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1. Introduction

1.1. Motivation. In [DR], Deligne and Rapoport developed the theory of generalized elliptic curves over
arbitrary schemes and they proved that various moduli stacks for (ample) “level-N” structures on generalized
elliptic curves over Z[1/N ]-schemes are Deligne–Mumford stacks over Z[1/N ]. These stacks were proved to
be Z[1/N ]-proper, and also finite flat over the Z[1/N ]-localization of the proper Z-smooth moduli stack
M 1 = M 1,1 of stable marked curves of genus 1 with one marked point. Hence, by normalization over
M 1 one gets proper normal flat stacks over Z but the method gives no moduli interpretation in “bad”
characteristics.

In [KM], Katz and Mazur developed the theory of Drinfeld level structures on elliptic curves over arbitrary
schemes, thereby removing the étaleness restriction on the level when working away from the cusps. When
there is “enough” level (to remove non-trivial isotropy groups), the work in [KM] constructs affine moduli
schemes over Z for Drinfeld level structures on elliptic curves. These schemes were proved to be normal and
finite flat over the “j-line” A1

Z, so they extend to proper flat Z-schemes by normalization over P1
Z. If there

is “enough” level then the Z-proper constructions of Deligne–Rapoport and Katz–Mazur coincide.
The approach in [KM] does not give a moduli interpretation at the cusps (in the sense of Deligne and

Rapoport), and [DR] uses methods in deformation theory that often do not work at the cusps in bad
characteristics. One expects that the theory of Drinfeld structures on generalized elliptic curves should
provide a moduli-theoretic explanation for the proper Z-structures made in [DR] and [KM].

In unpublished work, Edixhoven [Ed] carried out an analysis of the situation for level structures of the
types Γ(N), Γ1(N), and Γ0(n) for squarefree n, as well as some mixtures of these level structures. He proved
that the moduli stacks in all of these cases are proper and flat Deligne–Mumford stacks over Z that are
moreover regular. Edixhoven used a method resting on considerations with an étale cover by a scheme, and
he proved that the moduli stacks are isomorphic to normalizations that were constructed in [DR].

In view of the prominent role of the modular curve X0(n) in the study of elliptic curves over Q, it is
natural to ask if the restriction to squarefree n is really necessary in order that the moduli stack for Γ0(n)-
structures be a reasonable algebro-geometric object over Z. Let us recall why non-squarefree n may seem
to present a difficulty. Suppose n has a prime factor p with ordp(n) ≥ 2. Choose any d|n and let Cd denote
the standard d-gon over an algebraically closed field of characteristic p, considered as a generalized elliptic
curve in the usual manner. Assume p|d, so Aut(Cd) = µd o 〈inv〉 contains µp (with “inv” denoting the
unique involution of Cd that restricts to inversion on the smooth locus Csm

d = Gm × (Z/dZ)). If moreover
p|(n/d) then there exist cyclic subgroup schemes G in the smooth locus Csm

d such that G is ample on Cd

and has order n with p-part that is non-étale and disconnected. Such a subgroup contains the p-torsion µp

in the identity component of Csm
d , and so the infinitesimal subgroup µp in the automorphism scheme of Cd

preserves G. In particular, the finite automorphism scheme of the Γ0(n)-structure (Cd, G) contains µp and
thus is not étale. The moduli stack for Γ0(n)-structures therefore cannot be a Deligne–Mumford stack in
characteristic p if p2|n. However, failure of automorphism groups to be étale does not prevent the possibility
that such stacks can be Artin stacks.
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1.2. Results. The first main result of this paper is that Γ0(n)-structures form a proper flat Artin stack over
Z for arbitrary n. This is a special case of a more general result, as follows. For any positive integers N and
n such that ordp(n) ≤ ordp(N) for all primes p| gcd(N,n) (e.g., N = 1 and arbitrary n), define a Γ1(N ;n)-
structure on a generalized elliptic curve E over a scheme S to be a pair (P,G) consisting of a Z/NZ-structure
P on Esm and a cyclic subgroup G of order n on Esm such that the Cartier divisor

∑
j∈Z/NZ(jP + G) in E

is ample and
∑

j∈Z/dZ(j(N/d)P + Gd) = Esm[d], where d = gcd(N,n) and Gd ⊆ G is the standard cyclic
subgroup of order d in the sense of Definition 2.3.6. (In Theorem 2.4.5 we prove that

∑
j∈Z/NZ(jP + G)

must be a subgroup of Esm.)

Theorem 1.2.1. The moduli stack M Γ1(N ;n) classifying Γ1(N ;n)-structures on generalized elliptic curves
is a proper flat Artin stack over Z, and it is Deligne–Mumford away from the 0-dimensional closed cuspidal
substacks in characteristics p with p2|n. This stack is regular and has geometrically connected fibers with
pure dimension 1 over SpecZ.

We establish this theorem in §3 by methods that are necessarily rather different from those of Edixhoven
(since Artin stacks do not generally admit an étale cover by a scheme and do not generally admit universal
deformation rings at geometric points). Our arguments require the use of fine structural properties of auxil-
iary moduli stacks for Γ(M)-structures and Γ1(M)-structures (even for the treatment of Γ0(n)-structures).
Thus, for unity in the exposition we treat the moduli stack M Γ of Γ-structures for all of these Γ ab ovo by
using the viewpoint of Artin stacks; the main issue is to incorporate cusps in bad characteristics (especially
for Γ1(N ;n)-structures in characteristic p with p2|n). Our proof that every M Γ is an Artin stack is mod-
elled on the method of tri-canonical embeddings that is used for moduli stacks of stable curves. However,
whereas universal tri-canonically embedded stable curves are easy to construct via Hilbert schemes, we need
to do additional work in the case of generalized elliptic curves because the group law involves the possibly
non-proper smooth locus. The only “messy calculation” in the proof of Theorem 1.2.1 is in the proof of
regularity for M Γ1(N) along its cusps, but this step is not too unpleasant (we build on calculations in [KM,
Ch. 10]).

The deformation-theoretic technique at the cusps in [DR] rests on an étale quotient argument that usually
does not work when the level structure is not étale (also see Remark 2.1.13), and we have to prove that some
results in [KM] for Drinfeld structures on elliptic curves are valid for Drinfeld structures on generalized
elliptic curves E → S (especially the cyclicity criterion [KM, 6.1.1]; see Theorem 2.3.7). The intervention of
Artin stacks contributes additional complications, since geometric points on Artin stacks do not generally
admit universal deformation rings. To circumvent these problems, we must make more effective use of the
group theory. For example, we use group-theoretic structures, and not the deformation-theoretic method
of Artin, to prove that various moduli stacks M Γ are Artin stacks. The “unramified diagonal” criterion
then implies that these stacks are often Deligne–Mumford, and in §3.3–§4.3 we study the fine structure by
exploiting the a posteriori existence of universal deformation rings at geometric points on Deligne–Mumford
stacks. Such deformation rings are useful in the study of the Artin stack M Γ1(N ;n) because M Γ1(N ;n) admits
a canonical finite flat covering by a (not necessarily regular) Deligne–Mumford stack.

The good structure exhibited over Z in Theorem 1.2.1 suggests considering the associated Z-structure
on spaces of classical modular forms. For Γ = Γ1(N ;n), let EΓ → M Γ be the universal generalized elliptic
curve and let ωΓ be the invertible sheaf on M Γ that is the pushforward of the relative dualizing sheaf.
Let M∞

Γ ⊆ M Γ be the closed substack classifying Γ-structures on degenerate objects, and let M 0
Γ be the

complementary open substack. By coherence of higher direct images [O] and Theorem 1.2.1, the Z-module
H0(M Γ, ω⊗k

Γ ) is finite and free, and so it provides a natural Z-structure on the space Mk(Γ,C) of weight-k
classical modular forms for Γ; see Remark 4.4.2 for a description via q-expansions when Γ = Γ1(N). Upon
inverting Nn this recovers the familiar Z[1/Nn]-structure defined by means of q-expansions at a single cusp.
For Γ = Γ1(N) or Γ0(N), an extremely tedious calculation with q-expansions at all cusps shows that this
Z-structure is preserved under all Hecke operators Tp (even allowing p|N). However, there is a much better
and more useful way to understand Hecke-stability of the Z-structure without using q-series: the underlying
correspondence is well-posed over Z. More precisely:
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Theorem 1.2.2. For any N ≥ 1 and prime p, the p-th Hecke correspondence π0
1 , π0

2 : M 0
Γ1(N ;p) ⇒M 0

Γ1(N)

uniquely extends to a finite flat correspondence π1, π2 : M Γ1(N ;p) ⇒ M Γ1(N) on proper stacks over Z.
Moreover, the pullback map

ξ0 : (π0
2)∗(ωΓ1(N)|M 0

Γ1(N)
) → ωΓ1(N ;p)|M 0

Γ1(N;p)
= (π0

1)∗(ωΓ1(N)|M 0
Γ1(N)

)

along the universal p-isogeny over M 0
Γ1(N ;p) uniquely extends to a map ξ : π∗2ωΓ1(N) → π∗1ωΓ1(N) over

M Γ1(N ;p).

The essential content in this theorem is that the morphism π0
2 : (E;P,C)  (E/C, P mod C) over

M 0
Γ1(N ;p) may be (uniquely up to unique isomorphism) extended to the entire moduli stack M Γ1(N ;p) (on

which the traditional quotient E/C does not make sense as a generalized elliptic curve). The proof rests on
two ingredients: a general formal criterion for extending maps between suitable Deligne–Mumford stacks,
and a study of descent theory over deformation rings on M Γ1(N) at geometric points in M∞

Γ1(N). In §4.4
we prove Theorem 1.2.2 (see Theorem 4.4.3). The analogue of Theorem 1.2.2 for Γ0(N) is true, but this
requires additional arguments because M Γ0(N) is generally not Deligne–Mumford (and so does not admit
universal deformation rings at its geometric points); we give some brief indications on this variant, using the
result for Γ1(N), at the end of §4.4.

Recall that the definition of Tp on meromorphic modular forms over C involves division by p upon
the operations in coherent cohomology: Tp = (1/p) · Trπ0

1
◦ (ξ0)⊗k ◦ (π0

2)∗. Hence, to work with Tp in
coherent cohomology over Z we need to analyze divisibility by p, which is to say that we have to prove a
vanishing property in characteristic p. In §4.5 we address this vanishing via conceptual local considerations on
M 0

Γ1(N)/Fp
, thereby constructing all operators Tp over Z without requiring any explicit q-series calculations to

verify holomorphicity along the cusps. (This gives a purely arithmetic proof, without topological cohomology
or the artifice of q-expansions, that eigenvalues of classical Hecke operators are algebraic integers.) An
interesting application of these local arguments is that they lead to a new uniform construction of the Hecke
operator Tp on Katz modular forms for Γ1(N) in characteristic p - N and any weight, especially weight 1. In
contrast with the approach in [G, §4] that uses the q-expansion formula for Tp in characteristic 0 to “define”
the operator Tp on Katz forms in weight 1, we deduce this formula a posteriori from our uniform definition
in all weights.

1.3. Notation and terminology. If S is a scheme and X is an S-scheme, then X/S′ and XS′ denote
X×S S′ for an S-scheme S′. If X → S is flat and locally of finite presentation, then Xsm denotes the (open)
S-smooth locus. If G → S is a finite locally free commutative S-group of order N , then G× denotes the
scheme of Z/NZ-generators of G [KM, 1.10.13]; this is finite and finitely presented over S. For example,
we have µ×N = Spec(Z[T ]/ΦN (T )) with universal generator T , where ΦN is the Nth cyclotomic polynomial
[KM, 1.12.9]. We define φ(N) = deg ΦN for N ≥ 1.

We use [LMB] as the basic reference on stacks; in particular, we require Artin stacks to have diagonal mor-
phisms that are represented by separated algebraic spaces of finite type. We adopt one abuse of terminology
that we hope will not cause confusion: rather than speak of 1-morphisms (of stacks) and 2-isomorphisms
between 1-morphisms, we will use the words “morphism” and “isomorphism” respectively. One deviation
we make from [LMB] concerns the role of the base scheme: in [LMB] the general theory is developed over a
fixed quasi-separated base scheme S, and we consider the general theory to have SpecZ as the base scheme.
This allows us to discuss Artin stacks over arbitrary schemes, as follows. An Artin stack over a scheme S is
an Artin stack S ′ over SpecZ (in the sense of [LMB]) equipped with a morphism to S; the diagonal of the
structural morphism S ′ → S is automatically representable in algebraic spaces and is both separated and
of finite type. For quasi-separated S, this definition recovers the notion of “Artin stack over S” as in [LMB].
To be precise, if S is quasi-separated and S is a stack over S in the sense of [LMB] then let S ′ be the stack
over SpecZ whose fiber category over a ring A is the groupoid of pairs (f, x) where f : Spec A → S is a
map of schemes and x is an object in the fiber category S(A,f) over the affine scheme Spec A over S. There
is an evident morphism S ′ → S that “is” S , and ∆S /S is representable in algebraic spaces if and only
if ∆S ′/ SpecZ is so, in which case the quasi-separatedness of S ensures that ∆S /S is quasi-compact if and
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only if ∆S ′/ SpecZ is quasi-compact, and the same holds for the properties of the diagonal being separated
or of finite type. It follows that S is an Artin stack over S in the sense of [LMB] if and only if S ′ is an
Artin stack over SpecZ. Hence, all theorems in [LMB] for Artin stacks over a quasi-separated S are valid
for arbitrary S via our general definition because any scheme S is covered by quasi-separated (e.g., affine)
opens.
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2. The fundamental definitions and examples

2.1. Basic definitions. For the convenience of the reader, let us first review some standard notions.

Definition 2.1.1. A morphism of schemes X → S is Cohen-Macaulay (or CM) if it is flat and locally of
finite presentation with Cohen-Macaulay fibers.

Definition 2.1.2. A curve over a scheme S is a morphism C → S that is separated, flat, and finitely
presented with all fibers non-empty of pure dimension 1. A Deligne–Rapoport (DR) semistable genus-1 curve
over S is a proper curve f : C → S such that the geometric fibers are connected and semistable with trivial
dualizing sheaf.

In [DR], DR semistable genus-1 curves are called “stable genus-1” curves. A basic fact that is useful in
universal constructions is:

Lemma 2.1.3. [DR, II, 1.5] Let f : C → S be a proper flat map of finite presentation. The set of s ∈ S
such that Cs is a DR semistable genus-1 curve is open.

In [DR, II, 1.2, 1.3] it is shown that the DR semistable genus-1 curves over an algebraically closed field
are exactly the smooth curves with genus 1 and the so-called Néron n-gons (for n ≥ 1) whose definition we
now recall. For any n > 1, the standard n-gon (or Néron n-gon) Cn over a scheme S is the S-proper curve
obtained from P1

S × Z/nZ by “gluing” the ∞-section on P1
S × {i} to the 0-section on P1

S × {i + 1} for all
i ∈ Z/nZ. The formation of this gluing naturally commutes with base change. The tautological action of
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Z/nZ on P1
S ×Z/nZ uniquely factors through an action of Z/nZ on each Cn. This action on Cn is free and

for any d|n with d > 1 there is a unique map

(2.1.1) Cn → Cd

that is compatible with the projection P1
S × Z/nZ → P1

S × Z/dZ. This map is invariant under the free
action of dZ/nZ on Cn, and it realizes Cn as a finite étale dZ/nZ-torsor over Cd.

Since the action of Z/nZ on Cn is free and each orbit lies in an open affine, by [SGA3, Exp. V, Thm. 4.1]
there exists an S-scheme quotient map Cn → C1,n that is a finite étale Z/nZ-torsor, and its formation is
compatible with arbitrary base change over S. Using the torsor maps (2.1.1) we see that C1,n is independent
of n and hence it may be denoted C1. As an S-scheme, C1 is proper with a canonical section “1” that is
induced by any of the sections (1, i) of any Cn with n > 1.

We call C1 the standard 1-gon; this is equipped with a canonical finite map P1
S → C1 realizing C1 as

the gluing of the sections 0 and ∞ in P1
S (the corresponding universal property follows from a comparison

with Cm for any m > 1). The map t 7→ (t2 + 1, t(t2 + 1)) from P1 to the nodal plane curve y2z = x3 − x2z
factorizes through C1 and induces an isomorphism between C1 and this nodal cubic.

The natural action (Gm × Z/nZ)×S (P1
S × Z/nZ) → P1

S × Z/nZ uniquely descends to a morphism

(2.1.2) + : Csm
n ×S Cn → Cn

for all n ≥ 1. This is an action extending the group law on Csm
n = Gm×Z/nZ and it is compatible with base

change and with change in n. The structure (2.1.2) is an example of the following notion, first introduced
in [DR, II, 1.12].

Definition 2.1.4. A generalized elliptic curve over S is a triple (E,+, e) where E is a DR semistable genus-1
curve, + : Esm ×S E → E is an S-morphism, and e ∈ Esm(S) is a section such that

• + restricts to a commutative group scheme structure on Esm with identity section e,
• + is an action of Esm on E such that on singular geometric fibers the translation action by each

rational point in the smooth locus induces a rotation on the graph of irreducible components (this
forces the component groups of geometric fibers Esm

s to be cyclic).

A morphism between generalized elliptic curves E and E′ over a scheme S is a map f : E → E′ as S-
schemes such that f(Esm) ⊆ E′sm (e.g., a finite étale S-map, or the zero map) and the induced map on smooth
loci is a map of S-groups. Considerations with universal schematic density [EGA, IV3, 11.10.4, 11.10.10]
ensure that a morphism in this sense is automatically equivariant with respect to the actions of Esm on E
and of E′sm on E′.

Over an algebraically closed field, a generalized elliptic curve is either an elliptic curve or is isomorphic
to a standard n-gon with the structure (2.1.2) [DR, II, 1.15]. Whenever we speak of standard polygons over
S as generalized elliptic curves, it is always understood that we use the structure (2.1.2).

Example 2.1.5. By [DR, II, 1.10], the automorphism functor of the standard n-gon Cn as a generalized
elliptic curve is 〈inv〉nµn, where inv is the unique involution extending inversion on Csm

n and, for i ∈ Z/nZ,
µn acts on the ith fibral component through [ζ](t) = ζit.

Example 2.1.6. If E is a non-smooth generalized elliptic curve over a field and G ⊆ Esm is a finite subgroup
then the action of G on E has non-trivial isotropy groups at the non-smooth points except when G is étale
and has trivial intersection with the identity component of Esm. Thus, the quotient E/G as a scheme is
usually not a DR semistable genus-1 curve and the map E → E/G is usually not flat. When forming a
quotient E/G in the setting of non-smooth generalized elliptic curves over a base scheme, we shall therefore
always require G to have trivial intersection with the identity component on non-smooth geometric fibers (so
G acts freely on E and is étale on non-smooth fibers, and hence E/G has a natural structure of generalized
elliptic curve).

Let f : C → S be a curve. Since f is flat with fibers of pure dimension 1, the relative smooth locus
is exactly where Ω1

C/S admits a single generator. The jth Fitting ideal sheaf encodes the obstruction to
admitting j generators [Eis, Prop. 20.6], so the first Fitting ideal sheaf of Ω1

C/S defines a canonical closed
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subscheme structure on Csing = C − Csm. The formation of Csing as an S-scheme is compatible with base
change on S.

Example 2.1.7. If S = Spec A and C = Spec(A[x, y]/(xy − a)) then the ideal (x, y) cuts out Csing.

Definition 2.1.8. If f : C → S is a proper S-curve, then the locus of non-smoothness of f is the scheme-
theoretic image S∞,f of Csing in S.

The scheme S∞,f is a canonical closed subscheme structure on the closed set of points of S over which
the proper S-curve f : C → S has a non-smooth fiber.

Example 2.1.9. By Example 2.1.7, S∞,f = S when f : C → S is the standard n-gon over a scheme S.

Lemma 2.1.10. [DR, II, 1.15] Let f : E → S be a generalized elliptic curve. The closed subscheme S∞,f

is a locally finite (in S) disjoint union of open subschemes S∞,f
n such that the generalized elliptic curve E is

isomorphic to the standard n-gon fppf-locally over S∞,f
n .

It is generally not true that the formation of S∞,f commutes with (non-flat) base change on S for arbitrary
DR semistable genus-1 curves f : C → S. To be precise, if T is an S-scheme and fT : CT → T is the base
change of f over T , then there is an inclusion of closed subschemes

(2.1.3) T∞,fT ⊆ S∞,f ×S T

inside of T but this can fail to be an equality of subschemes (though it is an equality on underlying topological
spaces):

Example 2.1.11. Here is an interesting example in which (2.1.3) is not an isomorphism. Let S = Spec(A)
be a local artin scheme and let a, a′ ∈ A be two elements in the maximal ideal. Consider a twisted version
Ca,a′ of the standard 2-gon such that the singularities look like tt′ = a and uu′ = a′. More specifically, we
glue Spec(A[t, t′]/(tt′ − a)) to Spec(A[u, u′]/(uu′ − a′)) along the complements of the origins via

(t, t′) 7→

{
(1/t, a′t) if t 6= 0,

(a′t′, 1/t′) if t′ 6= 0,
(u, u′) 7→

{
(1/u, au) if u 6= 0,
(au′, 1/u′) if u′ 6= 0.

This gluing is A-flat and respects base change on A, so it is trivially a DR semistable genus-1 curve. (Its fiber
over the reduced point of Spec(A) is the standard 2-gon since a and a′ are nilpotent.) Using a Fitting-ideal
calculation, one sees that the locus of non-smoothness in the base is defined by the intersection of the ideals
(a) and (a′). The formation of such an intersection does not generally commute with base change.

For example, if A = k[ε, ε′]/(ε, ε′)2 for a field k, and we choose a = ε and a′ = ε′, then (a) ∩ (a′) = 0.
In this case the locus of non-smoothness of Ca,a′ is the entire base, but over the closed subscheme defined
by ε = ε′ the locus of non-smoothness is Spec(k) ↪→ Spec(k[ε]/(ε2)) rather than the entire (new) base
Spec(k[ε]/(ε2)).

The following important fact is implicit (but not stated) in [DR] and it underlies the definition of closed
substacks “at infinity” in moduli stacks of generalized elliptic curves. In view of Example 2.1.11, it gives a
special property of generalized elliptic curves among all DR semistable genus-1 curves.

Theorem 2.1.12. Let f : E → S be a generalized elliptic curve. The formation of the closed subscheme
S∞,f ↪→ S is compatible with base change on S.

Proof. By Lemma 2.1.10, the base change E/S∞,f is fppf-locally isomorphic to the standard n-gon for Zariski-
locally constant n on S∞,f . Let T be an S-scheme. If (2.1.3) is not an isomorphism, then the same is true
after any base change to a T -scheme that is an fppf-cover of S∞,f ×S T . Since E becomes a standard polygon
fppf-locally over S∞,f , by Example 2.1.9 we conclude that (2.1.3) has to be an isomorphism. �

Remark 2.1.13. By [DR, II, 2.7], any DR semistable genus-1 curve C → S with irreducible geometric fibers
and a section e ∈ Csm(S) admits a (unique) structure of generalized elliptic curve with e as the identity. In
contrast, by Theorem 2.1.12 it follows that Example 2.1.11 gives DR semistable genus-1 curves such that
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the non-smooth geometric fibers are 2-gons and such that there does not exist a generalized elliptic curve
structure fpqc-locally on the base. This is why it is hard to determine, via purely geometric methods, which
infinitesimal flat deformations of such data as bare schemes admit the required group structures. In [DR,
III, 1.4.2], such problems are avoided in the case of étale level structures by means of an étale quotient
argument that passes to the case of geometrically irreducible fibers.

We conclude our review by recalling the definition of relative contraction away from a Cartier divisor with
support in the smooth locus. Let C be a DR semistable genus-1 curve and let D be a relative effective
Cartier divisor on Csm that is finite over S. By [DR, IV, 1.2] there is a DR semistable genus-1 curve C/S

and a proper S-morphism

(2.1.4) u : C → C

that contracts all geometric fibral irreducible components that are disjoint from D. This “contraction away
from D” is unique up to unique isomorphism [DR, IV, 1.2(b)] (but C can have automorphisms over C).
In particular, its formation is compatible with base change. This compatibility implies that the restriction
u : u−1(C

sm
) → C

sm
is an isomorphism. Since the open subscheme C

sm ⊆ C is universally schematically
dense over S, it follows from the uniqueness of contractions that for any S-automorphism α of C taking
D into D there is a unique S-automorphism α of C such that α ◦ u = u ◦ α. In more precise terms, the
contraction is uniquely functorial with respect to isomorphisms. In particular, if C is a generalized elliptic
curve and D is a subgroup of Csm then C has a unique structure of generalized elliptic curve such that u
induces a group morphism from u−1(C

sm
) to C

sm
, and u is equivariant for the actions of u−1(C

sm
) and C

sm

on C and C respectively. Note also that D is identified with an S-subgroup of C
sm

and it is S-ample in C.

2.2. Background results. We now record (for later use) a construction principle of Deligne and Rapoport,
a general criterion for an Artin stack to be an algebraic space, and a discussion of excellence for stacks.

Consider a proper semistable curve f : C → S and a section e ∈ C(S). Since the geometric fibers are
reduced and connected, we have OS ' f∗OC universally. Thus, the section e allows us to view the functor
PicC/S as classifying line bundles on C rigidified along the section e [BLR, pp. 204-5], and it is a locally
separated algebraic space group locally of finite presentation over S [Ar, Thm. 7.3]. This S-group is smooth
by functorial criteria. By [SGA6, Exp. XIII, Thm.4.7] and [BLR, 9.2/14] there is a universal line bundle over
this algebraic space and the union Pic0

C/S = Picτ
C/S of the fibral identity components is an open subspace of

finite presentation over S classifying line bundles with degree-0 restriction to each irreducible component of
a geometric fiber of C → S. Since C → S is a semistable curve, the valuative criterion ensures that Pic0

C/S is
S-separated and thus is a semi-abelian algebraic space group over S by [BLR, 9.2/8]. (Deligne proved that
Pic0

C/S is in fact a scheme, but we do not require this; of course, if S is artin local then the scheme property
is automatic since algebraic space groups locally of finite type over an artin ring are schemes.)

