inclusion

H0(E , ωE /R) ⊆ H0(W,ωW/R)

is an equality if (and hence only if) W is a minimal Weierstrass model of E. This criterion for Weierstrass
minimality will be shown in Theorem 8.1.

7. Intersection theory on arithmetic surfaces

Let us now formulate the basic definitions and theorems in intersection theory on arithmetic surfaces;
see [4] and [11, §9] for further details (with complete proofs) on what we say below. The theory is largely
motivated by intersection theory on smooth proper algebraic surfaces. For proper regular flat curves over a
discrete valuation ring, the intersection theory is generally restricted to irreducible components of the special
fiber because these components are proper curves over a field (whereas other codimension-1 irreducible
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subschemes are not proper over a field). We shall work with an arbitrary regular proper R-curve X whose
generic fiber is smooth and geometrically connected.

By regularity, all irreducible codimension-1 subschemes of X have an invertible ideal sheaf. More precisely
(as in Hartshorne’s Algebraic Geometry) every line bundle L on X has the form OX (D) for some Weil divisor
D on X , and OX (D) ' OX (D′) if and only if D −D′ = div(f) for some f ∈ K(X )×, where

div(f)
def
=
∑
F

ordηF (f) · F ∈ Div(X )

with ordηF : K(X )× → Z the normalized discrete valuation defined by the local ring OX ,ηF at the
codimension-1 generic point ηF of F .

If F is an irreducible component of Xk and we give F its reduced structure, then F is a proper integral

curve over k, so kF
def
= H0(F,OF ) is a domain that if k-finite. Thus, kF is a field and F has a natural structure

of proper integral curve over kF ; by Stein factorization, F is geometrically connected over kF (though it
might not be geometrically reduced or geometrically irreducible over kF ). It may happen that [kF : k] > 1;
the case of algebraically closed k (as in [15]) is very much simplified by the fact that necessarily kF = k for
all F . Since we wish to avoid restrictions (such as perfectness) on k, we need to keep track of the possibility
that [kF : k] might be larger than 1.

For any line bundle L on X and any F as above, for any field k′ between k and kF we define

ik′(F,L ) = degk′(L |F ),

where the k′-degree of a line bundle N on a proper curve C over k′ is defined to be the degree-1 coefficient
of the Hilbert polynomial

n 7→ χk′(C,N
⊗n) = dimk′ H0(C,N ⊗n)− dimk′ H1(C,N ⊗n) = degk′(N )n+ χk′(OC).

See [3, 9.1/1] for a thorough treatment of this degree-function for arbitrary proper reduced curves over a
field. Note that ik′(F,L ) = [kF : k′]ikF (F,L ). Whereas ikF is convenient when we wish to study a fixed F ,
when we are considering all irreducible components of the special fiber it is more convenient to work with
ik(F,L ).

Definition 7.1. Let D be a Weil divisor on X , and let F be an irreducible component of Xx. For any field
k′ between k and kF ,

ik′(F,D)
def
= ik′(F,OX (D)) = degk′(OX (D)|F ).

Let Div(Xk) be the free abelian group generated by the irreducible components of Xk.

Definition 7.2. For a Weil divisor D on X , ik′(·, D) : Div(Xk) → Z is defined via extension-by-linearity
in the first variable.

Example 7.3. If F and F ′ are distinct irreducible components of Xk, then ik(F, F ′) ≥ 0. In fact, ik(F, F ′)
is the k-length of the scheme-theoretic intersection F ∩ F ′ when F and F ′ are given the reduced structure
as closed subschemes of X .

Since D 7→ OX (D) carries sums to tensor products and degk′ : Pic(F ) → Z carries tensor products to
sums, we see that ik′(F, ·) is additive; clearly this operation kills principal Weil divisors (i.e., those of the
form div(f)) because such divisors gives rise to the trivial line bundle. Thus, ik(·, ·) kills principal divisors
in the second variable. It is a fundamental fact (see [4] or [11]) that the restriction

ik(·, ·) : Div(Xk)×Div(Xk)→ Z

is symmetric, and hence ik(D,D′) = 0 for Weil divisors D and D′ supported in Xk if either of D or D′ is
principal.

The symmetric bilinear form

Div(Xk)×Div(Xk)→ Z
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defined by (D′, D) 7→ ik(D′, D) is called the intersection pairing, and we shall write D′.D to denote ik(D′, D).
When D′ = F is an irreducible component of Xk, we must be careful to distinguish F.D from ikF (F,D);
the relationship is

F.D = [kF : k]ikF (F,D).

