
PRIME SPECIALIZATION IN HIGHER GENUS II

BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

Abstract. We continue the development of the theory of higher-genus Möbius periodicity
that was studied in Part I for odd characteristic, now treating asymptotic questions and
the case of characteristic 2. The extra difficulties in characteristic 2 are overcome via
rigid geometry in characteristic 0. The results on Möbius periodicity in any positive
characteristic are used to incorporate a correction factor into the false naive conjecture
of Bateman–Horn type concerning how often a polynomial with a higher-genus coefficient
ring takes prime values; numerical evidence is provided to support the suitability of this
correction factor. We also prove some asymptotic and non-triviality properties of the
correction factor.

1. Introduction

Let κ be a finite field with characteristic p > 0, and let C = SpecA be a smooth and
geometrically connected affine curve over κ with exactly one geometric point ξ at infinity
(so ξ is κ-rational). Let K = κ(C) be the fraction field of A. For a ∈ A− {0}, let

(1.1) deg(a) := − ordξ(a) ≥ 0.

For f ∈ A[T ] that is irreducible in K[T ], it is natural to ask how often the ideal (f(a))
in A is prime as deg(a) → ∞. This is only interesting when f(T ) ∈ A[T ] has no local
obstructions: for every maximal ideal m of A the function f : A/m→ A/m is not identically
zero. There is a standard conjecture that applies to this setting, as well as to the more
general case when A is replaced by any ring of S-integers in a global field (with finite S),
and in the case of number fields the numerical evidence looks favorable (even when the
class group is non-trivial). We shall be interested in the case f ∈ A[T p] because in this case
(in striking contrast with what is expected for K-separable f) the statistical properties of
µ(f(a)) are often nonrandom. This seems to influence the likelihood that (f(a)) is prime
and gives counterexamples to the standard conjecture. Such nonrandomness in the case
of genus 0 was used in [4] to construct some 1-parameter families of elliptic curves with
surprising root number variation, and the main purpose of this paper is to prove and apply
precise statistical properties of µ(f(a)) as a varies in a higher-genus coordinate ring.

The study of µ(f(a)) in odd characteristic was taken up in [5] for any f =
∑

i αiT
i ∈ A[T p]

with degT f > 0 such that f is squarefree in K[T ] and f is primitive with respect to A in
the sense that Zf = Spec(A[T ]/(f)) ⊆ C ×A1

κ is quasi-finite over C. Assume in addition
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that f has no local obstructions. Let J be a nonzero ideal of A and consider the function

(1.2) µf,κ,J(n) =

∑
deg a=n,(f(a),J)=1

µ(f(a))∑
deg a=n,(f(a),J)=1

|µ(f(a))|
.

By [13, Thm. 8.1] (applied to a multiple of f by an element of A with order exactly 1 at
each prime factor of J), if n is large enough then the denominator in this average is not zero.
The method used in the proof of Lemma 2.1 below shows that such ineffective largeness
for n can be improved a posteriori to only depend on the genus g of K/κ, the dimension
dimκ(A/J), and the total degree

degu,T f := max
i

(− ordξ(αi) + i).

In Theorem 3.1 we will use the results in [5] to prove the surprising fact that for p 6= 2 the
complicated-looking average function µf,κ,J is a function of n mod 4 when n is sufficiently
large (largeness only depending on the genus, the total degree degu,T f , and dimκ(A/J)),
and that if −1 ∈ κ× is a square or degT f is even then it only depends on n mod 2 for such
large n. Beware that the periodic function of large n defined by (1.2) may change if we
work with the scalar extension of the same data A, f , and J over a finite extension of κ;
see [3, Ex. 6.6, 6.7].

To explain why such mod-4 periodicity is interesting, let If ⊆ A be the nonzero radical
ideal such that Spec(A/If ) ⊆ C is the image in C of the finite branch scheme B for
the generically étale projection Zf → A1

κ. (This projection is generically étale by [5,
Lemma 2.2].) The dimension dimκ(A/If ) may be bounded above in terms of degu,T f and
the genus (see the end of the proof of Lemma 2.1). Our interest in (1.2) is due to the fact
that for p 6= 2 the periodic function 1−µf,κ,If

(n) for large n (and a variant in characteristic
2) appears to be the right correction factor to fix the false standard conjecture of Bateman–
Horn type concerning primality statistics for the ideal (f(a)) ⊆ A with f ∈ A[T p] and a ∈ A
satisfying deg a = n → ∞. This conjecture is formulated in §2, and in the appendix we
test it numerically for examples drawn from curves with genus 1 and 2; the numerics work
out well. We do not expect “Möbius periodicity” to occur for polynomials not in T p. In
Theorem 3.8, for odd p we prove (in a suitable sense) that µf,κ,If

(n) for large n is often not
identically zero.