Lemma 2.2.1. Let A → S be a semi-abelian algebraic space over a scheme S. Let g, h be two endomorphisms
of A/S. There exists an open and closed subscheme U ⊆ S such that for any S-scheme S′, the pullback
endomorphisms g′, h′ of A′ = A/S′ coincide if and only if S′ → S factors through U .

Proof. If A is a scheme, this is [DR, II, 1.14]; the same proof works with A an algebraic space. �

Let E → S be a generalized elliptic curve. By [DR, II, 1.13], the natural action map of algebraic spaces

(2.2.1) Esm × Pic0
E/S → Pic0

E/S

arising from the Esm-action on E must be trivial. An approximate converse is given by the following
extremely useful result that underlies our study of moduli stacks of “non-étale” level structures on generalized
elliptic curves.

Theorem 2.2.2. [DR, II, 3.2] Let f : C → S be a DR semistable genus-1 curve and let e ∈ Csm(S) be a
section. Let G be a commutative flat S-group scheme locally of finite presentation, and let ρ : G × C → C
be an action of G on C. Assume that G acts trivially on the algebraic space Pic0

C/S and that G(s) acts
transitively on the set of irreducible components of Cs for all geometric points s of S.
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There exists a unique generalized elliptic curve structure on C with identity section e such that each
g ∈ G(T ) acts on C/T via translation by g(e) ∈ Csm(T ) for all S-schemes T . Moreover, any automorphism
α of C commuting with the G-action is translation by α(e) ∈ Csm(S).

The following special case of Theorem 2.2.2 suffices for us.

Corollary 2.2.3. Let f : C → S be a DR semistable genus-1 curve and let D ↪→ C be an S-ample relative
effective Cartier divisor supported in Csm. Assume that D is endowed with a structure of commutative
S-group scheme and that there is given an action of D on C that extends the group scheme structure on D.

This extends to a generalized elliptic curve structure on C if and only if the natural induced action of D
on the algebraic space Pic0

C/S is trivial, in which case such a generalized elliptic curve structure on C/S is
unique. The triviality of the D-action on Pic0

C/S may be checked on geometric fibers over S, and the locus
of fibers with trivial action is an open and closed subset of S.

Proof. The S-ampleness of D ⊆ Csm ensures that, on geometric fibers, the action of D(s) on Cs is transitive
on the set of irreducible components of Cs. Hence, we may use Theorem 2.2.2 (with G = D) once we explain
why it suffices to check the triviality condition on fibers, and why the locus of fibers with trivial action is
open and closed in S. More generally, if A is a semi-abelian algebraic space over S and G → S is a finite
locally free commutative S-group equipped with an action α : G × A → A over S then we claim that the
condition on S-schemes S′ that G/S′ acts trivially on A/S′ is represented by a Zariski-open and Zariski-closed
subscheme U ⊆ S (so G acts trivially on A if and only if Gs acts trivially on As for all s ∈ S).

The universal action

(2.2.2) α : G×A → G×A

given by (g, a) 7→ (g, (α(g))(a)) is an endomorphism of the semi-abelian algebraic space A/G over T = G,
so by Lemma 2.2.1 there is an open and closed subscheme V ⊆ G such that for any G-scheme f : T ′ → G
the pullback of α along f is the identity if and only if f factors through V . Thus, if we let U ⊆ S be the
Zariski-open and Zariski-closed complement of the Zariski-open and Zariski-closed image of G−V in S then
U represents the condition that G/S′ acts trivially on A/S′ for variable S-schemes S′. �

Corollary 2.2.4. Let A be an adic noetherian ring with ideal of definition I, and let An = A/In+1 for n ≥ 0.
The functor E  (E mod In+1)n≥0 is an equivalence of categories between the category of generalized elliptic
curves over Spec A whose degenerate geometric fibers all have a common number of irreducible components
and the category of compatible systems (En)n≥0 of such generalized elliptic curves over the Spec An’s.

Loosely speaking, this corollary says that formal generalized elliptic curves E over Spf A admit unique
algebraizations over Spec A, provided that the number of irreducible components on non-smooth fibers is
fixed (a condition that is always satisfied when Spec A is local, by Lemma 2.1.10); Corollary 2.2.4 has content
because the locus Esm of formal smoothness for E over Spf A is generally not proper over Spf A.

Proof. Let (En)n≥0 be a compatible family of generalized elliptic curves over the Spec An’s such that each
En has a fixed number of irreducible components for its degenerate geometric fibers. This common number
must be the same for all n; we let d be this number, and we define d = 1 if the En’s are smooth. Each
Dn = Esm

n [d] is quasi-finite, separated, and flat over Spec An with constant fibral rank (namely, d2), so
by [DR, II, 1.19] each Dn is finite over Spec An. Hence, Dn ↪→ En is a relatively ample relative effective
Cartier divisor. Thus, Grothendieck’s formal GAGA and existence theorems [EGA, III1, 5.4.1, 5.4.5] may be
applied to uniquely construct a proper flat A-scheme E, a finite flat commutative d-torsion A-group scheme
D equipped with a closed immersion into E, and an action

ρ : D × E → E

extending the group law on D such that reduction modulo In+1 recovers En, the An-group Dn, and the
action of Dn on En. By construction, D has order d2. Any open set in Spec A that contains Spec A/I is the
entire space, due to the fact that A is an adic noetherian ring with ideal of definition I. Thus, since Esm

is open in E, it follows from properness of E that D is supported in Esm. Moreover, by Lemma 2.1.3 the



ARITHMETIC MODULI OF GENERALIZED ELLIPTIC CURVES 9

proper flat A-curve E is a DR semistable genus-1 curve since its fibers over Spec A/I are such curves. In
particular, Pic0

E/A exists as a semi-abelian algebraic space.
The D-action on Pic0

E/A is trivial over Spec A/I. The only open subscheme in Spec A containing Spec A/I
is the entire space, so by Corollary 2.2.3 we conclude that there exists a unique structure of generalized elliptic
curve on E that is compatible with the A-group structure on D and with the action ρ, and moreover this
must induce the given generalized elliptic curve structure on each En. Every non-empty closed set in Spec A
meets Spec A/I, so it follows from Lemma 2.1.10 that all degenerate geometric fibers of E over Spec A are
d-gons. In particular, Esm[d] is a finite flat group scheme with order d2. Since the finite flat subgroup D in
Esm is d-torsion with order d2, the closed immersion D ↪→ Esm[d] must be an isomorphism.

Due to the functoriality of d-torsion, it is clear (via formal GAGA, Theorem 2.2.2, and the closedness
of the non-smooth loci) that the construction of E with its generalized elliptic curve structure is functorial
with respect to morphisms in the inverse system (En)n≥0 and moreover gives a quasi-inverse functor to the
“completion” functor E  (E mod In+1)n≥0. �

In [LMB, 8.1.1] a necessary and sufficient criterion is given for an Artin stack to be an algebraic space, but
the criterion uses scheme-valued points and in practice it is convenient to require only the use of geometric
points. The sufficiency of using geometric points is well-known, but due to lack of a reference we provide a
proof:

Theorem 2.2.5. Let M be an Artin stack over a scheme S.
(1) M is an algebraic space if and only if its geometric points have trivial automorphism functors. In

particular, M is an algebraic space if and only if M red is an algebraic space.
(2) If M is locally S-separated, then there exists a unique open substack U ⊆ M such that the geometric

points of U are exactly the geometric points of M whose automorphism functor is trivial. The open
substack U is an algebraic space.

Proof. By [LMB, 8.1.1], an Artin stack is an algebraic space precisely when, for every S-scheme U and
morphism u : U → M over S, the algebraic space group G = AutM U

(u) of finite type over U is the trivial
group. To prove (1), we must show that it suffices to take U to be a geometric point.

The map G → U is a separated algebraic space group of finite type, and the hypothesis on automorphism
functors of geometric points implies that G has trivial fibers over U . In particular, G is quasi-finite and
separated over U , so G is a scheme by [LMB, Thm. A.2]. By Nakayama’s lemma, Ω1

G/U = 0 since Ω1
Gu0/u0

= 0
for all u0 ∈ U . It therefore suffices to prove that if f : X ′ → X is a finite type map of schemes and e : X → X ′

is a section then f is an isomorphism if Ω1
X′/X = 0 and the (necessarily finite) geometric fibers of f have

rank 1. The immersion ∆X′/X is locally finitely presented, so by Nakayama’s lemma and the definition of
Ω1

X′/X we see that ∆X′/X is an open immersion. Hence, every section to f is an open immersion. The
section e is therefore an open immersion, yet is it surjective by the hypothesis on geometric fibers. Thus, e
is an isomorphism, and so f is an isomorphism.

We now consider (2). By working locally on M , we can assume that M is S-separated. Hence, the
diagonal of M is proper, so G is a proper U -group. By Nakayama’s lemma, the closed support of Ω1

G/U on
G meets each fiber Gu0 in the support of Ω1

Gu0/u0
, so the complement of the image of this support in U is

an open locus U ′ ⊆ U that classifies the étale geometric fibers for G over U . Hence, by replacing M with
an open substack we may suppose that the maps G → U are proper with étale fibers, and so (by [LMB,
Cor. A.2.1]) G is a finite U -scheme.

Openness of the locus of geometric points of M with trivial automorphism functor is now reduced to the
general claim that if Y → Z is a finite map of schemes with Ω1

Y/Z = 0 and if there exists a section e : Z → Y

then the set of geometric points z ∈ Z such that the étale fiber Yz has one geometric point is an open set in
Z. As before, since Ω1

Y/Z = 0 the diagonal ∆Y/Z has open image. The complement of this image in Y ×Z Y

is a closed set whose image Z ′ in Z is closed (as Y → Z is proper), and the complement of Z ′ in Z is the
desired open locus (since the fibers Yz are étale for all z ∈ Z). This completes the construction of U as an
open substack, and it follows from (1) that U is an algebraic space. �
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Remark 2.2.6. In the preceding proof, we used the result [LMB, Thm. A.2] that an algebraic space that is
separated and locally quasi-finite over a scheme is a scheme. There is a minor error in the proof of this result
in [LMB]: in the notation of that proof, the deduction x ∈ X1 near the end of the second paragraph is only
true under the hypothesis that Z1 is non-empty (which is to say x ∈ f(Y )). The correct deduction in general
is that f is finite over a retrocompact open set in X, and this suffices for the proof of [LMB, Thm. A.2].

Corollary 2.2.7. A map f : M ′ → M between Artin stacks is representable in algebraic spaces if and only
if its geometric fibers are algebraic spaces.

Proof. Necessity is clear, and for sufficiency we may assume that M is an algebraic space. By Theorem
2.2.5, we have to prove that every geometric point s : Spec k → M ′ (with k an algebraically closed field)
has trivial automorphism functor. Since M is an algebraic space, this automorphism functor is unaffected
by replacing M ′ with its geometric fiber over the composite Spec k → M ′ → M . This geometric fiber is an
algebraic space by hypothesis, so the automorphism functor is indeed trivial. �

We conclude by considering the notion of excellence for Artin stacks. In [EGA, IV4, 18.7.7], there is given
an example of a semi-local noetherian ring that is not universally catenary (and hence not excellent) but that
admits a finite étale cover that is excellent. The properties of excellence and being universally catenary are
therefore not local for the étale topology on locally noetherian schemes. Thus, these notions do not admit
a reasonable definition (in terms of one smooth chart) for algebraic spaces, nor for Artin stacks. However,
there is an aspect of excellence that does make sense for Artin stacks.

Theorem 2.2.8. Let S be a locally noetherian Artin stack and let X → S be a smooth covering by a
scheme.

(1) If all local rings X are G-rings, then the same holds for any scheme smooth over S .
(2) If A is a local noetherian ring, then it is a G-ring if and only if a strict henselization Ash is a G-ring.

Recall that a noetherian ring A is a G-ring if the morphism Spec(A∧
p ) → Spec(Ap) is regular; that is,

(it is flat and) its fiber over any x ∈ Spec(Ap) is regular and remains so under arbitrary finite extension
on the residue field at x. It suffices to work with maximal p in this definition; see [CRT, §32] for more
details. Theorem 2.2.8 is also true for the property of being universally Japanese (in the sense of [EGA,
IV2, 7.6-7.7]), as is easily proved by direct limit arguments.

Proof. By [EGA, IV2, 7.4.4] (or [CA, Thm. 77]), if all local rings on X are G-rings then the same holds for
the local rings on any scheme locally of finite type over X. Conversely, since smooth morphisms are regular,
by [CRT, 32.1] it follows that if X admits a smooth covering whose local rings are G-rings then the same
holds for X. This settles (1).

Now consider (2). If Ash is a G-ring, then since the map A → Ash is regular it follows (again using [CRT,
32.1]) that the composite

A → Â → (Ash)∧

is regular, and consequently A → Â is regular. Thus, A is a G-ring. Conversely, by [Gre, Thm. 5.3(i)], if A
is a G-ring then Ash is a G-ring. �

2.3. Drinfeld structures on generalized elliptic curves. In [KM, Ch. 1–6], the theory of Drinfeld struc-
tures on smooth commutative curve groups is developed. Although results in [KM, Ch. 1] are applicable to
generalized elliptic curves, many proofs in [KM, Ch. 2–6] only work for elliptic curves because the arguments
use p-divisible groups, finiteness of torsion, and quotients by possibly non-étale finite locally free subgroups.
Due to our intended applications, we shall now extend some of these results to generalized elliptic curves.
We refer the reader to [KM, §1.5, §1.9–1.10] for the intrinsic and extrinsic notions of A-generator of a finite
locally free commutative group scheme G → S, with A a finite abelian group; this is a group homomorphism
φ : A → G(S) satisfying certain properties, and for A = Z/NZ the N -torsion section φ(1) ∈ G(S) is called a
Z/NZ-structure on G. The following lemma of Katz and Mazur concerning A-generators is extremely useful
for our purposes:
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Lemma 2.3.1. Let S be a scheme, and let 0 → H → G → E → 0 be a short exact sequence of finite, locally
free, commutative S-group schemes with constant rank. Assume that E is étale. Let A be a finite abelian
group, let K be a subgroup of A, and consider a commutative diagram of groups

(2.3.1) 0 // K

φK

��

// A

φ

��

// A/K //

φA/K

��

0

0 // H(S) // G(S) // E(S)

Assume that the map A → E(s) has kernel K for all geometric points s of S. The map φ is an A-generator
of G if and only if

• K has order equal to that of H,
• E has order equal to that of A/K,
• φK is a K-generator of H, φA/K is an A/K-generator of E.

Proof. This is [KM, 1.11.2]. (We can drop the connectedness assumption on S in this reference because we
assume the group schemes have constant rank.) �

Theorem 2.3.2. Let E → S be a generalized elliptic curve.
(1) If P is a Z/NZ-structure on Esm then (N/d)P is a Z/dZ-structure on Esm for any d|N .
(2) If {P,Q} is a Drinfeld Z/NZ-basis of Esm[N ] then P is a Z/NZ-structure on Esm and the ordered

pair {(N/d)P, (N/d)Q} is a Drinfeld Z/dZ-basis of Esm[d] for any d|N .

Proof. By [KM, 1.3.7], for any S-finite relative effective Cartier divisor D in a smooth and commutative
curve group H/S , there is a finitely presented closed subscheme of S that is universal for the base change of
D to be a subgroup scheme of H. The theorem claims that for certain D this closed subscheme coincides
with S. Thus, for the proof of the theorem we may (without loss of generality) assume that the base S is
artin local with algebraically closed residue field. The smooth case is an immediate consequence of [KM,
5.5.2, 5.5.7], so we shall consider the non-smooth case.

For any finite abelian group A, by [KM, 1.7.3] the scheme of A-structures on a finite locally free com-
mutative group scheme G naturally decomposes into a product in a manner that is compatible with the
primary decompositions of A and G. Thus, since the hypothesis in (2) forces Esm[N ] to have p-primary part
Esm[pordp(N)] for all primes p, we may assume that N is a prime power. The case when N is not divisible
by the residue characteristic is an immediate consequence of [KM, 1.4.4]. Hence, we can assume that the
residue characteristic p is positive and that N = pr with r ≥ 1.

Consider the first part of the theorem. By descending induction on r, we may assume d = pr−1. Let
G =

∑
i∈Z/prZ[iP ] denote the order-pr subgroup scheme “generated” by P . The classification of degenerate

generalized elliptic curves over the algebraically closed residue field implies that G is an extension of a cyclic
constant group by a connected multiplicative group over the artin local base.

If G is not connected, then from the connected-étale sequence one sees that there is a unique short exact
sequence

0 → K → G → Z/pZ → 0
sending P to 1. We may use Lemma 2.3.1 to conclude that pP is a Z/pr−1Z-generator of K, settling (1) in
this case. If G is connected then G ' µpr and the scheme of Z/prZ-generators of G is the scheme of zeros of
the prth cyclotomic polynomial Φpr [KM, 1.12.9]. Thus, to settle (1) in this case we just have to note that
if B is a ring and r ≥ 1 then any b ∈ B satisfying Φpr (b) = 0 also satisfies Φpr−1(bp) = 0.

Now consider a Z/prZ × Z/prZ-structure {P,Q} that is a Drinfeld basis for Esm[pr]. In particular,
Esm[pr] has order p2r. Since the base is artin local with algebraically closed residue field of characteristic p,
the connected-étale sequence of Esm[pr] must have the form

(2.3.2) 0 → µpr → Esm[pr] → Z/prZ → 0.

We want to prove that if {P,Q} is a Z/prZ × Z/prZ-generator of G
def= Esm[pr] then the Cartier divisors∑

j∈Z/prZ[jP ] and
∑

i,j∈Z/pr−1Z[ipP +jpQ] with support in G are subgroup schemes of G, with the second of
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these two subgroups equal to Esm[pr−1] = G[pr−1]. By [KM, 1.9–1.10], for a finite locally free commutative
group scheme H there are equivalent intrinsic and extrinsic notions of “A-structure” on H, with the extrinsic
notion depending on an arbitrary choice of isomorphism of H onto a closed subgroup in a smooth commutative
curve group (e.g., G ↪→ Esm). Thus, our problem for G ↪→ Esm is equivalent to the same problem posed in
terms of a closed immersion of G into any other smooth commutative curve group.

By [KM, 8.10.7(2)], the extension structure (2.3.2) on the pr-torsion group G = Esm[pr] ensures that after
some faithfully flat base change we can identify G with the pr-torsion on an elliptic curve. Since we are
trying to prove that certain finite locally free closed subschemes in G are subgroup schemes (and that one
of these is equal to G[pr−1]), it is harmless to apply a faithfully flat base change. Hence, we reduce to the
settled case of elliptic curves. �

Corollary 2.3.3. Let G ↪→ Esm be a finite locally free subgroup scheme in a generalized elliptic curve E

over a scheme S. Let 0 → µN → G
v→ Z/dZ → 0 be a short exact sequence of group schemes such that d|N

and G is killed by N . A point P ∈ G(S) that lies in v−1(1) defines a Z/NZ-structure on Esm if and only if
the point dP ∈ µN/d(S) is a Z/(N/d)Z-generator of µN/d.

Proof. The “only if” direction follows from Theorem 2.3.2, since µN/d ↪→ µN is the unique order-N/d finite
locally free subgroup scheme. Conversely, suppose dP is a Z/(N/d)Z-generator of µN/d. This makes P
define a d-torsion section of G/µN/d, and hence P splits the epimorphism G/µN/d � Z/dZ. Let H ↪→ G
be the preimage of the split subgroup scheme Z/dZ ↪→ G/µN/d, so P ∈ H(S) and there is a short exact
sequence 0 → µN/d → H → Z/dZ → 0. By Lemma 2.3.1, P is a Z/NZ-generator of H. �

Definition 2.3.4. Let E be a generalized elliptic curve over a scheme S. A finite locally free closed subgroup
scheme G ⊆ Esm with constant order N is cyclic if it admits a Z/NZ-generator fppf-locally on S.

In the case of elliptic curves, this definition coincides with the notion of cyclicity in [KM].

Theorem 2.3.5. Let G be a cyclic subgroup of order N in the smooth locus of a generalized elliptic curve
E over a scheme S. For any d|N , if two points P and P ′ in G(S) are each Z/NZ-generators of G then
(N/d)P and (N/d)P ′ are each Z/dZ-generators of a common subgroup of G.

Proof. The case of elliptic curves is [KM, 6.7.2]. As usual, in the remaining non-smooth case we may reduce
to the case when the base is artin local with algebraically closed residue field, and we can use primary
decomposition to reduce to the case when N = pr with r > 0 and p equal to the residue characteristic. By
contraction away from G we may assume that G is ample. Let ps be the number of sides of the closed-fiber
polygon (with 0 ≤ s ≤ r), and for 0 ≤ e ≤ r define the cyclic subgroups Gr−e = 〈peP 〉 and G′

r−e = 〈peP ′〉
with order pr−e; Theorem 2.3.2 applied to the connected-étale sequence of G ensures that Gr−e and G′

r−e

are subgroups of G.
By Corollary 2.3.3, both psP and psP ′ are Z/pr−sZ-generators of the same subgroup µpr−s that is the

pr−s-torsion on the identity component of Esm. Thus, for 0 ≤ e ≤ s the subgroups Gr−e, G
′
r−e ⊆ G contain

the same subgroup µpr−s and have quotients in G/µpr−s ' Z/psZ with the same order, so these quotients
agree. Hence, Gr−e = G′

r−e for 0 ≤ e ≤ s. We may therefore replace P , P ′, and G with psP , psP ′, and
µpr−s respectively, thereby reducing to the case G = µpr−s . If r = s then there is nothing to be done, and
otherwise we invoke the trivial fact (already used in the proof of Theorem 2.3.2) that the pth-power map
carries µ×pn into µ×pn−1 for n ≥ 1. �

Theorem 2.3.5 permits us to make the following definition:

Definition 2.3.6. Let G be a cyclic subgroup of order N in the smooth locus of a generalized elliptic curve
E over a scheme S. For any d|N , the standard cyclic subgroup Gd ⊆ G with order d is fppf-locally generated
by (N/d)P where P is an fppf-local Z/NZ-generator of G.

For later purposes, we need to check that a cyclicity criterion in [KM] for finite locally free subgroups of
elliptic curves carries over to finite locally free subgroups in the smooth locus in a generalized elliptic curve.
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Theorem 2.3.7. Let E be a generalized elliptic curve over a scheme S, and let G ⊆ Esm be a closed S-
subgroup that is finite locally free over S with constant rank N . The subgroup G is cyclic if and only if its
scheme G× of Z/NZ-generators is finite locally free over S with rank φ(N).

Proof. If G× → S is a finite locally free covering then G is cyclic because it acquires a Z/NZ-generator after
the fppf base change G× → S. For the converse, recall that G× is a priori finite and finitely presented over
the base [KM, 1.6.5]. We therefore must prove that it is flat and has the expected rank.

Let us first check that on geometric fibers the rank of G× is φ(N). To this end, we may suppose S = Spec k
for an algebraically closed field k. The rank of G× in the case of elliptic curves is φ(N), by [KM, 6.1.1(1)].
Thus, we may suppose that E is non-smooth. If E has d irreducible components then for any multiple d′ of
d we may embed the k-group Esm into the smooth locus of a standard d′-gon. In this way we can reduce
to the case when Esm[N ] is an extension of Z/NZ by µN . We are over an algebraically closed field k, so
Esm[N ] = Z/NZ× µN . Hence, there obviously exists an elliptic curve over k with Esm[N ] as its N -torsion
subgroup. This identifies G with a cyclic subgroup in an elliptic curve, so the rank of G× over Spec k is
φ(N).

The fibral rank of the finite and finitely presented S-scheme G× has been proved to be φ(N) for arbitrary
S, and we need to prove flatness. In the special case when the base is Spec R for a discrete valuation ring
R, the R-scheme G× is finite with generic and closed fibers having equal rank. Thus, G× is flat in this
special case. It follows from the valuative criterion for flatness [EGA, IV3, 11.8.1] that G× is flat whenever
the base is reduced and locally noetherian. In the general case we may assume that the base is artin local
with an algebraically closed residue field, and it suffices to prove that such cases may be realized as a base
change from a situation over a reduced noetherian base (which we shall achieve by means of deformation
theory). We may also make a preliminary finite flat local base change. Thus, we may assume that G admits
a Z/NZ-generator P over the artin local base.

Let G =
∏

Gi be the primary decomposition of G. By [KM, 1.7.3] and Lemma 2.3.1, each Gi is cyclic
(generated by a suitable multiple of P ) and G× =

∏
G×

i , so we may assume that G has order pr for some
prime p and some r ≥ 1. Let k be the residue field. The case char(k) 6= p is trivial, so we can assume
char(k) = p. We may replace E with its contraction away from G, so we can assume that G is ample. Hence,
the closed fiber is a standard ps-gon with 0 ≤ s ≤ r, and P maps to a generator of the fibral component
group.

Since the base is local artinian, we have a short exact sequence of finite flat group schemes

0 → µpr → Esm[pr] v→ Z/psZ → 0

for some 0 ≤ s ≤ r. By replacing P with a (Z/prZ)×-multiple we can suppose that P maps to 1 in the
étale quotient. By Corollary 2.3.3, an arbitrary point P̃ ∈ (v−1(1))(S) is a Z/prZ-structure on Esm if and
only if the point psP̃ ∈ µpr−s(S) is a point of µ×pr−s . This characterization of when a point in v−1(1) is a
Z/prZ-structure will now be used to lift our situation to the case of a reduced noetherian base.

By making a finite flat local base change we may assume that the connected-étale sequence of Esm[ps] is
split; let Q ∈ Esm[ps](S) be a Z/psZ-structure “generating” a finite étale subgroup

H =
∑

i∈Z/psZ

[iQ] ⊆ Esm

of order ps that gives such a splitting. The quotient E0 = E/H makes sense as a generalized elliptic curve
(see Example 2.1.6), and E0 has 1-gon closed fiber. By [DR, II, 1.17], the infinitesimal deformation theory of
the closed fiber of (E,Q) coincides with the infinitesimal deformation theory of the 1-gon E0 as a generalized
elliptic curve. The corresponding universal deformation ring A is therefore formally smooth on one parameter
[DR, III, 1.2(iii)]; that is, A ' W [[t]] with W = W (k) denoting the ring of Witt vectors for k.