In particular, the map D 7→ F.D takes values in [kF : k]Z.

Example 7.4. Let π be a uniformizer of R. The zero-scheme of π on X is the subscheme Xk defined by the
principal ideal mROX ; this is independent of π. For each irreducible component F of the special fiber, let
nF = ordηF (π), so the principal divisor

[Xk]
def
= div(π) =

∑
F

nFF

has support equal to Xk. All elements of the subgroup Z[Xk] are principal divisors on X with support in
Xk, and this exhausts all principal Weil divisors on X with support in the special fiber. Indeed, if D is such
a Weil divisor and D = div(f) for f ∈ K(X )×, then as a rational function on the smooth and geometrically
connected proper K-curve XK we see that f has vanishing divisor. Hence, f ∈ H0(XK ,O) = K and f 6= 0,
so f ∈ K×. Multiplying f by a suitable power of a uniformizer changes D modulo Z[Xk], and so reduces us
to the case f ∈ R×. Such f have vanishing Weil divisor on X .

Let Div0(Xk) = Div(Xk)/Z[Xk]; this is a finite Z-module, and it is torsion-free if and only if the
multiplicities for [Xk] have gcd equal to 1. For example, if Xk has non-empty reduced locus (as is the case if
X (R) = XK(K) is non-empty, such as any regular resolution of the Weierstrass model of an elliptic curve)
then [Xk] even has a coefficient equal to 1. Clearly the intersection pairing factors through a symmetric
bilinear form

(·, ·) : Div0(Xk)×Div0(Xk)→ Z.

A very fundamental fact is:

Theorem 7.5. The pairing (·, ·) is negative-definite modulo torsion. In particular, if D is a Weil divisor
on X that is supported in Xk then D is a Q-multiple of [Xk] if and only if D.(·) is identically zero.

Let us analyze intersection theory against the invertible dualizing sheaf ω = ωX /R. Let F be an irreducible
component of Xk. We would like to compute ik(F, ω) = degk(ω|F ). Since F is a reduced curve over k, it is
Cohen-Macaulay and hence has a relative dualizing sheaf ωF/k. We would like to compute ωF/k in terms of
ω. Consider the commutative diagram

F //

��

X

��
Spec k // SpecR

The bottom and top rows are defined by locally principal ideals whose generators are nowhere zero-divisors.
By using the general formalism of Grothendieck duality (as in [5, Ch. 2–3]), this diagram can be used to
construct a canonical isomorphism

E xt1X (OF , ω) ' Ext1R(k,R)⊗k ωF/k ' (m−1/R)⊗k ωF/k.
The 2-term vector-bundle resolution

0→ OX (−F )→ OX → OF → 0

provides an isomorphism
E xt1X (OF , ω) ' ω(F )|F ,

where L (F )
def
= L ⊗ OX (F ). Thus, we obtain

ωF/k = (m/m2)⊗k ω(F )|F ' (ω|F )⊗OF
OX (F )|F .

We therefore may compute

ik(F, ω) = degk(ω|F ) = degk(ωF/k)− degk(O(F )|F ) = degk ωF/k − (F.F ).
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For any line bundle L on F , we have (as in [3, 9.1/1])

degk L = χk(L )− χk(OF ),

so
degωF/k = χk(ωF/k)− χk(OF ) = −2χk(OF )

since Hi(F, ωF/k) is Serre-dual to H1−i(F,OF ). Thus, we obtain the adjunction formula

F.F + ik(F, ω) = −2χk(OF ).

All terms in the adjunction formula are divisible by [kF : k], so dividing gives

ikF (F, F ) + ikF (F, ω) = −2χkF (OF ) = −2 + 2pa(F ) ≥ −2,

where pa(F ) = dimkF H1(F,OF ) ≥ 0. Thus, if F.F < 0 and ik(F, ω) < 0 then necessarily ikF (F, F ) = −1
and pa(F ) = 0. Castelnuovo’s criterion [4, Thm. 3.1] says that if ikF (F, F ) = −1 and pa(F ) = 0, then F can
be contracted without losing regularity. Thus, if X is a minimal regular proper model of its generic fiber
then every irreducible component F of Xk must satisfy either F.F ≥ 0 or ik(F, ω) ≥ 0. However, we also
have

0 = F.[Xk] = nF (F.F ) +
∑
F ′ 6=F

nF ′(F.F ′)

with coefficients nF , nF ′ > 0, so if Xk is reducible then Example 7.3 forces F.F < 0. This essentially proves:

Lemma 7.6. If X is a minimal regular proper model of its generic fiber XK , and either Xk is reducible or
XK has positive genus, then ik(F, ωX /R) ≥ 0 for all irreducible components F of Xk.