Since 1− µf,κ,If
(n) is being proposed as a correction factor (when p 6= 2) in a conjecture

whose formulation over number fields does not appear to require a correction factor, it is
natural to ask if, as we vary f or vary κ (with fixed f ∈ A[T p] that is squarefree in K[T ]
and primitive over A), the function µf,κ,If

on Z/4Z is close to 0. Our main result in this
asymptotic direction is:

Theorem 1.1. Assume p 6= 2 and let f ∈ A[T p] and B ⊆ Zf be as above. Choose
c ∈ {0, 1, 2, 3} and let µf,κ,c be the common value of µf,κ,If

(n) for sufficiently large n with
n ≡ c mod 4 (where the largeness depends only on the genus and degu,T f).

As [κ′ : κ]→∞, µf,κ′,c tends to 0, 1, or −1. Moreover, if the branch scheme B has odd
length at some point then µf,κ′,c → 0 as [κ′ : κ]→∞ for all c ∈ {0, 1, 2, 3}.

In §3 (resp. §6) we give the proof of Theorem 1.1 (resp. the proof of the analogue of
Theorem 1.1 for p = 2). By Theorem 3.6 below, for p 6= 2 and f ∈ A[T p] generic in suitable
algebraic families of polynomials there exists some x ∈ B such that `(OB,x) is odd (and
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even a power of p). Hence, for such “generic” f we have 1− µf,κ′,c → 1 as [κ′ : κ]→∞ for
all c ∈ {0, 1, 2, 3} when p 6= 2. This fits well with the philosophy in the work of Nick Katz
according to which the “large finite field limit” should reflect behavior similar to what is
expected over number fields. We also emphasize, as was noted above, that in Theorem 3.8
we prove (for p 6= 2) that our Möbius correction factor is usually nontrivial over large finite
fields as f varies in suitable algebraic families. At the end of §6 we address analogues of
our asymptotic and non-triviality results for p = 2.

We now give a brief outline of the paper. In §2 we formulate our corrected higher-genus
conjecture of Bateman–Horn type. In §3 we use Möbius periodicity to study three aspects
of our correction factor in odd characteristic: (i) its periodicity, (ii) its asymptotic structure
for a single f ∈ A[T p] (considered over κ′/κ with [κ′ : κ] → ∞) as well as “on average”
for f varying in suitable families, and (iii) its non-triviality “on average” for varying f over
large finite fields. The case of characteristic 2 is treated in §4–§6; the main difficulty here
is to find and work with suitable 2-adic liftings (which we analyze via formal and rigid
geometry). The appendix addresses numerical testing of our modified conjecture in §2.

Notation and Terminology. Our notation and terminology is largely as in [5]. For
a nonarchimedean place v on a global field (for us, this will always be a function field over
a finite field), Nv denotes the size of its residue field. We will also use the symbol N in
notation for the size of other residue rings or for a norm map between certain rings. The
context should make clear the type of norm that is meant.

If R → R′ is a map of rings and M is an R-module (or R-algebra) then MR′ denotes
R′ ⊗R M .

2. Higher-genus conjectures

Let k be a perfect field with characteristic p > 0 and let C = SpecA be a smooth affine
geometrically connected curve over k with one geometric point ξ at infinity. Let K = k(C),
and let f ∈ A[T p] be squarefree in K[T ] and primitive with respect to A. Also assume
degT f > 0. We let g denote the genus of the smooth compactification C of C, and we write
V d to denote the affine space associated to the vector space Vd = L(d · ξ) for d ∈ Z. For
d ≥ 0, let V 0

d = Vd − Vd−1 and let V 0
d = V d − V d−1.

Lemma 2.1. For d ≥ 2g there is a nonempty Zariski-open subset Ud in V 0
d such that for

all perfect extensions k′ of k, Ud(k′) is the set of a ∈ V 0
d(k

′) ⊆ k′ ⊗k A such that f(a) is
squarefree in k′ ⊗k A.

If k is infinite or if k is finite and f has no local obstructions (i.e., the specialization
fc ∈ κ(c)[T ] is a nonzero function on κ(c) for all c ∈ C), then Ud(k) is nonempty for large
d (with largeness only depending on the total degree degu,T f and the genus g).