We conclude that the closed fiber (E0;P0, Q0) of our initial structure (E;P,Q) has a universal formal
deformation ring whose ordinary spectrum is identified with an fppf µps -torsor T over the scheme µ×pr−s living
on Spec A. The universal formal deformation over Spf A uniquely algebraizes over Spec A, by Corollary 2.2.4,
so the universal case deforming (E0;P0, C0) has T as its base. The triple (E;P,Q) over the artin local base
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S arises via base change on the universal algebraized triple over T . It therefore suffices to prove that the
fppf µps -torsor T over µ×pr−s/A is reduced, but such reducedness is obvious because A = W [[t]] is a regular
local ring with generic characteristic 0. �

The same method of proof shows that if G ⊆ Esm is cyclic of order N with Z/NZ-generator P then
G× =

∑
j∈(Z/NZ)× [jP ] as closed subschemes of G; see [KM, 6.1.1(2)] for the smooth case.

Corollary 2.3.8. Let E be a generalized elliptic curve over S and let G be a finite locally free subgroup of
Esm. If the order of G is squarefree then G is cyclic.

Proof. By Theorem 2.3.7, it is necessary and sufficient to prove that the finite and finitely presented S-scheme
G× is locally free with the “correct” rank. We can assume that the base is artin local with algebraically
closed residue field. We may use the primary decomposition of G and the associated decomposition of G×

to reduce to the case when G has prime-power order, and hence prime order. The étale case is trivial, so
we may assume that the residue characteristic p is positive and that G is non-étale with order p. If G is
multiplicative then G ' µp, so G× ' µ×p is flat with rank deg Φp = φ(p) by inspection. If G is a deformation
of αp then E is smooth, so cyclicity is a special case of [KM, 6.8.7]. �

2.4. The moduli problems. Fix N ≥ 1 and a generalized elliptic curve E → S.

Definition 2.4.1. A Γ1(N)-structure on E/S is an ample Drinfeld Z/NZ-structure on the smooth separated
group scheme Esm; that is, it is a section P ∈ Esm(S) such that

• NP = 0,
• the relative effective Cartier divisor

(2.4.1) D =
∑

j∈Z/NZ

[jP ]

in Esm is a subgroup scheme,
• D meets all irreducible components of all geometric fibers Es.

The final condition in Definition 2.4.1 says that the inverse ideal sheaf O(D) is S-ample on E. Note that
this forces all singular geometric fibers to be d-gons for various d|N . We often write 〈P 〉 for (2.4.1), and call
it the subgroup scheme generated by P .

Definition 2.4.2. A Γ(N)-structure on E/S is an ample Drinfeld Z/NZ×Z/NZ-structure on an N -torsion
subgroup in the smooth separated group scheme Esm; that is, it is an ordered pair (P,Q) with P,Q ∈
Esm[N ](S) such that

• the rank-N2 Cartier divisor

(2.4.2) D =
∑

i,j∈Z/NZ

[iP + jQ]

is a subgroup scheme killed by N (so it coincides with Esm[N ]),
• D meets all irreducible components of all geometric fibers Es.

This definition forces all singular geometric fibers to be N -gons. The order-N2 group scheme D arising
in (2.4.2) is denoted 〈P,Q〉.

Definition 2.4.3. Let N and n be positive integers. For all primes p|gcd(N,n), assume that ordp(n) ≤
ordp(N). A Γ1(N ;n)-structure on E/S is a pair (P,C) where

• P is a Drinfeld Z/NZ-structure on Esm,
• C is a finite locally free S-subgroup scheme in Esm that is cyclic with order n,
• the degree-Nn relative effective Cartier divisor

(2.4.3)
∑

j∈Z/NZ

(jP + C)

meets all irreducible components of all geometric fibers,
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• for all p| gcd(N,n), with ep = ordp(n), there is an equality of closed subschemes

(2.4.4)
∑

j∈Z/peZ

(j(N/pep)P + C[pep ]) = Esm[pep ]

in E (in particular, Esm[pep ] is a degree-p2ep relative effective Cartier divisor in E).

Note that C[pep ] in (2.4.4) is the p-primary part of C, so it is finite locally free and cyclic. For N = 1,
Γ1(1;n)-structures are called Γ0(n)-structures; these are cyclic subgroups of order n in Esm that are S-ample
in E. For n = 1, Γ1(N ; 1)-structures are Γ1(N)-structures by another name.

Lemma 2.4.4. Let (E;P,C) over a scheme S satisfy the first three conditions in Definition 2.4.3, and let
d = gcd(N,n). For m|n, let Cm ⊆ C be the standard cyclic subgroup of order m. The equality (2.4.4) holds
for all p| gcd(N,n) if and only if

(2.4.5)
∑

j∈Z/dZ

(j(N/d)P + Cd) = Esm[d]

as closed subschemes of E. When this holds, then for every d′|d, we have∑
j∈Z/d′Z

(j(N/d′)P + Cd′) = Esm[d′].

Regardless of whether or not (2.4.5) holds, there exists a finite locally free morphism S′ → S of rank φ(n)
over which C universally acquires a Z/nZ-generator Q. If such a Q exists over the given base and (E;P,C)
is a Γ1(N ;n)-structure then {(N/d′)P, (n/d′)Q} is a Z/d′Z× Z/d′Z-generator of Esm[d′] for all d′|d.

Proof. The existence of the covering S′ → S is immediate from Theorem 2.3.7: take S′ to be the scheme
C× of Z/nZ-generators of C.

To relate the conditions (2.4.4) and (2.4.5) we may work fppf-locally on S, so we can assume that a Z/nZ-
generator Q exists for the cyclic subgroup C. In this case, for p|d we have (with e = ordp(n)) that (N/pe)Q
is a Z/peZ-structure on the p-primary part C[pe] = Cpe by [KM, 1.10.14], so the equivalence of (2.4.4) and
(2.4.5) comes down to the statement that a homomorphism A → Esm(S) from a finite commutative group
A is an A-generator of some finite locally free subgroup G ↪→ Esm if and only if each `-primary part A`

of A has such a property relative to some finite locally free subgroup G` ↪→ Esm, in which case G` is the
`-primary part of G. This assertion on primary decomposition of generators follows from [KM, 1.7.3].

Now we assume that (2.4.5) holds, so upon choosing Q (when it exists over the given base) we see that
(2.4.5) is the statement that the pair {(N/d′)P, (n/d′)Q} is a Z/d′Z × Z/d′Z-generator of Esm[d′] for all
d′|d. Thus, renaming d as N and the sections (N/d)P and (N/d)Q as P ′ and Q′, it remains to show
that if E is a generalized elliptic curve such that Esm[N ] is finite locally free over S and a pair of points
P ′, Q′ ∈ Esm[N ](S) forms a Drinfeld Z/NZ-basis, then for every d|N the points (N/d)P ′ and (N/d)Q′ form
a Drinfeld Z/dZ-basis of Esm[d]. This is Theorem 2.3.2(2). �

Let (E;P,C) be a Γ1(N ;n)-structure, and let Cd denote the standard cyclic subgroup in C of order d for
each d|n. By Lemma 2.4.4, if m|n then (E;P,Cn/m) is a Γ1(N ;m)-structure provided that∑

j∈Z/nZ

(jP + Cn/m)

is relatively ample.
An important consequence of the definition of Γ1(N ;n)-structures is:

Theorem 2.4.5. If (E;P,C) is a Γ1(N ;n)-structure over a scheme S, then the relative effective Cartier
divisor D =

∑
j∈Z/NZ(jP + C) is a subgroup scheme in Esm.

Proof. As usual, we may assume that S is artin local with algebraically closed residue field. Making a finite
flat base change as in Lemma 2.4.4, we may choose a Z/nZ-generator Q of C. The assertion to be shown is
equivalent to the claim that {P,Q} is a Z/NZ× Z/nZ-structure on Esm.
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The ampleness condition in the definition of Γ1(N ;n)-structures will not be used (or we may apply
auxiliary contractions), so we may decompose our problem into primary pieces. More precisely, by [KM,
1.7.3] the case gcd(N,n) = 1 is trivial and we reduce to the case where N,n > 1 are powers of the same
prime p. Thus, N = pr and n = pe with r ≥ e ≥ 1. In particular, in the non-smooth case the number
of irreducible components is divisible by p. When Esm[p] has a non-trivial étale quotient and the standard
order-p subgroup Cp is non-étale, then P is trivially an “étale point of order pr” and everything is clear.
Thus, we may assume that Cp is étale when the closed fiber of E is not a supersingular elliptic curve. We
treat separately the cases when the closed fiber is an elliptic curve and when it is not.

Suppose that E is an elliptic curve. The case of residue characteristic distinct from p is trivial, so suppose
the artin local base has residue characteristic p. The data we are given consist of a Z/prZ-structure P on
E and a Z/peZ-structure Q on E such that {pr−eP,Q} is a Drinfeld Z/peZ-basis of E[pe]. We must prove
that {P,Q} is a Z/prZ× Z/peZ-structure on E.

After a finite flat surjective base change we can find Q′ ∈ E(S) with pr−eQ′ = Q. By [KM, 5.5.7(4)], Q
is a Z/prZ-structure on E. Since {pr−eP, pr−eQ′} is a Z/peZ×Z/peZ-structure on E, it follows from [KM,
5.5.7(3)] that {P,Q′} is a Drinfeld Z/prZ-basis of E[pr]. Thus, by [KM, 5.5.2], Q′ defines a Z/prZ-structure
on the elliptic curve E/〈P 〉 and hence by [KM, 5.5.7(2)] the point Q = pr−eQ′ defines a Z/peZ-structure
on E/〈P 〉. Let G ↪→ E/〈P 〉 be the order-pe group scheme generated by Q, and consider the preimage G of
G in E, so G has order pr+e. We claim that (P,Q) : Z/prZ × Z/peZ → G is a Z/prZ × Z/peZ-generator.
Since P is a Z/prZ-generator of 〈P 〉 ↪→ G and Q induces a Z/peZ-generator of the cokernel G, we can use
the generalization [KM, 1.11.3] of the “if” direction of Lemma 2.3.1 (dropping the étale condition on E and
the hypothesis on the kernel of A → E(s)).

We now suppose that the closed fiber of E is not smooth, so in particular (by the above reductions) we
may also suppose that the standard subgroup Cp of order p is étale. Working on the geometric closed fiber,
we may infer that C is étale. In particular, the finite étale group scheme C of order pe has trivial intersection
with the identity component of E since this identity component is a torus (as the base is artin local) and
the residue characteristic is p. It follows that C gives a splitting of the connected-étale sequence of Esm[pe].
We may therefore use the universal deformation technique (as in the proof of Theorem 2.3.7) to get to the
case when the base is a reduced noetherian ring A with generic characteristics equal to 0. By flatness and
separatedness over the base, a relative effective Cartier divisor in Esm is an A-subgroup if it pulls back to
a subgroup on the generic fibers over the reduced base Spec A. This brings us to the trivial case when the
base is a field of characteristic 0. �

Definition 2.4.6. For Γ ∈ {Γ(N),Γ1(N ;n)}, the moduli stack of Γ-structures on generalized elliptic curves
is denoted M Γ. If Γ = Γ(1) then M 1 denotes M Γ.

The closed substack M∞
Γ ↪→ M Γ is the locus of non-smoothness for the universal generalized elliptic

curve with Γ-structure. The open substack M Γ−M∞
Γ is denoted M 0

Γ.

The usefulness of M∞
Γ as a closed substack rests on Theorem 2.1.12. Each M Γ is an fpqc stack in

groupoids over SpecZ because the Γ-structure provides an ample line bundle. For later purposes we require
the following basic lemma whose proof goes as in the higher-genus case in [DM, 1.2].

Lemma 2.4.7. Let f : C → S be a DR semistable genus-1 curve, and let D be a relative effective Cartier
divisor in C with degree d ≥ 1. Assume that D is supported in Csm, and that D meets all irreducible
components of all geometric fibers of C over S.

For all r ≥ 1, O(rD) is S-ample and R1f∗(O(rD)) = 0. Moreover, f∗O(rD) is locally free of rank rd
and its formation is compatible with base change. If r ≥ 3 then the natural map f∗f∗O(rD) → O(rD) is
surjective, so for such r there is a natural map

C ' Proj(⊕n≥0f∗O(nD)) → P(f∗O(rD))

and it is a closed immersion.

2.5. Formal and algebraic Tate curves. We now review Raynaud’s construction of Tate curves via formal
schemes and algebraization (cf. [DR, VII]), and we prove a uniqueness theorem for these curves.
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Let us first recall some standard notation from the theory of formal schemes. Let R be a noetherian ring
that is separated and complete for the topology defined by an ideal J . The ring R{{T1, . . . , Tn}} of restricted
powers series over the topological ring R is the J-adic completion of R[T1, . . . , Tn], and it is the topological
ring of formal power series

∑
aIT

I over R such that aI → 0 in R as the total degree ||I|| = i1 + · · ·+ in of the
multi-index I = (i1, . . . , in) tends to infinity (this ring is given the J-adic topology). If r ∈ R is an element
then R{{1/r}} denotes the quotient R{{T}}/(1− rT ) that is the J-adic completion of R[T ]/(1− rT ) = Rr,
and if X denotes the formal spectrum Spf(R) then we also write X{1/r} to denote Spf(R{{1/r}}).

Choose an integer n > 1. For i ∈ Z/nZ, define the formal annulus ∆i to be Spf Z[[q1/n]]{{Xi, Yi}}/(XiYi−
q1/n) over Spf(Z[[q1/n]]). For each such i, we define the open formal subschemes ∆+

i = ∆i{1/Xi} and
∆−

i = ∆i{1/Yi} in ∆i, and we identify ∆−
i with ∆+

i+1 via Yi = Xi+1, Xi = Yi+1. The resulting glued formal
scheme is called the formal n-gon Tate curve T̂aten over Spf(Z[[q1/n]]). Its reduction modulo q1/n = 0 is
the standard n-gon over Z, so it is proper. By construction it is flat over Spf(Z[[q1/n]]). A closed immersion
Z/nZ ↪→ T̂aten is defined by i 7→ (1, q1/n) ∈ ∆i(Z[[q1/n]]), and this lifts the standard copy of Z/nZ in the
standard n-gon over SpecZ. There is an evident “formal rotation” action

(2.5.1) Z/nZ× T̂aten → T̂aten

by the formal finite constant group Z/nZ over Spf(Z[[q1/n]]). This extends the formal group law on the
constant group Z/nZ and lifts the standard rotation action given by the generalized elliptic curve structure
on the standard n-gon over SpecZ. We let T̂ate

sm

n denote the open formally smooth locus in T̂aten over
Spf(Z[[q1/n]]).

For any adic noetherian ring R and topologically nilpotent element r ∈ R, T̂aten,R(r) denotes the formal
scheme over Spf R obtained via base change of T̂aten by the map Z[[q1/n]] → R carrying q1/n to r (in other
words, we carry out the gluing of formal annuli over Spf R, using r in the role of q1/n). If R is understood
from context, we write T̂aten(r); in particular, T̂aten(q1/m) arises from the isomorphism Z[[q1/n]] ' Z[[q1/m]]
carrying q1/n to q1/m.

For m|n with m > 1, there is an evident finite étale Spf(Z[[q1/m]])-map T̂aten(q1/m) → T̂atem that is the
quotient by the formally free action of mZ/nZ. In this way, the quotient of T̂aten(q) by the action of Z/nZ
is a proper flat formal curve T̂ate1,n over Spf(Z[[q]]) with standard 1-gon reduction modulo q = 0 such that
for all n > 1 the T̂ate1,n’s are canonically identified with each other; we write T̂ate1 to denote this proper flat
formal curve (with a canonical section in its formally smooth locus). The formal curve T̂ate1 over Spf(Z[[q]])
is called the formal 1-gon Tate curve. We let T̂ate

sm

1 denote the open formally smooth locus in T̂ate1 over
Spf(Z[[q]]).

By Corollary 2.2.3, the action (2.5.1) ensures that for any n ≥ 1 every infinitesimal neighborhood of the
reduction modulo q1/n admits a unique structure of generalized elliptic curve compatible with the action
of the ample divisor Z/nZ. By Corollary 2.2.4, T̂aten uniquely algebraizes to a generalized elliptic curve
Taten → Spec(Z[[q1/n]]). A formal Fitting-ideal calculation on the ∆i’s shows that its locus of non-smoothness
is the zero-scheme of (q1/n), so Taten is smooth away from q1/n = 0. There is a unique isomorphism of
Z[[q1/n]]-groups

(2.5.2) Tatesm
n [n] ' µn × Z/nZ

lifting the canonical isomorphism on the standard n-gon fiber over q1/n = 0.
There is a unique isomorphism of formal SpecZ[[q1/n]]-groups

(2.5.3) (Taten)∧0 ' Ĝm

lifting the canonical isomorphism module q1/n, where (Taten)∧0 denotes the formal completion of Taten

along the identity section. Indeed, for existence we identify (Taten)∧0 with the formal completion of the
Spf(Z[[q1/n]])-group T̂ate

sm

n along its identity section and we note that T̂ate
sm

n contains an open subgroup
given by the formal annulus ∆+

0 {1/X0} = Spf(Z[[q1/n]]{{X0, 1/X0}}) whose completion along X0 = 1 is
Ĝm. The uniqueness of (2.5.3) is due to the fact that the identity automorphism of Ĝm over a noetherian
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ring R has no non-trivial infinitesimal deformations when all maximal ideals of R have positive residue
characteristic.

Example 2.5.1. For any m,n ≥ 1 there is a unique degree-m finite flat map of pointed formal curves
πm : T̂aten(t) → T̂aten(tm) over Spf(Z[[t]]) such that πm induces the mth-power map on the formal groups
Ĝm along the origin, and π−1

m (1) = µm. Explicitly, on the formal annuli ∆i whose gluing defines T̂aten(t)
(after perhaps passing to a quotient when n = 1), the map πm is induced by Xi 7→ Xm

i and Yi 7→ Y m
i . Thus,

the algebraization of πm over SpecZ[[t]] has restriction over t 6= 0 that is an m-isogeny of elliptic curves and
it has kernel equal to restriction over t 6= 0 of the unique subgroup µm lifting the m-torsion subgroup µm in
the identity component of the standard n-gon modulo t.

We conclude this discussion with a uniqueness characterization for Taten. This will be essential in our
study of descent data on the formal completions along cusps over Z.

Theorem 2.5.2. For all n ≥ 1, Taten → Spec(Z[[q1/n]]) is (up to unique isomorphism) the unique generalized
elliptic curve restricting to Tate1 ⊗Z[[q]] Z((q1/n)) over SpecZ((q1/n)) and having n-gon geometric fibers over
q1/n = 0. This isomorphism over Z((q1/n)) is uniquely characterized by the property that it respects the
identifications of (Taten)∧0 and (Tate1)

∧
0 with Ĝm over SpecZ((q1/n)) and SpecZ((q)) respectively.

Proof. Since Taten has n-gon geometric fibers over the zero-locus of q1/n, by Corollary 3.2.5 (whose proof
does not depend on anything in §2.5) it follows that Taten is uniquely determined by its restriction over
q1/n 6= 0. This restriction must be an elliptic curve, as the locus of non-smoothness for Taten is q1/n = 0,
so we have to uniquely identify this restriction with Tate1(q)/Z((q1/n)) as a marked curve such that the
identification respects the calculation of formal groups at the origin as Ĝm via (2.5.3). The uniqueness
of such an identification follows from flatness considerations. The existence of such an identification is a
special case of [DR, VII, 1.14]. The more precise claim is that the contraction of Taten away from its fibral
identity components is naturally isomorphic to Tate1(q)/Z[[q1/n]] (respecting the identification of Ĝm with
formal groups at the origin), and by formal GAGA and the compatibility of contraction with base change
it suffices to prove the same assertion modulo (q1/n)m compatibly with change in an arbitrary m ≥ 1. This
final assertion is physically obvious for compatibly contracting Tatekn(q1/n) to Tatek(q) modulo (q1/n)m for
a fixed k > 1 and varying m ≥ 1, and so passing to quotients by the free actions of kZ/knZ and Z/kZ gives
the desired isomorphism. (The compatibility with (2.5.3) may be checked modulo q1/n, since all maximal
ideals of Z have positive residue characteristic.) �

3. Global structure of the moduli stacks

3.1. Artin and Deligne–Mumford properties. Choose Γ ∈ {Γ(N),Γ1(N ;n)}.

Lemma 3.1.1. The stack M Γ has diagonal that is representable by quasi-finite, separated, and finitely
presented maps of schemes. In particular, M Γ is quasi-separated over SpecZ.

The condition that an isomorphism of generalized elliptic curves carries one Γ-structure into another is
represented by a finitely presented closed subscheme of the base [KM, 1.3.5]. Hence, to prove Lemma 3.1.1
we may ignore level structures and prove a stronger result:

Theorem 3.1.2. Let f : E → S and f ′ : E′ → S be generalized elliptic curves. The functor Isom(E,E′)
classifying isomorphisms of generalized elliptic curves over S-schemes is represented by a quasi-finite and
separated S-scheme of finite presentation. In particular, it is quasi-affine over S.

Proof. This is essentially proved in [DR, III, 2.5], but since the surrounding discussion there imposes the
condition that the number of irreducible components of non-smooth geometric fibers is not divisible by the
residue characteristic, let us explain how the proof adapts to the general case.

The restriction of Isom(E,E′) over the open subset S − (S∞,f ∪ S∞,f ′) is an Isom-functor for elliptic
curves, and these are representable and finite (by the theory of Hilbert schemes and the valuative criterion
for properness). Hence, it suffices to work near S∞,f and S∞,f ′ . By symmetry, we work near S∞,f and so
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(Lemma 2.1.10) we can assume that all non-smooth geometric fibers of E are n-gons for some n ≥ 1. Since
quasi-finite and separated maps are quasi-affine, by Zariski’s Main Theorem, effectivity for fpqc descent for
quasi-affine schemes allows us to work fpqc-locally. Thus, we may suppose that Esm[n] is a split extension
of Z/nZ by µn. Let H be the subgroup arising from Z/nZ via the splitting.

Any isomorphism from E to E′ (after a base change) carries the subgroup H over to a finite locally free
subgroup H ′ ⊆ E′sm that is étale over the base and relatively ample in E′. Since E′ is S-proper and E′sm[n]
is quasi-finite, separated, and finitely presented over the base, the functor that classifies such subgroups H ′

is represented by a finitely presented and separated S-scheme S′ that is quasi-finite over the base (quasi-
finiteness is due to the étale condition on H ′). Let H̃ ′ ⊆ E′sm[n]S′ denote the universal object over S′.
We may identify the functor Isom(E,E′) on S-schemes with the Isom-functor I ′ on S′-schemes classifying
isomorphisms carrying H to H̃ ′. The étale quotients E/H and E′

S′/H̃ ′ are naturally generalized elliptic
curves with geometrically irreducible fibers, so the proof of [DR, III, 2.5] shows that I ′ is represented by a
separated and finitely presented S′-scheme. Quasi-finiteness of the representing object is obvious. �

Corollary 3.1.3. Let f : E → S be a generalized elliptic curve with n-gon geometric fibers and assume that
S = S∞,f . Let Cn → S be the standard n-gon as a generalized elliptic curve. The map I = Isom(E,Cn) → S
is a finite locally free covering of rank 2n, étale if n ∈ Gm(S), and there is a canonical isomorphism
E/I ' Cn/I as generalized elliptic curves over I.

In particular, if E → S has 1-gon geometric fibers and S = S∞,f then E becomes canonically isomorphic
to the standard 1-gon over a degree-2 finite étale covering.

Proof. By Lemma 2.1.10, fppf-locally on S we have an isomorphism between I and the Aut-scheme of Cn,
and this Aut-scheme is given by Example 2.1.5. �

Theorem 3.1.4. The stack M Γ is an Artin stack of finite type over SpecZ.

In view of Lemma 3.1.1, it suffices to construct a Γ-structure over a Z-scheme SΓ of finite type such that
the morphism SΓ → M Γ is smooth and surjective. To carry out such a construction, we use the technique
of universally embedded families.

Fix an integer d ≥ 1 and consider 4-tuples (f,D, ι, ρ) where
• f : C → S is a DR semistable genus-1 curve,
• D is a degree-d relative effective Cartier divisor in C that is supported in Csm and is ample over S,
• ι : f∗O(3D) ' O⊕3d

S is an isomorphism (note that f∗O(3D) is a priori locally free of rank 3d, and
by Lemma 2.4.7 its formation is compatible with base change on S),

• ρ : D×C → C is an S-morphism that restricts to a commutative group scheme structure on D and
is an action of D on C.

We will be interested in cases when C admits a generalized elliptic curve structure compatible with ρ and
when D admits a Γ-structure for suitable Γ. We first need to establish:

Lemma 3.1.5. Fix d ≥ 1. There exists a universal 4-tuple (f,D, ι, ρ) as above, over a base scheme that is
quasi-projective over Z.

Proof. Let f : C → S be a proper flat map of finite presentation and let L be an invertible sheaf on C. By
Lemma 2.1.3, the locus of s ∈ S such that Cs is a DR semistable genus-1 curve is an open set in S. Likewise,
[EGA, IV3, 9.6.4] ensures that the locus U = {s ∈ S |L |Cs is ample} ⊆ S is open and that L |f−1(U) is
relatively ample over U . Combining these openness properties with Lemma 2.4.7, the theory of Hilbert
schemes gives rise to a universal triple (f0, D0, ι0) over a quasi-projective Z-scheme H0, where we ignore the
group scheme data ρ. By base change to a suitable scheme that is of finite type over H0 with affine structure
morphism to H0, we can endow D0 with a structure of commutative group scheme in a universal manner.

Before we universally construct the morphism ρ, we need to make some preliminary remarks concerning
quasi-compactness of Hom-schemes. For any two quasi-projective schemes X and Y over a locally noetherian
base S (such as S = H0), with X projective and flat over S, the scheme Hom(X, Y ) exists as a countably
infinite disjoint union of quasi-projective S-schemes manufactured from the Hilbert scheme of X×Y over S.
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If X is finite locally free with constant rank r over S, then for any S-map h : X → Y the graph Γh ↪→ X×Y
is finite locally free of rank r over S and hence has constant Hilbert polynomial r for its fibers over S. Thus,
only a quasi-compact piece of the Hilbert scheme of X × Y intervenes in the description of all such graphs
Γh, so Hom(X, Y ) is quasi-compact over S for such X.