Proof. The preceding discussion settles the case when Xk is reducible, so it remains to consider the case
when Xk is irreducible. In this case, [Xk] = nF for some positive integer n (where F is the reduced special
fiber), so

0 = [Xk].[Xk] = n2(F.F ),

and hence F.F = 0. The adjunction formula therefore gives

ikF (F, ωX /R) = −2χkF (OF ) = −2 + 2 dimkF H1(F,OF ).

We have to rule out the possibility that H1(F,OF ) = 0.
For any positive integer e,

(7.1) χk(O(−eF )|F ) = degk(O(−eF )|F ) + χk(OF ) = −e(F.F ) + χk(OF ) = χk(OF ) = [kF : k],

where the final equality uses the vanishing of H1(F,OF ). If IF denotes the invertible coherent ideal sheaf
of F in X , then we have an exact sequence

0→ (IF /I
2
F )⊗e → OeF → O(e−1)F → 0

for any e > 1. Provided e ≤ n, all of these terms are supported in the closed subscheme Xk. The term on
the left is O(−eF )|F , so taking Euler characteristics and using (7.1) gives

χk(OeF ) = χk(O(e−1)F ) + χk(O(−eF )|F ) = χk(O(e−1)F ) + [kF : k]

for e ≤ n. By induction, χk(OeF ) = e[kF : k] for e ≤ n. Taking e = n, χk(OXk
) = n[kF : k]. However,

constancy of Euler characteristic in flat families implies

χk(OXk
) = χK(OXK

) = 1− pa(XK),

so pa(XK) = 1− n[kF : k] ≤ 0, and hence XK must have genus zero. �

Example 7.7. In the setup of Lemma 7.6, suppose that X := XK has genus 1 (but perhaps no K-rational
points) and that the multiplicities in [Xk] have greatest common divisor equal to 1, such as happens when
XK(K) 6= ∅. In this case we claim that ω = ωX /R is a trivial line bundle (so in particular ik(D,ωk) = 0 for
all divisors D supported in the closed fiber).

To prove this triviality, we first note that the K-fiber ωK = Ω1
X/K is trivial. Indeed, more specifically

we claim that the canonical map OX ⊗K H0(X,ωK) → ωK is an isomorphism, and this may be checked
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over a finite extension where X acquires a rational point (and so becomes an elliptic curve). Thus, we may
pick a nonzero section η of ωK ; this is necessarily a trivializing section of ωK , as we may check over a finite
extension (where X becomes an elliptic curve). Multiplying η by a sufficiently high power of a uniformizer
of R lets us assume that η is a nonzero section of the line bundle ω over the entire regular surface X . This
gives rise to an injection of invertible sheaves

OX → ω

that is an isomorphism on X. The dual map

ω−1 → OX

is an isomorphism onto an invertible ideal sheaf I whose associated zero-scheme is supported in Xk. If D
denotes the associated Weil divisor with support in Xk then we have ω ' OX (D) with D an effective Weil
divisor having support in Xk. Let us write D =

∑
eFF as a sum over the irreducible components F of Xk,

with eF ≥ 0 for all F .
By Lemma 7.6 (here is where we use the minimality of the regular proper model X of X), F.D ≥ 0 for

all irreducible divisors F of Xk. Thus,

D.D =
∑

eF (F.D) ≥ 0.

By Theorem 7.5, the intersection pairing on Div0(Xk) is negative-definite modulo torsion, so D represents
a torsion class in Div0(Xk). But [Xk] has multiplicities with greatest common divisor 1, so Div0(Xk) is
torsion-free. Hence, the image of D in Div0(Xk) vanishes. That is, D is an integral multiple of the principal
divisor [Xk], so ω = O(D) is a trivial line bundle as desired.

Example 7.8. The preceding example can be pushed a bit further. Indeed, using an argument of deJong [9,
Lemma 9.1], we claim that the artin ring H0(Xk,OXk

) is a purely inseparable extension field of k. Granting
this for a moment, if Xk has any closed points with residue field separable over k then by evaluating into
such a residue field we get H0(Xk,OXk

) = k. The existence of such residue fields on the closed fiber holds
if k is perfect (the case considered by deJong), or if X sm

k 6= ∅, with this latter case happening whenever

XK acquires a rational point over a finite unramified extension of K̂ (since formation of the minimal regular
proper model commutes with base change to a completion or étale-local extension of R). In particular,
under this extra assumption it follows from the theory of cohomology and base change that the structure
map f : X → S = SpecR is cohomologically flat in degree 0; that is, the equality OS = f∗(OX ) holds and
it persists after any base change.