For another example of an S-quasi-compact piece of a Hom-scheme, let X → S be a morphism that is
projective and flat as above, and consider the scheme Isom(X, X) that exists as a countably infinite disjoint
union of quasi-projective S-schemes. If the fibers of X → S have dimension less than or equal to 1 then
this Isom-scheme is quasi-compact over S and hence is quasi-projective over S. To see this, we may fix a
relatively very ample line bundle L on X with degree d ≥ 1, and with respect to L we may assume that
the fibers of X/S have constant Euler characteristic χ. Since the locus of fibers of a fixed dimension is open
in the base (as X is S-flat), and the case of 0-dimensional fibers was treated above, we can assume that
the fibers have dimension 1. It suffices to show that if S = Spec(k) for an algebraically closed field k and
Γα ↪→ X × X is the graph of an automorphism α of X, then the restriction L ⊗ α∗L of p∗1L ⊗ p∗2L to
Γα ' X has only finitely many possibilities for its Hilbert polynomial. Even better, the Hilbert polynomial
is uniquely determined: it must be 2dn + χ since L ⊗ α∗L has degree 2d.

Putting these observations together, we conclude that for our universal triple (f0, D0, ι0), the functor

Hom(D0, Isom(C0, C0))

is represented by a quasi-projective Z-scheme. The action ρ corresponds to a certain kind of group scheme
morphism D0 → Isom(C0, C0). By using suitable cartesian products of quasi-projective Hom-schemes
Hom(X, Y ) with X = D0, D0 ×D0, . . . , one constructs the desired universal 4-tuple over a quasi-projective
Z-scheme. �

For a fixed integer d ≥ 1, consider the universal 4-tuple (f : C → H,D, ι, ρ) as in Lemma 3.1.5. If we are
to enhance this to a generalized elliptic curve after base change to some H-scheme T , then the “universal
translation” D × Pic0

C/H → D × Pic0
C/H defined by

(3.1.1) (d, L ) 7→ (d, ρ(d)∗(L ))

must become the identity map after base change to T (cf. (2.2.1)). This universal translation is at least
a map of semi-abelian algebraic spaces over D × H, so by Lemma 2.2.1 there exists an open and closed
subscheme U ⊆ D ×H that is universal (in the category of D ×H-schemes) for (3.1.1) to pull back to the
identity map.

For any H-scheme T , it follows that DT acts trivially on T ×H Pic0
C/H = Pic0

CT /T if and only if D× T →
D × H factors through U . This is equivalent to the finite locally free map U → H having rank d over
the image of T → H, which in turn amounts to T → H factoring through the open and closed subscheme
V ⊆ H over which U → H has rank d. It follows that the restriction (fV , DV , ιV , ρV ) of our 4-tuple over
V ⊆ H is the universal 4-tuple (f ′, D′, ι′, ρ′) satisfying five properties: the four properties listed above
Lemma 3.1.5 and the extra condition that ρ′ induces the trivial D′-action on Pic0

C′/S′ . For any such 4-tuple
(not necessarily the universal one), the triviality of the D′-action on Pic0

C′/S′ implies (via Corollary 2.2.3)
that C ′ admits a unique structure of generalized elliptic curve such that D′ ↪→ C ′sm is a subgroup scheme
and ρ′ is the D′-action on C ′ that is induced by the action of C ′sm on C ′. Applying this in the universal
case over V , we have constructed a universal triple

(3.1.2) (f : E → S, D, ι)

with E/S a generalized elliptic curve, ι : f∗O(3D) ' O⊕3d
S a trivialization, and D ↪→ Esm a subgroup scheme

that is finite locally free of rank d over S and is relatively ample on E/S . The universal base is quasi-projective
over Z.

We are now ready to construct universal tri-canonically embedded Γ-structures, and Theorem 3.1.4 will
then follow.

Theorem 3.1.6. There exists a universal generalized elliptic curve fΓ : EΓ → SΓ equipped with a Γ-structure
and a trivialization of fΓ∗O(3DΓ), where DΓ ↪→ EΓ is the ample relative effective Cartier divisor generated
by the Γ-structure. The scheme SΓ is quasi-projective over Z.
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Proof. Fix Γ ∈ {Γ(N),Γ1(N ;n)} and let d = N2 and Nn respectively. Consider the universal triple (f,D, ι)
in (3.1.2) for d, with a base that is quasi-projective over Z. Making a suitable finite base change if Γ = Γ(N)
allows us to assume that in this case we instead have the universal triple subject to the extra condition that
the group scheme D is killed by N (so D = Esm[N ], by consideration of orders).

First we let Γ = Γ(N). Adjoining a section (or any specified finite number of sections) to D can be
achieved universally after a finite base change. Hence, for a fixed finite constant commutative group A,
making such a base change provides a universal group morphism A → D. By [KM, 1.3.5], such a group
morphism becomes an A-generator of D after a base change if and only if the base change factors through a
certain universal closed subscheme in the base. Thus, taking A = Z/NZ× Z/NZ, we can find a finite base
change (fΓ : EΓ → SΓ, DΓ, ιΓ) on which there is a universal Γ-structure (generating DΓ). By construction,
the base of this universal family is quasi-projective over Z. This settles the cases Γ = Γ(N).

Now let Γ = Γ1(N ;n). Arguing as above and using Theorem 2.4.5, we can find a universal generalized
elliptic curve f : E → S equipped with an ample order-Nn closed subgroup scheme D ↪→ Esm and a
trivialization ι of f∗O(3D). Making a finite base change on S allows us to universally impose the specification
of a section P ∈ D[N ](S). By [KM, 1.3.7], passage to a closed subscheme of S gives the further universal
condition that the closed subscheme

〈P 〉 def=
∑

j∈Z/NZ

[jP ] ↪→ Esm

is an S-subgroup scheme. Finally, by [KM, 1.3.5], replacing S with a suitable closed subscheme universally
gives the condition that the relative effective Cartier divisor 〈P 〉 is supported in D. Using Lemma 2.1.10,
we can pass to an open subscheme of the base in order to suppose universally that Esm[pe] is finite locally
free of degree p2e for all primes p| gcd(N,n). The base of this family is quasi-projective over Z.

By working directly with the affine algebra of D over open affines in the base (or by using Hilbert schemes
for constant polynomials), the specification of a degree-n relative effective Cartier divisor C ↪→ D is achieved
universally by a base change that is quasi-projective. Passing to this new base, we may use [KM, 1.3.7] to
find a closed subscheme of the base that is universal for C to be a subgroup scheme of Esm. By Theorem
2.3.7, C is cyclic if and only if its finite and finitely presented scheme of Z/nZ-generators C× is locally free
with constant rank φ(n). Since C× is finite and finitely presented locally on the base, for every r ≥ 0 (the
proof of) Mumford’s theorem on flattening stratifications [Mum1, Lecture 8] provides a subscheme of the
base S that is the universal S-scheme over which the pullback of C× is locally free with rank r. Hence, by
taking r = φ(n) we may replace S with this subscheme so as to be in the universal case such that C is cyclic.

The equality of Cartier divisors
∑

j∈Z/NZ(jP + C) = D is achieved universally upon passage to a closed
subscheme of the base [KM, 1.3.5], and for the finitely many primes p| gcd(N,n) we can also require∑

j∈Z/peZ

(j(N/pe)P + C[pe]) = Esm[pe]

universally by passage to a further closed subscheme of the base. By Theorem 2.4.5 this is the desired
universal family for Γ = Γ1(N ;n). The base SΓ1(N ;n) is quasi-projective over Z by construction. �

The morphism SΓ → M Γ is a projective-space bundle, so it is smooth and surjective. This proves Theorem
3.1.4. Our next goal is to prove that the Artin stack M Γ of finite type over Z is often a Deligne–Mumford
stack:

Theorem 3.1.7. The Artin stack M Γ(N) is Deligne-Mumford. If Γ = Γ1(N ;n) then M Γ is Deligne–
Mumford along the open substack complementary to the open and closed substack in M∞

Γ classifying de-
generate triples (E;P,C) in positive characteristics p such that the geometric fibers of the p-part of C are
disconnected and non-étale (so p2|n). In particular, M Γ1(N ;n) is Deligne–Mumford if n is squarefree.

Note in particular that M Γ1(N) is Deligne–Mumford.

Proof. By [LMB, 8.1], an Artin stack is Deligne–Mumford if and only if its diagonal is formally unramified.
Since the diagonal is locally of finite type, formal unramifiedness may be checked on geometric fibers. Thus,
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it is necessary and sufficient to prove that the automorphism scheme of (E, ι) is étale if (E, ι) is a pair
consisting of a Γ-structure ι on a generalized elliptic curve E over an algebraically closed field, provided that
for Γ = Γ1(N ;n) we avoid level structures (E;P,C) in positive characteristic p such that the p-part of C has
non-trivial connected and étale parts when E is not smooth. This étaleness property is part of the following
general lemma. �

Lemma 3.1.8. Let k be an algebraically closed field and let Γ ∈ {Γ(N),Γ1(N ;n)}. Let (E, ι) be a generalized
elliptic curve with Γ-structure over k. The k-scheme Aut(E) is finite. Also, Aut(E, ι) is finite, and it is
étale in either of the following cases:

• Γ = Γ(N),
• Γ = Γ1(N ;n), provided that if char(k) = p > 0 and E is non-smooth then the p-part of the cyclic

subgroup C of order n is either étale or connected (an automatic property if p2 - n).

This lemma is well-known, but we do not know a reference for the proof (for Γ1(N ;n)-structures).

Proof. These Aut-schemes are quasi-finite, by Theorem 3.1.2. The étale property of the k-group Aut(E, ι)
is equivalent to the condition that (E, ι) has no non-trivial infinitesimal deformations of the identity. When
E is irreducible, Aut(E) is étale over k (use [Mum2, Cor. 6.2] in the smooth case and Example 2.1.5 in the
non-smooth case). Thus, the subgroup Aut(E, ι) is étale in these cases.

It remains to consider the case when E is a standard d-gon for some d ≥ 2 and to show that (E, ι) has no
non-trivial infinitesimal automorphism lifting the identity. If Γ = Γ(N) then d = N and an “ample Z/NZ-
structure” in the Γ(N)-structure is an “étale” Γ1(N)-structure. We now reduce the case Γ = Γ1(N ;n) to
various Γ1(M)-cases, and then we will treat the Γ1(M)-cases.

Let (P,C) be a Γ1(N ;n)-structure on E. If 〈P 〉 is ample then P is a Γ1(N)-structure. If char(k) - n then
C is constant, so we can use P and an appropriate multiple of a generator of C to define a Γ1(M)-structure
for a suitable factor M of Nn (using that Z/MZ-structures can be analyzed “one prime at a time”), and
the infinitesimal deformations of the identity automorphism of this level structure are the same as that of
(E;P,C). Now suppose that the Z/NZ-structure 〈P 〉 is not ample and that k has positive characteristic p
with p|n. Since the “prime-to-p” part of our level structures are constant, for the purpose of reducing to
the study of infinitesimal deformations of the identity automorphism of Γ1(M)-structures we may replace n
with its p-part by replacing N with a suitable multiple N ′ and enhancing the Z/NZ-structure to a Z/N ′Z-
structure. We may also assume n 6= 1, so n = pe with e ≥ 1. Hence, C is either étale or connected. The
non-ampleness of 〈P 〉 forces p|d since n = pe with e ≥ 1, so the ampleness of the entire level structure
forces C to have non-trivial étale part. Thus, the p-group C is étale and (since we are in characteristic p
and E is not smooth) its points must lie on distinct components of Esm. In particular, any infinitesimal
automorphism of E that lifts the identity and preserves C must act as the identity on C. We may write
N = N0p

r with r ≥ 0 and p - N0. Due to the non-ampleness of the Z/NZ-structure, the N0-torsion point
prP and a generator of C define an étale Γ1(N0p

e)-structure such that it is preserved by any infinitesimal
deformation of the identity automorphism of the initial Γ1(N ;n)-structure.

We are now reduced to showing that if d ≥ 2, N ∈ dZ+, and P ∈ Esm(k) generates an ample Z/NZ-
structure on the standard d-gon E, then an infinitesimal automorphism of (E,P ) lifting the identity must be
the identity. Without loss of generality, the generator P ∈ Esm(k) of the ample Z/NZ-structure lies on the
component of Esm corresponding to 1 ∈ Z/dZ ' π0(Esm). By Example 2.1.5 we see that Aut(E,P ) = {1}
except possibly when d = 2 (so N is even) and P = (x, 1) with x2 ∈ µ2(k). Suppose we are in one of these
latter cases. If char(k) 6= 2, then Aut(E) is étale and we are done. If char(k) = 2 then P = (1, 1) and an
infinistesimal automorphism of E lifting the identity must arise from ζ ∈ µ2. This does not fix P unless
ζ = 1. �

Corollary 3.1.9. Let k be a separably closed field, and choose Γ ∈ {Γ(N),Γ1(N ;n)}. Let x be a pair
(E, ι) over k, where ι is a Γ-structure on E. If char(k) = p > 0 and E is not smooth, then in the case
of a Γ1(N ;n)-structure ι = (P,C) assume that the p-part of C is either étale or connected (an automatic
condition if p2 - n).
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Let W be a Cohen ring for k. Under the above assumptions, there exists a universal formal deformation
ring Ax for the Γ-structure x on the category of complete local noetherian W -algebras with residue field k,
and the universal formal deformation is uniquely algebraizable to a Γ-structure on Spec Ax.

Proof. Geometric points on Deligne–Mumford stacks admit universal formal deformations, and the (existence
and) uniqueness of the algebraization (over the spectrum of the formal deformation ring) follows from
Corollary 2.2.4. �

3.2. Properness. We want to prove that M Γ is proper over Z (and in §3.3 we will see that M Γ is Z-flat with
pure relative dimension 1). The first step will be to prove separatedness, which is to say that Isom-schemes
for Γ-structures on generalized elliptic curves are proper.

Lemma 3.2.1. Let f : E → S be a generalized elliptic curve over an integral henselian local scheme S.
Assume that the geometric generic fiber is a d-gon for some d ≥ 1. There exists a finite flat local S-scheme
S′ such that the base change E/S′ is isomorphic to a standard d-gon as a generalized elliptic curve.

Proof. The locus of non-smoothness S∞,f is a closed subscheme of the integral S and it contains the generic
point, so S∞,f = S. Since S is henselian local, any finite flat S-scheme is a finite disjoint union of finite flat
local S-schemes. Thus, Corollary 3.1.3 gives us what we need. �

Theorem 3.2.2. Isom-schemes of Γ-structures are finite. In particular, M Γ is separated for all Γ and if
(E, ι) and (E′, ι′) are Γ-structures over a normal scheme S then any isomorphism between them over a dense
open uniquely extends to an isomorphism over S.

This result is essentially due to Deligne and Rapoport, via the valuative criterion for properness, except
that they worked in a slightly restrictive setting (with the number of irreducible components on each degen-
erate geometric fiber required to not be divisible by the residue characteristic). For completeness, we give
the argument in detail (adapted to our more general setting).

Proof. The Isom-schemes of Γ-structures are quasi-finite and finitely presented, by Theorem 3.1.2. For the
remainder of the proof, we may assume that S is noetherian. We have to check the valuative criterion for
properness for the Isom-schemes. Thus, it is enough to work with a base that is a complete discrete valuation
ring R with fraction field K and algebraically closed residue field.

Let E1 and E2 be generalized elliptic curves over R, equipped with respective Γ-structures ι1 and ι2. Let
αK be an isomorphism between E1/K and E2/K that takes ι1/K to ι2/K . We need to extend αK to an
R-scheme isomorphism α (such an extension automatically respects the group structures and takes ι1 over
to ι2); uniqueness of such an α is obvious.

We now check that is suffices to construct an R′-scheme morphism α′ extending αK′ after base change
to a discrete valuation ring R′ (with fraction field K ′) that is finite and flat over R. Assuming we can
make such a construction over a suitable R′ in general, then by applying the same fact with α−1

K in the
role of αK (and replacing R′ with a discrete valuation ring that is finite and flat over R′ if necessary)
we get a scheme morphism over R′ extending α−1

K′ . This latter morphism must be inverse to α′ because
HomR′(X ′, Y ′) → HomK′(X ′

K′ , Y ′
K′) is injective for any flat R′-scheme X ′ and separated R′-scheme Y ′.

Hence, such an α′ is necessarily an isomorphism of R′-schemes and so if α′ descends to an R-scheme map
E1 → E2 then this descent solves our construction problem. To prove that α′ descends, more generally we
claim that if X is a flat R-scheme and Y is a separated R-scheme then an R′-map f ′ : XR′ → YR′ whose
K ′-fiber f ′K′ descends to a K-map fK : XK → YK necessarily descends (uniquely) to an R-map f : X → Y
(with K-fiber fK). By descent theory it suffices to check that the two pullbacks p∗j (f

′) of f ′ over R′ ⊗R R′

coincide. These pullbacks p∗1(f
′), p∗2(f

′) : XR′⊗RR′ ⇒ YR′⊗RR′ are a pair of R-maps from a flat R-scheme
to a separated R-scheme, so equality of the maps on K-fibers gives the desired equality over R.

The rest of the proof is devoted to finding a finite extension K ′/K (with valuation ring R′ necessarily
finite and flat over R) such that αK′ extends to an R′-scheme morphism α′ over R′. First consider the case
when the common generic fiber is not smooth, and hence is geometrically a d-gon for some d ≥ 1. By Lemma
3.2.1, there exists a finite flat local R-algebra A such that Ei/A is isomorphic to the standard d-gon. Since
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R is a complete discrete valuation ring, the normalization of Ared is finite over R and is trivially R-flat.
Thus, any choice of local factor ring of this normalization gives a discrete valuation ring R′ that is finite flat
over R such that each Ei/R′ is isomorphic to a standard d-gon. Renaming R′ as R, we reduce to the case
when E1 = E2 = E is a standard d-gon, so Aut(E) is finite (hence proper) over R by Example 2.1.5. Thus,
Aut(E)(K) = Aut(E)(R), so the generic fiber automorphism αK of EK extends to an automorphism of E.
The generically non-smooth case is therefore settled.

Now suppose that the common generic fiber EK is smooth. When Γ = Γ1(N ;n), by suitable finite base
change on K (and normalizing R) we may assume that all points in the support of the order-n group scheme
in the Γ-structure on EK are K-rational. Hence, in all cases we may assume that the generic fiber Γ-structure
Cartier divisor DK on the K-smooth EK is a sum of K-rational points. Let Di be the corresponding ample
Cartier divisor on Ei coming from our given Drinfeld structure over R. Note the crucial fact that Di is
supported in Esm

i (or in more concrete terms, DK does not “specialize” into the non-smooth locus of the
closed fiber). The desired isomorphism over R will be constructed in terms of the minimal regular proper
model Ẽ of EK over R, but first we need to relate this minimal model to the Ei’s.

The Ei/R’s have smooth generic fiber and reduced closed fiber, so they are normal schemes because
semistable curves are CM (so Serre’s normality criterion applies). Thus, we may use smoothness of the
generic fiber and the explicit description of the (geometric!) closed fiber possibilities to adapt the argument
in [DM, 1.12] to prove that suitable successive blow-up of each Ei at non-smooth points eventually stops
at Ẽ. Thus, Ẽ is a DR semistable genus-1 curve and the composite of blow-ups Ẽ → Ei is the contraction
(“blow-down”) of some P1’s in the closed fiber (since the residue field is algebraically closed).

Via scheme-theoretic closure, DK on EK uniquely extends to a relative effective Cartier divisor D̃ on Ẽ

that is finite flat over R: since DK is a sum of K-rational points (with multiplicities), D̃ is the sum of the
corresponding R-rational points. The contraction map Ẽ → Ei sends non-smooth points to non-smooth
points and (by R-flatness reasons) maps D̃ into Di. Thus, D̃ is supported in Ẽsm since the R-ample Di on
Ei is supported in the smooth locus (for i = 1, 2). We may therefore identify each Ei with the contraction of
Ẽ along the closed-fiber irreducible components that are disjoint from D̃. The resulting unique isomorphism
of contractions E1 ' E2 compatible with the contraction maps Ẽ � Ej induces the given generic fiber
isomorphism E1/K ' E2/K , so we have constructed the desired R-isomorphism. �

Our proof of Theorem 1.2.2 will require the construction of fppf descent data via:

Corollary 3.2.3. Let (E, ι) and (E′, ι′) be Γ-structures over a scheme S, and let D ↪→ S be a reduced
effective Cartier divisor. An isomorphism between (E, ι) and (E′, ι′) over S −D uniquely extends over S.

Proof. We may work locally on S, so we can assume S = Spec R is an affine scheme and D = Spec R/(r) for
an element r ∈ R that is not a zero divisor. The finiteness for the Isom-scheme reduces us to proving that R
is integrally closed in R[1/r] when R/(r) is reduced. It is enough to show that if r′ ∈ R and r′/r is integral
over R then r′ ∈ (r). If the integrality relation has degree n > 0 then clearing denominators gives r′

n ∈ (r).
Since R/(r) is reduced, we therefore have r′ ∈ (r) as desired. �

In view of Theorem 3.2.2, it is natural to ask if the Isom-scheme of a pair of generalized elliptic curves
f1 : E1 → S and f2 : E2 → S is S-finite. It is easy to construct counterexamples if we allow some intersection
S∞,f1

n1
∩S∞,f2

n2
to be non-empty with n1 6= n2. (See Lemma 2.1.10 for the definition of the locus S∞,f

n of n-gon
geometric fibers for a generalized elliptic curve f : E → S and a positive integer n.) Such non-emptiness is
the only obstruction to S-finiteness of the Isom-functor:

Theorem 3.2.4. Let f : E → S and f ′ : E′ → S be generalized elliptic curves such that S∞,f
n ∩ S∞,f ′

n′ = ∅
for all n 6= n′. The separated and finitely presented S-scheme Isom(E,E′) is S-finite. In particular, if S is
normal and S∗ ⊆ S is a dense open then any isomorphism E|S∗ ' E′|S∗ uniquely extends to an isomorphism
over S.

Proof. As in the proof of Theorem 3.2.2, the proof of Theorem 3.2.4 immediately reduces to checking the
valuative criterion for properness over a discrete valuation ring R when the generic fibers are smooth and
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any non-smooth geometric closed fiber is an n-gon (for some fixed n ≥ 1). The theory of Néron models takes
care of the case when at least one (and hence both) of the closed fibers is smooth, so we may assume that
both closed fibers are n-gons. We may assume that R is complete with an algebraically closed residue field.
Let S = Spec R, and let s denote the closed point and let K denote the fraction field of R. We are given an
isomorphism αK : EK ' E′

K of elliptic curves, and we need to extend it to an isomorphism α : E ' E′ over
R (uniqueness of α is clear).

By contracting away from fibral identity components, Theorem 3.2.2 with Γ = Γ(1) provides an isomor-
phism of contractions c(α) : c(E) ' c(E′) extending αK . The contraction map c : E → c(E) induces an
isomorphism of group schemes c−1(c(E)sm) ' c(E)sm, so we view c(E)sm as an open subgroup scheme in
Esm. Consider the quasi-finite, flat, and separated group scheme c(E)sm[n] → S. Since S is henselian
local and c(E) has a 1-gon geometric fiber over the closed point s ∈ S, there is a unique open and closed
subgroup scheme µ ↪→ c(E)sm[n] that is finite flat of order n, and µs is the n-torsion on c(E)sms . We may
therefore use the isomorphism c(α) : c(E) ' c(E′) to obtain an open and closed immersion of group schemes
µ ↪→ c(E′)sm[n] that induces the canonical isomorphism µs = c(E)sms [n] ' c(E′)sms [n] on s-fibers.

As in the proof of Corollary 2.2.4, Esm[n] is a finite flat S-group with rank n2. Thus, there is a short
exact sequence of finite flat S-groups

(3.2.1) 0 → µ → Esm[n] → G → 0,

where G → S is constant with rank n and µs lies in the identity component of Esm
s . By construction, Gs

is isomorphic to the component group Z/nZ of Esm
s upon identifying Es with the standard n-gon. There

exists a unique isomorphism G ' Z/nZ lifting the isomorphism on s-fibers. By the same argument, there is
an analogous short exact sequence

(3.2.2) 0 → µ → E′sm[n] → G′ → 0

with G′ ' Z/nZ. By replacing R with a finite extension, we can assume that these two sequences are split.
Due to the existence of c(α), it follows that the K-fibers of the sequences (3.2.1) and (3.2.2) are compatible
via αK . In particular, if P ∈ Esm[n](R) maps to a generator of G then P ′

K = αK(PK) maps to a generator
of G′

K . The point P ′ ∈ E′(R) extending P ′
K lies in E′sm[n] since E′sm[n] is finite, so P ′ maps to a generator

of the constant group G′ under the quotient map E′sm[n] → G′.
We conclude that (E,P ) and (E′, P ′) are Γ1(n)-structures, and αK is an isomorphism between their

generic fibers. Since Isom-functors for Γ1(n)-structures are finite (Theorem 3.2.2), by normality of the trait
S we obtain the desired extension α of αK . �

Our study of formal structure along the cusps will require the construction of fppf descent data via:

Corollary 3.2.5. Let f : E → S and f ′ : E′ → S be generalized elliptic curves over a scheme S and assume
that S∞,f

n ∩ S∞,f ′

n′ = ∅ for all n 6= n′. If D ↪→ S is a reduced effective Cartier divisor then any isomorphism
between E and E′ over S −D uniquely extends to an isomorphism over S.

Proof. The proof of Corollary 3.2.3 carries over. �

Since M Γ is separated and of finite type over Z, to prove it is Z-proper we need to check the valuative
criterion for properness. (See [O] and [LMB, 7.12] for the sufficiency of using discrete valuation rings in this
criterion for locally noetherian Artin stacks.)

Lemma 3.2.6. Let R be a complete discrete valuation ring with fraction field K. Let (EK , ιK) be a gener-
alized elliptic curve with Γ-structure over K. After base change to some discrete valuation ring R′ that is
finite and flat over R, (EK , ιK) extends to a Γ-structure over R′.

Proof. First consider the case when EK is not smooth. By finite base change we can assume that EK is
the standard d-gon over K for some d ≥ 1. Let E denote the standard d-gon over R. We claim that the
scheme-theoretic closure in E of the Γ-structure on EK is a Γ-structure on E. The M -torsion Esm[M ] is
finite (flat) over R for any M ≥ 1, so the scheme-theoretic closure D in E of any finite flat subgroup scheme
DK ↪→ Esm

K lies in Esm (and is obviously a subgroup scheme of Esm). Also, by using the explicit description
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of standard polygons we see that ampleness of DK on Esm
K forces the subset D ⊆ Esm to meet all irreducible

components of the closed fiber of E. Thus, D is ample. This settles the case when EK is not smooth.
Now assume EK is smooth. Let E be the minimal regular proper model of EK over R. Since an R-

section in E must lie in the relative smooth locus, by the R-properness of E we have EK(K) = Esm(R). In
particular, for any Cartier divisor on EK that is a sum of K-rational points, its scheme-theoretic closure in
E is a relative Cartier divisor over R that is a sum of R-points supported in Esm. By the genus-1 stable
reduction theorem [DR, IV, 1.6(i),(ii)], we may assume (after suitable finite base change on R and replacing
E by the minimal regular proper model over the new base) that E admits a structure of generalized elliptic
curve extending that on EK . Thus, we can use scheme-theoretic closure to extend the Γ-structure on EK to
a Γ-structure on E, up to the problem of ampleness on the closed fiber.

Let D ⊆ Esm be the underlying Cartier divisor of our “possibly non-ample Γ-structure” on E (so D is a
closed subgroup scheme of Esm that is finite and flat over R). We eliminate lack of ampleness by considering
the contraction c : E → E of the closed fiber along the irreducible components disjoint from D. Since E is a
generalized elliptic curve with generic fiber EK and c−1(E

sm
) ⊆ Esm is an open subgroup scheme containing

D, composition with the isomorphism of group schemes c : c−1(E
sm

) ' E
sm

defines an ample Γ-structure
on E

sm
. Using E, we get the desired model over R. �

Let us summarize much of what we have proved (accounting for smoothness away from the level [DR,
III, 2.5(iii)]):

Theorem 3.2.7. The Artin stack M Γ is proper over Z. The stack M Γ(N) is Deligne–Mumford, and it is
smooth over Z[1/N ]. The stack M Γ1(N ;n) is smooth over Z[1/Nn] and it is Deligne–Mumford away from
the open and closed substack in M∞

Γ1(N ;n) classifying degenerate triples (E;P,C) in positive characteristics
p such that the geometric fibers of the p-part of C are both non-étale and disconnected (such structures exist
if and only if p2|n). In particular, M Γ1(N ;n) is Deligne–Mumford if and only if n is squarefree.

3.3. Flatness and fibral properties. Once again, we choose Γ ∈ {Γ(N),Γ1(N ;n)}. The key problem for
us is to understand the structure of the stack M Γ along M∞

Γ in “bad” characteristics.

Theorem 3.3.1. The proper morphism M Γ → Spec(Z) is flat and CM with pure relative dimension 1.

Before we prove Theorem 3.3.1, we introduce a moduli problem to be used in our study of M Γ1(N ;n).

Definition 3.3.2. Let N and n be positive integers such that ordp(n) ≤ ordp(N) for all primes p| gcd(N,n).
A Γ̃1(N ;n)-structure on a generalized elliptic curve E → S is a pair (P,Q) with P a Z/NZ-structure on
Esm and Q a Z/nZ-structure on Esm such that (P, 〈Q〉) is a Γ1(N ;n)-structure.

By Theorem 2.4.5, a Γ̃1(N ;n)-structure should be viewed as an enhanced version of “ample Z/NZ×Z/nZ-
structure” on generalized elliptic curves (there is an extra condition on the n-torsion, namely (2.4.4)). Using
Lemma 2.4.4 and Theorem 3.1.4, the fpqc-stack in groupoids M eΓ1(N ;n) over Spec(Z) is an Artin stack that
is finite and locally free of rank φ(n) over M Γ1(N ;n), and it is even finite étale of degree φ(n) over M Γ1(N ;n)

after inverting n. In particular, M eΓ1(N ;n) is proper over Z. An important technical advantage of M eΓ1(N ;n) is
that it is everywhere Deligne–Mumford, and so in particular its geometric points admit universal deformation
rings (as in Corollary 3.1.9):

Lemma 3.3.3. The Artin stack M eΓ1(N ;n) is Deligne–Mumford over SpecZ.

Proof. By [LMB, 8.1], it is necessary and sufficient to prove that M eΓ1(N ;n) has formally unramified diagonal.

That is, we must prove that the finite automorphism scheme of a Γ̃1(N ;n)-structure (E;P,Q) over an
algebraically closed field is étale. The étale condition says that the identity automorphism has no nontrivial
infinitesimal deformations. Since Γ̃1(N ;n)-structures (E;P,Q) “refine” Γ1(N ;n)-structures (E;P, 〈Q〉), the
only cases that we need to investigate are level-structures (E;P,Q) in positive characteristic p with e =
ordp(n) ≥ 1 such that 〈P 〉 is not ample and E is a d-gon with p|d. For every prime `| gcd(N,n) one of P
or Q generates the `-part of the component group, by ampleness of the total level structure. For each such
` 6= p such that the `-part of 〈P 〉 does not generate the `-part of the component group, we can shift the
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`-part of 〈Q〉 into the P -aspect since we are using Γ̃1(N ;n)-structures rather than Γ1(N ;n)-structures. We
may ignore the other `-parts of 〈Q〉 with ` 6= p, reducing ourselves to the case n = pe with e ≥ 1; beware
that p might not divide N , so the p-part of the level structure may have non-trivial infinitesimal part. If
this reduction step causes the new 〈P 〉 to be ample then we are done, so we may still suppose that 〈P 〉 is
not ample.

The non-ampleness of 〈P 〉 forces Q to generate the p-part of the component group, so Q and the prime-
to-p part of P define a Γ1(N0p

e)-structure, with N0|N denoting the prime-to-p part of N . Hence, the
automorphism functor of interest is a closed subfunctor of the automorphism functor of a Γ1(N0p

e)-structure.
Since automorphism functors of Γ1(M)-structures over a field are étale, we are done. �

The first step in the proof of Theorem 3.3.1 is:

Lemma 3.3.4. The open substack M 0
Γ = M Γ−M∞

Γ classifying smooth elliptic curves with Γ-structure is
regular and Z-flat with fibers of pure dimension 1 over Spec(Z) (these fibers are therefore Cohen-Macaulay).

Proof. The desired results for Γ = Γ1(N) and Γ(N) are special cases of [KM, 5.1.1], so we shall consider
Γ = Γ1(N ;n). The open substack M 0eΓ1(N ;n)

⊆ M eΓ1(N ;n) classifying Γ̃1(N ;n)-structures on elliptic curves is

finite locally free of rank φ(n) over M 0
Γ1(N ;n). If A → B is a flat local map of local noetherian rings and B

is regular, then A is regular [CRT, 23.7]. Thus, it suffices to check that M 0eΓ1(N ;n)
is regular and Z-flat with

fibers of pure dimension 1.
If gcd(N,n) = 1 then Γ̃1(N ;n)-structures are the same as Γ1(Nn)-structures, by Theorem 2.4.5. Hence,

we can assume gcd(N,n) > 1. Choose a prime p| gcd(N,n), so N = Mpr with r ≥ 1 and p - M , and also
n = pen′ with p - n′ and 1 ≤ e ≤ r. Since

M 0eΓ1(N ;n)/Z[1/p]
→ M 0

Γ1(Mn′)/Z[1/p]

and
M 0eΓ1(N ;n)/Z(p)

→ M 0eΓ1(pr;pe)/Z(p)

are visibly étale surjective, it remains to prove that M 0eΓ1(pr;pe)
is regular and Z-flat with fibers of pure

dimension 1.
For such prime-power level, we may use the general regularity criteria of Katz and Mazur [KM, 5.2.1, 5.2.2]

to reduce to showing that if k is an algebraically closed field of characteristic p and E/k is a supersingular
elliptic curve, then the maximal ideal of the universal deformation ring A classifying infinitesimal deforma-
tions of the unique Γ̃1(pr; pe)-structure on E is an ideal that is generated by 2 elements (the existence of the
deformation ring A at a “k-point” follows from the fact that k is separably closed and Γ̃1(N ;n)-structures
form a Deligne-Mumford stack). The proof of the analogue for Γ(pn)-structures on elliptic curves [KM, 5.3.2]
readily adapts to the present circumstances: the universal Γ̃1(pr; pe)-structure gives rise to a Z/prZ-structure
P and a Z/peZ-structure Q, and the formal group “coordinates” X(P ) and X(Q) generate the maximal
ideal of A. �

In view of Lemma 3.3.4, for the proof of Theorem 3.3.1 it remains to look along the closed substack M∞
Γ .

In a finite type Z-scheme, the Fp-points for variable primes p are dense and the locus where the scheme is
CM over Z with a fixed pure relative dimension is open (see [EGA, IV3, 12.1.1(iv)] for the relative-dimension
analysis). The same assertion holds for Artin stacks of finite type over Z, so to prove that M Γ is CM
over Z with pure relative dimension 1 it suffices to look at Fp-points; of course, in some bad characteristics
M Γ1(N ;n) is merely an Artin stack along the cusps, so we note that for the remaining study of M Γ1(N ;n)

in the proof of Theorem 3.3.1 it suffices to work with the finite locally free covering M eΓ1(N ;n) that is a
Deligne–Mumford stack (and so admits universal deformation rings at geometric points).

It remains to prove that universal deformation rings for Γ-structures on standard polygons over Fp are
2-dimensional, W (Fp)-flat, and Cohen-Macaulay, where

Γ ∈ {Γ1(N),Γ(N), Γ̃1(N ;n)}
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(the case Γ1(N) = Γ̃1(N ; 1) is singled out because of its role in reduction steps to follow). To be precise, let
k be an arbitrary algebraically closed field and let W be a Cohen ring for k. It suffices to prove that for any
Γ-structure (E, ι) on a standard d-gon over k (with d ≥ 1), the universal deformation ring of (E, ι) has a
finite faithfully flat cover that is finite flat over W [[x]] as a W -algebra.

The case of most interest to us is Γ̃1(N ;n) with char(k)| gcd(N,n). This will be reduced to Γ1(M)-cases,
which in turn will be reduced to related Γ(M ′)-cases, and such reduction steps will be used again later. We
shall now treat these cases in reverse order by means of abstract deformation theory.

Case Γ = Γ(N): Let {P0, Q0} be a Γ(N)-structure on the standard N -gon E0 over k. Since GL2(Z/NZ)
acts functorially on Γ(N)-structures over any base, without loss of generality we may assume that with
respect to the canonical exact sequence

(3.3.1) 0 → µN → Esm
0 [N ] v0−→ Z/NZ → 0

we have v0(P0) = 1 and Q0 ∈ µN (k). By Lemma 2.3.1, the point Q0 defines a Z/NZ-structure on µN

(i.e., Q0 ∈ µ×N (k)). Let ζ(Q0) ∈ µN (k) be the root of ΦN corresponding to Q0, where ΦN denotes the Nth
cyclotomic polynomial. Since the point P0 in Esm

0 = Gm × (Z/NZ) splits (3.3.1) with coordinate x1(P0) on
its own Gm-component lying in µN (k), we may apply a unique automorphism to the standard N -gon E0 to
get to the case x1(P0) = 1. In particular, 〈P0〉 is the kernel of the canonical étale isogeny from the standard
N -gon E0 to the standard 1-gon (i.e., E0/〈P0〉 is the standard 1-gon).

If E is a deformation of E0 over an artin local W -algebra R with residue field k, then Esm[N ] is finite flat
and hence Esm[N ] → π0(Esm) = Z/NZ is faithfully flat (as this can be checked over k). The kernel of this
faithfully flat map is an artinian deformation of µN , so it is uniquely isomorphic to µN in a manner that
is compatible with the closed-fiber identification in (3.3.1). That is, we can uniquely define a short exact
sequence of finite flat R-group schemes

(3.3.2) 0 → µN → Esm[N ] v−→ Z/NZ → 0

lifting (3.3.1). For P,Q ∈ E[N ](R) lifting P0, Q0 respectively, we have P ∈ v−1(1) because P0 ∈ v−1
0 (1).

Thus, by Lemma 2.3.1 the necessary and sufficient condition for this to define a Z/NZ × Z/NZ-structure
(or equivalently, a Γ(N)-structure) is that Q ∈ µ×N (R) ⊆ µN (R). Fix such P and Q.

Since the N -torsion section P splits (3.3.2) and therefore generates an étale closed subgroup scheme
〈P 〉 = Z/NZ ↪→ Esm[N ], the quotient E/〈P 〉 makes sense as a generalized elliptic curve that is an artinian
deformation of the standard 1-gon E0/〈P0〉. The deformation theory of the standard 1-gon as a generalized
elliptic curve is formally smooth on one parameter [DR, III, 1.2(iii)], so it is pro-represented by T̂ate1/W [[q]]

since this deformation is non-trivial over k[q]/(q2) (its locus of non-smoothness is the subscheme Spec k
defined by q = 0, so Example 2.1.9 gives the non-triviality over k[q]/(q2)). By Corollary 2.2.4, we may
restate this pro-representability as follows:

Lemma 3.3.5. The Tate curve Tate1 → Spec W [[q]] is the unique algebraization of the universal formal
deformation of the standard 1-gon as a generalized elliptic curve over Spec k.

We conclude that there is a unique local W -algebra map W [[q]] → R and a unique isomorphism of
generalized elliptic curves

(3.3.3) E/〈P 〉 ' Tate1 ⊗W [[q]] R

lifting the identification of E0/〈P0〉 with the standard 1-gon over k. Moreover, since Aut(µN ) is étale, the
isomorphism (3.3.3) over R is compatible with the canonical identifications of N -torsion on each side with
µN (since such a compatibility holds over k).

Motivated by (3.3.3) and the étaleness of E → E/〈P 〉, in order to describe deformations of (E0, (P0, Q0))
we will first describe deformations of E0/〈P0〉 using Tate curves. Then we will lift our analysis through étale
isogenies in order to return to the original setting of interest (with N -gon fibers rather than 1-gon fibers).

The specification of Q amounts to giving a Z/NZ-generator of µN = (E/〈P 〉)[N ] lifting the Z/NZ-
generator of µN/k coming from Q0. By [DR, II, 1.17] and the topological invariance of the étale site, the
unique étale isogeny to E/〈P 〉 that lifts the canonical étale isogeny CN → C1 between standard polygons
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over k is the canonical étale isogeny E → E/〈P 〉. Put another way, the deformation E of E0 is uniquely
determined by the deformation E/〈P 〉 of E0/〈P0〉.

By Corollary 2.2.4 and [DR, II, 1.17], there is a unique étale “isogeny”

(3.3.4) EN → Tate1

between generalized elliptic curves over W [[q]] such that the reduction over k is the Z/NZ-quotient map
CN → C1. The N -torsion on E sm

N is finite flat of order N2 and there is a unique closed immersion µN ↪→
E sm

N [N ] lifting µN ↪→ Tate1[N ] such that µN is supported in the identity component of infinitesimal closed
fibers of E sm

N . Using this closed subgroup, we obtain a unique short exact sequence

(3.3.5) 0 → µN → E sm
N [N ] vuniv

→ Z/NZ → 0

lifting the analogous filtration on Csm
N [N ]. By Lemma 2.3.1, to give a Z/NZ×Z/NZ-generator of E sm

N [N ] ex-
tending a given Z/NZ-generator of µN is “the same” as to give a section of (vuniv)−1(1), and this equivalence
persists after any base change.

In what is to follow, we define
W [ζN ] = W [X]/(ΦN (X)),

where ΦN is the Nth cyclotomic polynomial and ζN is the residue class of X. This is a semi-local ring. We
have proved:

Lemma 3.3.6. The datum of a deformation of (E0, (P0, Q0)) to R is equivalent to the data consisting of a
W -algebra map W [ζN ][[q]] → R with ζN mapping to a lift of ζ(Q0) ∈ µN (k) together with a Z/NZ×Z/NZ-
structure on

EN ⊗W [[q]] R

that enhances the Z/NZ-generator of µN ↪→ E sm
N [N ] arising from the W -algebra map W [ζN ] → R.

Put another way, the universal deformation ring of (E0, (P0, Q0)) is a local factor ring of the fppf µN -torsor

(3.3.6) (vuniv)−1(1)⊗W [[q]] W [ζN ][[q]]

over W [ζN ][[q]]. The distinct local factor rings of (3.3.6) can be seen by setting q = 0 and W = k: these
correspond to choices of P0 ∈ (v−1

0 (1))(k) and Q0 ∈ µ×N (k). Any such local factor ring is finite flat over
W [[q]], thereby settling the analysis of deformation rings for the case Γ = Γ(N).

Case Γ = Γ1(N): This case will be reduced to the “full level structure” case just treated. We study the
deformation theory of a Z/NZ-structure (E0, P0), with E0 a d-gon over k, d|N , and

P0 7→ 1 ∈ Z/dZ = π0(Esm
0 ).

Consider the canonical short exact sequence

0 → µd → Esm
0 [d] v0−→ Z/dZ → 0.

For any deformation E of E0 over an artin local W -algebra R with residue field k, there exists a unique
compatible short exact sequence

(3.3.7) 0 → µd → Esm[d] v−→ Z/dZ → 0

over Spec R. We are trying to prove that the universal deformation ring of a Z/NZ-structure over k has
(as a W -algebra) a finite flat cover that is finite and flat over a formal power series algebra W [[t]]. For the
unique algebraization of the universal formal deformation of (E0, P0), let vuniv be defined via the analogue
of (3.3.7) on this universal object. The W -scheme (vuniv)−1(1) is finite and faithfully flat over the universal
deformation ring, and the affine algebra of this W -scheme is the universal (semi-local) deformation ring for
the extra condition of the specification of a splitting of (3.3.7).

For any artinian deformation E of E0 equipped with a splitting of (3.3.7) via x ∈ v−1(1)(R), an R-point
P lifting P0 has the form P = x + ζ in Esm(R) for a unique ζ ∈ µN (R) ⊆ Esm[N ](R). By Corollary 2.3.3,
the necessary and sufficient condition for P to determine a Z/NZ-structure is that dP ∈ µ×N/d(R). Since
ζd = dP , we conclude that (vuniv)−1(1) is an fppf µd-torsor over the scheme µ×N/d living on the base given by
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the disjoint union of spectra of universal deformation rings for all possible Γ1(d)-structures on the standard
d-gon. Hence, it suffices to study these Γ1(d)-deformation rings; that is, we are reduced to the case d = N .
We now claim that via the map (P,Q) 7→ P , the scheme of Drinfeld Z/NZ-bases on the N -torsion of the
smooth locus of an artinian deformation E of the standard N -gon E0 is finite, locally free, surjective over
the scheme of Z/NZ-structures on Esm. Indeed, since G

def= Esm[N ] is an extension of Z/NZ by µN and the
schemes of Z/NZ-structures and Z/NZ× Z/NZ-structures in G are independent of the generalized elliptic
curve in which G is embedded [KM, 1.10.6], we may use faithfully flat base change and [KM, 8.10.7] to realize
G as the N -torsion scheme on a smooth elliptic curve, in which case our “finite, locally free, surjective” claim
follows from [KM, 5.5.3]. It follows that upon universally making a finite faithfully flat covering of our artin
local base, our Γ1(N)-structure can be enhanced to a Γ(N)-structure, and the Γ(N)-deformation ring is a
finite flat cover of the initial Γ1(N)-deformation ring.

Case Γ = Γ̃1(N ;n): It is enough to work with deformations of standard polygons over an algebraically

closed field. Since Γ̃1(N ;n)-structures coincide with Γ1(Nn)-structures when gcd(N,n) = 1, we may assume
d = gcd(N,n) > 1. If the characteristic of k does not divide nN then we easily reduce to a Γ1(M)-case.
Thus, we may assume k has positive characteristic p and p|nN . Choose a generator Q of the constant prime-
to-p part C ′ of C, and use the prime-to-N part of C ′ to enhance the Z/NZ-structure to a Z/N ′Z-structure
for a multiple N ′ of N . This reduces us to the case where the prime-to-p part of C is trivial, so n = pe with
e ≥ 0. We may again certainly suppose gcd(N,n) > 1, which is to say e > 0 and N = Mpr with r ≥ e and
p - M .

First suppose that the Z/NZ-structure 〈P0〉 is ample, so to give a Γ̃1(N ; pe)-structure deformation amounts
to giving a Γ1(N)-structure deformation and a suitable auxiliary Z/peZ-structure deformation. To be pre-
cise, let A be the universal deformation ring for the underlying Γ1(N)-structure, with (E ,P) the unique
algebraization of the universal formal deformation. Recall from Theorem 2.3.2 that (N/pe)P is a Z/peZ-
structure. We want to study the (non-zero) finite A-algebra B over which E universally acquires a Z/peZ-
structure Q ∈ E sm[pe] such that {(N/pe)P, Q} is a Z/peZ× Z/peZ-structure. It suffices to show that B is
finite flat over A. Note that the ampleness forces (N/pe)P to be an étale point of order pe. Since E sm[pe]
is uniquely an extension of Z/peZ by µpe in a manner lifting the extension structure on the closed fiber, we
may subtract a unique multiple of (N/pe)P from Q to arrange that Q lies in µ×pe . Thus, B = A[T ]/(Φpe(T )).

The final case to consider is a Γ̃1(N ; pe)-structure (E0;P0, Q0) over k such that 〈P0〉 is not ample. This
forces Q0 to be an étale point of exact order pe such that 〈Q0〉 maps isomorphically onto the p-part of the
component group. (Thus, the deformation theory of the étale pe-torsion point Q0 is the same as that of the
étale subgroup 〈Q0〉 splitting the connected-étale sequence of the pe-torsion.) By Theorem 2.3.2, prP is a
Z/MZ-structure and MP is a Z/prZ-structure. There is a unique j ∈ Z/peZ such that the pr-torsion point
MP0− jQ0 lies in the identity component of the closed fiber, so in the study of deformations we may replace
the Z/NZ-structure P with the Z/NZ-structure P −jM−1Q (see Theorem 2.3.2(2) for the p-part aspect) to
reduce to studying the deformation theory in the case that MP0 is on the identity component of the closed
fiber. By Theorem 2.3.2, the section MP must be a Z/prZ-generator of µpr . That is, if we canonically
decompose our Z/NZ-structure into a Z/MZ-structure and a Z/prZ-structure, then the Z/prZ-structure is
in fact a Z/prZ-generator of µpr .

The ample divisor generated by the Z/MZ-structure and the étale Z/peZ-structure Q is an étale Γ1(Mpe)-
structure. By Theorem 2.3.2, our Γ̃1(N ; pe) deformation problem therefore breaks up into two steps: first
deform an étale Γ1(Mpe)-structure, and then deform a section of µ×pr such that the two Z/peZ-structures
coming from these two steps together define a Z/peZ × Z/peZ-structure. This final condition concerning
the Z/peZ × Z/peZ-structure is forced by the rest, due to Lemma 2.3.1, so we can ignore it. Since p - M
and the p-part of the level structure maps isomorphically onto the component group, we may use [DR,
II, 1.17] to identify the deformation ring of our residual étale Γ1(Mpe)-structure with the formally smooth
deformation ring W [[t]] of an étale quotient 1-gon. The deformation ring for our Γ̃1(N ; pe)-deformation
problem is therefore isomorphic to the coordinate ring of µ×pr over W [[t]]. Since W [[t]]⊗Z Z[ζpr ] is a regular,
W -flat, and 2-dimensional local ring, the proof of Theorem 3.3.1 is now complete.
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4. Fine structure of the proper stacks M Γ

4.1. Contractions and structure along the boundary.

Theorem 4.1.1. Choose Γ ∈ {Γ(N),Γ1(N ;n)}.
(1) If Γ = Γ(N) then the contraction cΓ : M Γ → M 1 is relatively representable, finite, and faithfully

flat. If Γ = Γ1(N ;n) then the same holds over M 0
1, and also over M 1 when n is squarefree. Also,

the closed substack M∞
Γ is a relative effective Cartier divisor in M Γ over Spec(Z) for all Γ.

(2) The stack M Γ is regular.
(3) There is a unique (necessarily proper CM) morphism M Γ(N) → Spec(Z[ζN ]) extending the morphism

M 0
Γ(N)/Z[1/N ] → Spec(Z[1/N, ζN ]) defined by the scheme-theoretic Weil pairing.

Proof. We first show that M∞
Γ is a relative Cartier divisor in M Γ over Spec(Z). The canonical morphism

M eΓ1(N ;n) → M Γ1(N ;n) is representable and finite locally free, and it pulls the universal generalized elliptic
curve back to the universal generalized elliptic curve (the only distinction being the enhancement of the
level structure). Thus, for the purpose of the claim concerning relative effective Cartier divisors, the case
of Γ1(N ;n) is reduced to that of Γ̃1(N ;n) (for which universal deformation rings exist at geometric points).
Our “Cartier divisor” problem therefore concerns universal deformation rings for level structures on Néron
polygons over an algebraically closed field k.

Let W denote a Cohen ring for k. Consider Γ = Γ(N). Recall the unique degree-n étale isogeny (3.3.4)
over W [[q]]. We saw in the proof of Lemma 3.3.6 that the deformation rings for Γ(N)-structures (on Néron
polygons over k) are local factor rings of

(4.1.1) (vuniv)−1(1)⊗W [[q]] W [ζN ][[q]],

where (vuniv)−1(1) is the fppf µN -torsor defined by the canonical short exact sequence (3.3.5). We need to
check that for EN as in (3.3.4) the pullback of EN to (4.1.1) has locus of non-smoothness in the base ring
that is a relative Cartier divisor over W . To compute this locus of non-smoothness, we shall use Tate curves.