Before we give deJong’s argument, we first note that it suffices to prove that H0(Xk,OXk
) is reduced.

Indeed, if this artin ring is reduced then it is a finite product of finite extension fields of k, yet Xk is
geometrically connected over k (due to X → SpecR being its own Stein factorization) and so is a single
field k′/k. If k′/k were not purely inseparable then there is a nontrivial separable subextension k′0/k and so
Xk ⊗k k′0 is disconnected. (It maps onto Spec(k′0 ⊗k k′0).) But k′0 can be realized as the residue field of a
(finite étale) local extension R → R′0, and so X ⊗R R′0 would have disconnected closed fiber. By flat base
change the structure map X ⊗R R′0 → Spec(R′0) is its own Stein factorization, so its closed fiber must be
connected (contradiction).

Let us now explain why Xk has no nonzero nilpotent global functions. Let f be a nilpotent global function
on Xk, and assume f is nonzero. For each irreducible component F of the closed fiber, define ordF (f) > 0 to
be the length of the nonzero quotient OXk,ξF /(f) of the discrete valuation ring OX ,ξF , with ξF the generic
point of F . Let D =

∑
F ordF (f)F considered as a closed subscheme of Xk on the regular surface X . It is

clear that f |D = 0, so our problem is to prove the equality of Cartier (or Weil) divisors D = [Xk], which is
to say that the inequality ordF (f) ≤ ordξF ([Xk]) for each F is an equality. Local lifts of f on X are local
sections of the invertible ideal sheaf OX (−D) and are unique up to adding a local section of the subsheaf
OX (−[Xk]), so f gives rise to a canonical section s of the invertible sheaf OXk

(−D) on Xk (generally not
an ideal sheaf), with s a local generator at the generic points of Xk.

Now assume D < [Xk], and we shall get a contradiction. Certainly D′ = [Xk]−D is a non-empty effective
Cartier divisor that is a closed subscheme of Xk, so pullback to D′ gives a section s|D′ of L = OD′(−D)
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that is a generator near all generic points of D′. Hence, L ⊗n has the nonzero section s|⊗nD′ for all n ≥ 0, so
degD′ L ≥ 0. But this degree is

ik(D′,−D) = ik([Xk]−D,−D) = ik(−D,−D) = ik(D,D) ≤ 0,

so we get ik(D,D) = 0. Hence, D must be an integral multiple of [Xk], yet 0 < D < [Xk]. This is a
contradiction.

8. More minimality criteria

Let W be an abstract integral Weierstrass model of E, so there is a unique morphism W reg → E to the
minimal regular proper model of E. By our work in §4, this gives rise to an inclusion

(8.1) H0(E , ωE /R) = H0(W reg, ωW reg/R) ⊆ H0(W,ωW/R)

inside of H0(E,Ω1
E/K).

Theorem 8.1. The inclusion (8.1) is an equality if and only if W is minimal.

This theorem provides another criterion for minimality of an arbitrary Weierstrass model of E.

Proof. It suffices to prove that equality holds when W is minimal, so we now assume that W is minimal. In
particular, E = W reg is the minimal regular resolution of W and there is a morphism of models

π : E →W.

Let W = W reg, so (8.1) may be written as an inclusion

H0(W , ωW /R) ⊆ H0(W,ωW/R).

To get an equality for minimal W , first note by Example 7.7 (with X = W = E a minimal regular proper
model of its generic fiber), the invertible ωW /R is globally free. Let η denote a global generator of ωW /R, so
restricting η to the canonical copy of the smooth locus W sm in the smooth locus of W defines a generating
section of ωW/R over W sm; this extends to a generating section of ωW/R since W −W sm has codimension
≥ 2 in the normal scheme W . In other words, such an η provides an inclusion

(8.2) H0(W,ωW/R) ⊆ H0(W , ωW /R)

inside of H0(E,Ω1
E/K), and this is reverse to the inclusion that we already know must hold. Thus, we get

the desired equality of R-lines. �

Remark 8.2. We claim that if W is not minimal then ωW reg/R is not globally free. Indeed, since ωE /R is
globally free, the preceding argument proves that

H0(W,ωW/R) = H0(W reg, ωW reg/R) = H0(E , ωE /R)

inside of H0(E,Ω1
E/K), but in §4 we also saw that all regular proper models of E have the same R-line

of global sections for their relative dualizing sheaf. Since the R-line H0(W,ωW/R) = H0(W sm,Ω1
W sm/R) in

H0(E,Ω1
E/K) determines W up to isomorphism as a model of E, we get a contradiction if W is not a minimal

Weierstrass model.