By Grothendieck’s algebraization theorem and the construction of Tate1, there is a unique étale isogeny

TateN (q) → Tate1

over W [[q]] that lifts the natural étale isogeny of polygons CN → C1 on the closed fiber. By [DR, II, 1.17]
and the uniqueness property characterizing EN as a finite étale cover of Tate1, there is a unique isomorphism
of generalized elliptic curves

(4.1.2) EN ' TateN (q)

over W [[q]] lifting the identity on the closed fibers and respecting the étale isogenies to Tate1. In Spec(W [[q]])
the locus of non-smoothness of the map TateN (q) → Spec(W [[q]]) is a relative Cartier divisor over W : it is
cut out by (q). This relative Cartier divisor condition over W is preserved by the faithfully flat base change

W [[q]] → (vuniv)−1(1)⊗W [[q]] W [ζN ][[q]].

Thus, by (4.1.2), this settles the Cartier divisor claim for Γ = Γ(N).
Using the same arguments as in the proof of Theorem 3.3.1, the cases Γ = Γ̃1(N ;n) are reduced (via

consideration of Γ = Γ1(M)) to the case just handled. Hence, M∞
Γ ↪→ M Γ is always an effective relative

Cartier divisor over SpecZ. The rest of Theorem 4.1.1(1) is:

Lemma 4.1.2. The morphism cΓ is a finite flat covering, provided that for Γ1(N ;n) we require n to be
squarefree or we work over the open substack M 0

1 in M 1.

Proof. By Theorem 3.2.7, cΓ is proper and (trivially) quasi-finite of finite presentation. We now prove that
it is representable in algebraic spaces, hence finite. By Corollary 2.2.7 (and Theorem 2.2.5(2)), it suffices
to prove that if (E, ι) is a Γ-structure over an algebraically closed field k then there does not exist a non-
trivial automorphism α of (E, ι) that induces the identity map on the contraction c(E) of the non-identity
components. (The reason it suffices to work with automorphism groups rather than automorphism group
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schemes is that the automorphism group schemes at the geometric points under consideration are étale; this
follows from Theorem 3.1.7 and the restrictions that we are imposing in the case Γ = Γ1(N ;n).)

The case of Γ(N) immediately reduces to the case of Γ1(N), and the case of irreducible E is obvious.
Thus, the case Γ = Γ(N) reduces to considering a Γ1(N)-structure (E,P ) on a d-gon E/k with d|N . These
cases follow trivially from Example 2.1.5.

Now consider a Γ1(N ;n)-structure (E;P,C)/k and an automorphism α inducing the identity on c(E).
Without loss of generality E is a d-gon, so n is squarefree by our hypotheses. Since α acts as the identity
on c(E), it follows that α must fix Esing pointwise and must act trivially on the component group. On each
irreducible component L ' P1 of E, the automorphism α fixes the two points in L ∩ Esing and a point on
L ∩Esm in the ample subgroup

∑
j∈Z/NZ(jP + C) if 〈P 〉 meets L. This forces α to be the identity on such

components. By using contractions, it remains to treat the case N = 1 and n squarefree. The connected-étale
sequence of C is uniquely split, so we may also replace C with its étale part. Since n is squarefree, the part
of C meeting the identity component splits off as a product of primary parts, so we may drop it. Hence, C
maps isomorphically onto the component group, and so α fixed C pointwise. Thus, α is the identity. This
concludes the discussion of finiteness properties for M Γ → M 1.

Since M Γ is CM over Z with pure relative dimension 1 (by Theorem 3.3.1) and M 1 is smooth over Z
with pure relative dimension 1, the finite map M Γ → M 1 over Z (or over M 0

1 for Γ1(N ;n) when n is not
squarefree) must be flat, by the standard flatness result in Lemma 4.1.3 below. �

Lemma 4.1.3. Let A → B be a local map between local noetherian rings, with A regular and B Cohen-
Macaulay. If dim B = dim A + dim B/mAB, then B is A-flat.

Proof. This is [CRT, 23.1]. �

We now record a preliminary result in the direction of Theorem 4.1.1(2). For Γ = Γ(N) (resp. Γ =
Γ1(N ;n)) we call N (resp. Nn) the level of Γ; our only interest in this terminology will be through its prime
factors, so issues of multiplicity are irrelevant for our purposes.

Lemma 4.1.4. The stack M Γ is normal. It is also regular away from the part of M∞
Γ that is supported in

characteristics dividing the level of Γ.

Proof. For Γ = Γ1(N ;n) it suffices to work with the finite flat covering M eΓ1(N ;n). With this modification
understood, the M Γ’s that we consider are Deligne–Mumford stacks such that M Γ → Spec(Z) is smooth
away from the “level” and is a CM morphism with fibers of pure dimension 1. By Serre’s criterion for
normality (applied to universal deformation rings at geometric points on the Deligne–Mumford stack M Γ)
and by the smoothness of M Γ/Q, it suffices to check regularity away from a relative effective Cartier divisor
(as such a divisor cannot contain any “codimension-1 points” of M Γ whose residue characteristic is positive).
We use the divisor M∞

Γ : by Lemma 3.3.4, its open complement M 0
Γ is regular. �

We have proved Theorem 4.1.1(1), as well as Theorem 4.1.1(2) away from the cusps in bad characteristics.

Remark 4.1.5. With n understood to be squarefree for Γ1(N ;n), the contraction M Γ → M 1 over Z is finite
and flat. Thus, by regularity of M 1 and normality of M Γ, it follows that the stack M Γ is a posteriori
canonically identified with the normalization of M 1 in the normal Deligne–Mumford stack M Γ |Z[1/level(Γ)]

that is finite flat surjective over M 1 |Z[1/level(Γ)]. This proves that the ad hoc compactification technique over
Z that is used in [DR] yields moduli stacks for Drinfeld level-structures on generalized elliptic curves (though
for Γ1(N ;n) when n is not squarefree it cannot recover the “correct” moduli stack M Γ1(N ;n) because this
Artin stack is not Deligne–Mumford along M∞

Γ1(N ;n) in characteristic p when p2|n).

To prove Theorem 4.1.1(2) for all Γ, it remains to prove that M Γ is regular along M∞
Γ in “bad” char-

acteristics. We shall first reduce the regularity problem for M Γ1(N ;n) to regularity in Γ1(M)-cases. By
Lemma 4.1.4, the only case we need to consider is along M∞

Γ1(N ;n) in positive characteristic p when p|Nn.
Let x = (E0;P0, C0) be a geometric point on this closed substack in such a characteristic. Since the Deligne–
Mumford stack M eΓ1(N ;n) is a flat covering of the Artin stack M Γ1(N ;n), it would suffice to establish regularity
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of the flat cover, and this is a problem that we can study via universal deformation rings. As we shall now
see, this sufficient criterion for regularity will not always work in our favor.

In the proof of Theorem 3.3.1, the analysis of deformation rings on M eΓ1(N ;n) shows that if p - gcd(N,n)
then the deformation rings on M eΓ1(N ;n) at geometric points over x are identified with deformation rings on
Deligne–Mumford stacks of the form M Γ1(M). Granting that stacks of the form M Γ1(M) are regular, the
case p - gcd(N,n) is settled.

We now assume p| gcd(N,n), so 1 ≤ e
def= ordp(n) ≤ r

def= ordp(N). In the cases where 〈P0〉 and the
prime-to-p part of C0 do not generate an ample locus in E0, the end of the proof of Theorem 3.3.1 shows
that the deformation rings on M eΓ1(N ;n) at points over x have the form W [[t]]⊗ZZ[ζpr ], and hence are regular.
Finally, if 〈P0〉 and the prime-to-p part of C0 do generate an ample locus in E0 then the deformation rings
B on M eΓ1(N ;n) at points over x have the form A[ζpe ] def= A ⊗Z Z[ζpe ] where A is a deformation ring on a
stack of the form M Γ1(M) and where the canonical action of (Z/peZ)× on B (through the n-part of the
Γ̃1(N ;n)-structure) goes over to the evident action on ζpe in A[ζpe ]. Even granting that the rings A are
regular, the rings A[ζpe ] often are not regular. However, keep in mind that regularity on M eΓ1(N ;n) is merely
sufficient and not necessary for regularity on M Γ1(N ;n).

For a smooth chart U → M Γ1(N ;n) around x and a geometric point u ∈ U over x, there is a finite flat
covering U ′ → U that is universal for imposing a Z/nZ-generator on the cyclic subgroup of order n. The
preceding calculation “B = A[ζpe ]” implies that for u′ ∈ U ′ over u there is a natural isomorphism

ÔU ′,u′ ' ÔU,u ⊗Z Z[ζpe ]

that is equivariant for the action of (Z/peZ)×, so the subring of invariants is the Z-flat ÔU,u. However, as
we have already noted, the preceding description of B as A[ζpe ] is a (Z/peZ)×-equivariant description and it
is also compatible with passage to smooth covers over Spec A. Thus, passing to subrings of invariants, ÔU,u

is isomorphic to a formally smooth algebra over the complete local ring A, and therefore ÔU,u is regular if
A is regular. This completes the reduction of regularity of M Γ1(N ;n) to regularity of M Γ1(M)’s.

Let us now consider regularity for M Γ in the cases Γ = Γ(N) or Γ1(N), so M Γ → M 1 is a finite flat
covering. In these cases, Lemma 4.1.4 reduces the proof of regularity to calculations in [KM], as we shall
now explain. Let Spec(k) be an algebraic geometric point of Spec(Z), and let W be a Cohen ring for k.
We need to check regularity of a finite étale cover of the complete local ring at a k-point on M∞

Γ . Thus,
we may use Lemma 3.3.5 to reduce to verifying the regularity of the scheme M Γ×M 1 Spec W [[q]], where
Spec W [[q]] → M 1 corresponds to the Tate curve Tate1 over W [[q]]. Since W [[q]] is the completion of a strict
henselization of Z[[q]] at the prime ideal (p, q), where p = char(k) ≥ 0, the natural map Z[[q]] → W [[q]] is flat.
We may work with Z[[q]] instead of W [[q]] once we check:

Lemma 4.1.6. The flat map Spec(W [[q]]) → Spec(Z[[q]]) is a regular morphism (i.e., has geometrically
regular fibers).

Proof. The ring Z[[q]] is excellent [V, Thm. 9], and in particular it is a G-ring (see the end of §2.2). Thus,
by Theorem 2.2.8(2), the strict henselization of Z[[q]] at the prime (p, q) is a G-ring, and this latter ring has
completion W [[q]]. The map Z[[q]] → W [[q]] is therefore a composite of regular morphisms and so it is regular
[CRT, 32.1(i)]. �

For Γ = Γ(N) or Γ1(N), the regularity of the morphism from Z[[q]] to the universal deformation ring W [[q]]
reduces us to proving that the finite flat Z[[q]]-scheme M Γ×M 1 SpecZ[[q]] is regular. The verification of this
regularity will rest on a direct calculation, and this in turn requires that we first check a weaker property:

Lemma 4.1.7. Let Γ = Γ1(N) or Γ(N). The scheme M Γ×M 1 SpecZ[[q]] is normal, and it is regular in
characteristics not dividing N .

Proof. Since Z[[q]] is q-adically separated and complete, its maximal ideals contain q. In particular, a non-
empty closed set in the scheme M Γ×M 1 SpecZ[[q]] must meet the fiber over (p, q) for some prime p > 0.
Since the normal and regular loci in M Γ×M 1 SpecZ[[q]] are open (by excellence of Z[[q]]), by Lemma 4.1.6 it
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suffices to check normality (resp. regularity) after base change to W [[q]], for W = W (Fp) (resp. with p - N).
Such base changes of the scheme M Γ×M 1 SpecZ[[q]] are spectra of finite products of complete local rings at
geometric points on M Γ (resp. in characteristics not dividing N). By excellence arguments, the normality
(resp. regularity) of such rings follows from the normality (resp. regularity) of M Γ (resp. of M Γ in residue
characteristics away from the “level”) as in Lemma 4.1.4. �

We conclude that the finite flat Z[[q]]-scheme M Γ×M 1 SpecZ[[q]] is the normalization of Z[[q]] in

M Γ×M 1 SpecZ((q))

(which is itself normal and finite flat over Z((q))). The Z((q))-scheme M Γ×M 1 SpecZ((q)) is the scheme of
Γ-structures on the elliptic curve Tate1 over Z((q)). Such level-structure schemes are analyzed in [KM], so
our task comes down to making the detailed analysis from [KM] explicit in our cases of interest and using
this to compute the normalization of Z[[q]] in M Γ×M 1 SpecZ((q)). These normalizations will be observed to
be regular by inspection.

When Γ = Γ(N), [KM, 10.8.2] computes the scheme of Γ-structures over Z((q)) to be a finite disjoint
union of copies of Spec(Z[ζN ]((q1/N ))), in which the normalization of Spec(Z[[q]]) is a finite disjoint union of
copies of the regular scheme Spec(Z[ζN ][[q1/N ]]). This settles the case of Γ(N).

Let us briefly digress and use the regularity of M Γ(N) to settle part (3) in Theorem 4.1.1. We must
construct a unique CM morphism M Γ(N) → Spec(Z[ζN ]) extending the Weil pairing morphism

(4.1.3) M 0
Γ(N)/Z[1/N ] → Spec(Z[1/N, ζN ]).

That is, we need to uniquely extend ζN to a solution of ΦN (X) = 0 in the ring of global functions on M Γ(N).
Since M Γ(N) is Z-flat and M 0

Γ(N) is the complement of a relative effective Cartier divisor, normality of M Γ(N)

provides the desired unique extension. It is automatic from Theorem 3.3.1 that the resulting morphism
M Γ(N) → Spec(Z[ζN ]) is proper and flat. Since source and target are Cohen-Macaulay, this flat map is
automatically CM. This proves part (3).

Regularity in the case Γ = Γ1(N) will be more complicated than in the case Γ = Γ(N) that has already
been discussed, but the key computation is again to be found in [KM]. By [KM, 7.4.3, 10.5.1(2)], the scheme
of Γ1(N)-structures on Tate1/Z((q)) is

(4.1.4)
∐
Λi

SpecZ[ζN ]((q1/N ))G∩Fix(Λi),

where

G
def=

{(
1 ∗
0 ∗

)
∈ GL2(Z/NZ)

}
,

{Λi} is a set of representatives for the quotient HomSurj((Z/NZ)2,Z/NZ)/G of the set of surjective linear
functionals on (Z/NZ)2, and

Fix(Λi)
def= {g ∈ GL2(Z/NZ) |Λi ◦ g = Λi} .

From the definition in [KM, 10.5] (to which we refer for explicit formulas), the action of GL2(Z/NZ) with
respect to which we take invariants in (4.1.4) is defined on the level of “uncompleted” rings Z[ζN ][q1/N ].

The normalization of Z[[q]] in (4.1.4) is obviously the disjoint union of normal schemes of the form

SpecZ[ζN ][[q1/N ]]G∩Fix(Λi),

so it suffices to check regularity of these schemes at points with residue characteristic p|N . By [EGA,
IV2, 7.8.3(v)], for any excellent ring A and any ideal I of A, the map A → Â to the I-adic completion is a
regular map. In particular, if A is regular then so is Â. Since flat base change (e.g., (·)⊗Z[q] Z[[q]]) commutes
with formation of invariants under the action of a finite group, it is therefore enough to check regularity of
the schemes

SpecZ(p)[ζN ][q1/N ]G∩Fix(Λi).

with p|N .
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Using the method of proof of [KM, 10.10.3], we reduce to replacing N by its p-part, and then [KM, 10.10.4]
settles the three cases p 6= 2, N = 2, and N = 2r with det(G ∩ Fix(Λi)) ≡ 1 mod 4. There remain the cases
in which both the conditions N = 2r with r ≥ 2 and det(G ∩ Fix(Λi)) 6≡ 1 mod 4 hold. For such cases we
may choose the set of representatives

{Λi} = {(a, 0) | 2 - a} ∪ {(a, 1) | 2|a},

so we have

(4.1.5) G ∩ Fix(a, 0) =
{(

1 0
0 ∗

)}
⊆ GL2(Z/NZ)

for odd a and

(4.1.6) G ∩ Fix(a, 1) =
{(

1 x
0 1− ax

)
|x ∈ Z/2rZ

}
⊆ GL2(Z/2rZ)

for even a. Since det(Q ∩ Fix(Λi)) 6≡ 1 mod 4 for each i, when 2|a we see that a/2 is odd.
For the case of odd a, it follows from [KM, 10.3.2] that the elements in (4.1.5) act through the determinant

character on roots of unity and leave q1/N invariant, so the fixed subring is the regular ring Z(2)[q1/N ].
Now suppose that a is even. We use the “upper triangularization” construction [KM, 10.3.4] to put our

groups into a form with respect to which it is easier to compute the subrings of invariants. Applying this
construction to (4.1.6) yields the group

(4.1.7)
{(

1− ax x
0 1

)
|x ∈ Z/2rZ

}
.

The group (4.1.7) acts in a very simple manner on Z(2)[ζN ][q1/N ]:(
r s
0 1

)
: (ζN , q1/N ) 7→ (ζr

N , ζs
Nq1/N ).

We have a = 2a′ for odd a′. The subgroup of (4.1.7) with even x has subring of invariants

Z(2)[i][ζ(q1/2r

)2]

for some ζ ∈ µ2r , with i = ζ2r−2

2r . It is not difficult to check that ζ = ζ
1/a′

2r · im for some m (with
1/a′ ∈ (Z/2rZ)× denoting the inverse of a′). The power of i does not affect this subring of invariants,
so we may take ζ = ζ

1/a′

2r . We need to compute the subring of invariants under the action of(
1− a 1

0 1

)
on Z(2)[i][ζ(q1/2r

)2]. This action is determined by

i 7→ i1−a = i1−2a′ = −i

ζ(q1/2r

)2 7→ ζ1−a(ζ2rq1/2r

)2 = ζ2
2rζ−aζ(q1/2r

)2 = ζ(q1/2r

)2.

Thus, the invariant subring is Z(2)[ζ(q1/2r

)2], and this is regular. �

4.2. Schematic loci.

Theorem 4.2.1. Let Γ = Γ1(N ;n) (resp. Γ(N)) and S = Spec(Z) (resp. Spec(Z[ζN ])), and let M denote
M Γ considered as an Artin stack over S.

(1) The proper flat map M → S has geometrically connected fibers.
(2) Assume n is squarefree if Γ = Γ1(N ;n). There exists an open subscheme M sch whose geometric

points are exactly those of M with trivial automorphism group. If d|N and d ≥ 5 (resp. ≥ 3)
then M /S[1/d] lies inside of M sch and the relative effective Cartier divisor M∞

/S[1/d] ↪→ M /S[1/d] is
relatively ample.
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Remark 4.2.2. This theorem implies that for “large” N , the proper flat Z-schemes X1(N)/Z and X(N)can/Z[ζN ]

defined in [KM] coincide respectively with the stacks M Γ1(N) and M Γ(N)/Z[ζN ], so these are fine moduli
schemes for Drinfeld structures on generalized elliptic curves.

Before we prove Theorem 4.2.1, we must record a lemma concerning contraction maps to “lower level.”
Let M be a positive integer, and let n be a squarefree integer. Assume M ≥ 5 (resp. ≥ 3), and let (E, ι) be
a generalized elliptic curve with Γ1(M ;n)-structure (resp. Γ(M)-structure) over an algebraically closed field
k with characteristic not dividing M . The pair (E, ι) has no non-trivial automorphisms; this is well-known
for the cases of Γ1(M) and Γ(M), and the case of Γ1(M ;n) is reduced to that of Γ1(N) by the final part of:

Lemma 4.2.3. Let N ≥ 1 be an integer and let n be a squarefree integer. Each of the following “contraction
maps” is finite, flat, and surjective with constant rank:

(1) M Γ(N) → M Γ1(N) defined by (E;P,Q) (c(E), P ), with c(E) the contraction away from 〈P 〉,
(2) M Γ(N) → M Γ(d) and M Γ1(N) → M Γ1(d) for d|N , via contraction away from “standard d-torsion

subgroups,”
(3) M Γ1(N ;n) → M Γ1(N) defined by (E;P,C) (c(E), P ), with c(E) the contraction away from 〈P 〉,
(4) M Γ1(N) → M Γ0(N) defined by (E,P ) (E, 〈P 〉).

Proof. Let c : M → M ′ denote any of the contraction maps under consideration in (1), (2), or (3). This
morphism is compatible with the contraction map from each side to M 1. These latter maps to M 1 are
relatively representable, finite, flat, and surjective by Theorem 4.1.1. Thus, c must be finite in such cases.
As both the source and target of c are Z-flat Deligne–Mumford stacks with pure relative dimension 1, with
target regular and source CM, flatness of c is automatic by Lemma 4.1.3. To see that the finite flat c has
constant (positive) rank, we reduce to the trivial case of working over the Zariski-dense open locus in M 0

Γ

where the “level” is invertible. Case (4) follows from Theorem 2.3.7. �

In [O] the theorem on formal functions and coherence for higher direct images are proved for proper
morphisms of Artin stacks. Hence, the Zariski connectedness theorem holds for Artin stacks: Stein factor-
izations of proper maps between locally noetherian Artin stacks have geometrically connected fibers. The
map f : M → S as in Theorem 4.2.1 is proper and flat with smooth generic fiber, so it follows from con-
nectedness and normality of S that f is its own Stein factorization, and hence has geometrically connected
fibers, if the geometric generic fiber of f is connected. Since M∞ is a relative effective Cartier divisor in M ,
and M has fibers of pure dimension 1 over SpecZ, the geometric connectivity of a fiber is a consequence of
geometric connectivity for the complement of M∞ in that fiber. The connectedness of the complex fiber of
M 0 follows (upon adjoining a little level) from comparison with the complex-analytic theory. This completes
the proof that M → S has geometrically connected fibers. This settles Theorem 4.2.1(1).

To see the existence of the open subscheme M sch of geometric points in M = M Γ with trivial automor-
phism group, we just need to prove its existence as a separated open algebraic subspace and then exhibit
M as quasi-finite over a separated scheme. The existence as an algebraic space follows from Theorem 2.2.5
since the automorphism functors of geometric points are étale and M is separated. By Lemma 4.2.3, this
algebraic space contains M /S[1/d] for any factor d of N as in the statement of Theorem 4.2.1. To exhibit
M as quasi-finite over a separated scheme, it suffices to treat M 1. Since M 1 is smooth over Z with geo-
metrically connected fibers of dimension 1, it suffices to construct a map from M 1 to a separated and finite
type Z-scheme such that the map is non-constant on geometric fibers over Z; one such map is the standard
map j : M 1 → P1

Z defined by the generating sections ∆ and c⊗3
4 of ω⊗12

E / M 1
, where E → M 1 is the universal

generalized elliptic curve and ωE / M 1 on M 1 is the pushforward of its relative dualizing sheaf.
We now suppose that there exists d|N such that d ≥ 5 when Γ = Γ1(N ;n) (with squarefree n), and d ≥ 3

when Γ = Γ(N). It remains to check that M∞
/S[1/d] ↪→ M /S[1/d] is relatively ample over S[1/d]. It is enough

to check on geometric fibers over S[1/d] [EGA, IV3, 9.6.4], so it suffices to prove that the divisor M∞ meets
all irreducible components of geometric fibers of M over S[1/d] and does not lie on any intersection of such
components. Since M → M 1/S is relatively representable, finite, flat, and surjective, for each geometric
point s of S we see that every irreducible component of M s maps surjectively onto (M 1)s. The fiber of the
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surjection M s → (M 1)s over the single geometric point of (M∞
1 )s is the “closed subset” underlying M∞

s .
It therefore suffices to check that, on geometric fibers over S, the intersection of any two fibral geometric
irreducible components of M lies in M 0.

Consider the finite flat contraction map

M Γ1(N ;n) → M Γ1(N)

for squarefree n. Both sides are proper and flat with pure relative dimension 1 over Z. Since the contraction
map is finite, for the cases of Γ1(M)-structures and Γ1(M ;n)-structures we reduce to showing that if N ≥ 1
and k is an algebraically closed field then the divisor M∞

Γ1(N)/k ↪→ M Γ1(N)/k does not meet intersections
of distinct irreducible components of M Γ1(N)/k. A similar argument applies to Γ(M)-structures. Thus, by
using the finite flat map M Γ(M) → M Γ1(M) and the isomorphism

M Γ(M)⊗Zk ' M Γ(M)⊗Z[ζM ]k[ζM ]

(with k[ζM ] def= k ⊗Z Z[ζM ]) it remains to prove:

Lemma 4.2.4. The closed substack M∞
Γ(N) ↪→ M Γ(N) lies in the smooth locus of M Γ(N) → Spec(Z[ζN ])

for arbitrary N ≥ 1.

Proof. Recall from the proof of Theorem 4.1.1 that (for N ≥ 1) there is a finite disjoint union decomposition

(4.2.1) M Γ(N)×M 1 SpecZ[[q]] '
∐

Spec(Z[ζN ][[q1/N ]])

as Z[[q]]-schemes. We claim that this isomorphism is compatible with the Z[ζN ]-structure on both sides (using
Theorem 4.1.1 for the Z[ζN ]-structure on the left side). To see this compatibility, by flatness it suffices to
check such compatibility after inverting q. Over Z((q)), the isomorphism (4.2.1) becomes (by construction)
exactly the isomorphism constructed in [KM, 10.8.2]. This isomorphism is defined via the Weil pairing on
the smooth Tate curve over Z((q)), thereby yielding the desired Z[ζN ]-compatibility.

We will use (4.2.1) to establish formal smoothness of universal deformation rings at the cusps. Let k = Q
or Fp, and let W be the corresponding Cohen ring. We want to study the universal deformation rings of
M Γ(N) at a k-point of M∞

Γ(N) (with arbitrary N ≥ 1). To prove that these deformation rings are formally
smooth over W [ζN ], by (4.2.1) it suffices to show that for each local factor ring A of the finite flat W [[q]]-scheme
M Γ(N)×M 1 Spec W [[q]], the morphism Spec(A) → M Γ(N) corresponds to a uniquely algebraized universal
deformation of the induced “geometric point” Spec(k) → M Γ(N). Since the morphism Spec(W [[q]]) → M 1

is a uniquely algebraized universal deformation of the induced geometric point (by Lemma 3.3.5), we are
done because adic completion is compatible with passage to finite algebras over noetherian rings. �

4.3. Formal structure along cusps. We take the level structure Γ to be Γ(N) or Γ1(N ;n) as usual. We
wish to describe the moduli stacks formally near the cusps, at least for Γ1(N) = Γ1(N ; 1). The relative
effective Cartier divisor M∞

Γ is proper, quasi-finite, and flat over Z. By Lemma 2.1.10 and Theorem 2.1.12,
we may make the following definition.

Definition 4.3.1. For any positive integer d, M∞
Γ,d is the open and closed substack in M∞

Γ over which the
universal generalized elliptic curve has d-gon geometric fibers (and hence is fppf-locally isomorphic to the
standard d-gon).

Lemma 4.3.2. The relative Cartier divisor M∞
Γ,d in M Γ is reduced.

Proof. Since all stacks being considered are flat over Z, it suffices to work with the fiber over the generic
point Spec(Q), or even over a geometric generic point. For any local artin ring B with algebraically closed
residue field of characteristic 0, B× is a divisible group. Thus, by Lemma 2.1.10, any generalized elliptic
curve over B that is fppf-locally isomorphic to a standard d-gon is in fact isomorphic to a standard d-gon.
The automorphism scheme of the standard d-gon over Q is étale, so we conclude from considerations with
universal deformation rings that the fiber of M∞

Γ,d over Spec(Q) is étale. Thus, M∞
Γ,d is reduced. �
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In what follows we work out the case Γ = Γ1(N), and the other cases can be done by similar arguments.
(For Γ = Γ1(N ;n) it is necessary to avoid geometric points (E;P,C) in positive characteristic p when E is
non-smooth and C has p-part that is neither étale nor connected, cases that can occur if and only if p2|n.)

For arbitrary N ≥ 1 and d|N , each geometric point of M∞
Γ1(N),d has trivial automorphism functor if d > 2

(as we noted near the end of the proof of Lemma 3.1.8), so by Theorem 4.2.1 the closed substack M∞
Γ1(N),d

lies inside of the maximal open subscheme M sch
Γ1(N) ⊆ M Γ1(N) (over Z!) if d > 2. Thus, it makes sense

to contemplate the formal completion of M Γ1(N) along M∞
Γ1(N),d if d > 2. We will directly compute this

formal completion over Z. The case d ≤ 2 is more subtle. For N ≥ 1, it is straightforward to check (via
study of automorphism functors of geometric points) that M∞

Γ1(N),1 is not a scheme in characteristic p > 0
if and only if N ∈ {ps, 2ps} (with s ≥ 0). Likewise, M∞

Γ1(N),2 is not a scheme in characteristic p > 0 if and
only if N = 2ps (with s ≥ 0).

Definition 4.3.3. We refer to the cases

(N, d) ∈ {(1, 1), (2, 1), (2, 2), (4, 2)}
(i.e., d ≤ 2 and N/d ≤ 2) as the nowhere-schematic cases and

(N, d) ∈ ({(ps, 1) | s > 0} ∪ {(2ps, 1), (2ps, 2) | s > 0})− {(1, 1), (2, 1), (2, 2), (4, 2)}
as the partially-schematic cases (and define δN,d = p in these latter cases). All other cases are called

schematic (with δN,d
def= 1). We do not define δN,d in the nowhere-schematic cases.

In all schematic cases M∞
Γ1(N),d is a scheme, and in the partially-schematic cases M∞

Γ1(N),d is a scheme
when restricted over Z[δ−1

N,d]. In the nowhere-schematic cases, M∞
Γ1(N),d is nowhere a scheme.

Theorem 4.3.4. Choose d|N . The stack M∞
Γ1(N),d is regular of pure relative dimension 0 over SpecZ, and

it is proper, quasi-finite, and flat over Z.
If d > 2 then the scheme M∞

Γ1(N),d is a finite non-empty disjoint union of copies of Spec(Z[ζN/d]), indexed
by pairs (b, r) where b ∈ (Z/dZ)× and r is a positive divisor of d such that r reduces to a unit in Z/(N/d)Z.

Suppose that d ≤ 2. If we are in one of the schematic cases then

M∞
Γ1(N),d ' Spec(Z[ζN/d]+),

where Z[ζM ]+ denotes the ring of integers of the maximal totally real subfield of Q(ζM ). In general there is
a relatively representable degree-2 finite flat covering

(4.3.1) Spec(Z[ζN/d]) → M∞
Γ1(N),d .

In the nowhere-schematic cases this map is finite étale if d = 1 and it is finite étale after inverting 2 if d = 2.
In the partially-schematic cases, the restriction of (4.3.1) over Z[δ−1

N,d] is the degree-2 finite étale covering

Spec(Z[ζN/d][δ−1
N,d]) → Spec(Z[ζN/d]+[δ−1

N,d]).

Proof. The Deligne–Mumford stack M∞
Γ1(N),d over Q is a scheme if and only if d > 2 or N/d > 2. We shall

begin by computing the residue fields at all (possibly stacky) points on this stack. Any Γ1(N)-structure on
the standard d-gon Cd over Q can clearly be defined over Q(ζN ). Thus, all residue fields of M∞

Γ1(N),d over
Q lie inside of Q(ζN ).

First we treat d ≤ 2. By using the embeddings Q(ζN ) ↪→ Q, the Γ1(N)-structure (C1, ζN )/Q(ζN ) induces
all Γ1(N)-structures on C1 over Q. Moreover, two such distinct embeddings yield isomorphic structures
if and only if they are related by complex conjugation on Q(ζN ) since Aut(C1) = 〈inv〉. Thus, M∞

Γ1(N),1

over Q consists of a single (possibly stacky) point with residue field given by Q(ζN )+. When d = 2, the
Γ1(N)-structure (C2, (ζN , 1))/Q(ζN ) induces all Γ1(N)-structures on C2 over Q, up to isomorphism (note
that (C2, (ζN , 1)) and (C2, (−ζN , 1)) are isomorphic to each other). To compute the residue field, we need to
determine which powers ζa

N for a ∈ (Z/NZ)× lie in {±ζN ,±ζ−1
N }. If N/2 is odd then −ζN is not a primitive

Nth root of unity, so the residue field is Q(ζN )+ = Q(ζN/2)+ for such N . If N/2 is even then −ζN = ζ
1+N/2
N

is a primitive Nth root of unity, so the residue field is again Q(ζN/2)+.
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Now suppose d > 2. The geometric possibilities are (Cd, (ζr
N , b)) where b ∈ (Z/dZ)×, r ∈ Z/NZ maps to

a unit in Z/(N/d)Z, and ζN ∈ Q is a fixed choice of primitive Nth root of unity. Using automorphisms of
Q, we may scale r by (Z/NZ)× so as to reduce to considering the list of geometric possibilities with r|N ,
r > 0. Since r is a unit modulo N/d, the pair (b, r) is as in the statement of the theorem. Since b ∈ (Z/dZ)×

and d > 2, clearly b and −b are distinct in Z/dZ. Thus, the possibilities isomorphic to (Cd, (ζr
N , b)) are those

of the form (Cd, (ζra
N , b)) where a ∈ (Z/NZ)× and ζra−r

N ∈ µd(Q). That is, we require (N/d)|r(a− 1). Since
r is relatively prime to N/d, we get exactly the condition a ≡ 1 mod N/d. This subgroup of (Z/NZ)× has
fixed field Q(ζN/d) inside of Q(ζN ). This determines all residue fields at points of M∞

Γ1(N),d over Q, so by
Lemma 4.3.2 this settles the situation over Spec(Q) (except that in the nowhere-schematic cases we have
only determined the residue field at the unique stacky point).

In order to work over Z, recall that the stack M∞
Γ1(N),d is a priori proper, quasi-finite, and flat over Z since

it is a relative Cartier divisor inside of M Γ1(N). Also, the preceding analysis when d ≤ 2 yields canonical
(schematic) morphisms Spec(Z[ζN/d]) → M∞

Γ1(N),d that are automatically finite (equivalently proper, quasi-
finite, and representable) surjections. In view of our calculations over Q, it therefore remains to prove two
things: (i) the stack M∞

Γ1(N),d is regular for any d|N (so (4.3.1) is finite flat, with degree checked to be
2 by working over Q), and (ii) in the nowhere-schematic cases the map (4.3.1) is étale after inverting d.
The étale property over Z[1/2] for d = 2 is obvious, since any degree-2 covering is étale away from residue
characteristic 2. The étale property over Z for d = 1 (and N ≤ 2) follows from the fact that the map (4.3.1)
for such (N, d) is an fppf-torsor for Aut(C1) = Z/2Z (as C1 admits a unique Γ1(N)-structure over any base
scheme when N ≤ 2).

The regularity of M∞
Γ1(N),d for all d|N will follow in general if we can find a regular scheme that is

faithfully flat over the complete local ring of the Deligne–Mumford stack M∞
Γ1(N),d at each Fp-point x for

any prime p. We shall now construct such regular covers.
Let W = W (Fp) and let M d denote the disjoint union of the formal spectra of the complete local rings of

M Γ1(N) at each of the finitely many Fp-points of M∞
Γ1(N),d. Since M Γ1(N) is regular, the affine adic algebra

Ad of M d is regular. By Lemma 2.3.1 and the description of the Q-points of M∞
Γ1(N),d, we can clearly define

a finite set of Γ1(N)-structures on Tated over W [ζN ][[q1/d]] that induce all characteristic-0 geometric points
of M∞

Γ1(N),d, where W [ζN ] def= W ⊗Z Z[ζN ]. Consider the resulting map of finite W [[q]]-algebras

(4.3.2)
∐

Spec(W [ζN ][[q1/d]]) → Spec(Ad).

Both sides admit a finite étale cover that is finite flat over W [[q]] (use Lemma 3.3.5 to see this for Ad). It
therefore follows from Lemma 4.1.3 that the finite map (4.3.2) must be flat. In fact, (4.3.2) is even faithfully
flat. Indeed, since this map is finite flat, hence open and closed, to see the surjectivity it is enough to
work modulo q and to pass to the geometric generic fiber of the resulting finite flat W -schemes. Working
modulo nilpotents, we verify such surjectivity on the geometric generic fibers over Spec W by noting that
the Tate-curve structures in the definition of (4.3.2) were chosen to lift all Γ1(N)-structures on the standard
d-gon over Q. This shows that (4.3.2) is faithfully flat.

By Lemma 4.3.2 and the fact that completion preserves reducedness for excellent schemes, the ideal of
topological nilpotents in Ad cuts out the locus of non-smoothness for the universal family over Spec(Ad).
By Theorem 2.1.12, this ideal in Ad has pullback under (4.3.2) that is equal to (q1/d) because Tated →
Spec(Z[[q1/d]]) has locus of non-smoothness cut out by (q1/d). We conclude via (4.3.2) that each of the
complete local rings of M∞

Γ1(N),d at an Fp-point has a faithfully flat (finite) covering by the regular scheme
Spec(W [ζN ]). �

Remark 4.3.5. For the reader who is interested in §4.4ff., we remark that the remainder of the present section
can be skipped. The only aspect of Theorem 4.3.6 and Theorem 4.3.7 that is required in §4.4ff. is the result
proved above that universal deformation rings at geometric points of M∞

Γ1(N),d admit finite flat covers of the
form W ′[[q1/d]], with W ′ a cyclotomic extension of a Cohen ring W , such that the universal Γ1(N)-structure
over W ′[[q1/d]] is (Tated(ζq1/d), qb/d) with b ∈ (Z/dZ)× and ζ ∈ W ′× some Nth root of unity.
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For a divisor d of N and a unit r ∈ (Z/(N/d)Z)×, let

(4.3.3) Tate1(ζ
−r
N/dq) → Spec(Z[ζN/d][[q1/d]])

denote the base change of Tate1 → Spec(Z[[q]]) by the continuous map Z[[q]] → Z[ζN/d][[q1/d]] determined by
the condition q 7→ ζ−r

N/dq. For d > 1, the generalized elliptic curve (4.3.3) is not regular and does not have
d-gon geometric fibers over q1/d = 0. Its “resolution of singularities” leads to the right generalized elliptic
curves to consider for deformations of a d-gon. To be precise:

Theorem 4.3.6. For N ≥ 1, d|N , and r ∈ (Z/(N/d)Z)×, there is a unique generalized elliptic curve

(4.3.4) Tatereg(ζ−r
N/dq) → Spec(Z[ζN/d][[q1/d]])

that has d-gon geometric fibers over q1/d = 0 and is isomorphic to Tate1(ζ
−r
N/dq)/Z[ζN/d]((q1/d)) over q1/d 6= 0.

Moreover, its locus of non-smoothness is (q1/d) and its base change to Spec(Z[ζN ][[q1/d]]) via ζN/d 7→ ζd
N is

isomorphic to

(4.3.5) Tated/Z[ζN ][[q1/d]](ζ
−r′

N q1/d)

for any r′ ∈ Z/NZ lifting r.
For b′ ∈ (Z/NZ)× lifting b ∈ (Z/dZ)×, the Γ1(N)-structure “qb/d” on Tated/Z[ζN ][[q1/d]](ζ

−r′b′−1

N q1/d)
arising from the canonical splitting (2.5.2) on d-torsion uniquely descends to a Γ1(N)-structure (also denoted
“qb/d”) on the generalized elliptic curve Tatereg(ζ−rb′−1

N/d q).
If d > 2 and we replace r with a (Z/(N/d)Z)×-multiple so that r admits a (necessarily unique) lift r′|d

with r′ > 0, then Tatereg(ζ−rb′−1

N/d q) equipped with the Γ1(N)-structure “qb/d” induces a map

Spec(Z[ζN/d][[q1/d]]) → M Γ1(N)

that lands inside the maximal open subscheme M sch
Γ1(N) and identifies Spf(Z[ζN/d][[q1/d]]) with the (b, r′)-

component of the formal completion of M Γ1(N) along M∞
Γ1(N),d. In particular, this computes the algebraiza-

tion of the formal completion along the (b, r′)-component of M∞
Γ1(N),d for d > 2.

Corollary 2.3.3 ensures that “qb/d” does indeed define a Γ1(N)-structure in the setup over Z[ζN ][[q1/d]]
prior to descent.

Proof. The uniqueness of (4.3.4) follows from the final part of Theorem 2.5.2. We shall prove existence of
(4.3.4) by descent from the faithfully flat cover Z[ζN ][[q1/d]]. Over this larger base, the change of variable
q1/d 7→ ζr′b′−1

N q1/d transforms the existence question into the setting of Theorem 2.5.2 with the Dedekind
domain A = Z[ζN ], which is to say that our problem becomes one of faithfully flat descent of the Γ1(N)-
structure (Tated(ζ

−r′b′−1

N q1/d), qb/d) with respect to the finite faithfully flat covering

(4.3.6) Spec(Z[ζN ][[q1/d]]) → Spec(Z[ζN/d][[q1/d]]).

By Theorem 2.5.2, this Γ1(N)-structure restricts to Tate1(ζ
−rb′−1

N/d q) over Z[ζN ]((q1/d)) (endowed with the
Γ1(N)-structure “qb/d”). Thus, there is an evident descent to Z[ζN/d]((q1/d)), so we get fppf descent data
with respect to the map (4.3.6) after inverting q1/d. Since the typically non-normal ring Z[ζN ]⊗Z[ζN/d] Z[ζN ]
is reduced, Corollary 3.2.5 supplies the fppf descent data without inverting q1/d. To prove effectivity of the
descent of the underlying curve down to Z[ζN/d][[q1/d]], we use flatness over Z[[q]] to check stability of the
ample d-torsion under the descent data (by working over Z((q))). An easy flatness argument shows that the
generalized elliptic curve structure uniquely descends.

It remains to study the properties of the map

(4.3.7) Spec(Z[ζN/d][[q1/d]]) → M Γ1(N)

induced by our descended Γ1(N)-structure for d > 2. Since (4.3.4) has d-gon geometric fibers along q1/d = 0,
and the only open subscheme of Spec(Z[ζN/d][[q1/d]]) that contains q1/d = 0 is the entire scheme, it follows
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from Theorem 4.2.1 that if d > 2 then (4.3.7) does land inside of the maximal open subscheme. The locus of
non-smoothness of (4.3.4) is the closed subscheme cut out by (q1/d) because this is true after the faithfully
flat base change to Z[ζN ][[q1/d]]. Hence, (4.3.7) induces a map

(4.3.8) Spf(Z[ζN/d][[q1/d]]) → M̂ d

to the formal completion of M Γ1(N) along the closed subset M∞
Γ1(N),d that lies in the open subscheme

M sch
Γ1(N). We need to prove that this map of formal schemes is an open and closed immersion (again, with

d > 2). By Lemma 4.3.2 and Theorem 4.3.4, the ideal of topological nilpotents on M̂ d must pull back to
the ideal (q1/d), and this latter ideal cuts out the locus of non-smoothness for (4.3.4) over SpecZ[ζN/d][[q1/d]]
because this may be checked after the scalar extension Z[ζN/d] → Z[ζN ]. Upon passing to ordinary closed
subschemes cut out by these ideals on both sides of (4.3.8) we get an open and closed immersion (by Theorem
4.3.4), and hence the map (4.3.8) on formal schemes is a closed immersion that is a homeomorphism onto
a connected component of the target. Since both source and target have affine adic algebras that are
regular and equidimensional of the same dimension, we conclude that (4.3.8) is indeed an open and closed
immersion. �

To handle d ≤ 2 with N/d > 2 (the partially-schematic cases), we need to find the correct analogues of
(4.3.4) with the cyclotomic integer ring replaced by its totally real subring. In these cases, the “universal
family” is not a Tate curve with a twisted q-parameter as above, but rather is a quadratic twist of such a
curve. We shall treat the cases d = 1 and d = 2 separately.

For d = 1 and N/d > 2, consider the generalized elliptic curve Tate1 → Spec(Z[ζN ][[q]]) equipped with the
Γ1(N)-structure defined by ζN ∈ µN (Z[ζN ]). Since the map

Spec(Z[ζN ][δ−1
N,1]) → Spec(Z[ζN ]+[δ−1

N,1])

is a degree-2 étale Galois covering with covering group determined by ζN 7→ ζ−1
N , the map

(4.3.9) Spec(Z[ζN ][[q]][δ−1
N,1]) → Spec(Z[ζN ]+[[q]][δ−1

N,1])

is also such a finite étale covering. Base change on (Tate1, ζN ) by ζN 7→ ζ−1
N yields the negated Γ1(N)-

structure on the same curve Tate1, so using “negation” on generalized elliptic curves [DR, II, 2.8] yields
étale descent data relative to (4.3.9). The descent is trivially effective, yielding a Γ1(N)-structure on a
quadratically twisted Tate curve that we denote

Tate′1 → Spec(Z[ζN ]+[[q]][δ−1
N,1]).

Now suppose d = 2 and N/d > 2. Rather than doing a quadratic descent on Z[ζN/2][[q1/2]][δ−1
N,2] relative

to the automorphism that fixes q1/2 and satisfies ζN/2 7→ ζ−1
N/2, we want to do a quadratic descent on

Z[ζN/2, δ
−1
N,2][[q

1/2]] with respect to the automorphism determined by

(4.3.10) ζN/2 7→ ζ−1
N/2, q1/2 7→ ζ−1

N/2q
1/2.

This automorphism fixes ζ−1
N/2q, and the subring of invariants is readily computed to be

(4.3.11) Z[ζN/2]+[δ−1
N,2][[(1 + ζ−1

N/2)q
1/2]];

this calculation uses the fact that 1 + ζ−1
N/2 ∈ Z[ζN/2, δ

−1
N,2]

× (recall N/d > 2, so N ≥ 5). If we let

t = (1 + ζ−1
N/2)q

1/2,

then (2 + ζN/2 + ζ−1
N/2)

−1t2 = ζ−1
N/2q, where 2 + ζN/2 + ζ−1

N/2 = ζN/2(1 + ζ−1
N/2)

2 ∈ Z[ζN/2]+[δ−1
N,2] is a unit.

Hence, (4.3.11) is equal to Z[ζN/2]+[δ−1
N,2][[q

1/d]].
Since the map

(4.3.12) Spec(Z[ζN/2, δ
−1
N,2][[q

1/2]]) = Spec(Z[ζN/2, δ
−1
N,2][[(1 + ζ−1

N/2)q
1/2]]) → Spec(Z[ζN/2]+[δ−1

N,2][[q
1/2]])
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is a degree-2 étale Galois covering, we can do descent relative to this covering. Consider the Γ1(N)-structure
on Spec(Z[ζN/2, δ

−1
N,2][[q

1/2]]) defined by “q1/2” on Tatereg(ζ−1
N/2q). Base change by the non-trivial auto-

morphism of (4.3.12) takes this to the Γ1(N)-structure “ζ−1
N/2q

1/2” on the same curve. This is inversion
applied to the original Γ1(N)-structure (to see this algebraically, note that making an fppf base change
to Spec(Z[ζN , δ−1

N,2][[q
1/2]]) and a change of variable q1/2 7→ ζNq1/2 brings us to the visibly inverse Γ1(N)-

structures ζNq1/2 and ζ−1
N q1/2 on Tate2). Thus, we can again carry out a quadratic descent, now getting a

Γ1(N)-structure on a quadratically-twisted descent Tate′2 → Spec(Z[ζN/2]+[δ−1
N,2][[q

1/2]]) of Tatereg(ζ−1
N/2q).

Here is the analogue of Theorem 4.3.6 for d ≤ 2; the first part is a variant on Lemma 3.3.5.

Theorem 4.3.7. For any case with d ≤ 2, Tatereg(ζ−1
N/dq) with its Γ1(N)-structure “q1/d” induces compatible

degree-2 finite flat coverings

(4.3.13) Spec(Z[ζN/d][q1/d]/(q1/d)m+1) → M∞
Γ1(N),d,m

of the mth infinitesimal neighborhood of M∞
Γ1(N),d for all m ≥ 0, and if N/d > 2 then these are finite étale

of degree 2 after inverting δN,d.
For d ≤ 2 and N/d > 2, Tate′d with its descended Γ1(N)-structure induces a map

Spec(Z[ζN/d]+[δ−1
N,d][[q

1/d]]) → M Γ1(N)

that lands inside of M sch
Γ1(N). This map is an algebraization of the formal completion along (M∞

Γ1(N),d)/Z[δ−1
N,d]

and it is compatible with (4.3.13) on infinitesimal neighborhoods.

Proof. The proof is essentially the same as that of Theorem 4.3.6, so we omit the details except to note that
the nowhere-schematic cases (N/d ≤ 2) follow from (4.3.1) and the fibral criterion for flatness, and the cases
when N/d > 2 is neither a prime power nor twice a prime power (that is, δN,d = 1) are treated separately
from the cases when N/d > 2 is a prime power ps or twice such a power for a prime p and an exponent s > 0
(that is, δN,d = p). �

4.4. Integral structure on spaces of modular forms. Let f : E → S be a generalized elliptic curve
and let e ∈ Esm(S) denote its identity section. By [DR, II, 1.6], the pushforward ωE/S of the relative
dualizing sheaf is an invertible sheaf on S whose formation commutes with base change on S, and there
is a canonical isomorphism ωE/S ' e∗(Ω1

E/S) since e is supported in the smooth locus (where Ω1
E/S is the

relative dualizing sheaf). If D ⊆ Esm is a finite locally free subgroup and c : E → E is the contraction
away from D, then c induces an isomorphism near the respective identity sections e and e. Hence, we get a
canonical isomorphism ωE/S ' ωE/S . Roughly speaking, the sheaf ωE/S is insensitive to contraction of E

away from a finite subgroup.
For Γ ∈ {Γ(N),Γ1(N),Γ0(N)}, let EΓ → M Γ be the universal generalized elliptic curve and let ωΓ on

M Γ be the pushforward of the relative dualizing sheaf for EΓ over M Γ. The Z-module H0(M Γ, ω⊗k
Γ ) is

finite and free since M Γ is proper and flat over Z. By Remark 4.1.5, M Γ(N)/Z[ζN ] agrees with the stack
M N over SpecZ[ζN ] constructed by normalization over M 1 in [DR, IV, §3]. Thus, by [DR, VII, §4], if we
use the embedding Z[ζN ] ↪→ C defined by ζN 7→ e2πi/N for a choice of i =

√
−1 ∈ C then we get a canonical

isomorphism

(4.4.1) C⊗Z[ζN ] H0(M Γ(N), ω
⊗k
Γ(N)) ' Mk(Γ(N),C)

to the space of classical modular forms with full level N and weight k ≥ 0. By the same methods, there are
canonical isomorphisms

(4.4.2) C⊗Z H0(M Γ1(N), ω
⊗k
Γ1(N)) ' Mk(Γ1(N),C), C⊗Z H0(M Γ0(N), ω

⊗k
Γ0(N)) ' Mk(Γ0(N),C).

These Z-structures are generally not the same as those defined via integrality for q-expansions at a single
cusp, but they are compatible with the Z-structure (4.4.1) because the canonical maps M Γ(N) → M Γ1(N)

and M Γ1(N) → M Γ0(N) from Lemma 4.2.3 are finite flat and are pullback-compatible with the ω’s.



ARITHMETIC MODULI OF GENERALIZED ELLIPTIC CURVES 43

Let Mk,Z ⊆ Mk(Γ1(N),C) be the image of H0(M Γ1(N), ω
⊗k
Γ1(N)) under (4.4.2). For the finite flat covering

π : M Γ1(N) → M Γ0(N) defined by (E,P )  (E, 〈P 〉), the pullback of EΓ0(N) is naturally identified with
EΓ1(N). Using the canonical isomorphism π∗ωΓ0(N) ' ωΓ1(N), the resulting injection

H0(M Γ0(N), ω
⊗k
Γ0(N)) → H0(M Γ1(N), ω

⊗k
Γ1(N))

via (4.4.2) is compatible with the standard injection of Mk(Γ0(N),C) into Mk(Γ1(N),C). There is an
evident action of (Z/NZ)× on the universal Γ1(N)-structure EΓ1(N) → M Γ1(N), and so there is an induced
action of (Z/NZ)× on ωΓ1(N) covering the action on M Γ1(N). This is compatible with the diamond-operator
action of (Z/NZ)× on Mk(Γ1(N),C).

Lemma 4.4.1. The submodule H0(M Γ0(N), ω
⊗k
Γ0(N)) ⊆ H0(M Γ1(N), ω

⊗k
Γ1(N)) is the submodule of (Z/NZ)×-

invariants.