Let us record an interesting consequence of the global freeness of ωE /R:

Corollary 8.3. Let W be an integral Weierstrass model of E over R. Let π : W reg → W be the minimal
regular resolution. The sheaf R1π∗O vanishes if and only if W is a minimal Weierstrass model.

Proof. If W is regular then π is an isomorphism and W is a minimal regular proper model of E. Thus, we
may assume W is not regular; let x0 ∈Wk be the unique point outside of the k-smooth locus, so

π : π−1(W − {x0})→W − {x0}
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is an isomorphism. Thus, R1π∗O is a coherent sheaf supported at x0, and so its stalk at x0 is a finite-
length module over OW,x0 . By [1, (3.3)], the general duality machinery for proper birational maps between
2-dimensional normal noetherian schemes provides a short exact sequence

(8.3) 0→ π∗ωW reg/R → ωW/R → E xt2W (R1π∗O, ωW/R)→ 0,

where the first map has K-fiber equal to the identity on Ω1
E/K . The compatibility of local and global duality

for the normal surface W ensures that M  Ext2OW,x
(M,ωW/R,x) is a self-duality on the category of finite-

length OW,x-modules for every closed point x ∈ Wk. Thus, the vanishing of R1π∗O is equivalent to the
surjectivity of π∗ωW reg/R → ωW/R.

If R1π∗O = 0, then by (8.3) we have

H0(W reg, ωW reg/R) = H0(W,ωW/R)

inside of H0(E,Ω1
E/K), and we have already seen that such an equality with global sections of the dualizing

sheaf on a regular proper model forces W to be minimal. Conversely, if W is minimal then W reg = E has
globally-free relative dualizing sheaf ωW reg/R. Let η be a generating section. Since π∗ωW reg/R → ωW/R has

K-fiber equal to the identity on Ω1
E/K , the image of η may be computed by restricting η to the canonical

copy of W sm inside of W reg and then using the isomorphism ωW/R(W ) ' ωW/R(W sm); this is the process
that led to (8.2). Thus, the section π∗η of π∗ωW reg/R maps to a generator of the line bundle ωW/R (as
its image in ωW/R(W ) restricts to a generator on the complement of a codimension-2 point in the normal
W ). This forces π∗ωW reg/R ↪→ ωW/R to be surjective, and so (8.3) and the global-local duality compatibility

imply that R1π∗O vanishes. �

In general, if X is a normal proper R-curve with smooth and geometrically connected generic fiber then
we say it has rational singularities if there is a proper birational map π : X ′ → X with regular X ′ such
that R1π∗OX′ vanishes; by [1, Prop. 3.2], this condition is independent of the choice of X ′ (and so is
satisfied for regular X) and it is preserved under blow-up at a codimension-2 point. More importantly, by
[1, Thm. 4.9], the blow-up of X along its (reduced) non-regular locus is automatically normal when X has
rational singularities. Thus, Corollary 8.3 implies another geometric characterization of minimal Weierstrass
models:

Corollary 8.4. An integral Weierstrass model W of an elliptic curve E/K has rational singularities if and
only if W is a minimal Weierstrass model.

We have seen that for such minimal W the minimal regular resolution W reg coincides with the minimal
regular proper model E of E/K . We noted above that Lipman’s resolution process applied to such W
would reach a resolution of singularities by successive blow-up at non-regular points without ever needing to
normalize (i.e., the blow-ups are automatically normal), but it isn’t apparent if Lipman’s resolution would
recover E or perhaps require some contractions to reach E (see Remark 3.12).

But it turns out that for normal proper R-curves which have only rational singularities, which for Weier-
strass models W is the case precisely when W is minimal (by Corollary 8.4), Lipman’s resolution is the
minimal regular resolution; see [11, §9.3.4, Rem. 3.34] and [11, §9.4, Exer. 4.7(c)]. This heuristically explains
why Tate was able to construct his algorithm for computing E by starting with a minimal W and applying
well-chosen explicit blow-ups without ever having to compute normalizations; Tate’s algorithm also uses
some blow-ups along codimension-1 subschemes, so it is more artful than Lipman’s general procedure. If it
had been necessary to normalize after each blow-up, then it is hard to imagine that Tate’s concrete algorithm
could have been created (as computing normalizations is notoriously difficult).
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