Proof. The isomorphism ωΓ1(N) ' π∗ωΓ0(N) gives rise to an inclusion

ω⊗k
Γ0(N) ⊆ π∗(ω⊗k

Γ1(N)) ' ω⊗k
Γ0(N) ⊗ π∗OMΓ1(N) ,

so it suffices to prove that OMΓ0(N) is the subsheaf of (Z/NZ)×-invariants in the coherent sheaf π∗OMΓ1(N) .
Since the (Z/NZ)×-invariant morphism π is a finite flat covering of normal Z-flat Artin stacks, it suffices to
work over Z[1/N ]. The map πZ[1/N ] is a finite étale (Z/NZ)×-torsor, so the conclusion is obvious. �

Remark 4.4.2. An element f ∈ Mk(Γ1(N),C) lies in Mk,Z if and only if the q-expansion of f at every cusp
has coefficients that are algebraic integers and the q-expansions at the N -gon cusps have coefficients in Z.
We leave the proof as an exercise.

We now prove Theorem 1.2.2. Let us recall the statement.

Theorem 4.4.3. The maps π0
1 , π0

2 : M 0
Γ1(N ;p) ⇒M 0

Γ1(N) defined by

π0
1(E;P,C) = (E,P ), π0

2(E;P,C) = (E/C, P mod C)

uniquely extend to finite flat morphisms π1, π2 : M Γ1(N ;p) ⇒M Γ1(N).
Likewise, the natural map ξ0 : (π0

2)∗(ωΓ1(N)|M 0
Γ1(N)

) → ωΓ1(N ;p)|M 0
Γ1(N;p)

defined via pullback along the
universal p-isogeny uniquely extends to a map ξ : π∗2ωΓ1(N) → ωΓ1(N ;p) on M Γ1(N ;p).

Remark 4.4.4. In the definition of π0
2 , note that P mod C is a Z/NZ-structure on E/C by Theorem 2.3.2(1)

and Lemma 2.4.4.

Proof. The uniqueness of π1 and π2 follow from the finiteness of Isom-schemes for Γ1(N ; p)-structures (The-
orem 3.2.2) and the normality of M Γ1(N ;p), and the uniqueness of ξ follows from the fact that M∞

Γ1(N ;p) is a
Cartier divisor in M Γ1(N ;p). The problem is therefore one of existence. By Lemma 4.2.3, there is a canonical
finite flat morphism π1 : M Γ1(N ;p) → M Γ1(N) defined by (E;P,C)  (c(E), P ), where c(E) denotes the
contraction away from 〈P 〉. This settles the problem for π1.

Let (E ;P,C ) be the universal Γ1(N ; p)-structure over M Γ1(N ;p), and let Z ⊆ M∞
Γ1(N ;p) be the open and

closed substack whose geometric points (E0;P0, C0) have C0 contained in the identity component of Esm
0

(that is, C0 is the subgroup µp in the standard polygon E0); to see that Z is open and closed we apply
Lemma 2.1.10 to the contraction of E away from C . Concretely, Z classifies the degenerate triples (E;P,C)
such that C has non-trivial intersection with the fibral identity components of Esm. The quotient E /C
makes sense as a generalized elliptic curve away from Z (Example 2.1.6), and as in Remark 4.4.4 we have
a Γ1(N)-structure (E /C ,P mod C ) away from Z . This defines a morphism π′2 : M Γ1(N ;p)−Z → M Γ1(N)

extending π0
2 , and using pullback along the universal degree-p “isogeny” E → E /C away from Z yields a

pullback map ξ′ : (π′2)
∗(ωΓ1(N)) → ωΓ1(N ;p) over M Γ1(N ;p)−Z that extends ξ0. Our problem is to extend π′2

to a morphism π2 : M Γ1(N ;p) → M Γ1(N) and to extend ξ′ to a map of line bundles ξ : π∗2ωΓ1(N) → ωΓ1(N ;p).
We also need to prove that π2 is finite and flat.

Constructing π2 amounts to extending the Γ1(N)-structure (E /C ,P mod C ) over M Γ1(N ;p). To construct
this (unique) extension, we claim that it suffices to work on complete local rings of M Γ1(N ;p) at geometric
points of Z . Such sufficiency follows by taking B = SpecZ, S = M Γ1(N ;p), and M = M Γ1(N) in:
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Lemma 4.4.5. Let B be a scheme, let S be a normal locally noetherian Deligne–Mumford stack over B
whose strictly henselian local rings are G-rings, and let M be a Deligne–Mumford stack over B that is
separated and locally of finite presentation. Let S 0 ⊆ S be a dense open substack and let f0 : S 0 → M be
a morphism over B.

If there exists a morphism f : S → M over B and an isomorphism α : f |S 0 ' f0 then (f, α) is unique
up to unique isomorphism, and such a pair exists if and only if such a pair exists over the completion of the
strictly henselian local ring at each point of S outside of S 0.

Remark 4.4.6. See the end of §2.2, especially Theorem 2.2.8, for a discussion of the G-ring condition on
Artin stacks; in particular, it is equivalent to require that the local rings on one (or every) smooth scheme
covering is a G-ring.

Proof. To prove the uniqueness of (f, α) up to unique isomorphism we may work étale-locally on S , so
we can assume that S = S is a scheme. Let S0 = S 0, so S0 is a Zariski-dense open in S. If (f, α) and
(f ′, α′) are two solutions to the extension problem then they correspond to a pair of objects x and x′ in
the fiber category M S equipped with an isomorphism ι0 = α′ ◦ α−1 : x|S0 ' x′|S0 in M S0 . Since M is a
separated Deligne–Mumford stack, the functor T  IsomM T

(xT , x′T ) on S-schemes is represented by a finite
S-scheme. Hence, since S is normal and S0 is a dense open, an S0-point ι0 of this functor uniquely extends
to an S-point ι. This settles the uniqueness assertion for (f, α).

We now turn to the necessary and sufficient criterion for the existence of (f, α). Necessity is obvious.
Since such a pair over a normal S is unique up to unique isomorphism when it exists, for the proof of
sufficiency we may work locally for the étale topology on S . In particular, we can assume that S = S
is a scheme. Once again, we write S0 to denote S 0. Since M is locally of finite presentation over B, so
the fiber categories of M are compatible with limits of affine schemes over B, by uniqueness and “smearing
out” principles at generic points of S − S0 we may use noetherian induction to reduce to the case when
S = Spec R is local and S0 is the complement of the closed point. We may also replace R with its strict
henselization Rsh that is a G-ring. Hence, we may assume that we have a solution over R̂ and we need to
construct a solution over R when R is (strictly) henselian. Since R is a G-ring, so the flat morphism R → R̂

is regular, Popescu’s theorem [S] ensures that R̂ is a direct limit (with local transition maps) of a directed
system of essentially smooth and residually trivial local R-algebras. Thus, our extension problem can be
solved over a smooth R-algebra A with a rational point z in its closed fiber. There is an R-section through
z because R is henselian and A is R-smooth, so pullback along this section gives a solution over R. �

The same technique shows that the problem of extending ξ (once we extend π2) may also be reduced to
a problem on complete local rings at geometric points. Thus, our problem is the following. Let k be an
algebraically closed field with associated Cohen ring W , and let (E0;P0, C0) be a Γ1(N ; p)-structure with
universal formal deformation ring A. Assume that E0 is a standard d-gon and that C0 is the p-torsion µp in
the identity component of Esm

0 (so 〈P0〉 is ample, and hence d|N). Let (E;P,C) be the algebraized universal
deformation over Spec A, and let I be the ideal corresponding to the locus of non-smoothness for E over
A. By Theorem 4.1.1(1) the ideal I is invertible, say I = aA. We want to prove that the Γ1(N)-structure
(E/C, P mod C) over A[1/a] extends to a Γ1(N)-structure (E,P ) over A and that a generator of ωE/A pulls
back to a section of ωE/A under the isogeny of elliptic curves E|a6=0 → E|a6=0.

The condition on ω’s says that the induced A[1/a]-linear map between cotangent spaces at the origin
over the locus a 6= 0 extends to an A-linear map of cotangent spaces at the origin over Spec A, so this
condition holds if the map on formal groups along the origin over Spec A[1/a] extends over Spec A. Once we
construct a generalized elliptic curve E over A such that E restricts to E/C over A[1/a] and such that the
map E|a6=0 → E|a6=0 extends over A on the level of formal groups at the origin, the problem of constructing
P as a Γ1(N)-structure is equivalent to the problem of constructing a section P ∈ E

sm
(A) that restricts to

P mod C over A[1/a]. Indeed, such an A-section P must be a Z/NZ-structure (as E is A-flat and P mod C
is a Z/NZ-structure over A[1/a]) and we may apply a contraction to force the subgroup 〈P 〉 to be relatively
ample. (Note also that such a contraction has no impact on formal groups along the origin.)
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By Corollary 3.2.3, it suffices to solve our problem after replacing A with a finite flat extension A′ if
(A′ ⊗A A′)/a(A′ ⊗A A′) is reduced (reducedness ensures that the descent data over (A′ ⊗A A′)[1/a] extends
over A′ ⊗A A′, thereby permitting us to canonically return to the initial base Spec A). The special form
of C0 implies that (E0, P0) is a Γ1(N)-structure whose infinitesimal deformation theory coincides with that
of (E0;P0, C0). By Remark 4.3.5, Spec A admits a finite flat covering Spec A′ with A′ = W ′[[q1/d]] for a
cyclotomic extension W ′ of W , and over this covering (E,P ) is identified with (Tated(ζq1/d), qb/d) for a
suitable Nth root of unity ζ ∈ W ′× and a suitable b ∈ (Z/dZ)×. Let us check that (A′⊗A A′)/a(A′⊗A A′) is
reduced for this A′. The locus of non-smoothness over A′ = W ′[[q1/d]] is cut out by the ideal (q1/d), so q1/d is
a unit multiple of a in A′. Hence, (A′⊗A A′)/a(A′⊗A A′) = W ′⊗A/aA W ′. Since A → A′ = W ′[[q1/d]] is finite
flat, passing to the quotient modulo aA implies that A/aA → W ′ is finite flat. Hence, if k has characteristic
0 then A/aA is a field over which W ′ is a finite (separable) extension, and if k has positive characteristic
then A/aA is a W (k)-finite discrete valuation ring over which W ′ is finite flat. In either case, it is clear that
W ′ ⊗A/aA W ′ is reduced. It is therefore sufficient to solve our extension problem over W ′[[q1/d]].

Upon inverting q1/d we may use Theorem 2.5.2 to identify Tated(ζq1/d) with Tate1(ζ
dq) as elliptic curves

over W ′((q1/d)). Due to how this identification over W ′((q1/d)) is defined by means of contraction over
W ′[[q1/d]], it respects the formation of the subgroup µp (as in (2.5.2)) and the formation of the identification
of Ĝm with formal groups along the origin over W ′[[q1/d]].

By Example 2.5.1, we may identify the quotient Tate1(ζ
dq)/µp over W ′((q1/d)) with the elliptic curve

Tate1(ζ
dpqp) that extends to the generalized elliptic curve E = Tatedp(ζq1/d) over W ′[[q1/d]]. (Note that

modulo q1/d this is an iterated blow-up of E along components of Esing.) On formal groups along the origin,
under this identification the quotient map E = Tate1(ζ

dq) → Tate1(ζ
dq)/µp = E/C over W ′((q1/d)) induces

the pth power map on Ĝm over W ′((q1/d)), and hence the map on formal groups extends over W ′[[q1/d]]
as desired. By inspection, P mod C extends to a section in E(W ′[[q1/d]]) whose reduction modulo q1/d is
supported in E

sm
away from the identity component on fibers. This completes the construction of π2 and ξ.

Finally, we must check that π2 is finite and flat. It is clear that π2 is quasi-finite, so it must be flat
(by Lemma 4.1.3). It is likewise clear that π2 is proper, so π2 is finite if and only if π2 is representable in
algebraic spaces. By Corollary 2.2.7 (and Theorem 2.2.5(2)), it suffices to prove that on every geometric
π2-fiber (considered as a stack) the automorphism functor of each geometric point is trivial. Such triviality
of the automorphism functors is obvious away from the cusps, and it is also clear at degenerate geometric
points (E0;P0, C0) lying outside of Z . Thus, it suffices to study the situation at points (E0;P0, C0) over
an algebraically closed field k such that E0 is a standard polygon and C0 is the p-torsion µp in the identity
component of Esm

0 (so 〈P0〉 is ample on E0). The map π1 presents M∞
Γ1(N ;p) as finite over M∞

Γ1(N), and
for such triples (E0;P0, C0) we have π1(E0;P0, C0) = (E0, P0). Thus, M∞

Γ1(N ;p) is an algebraic space near
(E0;P0, C0) if d > 2 since M∞

Γ1(N),d is a scheme when d > 2. For d ≤ 2, it follows from the construction of
π2 that π2(E0;P0, C0) is a level structure on a standard polygon that is a blow-up of E0 in its non-smooth
locus. In particular, this polygon contains Esm

0 as an open subset. Hence, the point (E0;P0, C0) admits
no non-trivial automorphisms as a geometric point of its π2-fiber. Its étale automorphism functor must
therefore be trivial. �

The preceding considerations can be adapted to Γ0(N), as follows. For positive integers N and n such
that ordp(n) ≤ ordp(N) for all primes p| gcd(N,n), a Γ0(N ;n)-structure on a generalized elliptic curve E
is a pair (G, C) with G ⊆ Esm a cyclic subgroup of order N and C ⊆ Esm a cyclic subgroup of order n
such that fppf-locally where G admits a Z/NZ-generator P , the pair (P,C) is a Γ1(N ;n)-structure. Note
that the choice of P does not matter because for any m|N the Cartier divisor

∑
j∈Z/mZ(j(N/m)P + C) is

independent of P (proof: use the fact that universal deformation rings for Γ1(N ;n)-structures are Z-flat and
that functors of Z/NZ-generators of cyclic groups of order N are finite flat over the base; see Theorem 2.3.7).
The map M Γ1(N ;n) → M Γ0(N ;n) is finite flat with degree φ(N), and one infers (using our analogous earlier
results for Γ1(N ;n)) that M Γ0(N ;n) is a proper flat Artin stack over Z that is regular with geometrically
connected fibers of pure dimension 1, and that M∞

Γ0(N ;n) is a Z-flat Cartier divisor in M Γ0(N ;n).
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The map of Artin stacks π̃1 : M Γ0(N ;p) → M Γ0(N) defined by the operation (E;G, C)  (c(E), G)
that ignores C and contracts away from G is easily shown to be representable in algebraic spaces (use
Corollary 2.2.7 and Theorem 2.2.5(2)) and hence it is finite flat (use Lemma 4.1.3 for flatness). The map
π̃0

2 : (E;C,G) (E/C, G mod C) makes sense away from the Cartier divisor M∞
Γ0(N ;p), but to extend it over

M Γ0(N ;p) we cannot use Lemma 4.4.5 because M Γ0(N ;p) is often not Deligne–Mumford. We shall circumvent
this problem by using the map π2 that has already been constructed on the finite flat covering M Γ1(N ;p). Since
M Γ0(N ;p) is normal and M Γ1(N ;p) → M Γ0(N ;p) is finite flat, Corollary 3.2.3 reduces the problem of factorizing
π2 (compatibly with π̃0

2) to checking that M∞
Γ1(N ;p)×M∞

Γ0(N;p)
M∞

Γ1(N ;p) is reduced. Such reducedness is
straightforward because M∞

Γ1(N ;p) → M∞
Γ0(N ;p) is flat (it is a pullback of M Γ1(N ;p) → M Γ0(N ;p)) and the

Z-flat Cartier divisors M∞
Γ1(N ;p) and M∞

Γ0(N ;p) are reduced (Lemma 4.3.2) with generic characteristics equal
to 0. This constructs π̃2. Since π̃2 is compatible with π2, considerations with Corollary 2.2.7 and regularity
of the Artin stacks show that π̃2 is representable in algebraic spaces and in fact is finite flat. The map
ξ̃ : π̃∗2ωΓ0(N) → ωΓ0(N ;p) that is analogous to ξ and extends the evident construction over M 0

Γ0(N ;p) is
constructed by descent of ξ through the finite flat covering M Γ1(N ;p) → M Γ0(N ;p).

4.5. Hecke operators over Z and over Fp. We conclude with some applications to Hecke operators on
spaces of modular forms on Γ1(N). The formation of ω is insensitive to contraction, so there is a canonical
isomorphism π∗1ωΓ1(N) ' ωΓ1(N ;p). Since π1 is finite and flat, there is a natural trace map

Tr : H0(M Γ1(N ;p), ω
⊗k
Γ1(N ;p)) = H0(M Γ1(N), π1∗π

∗
1ω⊗k

Γ1(N)) → H0(M Γ1(N), ω
⊗k
Γ1(N)) = Mk,Z.

The composite map

(4.5.1) Mk,Z = H0(M Γ1(N), ω
⊗k
Γ1(N))

ξ⊗k◦π∗2−→ H0(M Γ1(N ;p), ω
⊗k
Γ1(N ;p))

Tr→ Mk,Z

recovers the operator pTp on the complex fiber.
We wish to give a conceptual proof (without the crutch of q-expansions) that (4.5.1) has image in pMk,Z,

so the Z-structure Mk,Z on Mk(Γ1(N),C) is preserved under all Hecke operators, and we will use the method
of proof to give a direct construction of the Tp-operator on Katz modular forms for Γ1(N) in characteristic
p - N with arbitrary weight (especially weight 1). The global assertion that the map (4.5.1) has image in
pMk,Z follows from the following local assertion:

Theorem 4.5.1. Let K be a separably closed field and let x : Spec K → M Γ1(N) be a map. Let y be a point
in the finite K-scheme π−1

1 (x). Let Rx and Ry denote the corresponding strictly henselian local rings at the
corresponding points of the stacks, so Ry is finite flat over Rx. Let Rπ2(y) denote the strictly henselian local
ring at the K-point π2(y) in M Γ1(N). The composite map

ωΓ1(N),π2(y)
ξy→ ωΓ1(N ;p),y = Ry ⊗Rx

ωΓ1(N),x

Try|x→ ωΓ1(N),x

on stalks has image in p · ωΓ1(N),x.

Proof. We may assume that K has characteristic p, and by normality of the moduli stacks we may ignore
the codimension-2 locus of cusps in characteristic p. We may also work with the local rings modulo p (that
is, we may work on the stacks over Fp), so our aim is to prove that the composite map on stalks modulo
p is 0. The point x corresponds to some Γ1(N)-structure (E0, P0) on an elliptic curve E0 over K, and y
corresponds to a Γ1(N ; p)-structure (E0;P0, C0) over a finite extension of K.

If C0 is multiplicative then the universal p-isogeny over Ry/(p) = Osh
MΓ1(N;p),y

has kernel µp and hence ξy

induces the zero map under pullback on invariant 1-forms in characteristic p. This gives the desired result in
such cases. If C0 is étale (so E0 is ordinary) then we claim that the trace map from Ry/(p) to Rx/(p) is 0,
so once again we get the desired result. It is equivalent to prove the vanishing the trace map on completed
local rings. The R̂x/(p)-algebra R̂y/(p) classifies splittings of the connected-étale sequence of the p-torsion
of the universal ordinary elliptic curve over R̂x/(p). By fppf Kummer theory this cover is given by the
extraction of the pth root of a unit, and ring extensions A → A[X]/(Xp−u) in characteristic p (with u ∈ A)
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have vanishing trace because such vanishing holds in the universal case Fp[u] → Fp[u, X]/(Xp − u) (whose
localization over Fp(u) is a purely inseparable and non-trivial extension of fields). �

Theorem 4.5.1 has a further interesting application in characteristic p. Consider the problem of defining
the Hecke operator T` on the space H0(M Γ1(N)/Fp

, ω⊗k
Γ1(N)/Fp

) of weight-k Katz modular forms mod p. (The
reader may impose the condition p - N , but this property is never used in what follows.) Since the finite
flat Hecke correspondence and the map ξ are defined over Z, by reducing the Hecke correspondence and ξ
modulo p we may use these data to define scaled Hecke operators

`T` : H0(M Γ1(N)/Fp
, ω⊗k

Γ1(N)/Fp
) → H0(M Γ1(N)/Fp

, ω⊗k
Γ1(N)/Fp

)

for all primes `. This global procedure is not useful if ` = p. Moreover, if k = 1 then such forms do not
generally lift into characteristic 0. One way around this problem, used in [G, §4] for p - N , is to “define” Tp

by the same q-expansion formula as in characteristic 0. This approach requires an ad hoc procedure (and
explicit manipulations with q-expansions) to verify that it is well-defined on the space of Katz forms.

We shall now show that the existence of the finite flat Hecke correspondences on moduli stacks over Z (as in
Theorem 1.2.2 and Theorem 4.4.3) provides another approach to the problem that requires no computations,
does not use global liftings (perhaps meromorphic along the cusps), tautologically preserves holomorphicity
along the cusps, and permits q-expansion formulas to be derived by pure thought from characteristic 0 a
posteriori. The intervention of division by p upon the modular correspondence does seem to require the use
of some lifting in the construction for Tp on Katz forms in characteristic p (lifting to something flat over
either Z/(p2) or over Z), but we shall only require liftings on henselian local rings at geometric points.

Let ` be an arbitrary prime. For any Katz form f of weight k and level N in characteristic p and any
morphism x : Spec K → M Γ1(N) with K separably closed of characteristic p, let us first define an element
(f |T`)x in the mod-p stalk ω⊗k

Γ1(N)/Fp,x over the strictly henselian local ring Osh
MΓ1(N),x

= Rx/(p). For every

point y ∈ π−1
1 (x), there is an isomorphism of modules

ω⊗k
Γ1(N),π2(y)/p · ω⊗k

Γ1(N),π2(y) ' ω⊗k
Γ1(N)/Fp,π2(y)

over Rπ2(y)/(p), and likewise for ωΓ1(N ;p),y over Ry/(p), so we may lift fπ2(y) to an element Fπ2(y) in the
stalk ω⊗k

Γ1(N),π2(y), and we can form the finite flat trace

Try|x(ξ(π∗2(Fπ2(y)))) ∈ ω⊗k
Γ1(N),x.

Using Theorem 4.5.1 in case ` = p, this trace lies in ` · ω⊗k
Γ1(N),x. An alternative procedure is to only lift to

the stalk modulo p2. Either way, modulo `p this trace only depends on fπ2(y), so if we divide by ` and reduce
modulo p then the result in characteristic p only depends on fπ2(y). We therefore get a well-defined element

(f |T`)x =
∑

y

(`−1 · Try|x(ξ(π∗2(Fπ2(y))))) mod p ∈ ω⊗k
Γ1(N)/Fp,x.

Since π2 is finite we have π−1
2 (Spec Rx/(p)) =

∐
y Spec Ry/(p), so it follows from the construction of

(f |T`)x that if x′ is a generic point of M Γ1(N)/Fp
specializing to x and we choose a map Rx/(p) → Rx′/(p)

over M Γ1(N)/Fp
then (f |T`)x′ is the image of (f |T`)x under the corresponding localization map of stalks

of ω⊗k
Γ1(N)/Fp

. The stack M Γ1(N)/Fp
is Cohen-Macaulay, so the line bundle ω⊗k

Γ1(N)/Fp
on M Γ1(N)/Fp

is a
Cohen–Macaulay coherent sheaf. Hence, we can “glue” the stalks (f |T`)x to define a global section f |T` via:

Lemma 4.5.2. Let M be a locally noetherian Deligne–Mumford stack and let F be a Cohen–Macaulay
coherent sheaf on M . If sx ∈ Fx is an element in the stalk module over the strictly henselian local ring at
each point x of M , and if the sx’s are compatible under localization, then there exists a unique s ∈ H0(M ,F )
with stalk sx at each x.

Proof. The uniqueness allows us to work locally, so we may assume that M = Spec A is affine. Let M be
the Cohen–Macaulay finite A-module corresponding to F . We may replace A with A/ann(M), so M has
full support on Spec A. We may assume M 6= 0, so A 6= 0. We have to prove that a compatible system
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of elements sp ∈ M ⊗A Ash
p arises from a unique s ∈ M . We may use “smearing out” and étale descent

to construct s, provided that we can test equalities by working in the collection of localizations at minimal
primes (for which there is no room to smear out). Hence, we need that every zero-divisor of M in A lies
in a minimal prime of A. Let q be an associated prime of M , so Mq is a Cohen–Macaulay finite module
with depth 0 and full support over Aq. The Cohen–Macaulay condition says that the depth is equal to the
dimension of the support, so dim Aq = 0 and hence q is minimal. �

Example 4.5.3. Let p be a prime not dividing N and let f be a Katz modular form of weight k ≥ 1 for
Γ1(N) over Fp. Choose a prime ` (possibly ` = p) and choose a primitive Nth root of unity ζ ∈ µN (Fp), and
consider q-expansions via evaluation at (Tate1, ζ) over Fp[[q]] by using the basis (dt/t)⊗k for ω⊗k

Tate1
. Suppose

f(Tate1, ζ) = (
∑

anqn)(dt/t)⊗k, and if ` - N then suppose (f |〈`〉)(Tate1, ζ) = (
∑

bnqn)(dt/t)⊗k. We claim

(f |T`)(Tate1, ζ) =

{
(
∑

n≥1 an`q
n + `k−1

∑
n≥1 bnqn`)(dt/t)⊗k if ` - N,∑

n≥1 an`q
n(dt/t)⊗k if `|N.

These are the well-known formulas from characteristic 0, and to verify them in characteristic p (especially
if ` = p and k = 1) we may work over Fp((q)). Since Tate1 over Fp((q)) is the reduction of Tate1 over
W (Fp)((q)), it is immediate from the method of construction of f |T` via smearing out reductions of étale-
local lifts that the formulas in characteristic p are a formal consequence of their validity in characteristic 0.
Briefly, the crux of the matter is that since π1 is finite flat and π2 is finite, if x′ specializes to x then

Rx′ ⊗Rx
(

∏
y∈π−1

1 (x)

Ry) '
∏

y′∈π−1
1 (x′)

Ry′

(since strict henselization is compatible with passage to finite algebras) and π2(y′) specializes to π2(y) if y′

specializes to y.
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[DR] P. Deligne, M. Rapoport, Les schémas de modules des courbes elliptiques in Modular Functions of One Variable II,

Springer Lecture Notes in Mathematics 349 (1973), pp. 143–316.
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