Proof. Assume that d ≥ 2g and define Ud to be the Zariski-open complement of the union
of the loci defined by the conditions “a(c) = t” on points a of the hyperplane complement
V 0

d, where x = (c, t) ranges over points in the finite branch scheme B for the generically
étale projection from Zf ⊆ C ×A1

k to A1
k, where Zf is the zero scheme of f ∈ A[T ]. (See

[5, Lemma 2.2] for a proof that Zf → A1
k is generically étale on Zf .) To make explicit that

the condition “a(c) = t” on a is an algebraic condition on V 0
d, we use the norm-polynomial

function Px,d(a) = Nk(x)/k(a(c)− t) on V d. More precisely, the construction

Px,d(a) = Nk′⊗kk(x)/k′(a(c)− t) ∈ k′
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for any k-algebra k′ and a ∈ k′ ⊗k Vd ⊆ k′ ⊗k A defines an algebraic function V d → A1
k

whose vanishing locus away from the hyperplane V d−1 defines the condition “a(c) = t”;
V d−1 is a hyperplane in V d because d ≥ 2g. Thus, we may take Ud to be the intersection
of the nonvanishing loci of the Px,d’s on V 0

d for x ∈ B. This is not empty because for each
x ∈ B the Riemann–Roch theorem ensures that Px,d 6= 0 for d ≥ 2g. If B = ∅ then we
understand Ud to be V d. By [5, Theorem 2.5], Ud has the desired interpretation for its
points with values in perfect extensions of k.

Since Ud is a nonempty open in an affine space over k for d ≥ 2g, it has k-rational points
when k is infinite. If k is finite and f has no local obstructions, to show Ud(k) is nonempty
(provided d is large enough, only depending on degu,T f and g) we use the one-variable
case of a general theorem of Poonen [13, Thm 8.1] concerning squarefree specializations of
squarefree polynomials in several variables over function fields of curves over finite fields.
To formulate Poonen’s result in our situation, for each closed point c ∈ C define

nc = #{α ∈ OC,c/m
2
c | f(α) = 0}.

Since f has no local obstructions, nc < N(c)2 for all c. Poonen’s theorem says

lim
n→∞

#{a ∈ A | − ordξ(a) ≤ d, f(a) squarefree}
(q − 1)qd−g

=
∏
c

(
1− nc

N(c)2

)
,

with the infinite product absolutely convergent, and in particular nonzero (the local factors
are nonzero and Poonen shows nc = O(1) as N(c)→∞). Letting P > 0 denote this infinite
product, by subtracting consecutive terms in the limit we get

lim
d→∞

#{a ∈ A | − ordξ(a) = d, f(a) squarefree}
(q − 1)qd−g

=
(

1− 1
q

)
P > 0.

The numerator is #Ud(k), so we get the desired result for ineffective large d.
By [5, Thm. 2.5], the condition that f(a) is squarefree only depends on a mod I, where

I = If is defined as above Theorem 1.1. The preceding limit calculation shows that this
collection of congruence classes modulo I is not empty, and by the Riemann–Roch theorem
each such congruence class admits a representative with any desired large pole order at ξ
with largeness only depending on the genus and dimκ(A/I). Hence, we just have to bound
this dimension in terms of g and degu,T f . By construction, dimκ(A/I) is bounded above by
the length of the branch scheme for the generically étale projection from Z = Zf ⊆ C ×A1

to A1, so it is enough to bound the length of the branch scheme in terms of g and degu,T f .
If we let D : A → A be a nonzero k-linear derivation that has zero locus on C disjoint
from the zeros of I then the branch scheme is contained in the overlap scheme Zf ∩ ZDf

that is finite. By intersection theory on C × P1, the length of this overlap is bounded
above in terms of degu,T f and the degree of the zero-scheme Z(D) of D. By choosing D
appropriately, we may bound deg(Z(D)) in terms of the genus. �

Now assume that k = κ is finite, and we shall formulate a conjecture over A that is
analogous to the one given in [3, Conj. 6.2] in the case A = κ[u]. The reasonableness of
the conjecture will rest on the Möbius periodicity theorems in [5] in odd characteristic and
the variants proved later in this paper (in §6) for p = 2. The conjecture provides a natural
context for why such Möbius periodicity is useful and interesting. Another context is the
parity problem in sieve theory, as we explained in [5, §1].
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Pick f ∈ A[T ] that is squarefree in K[T ] and has no local obstructions; that is, for each
place v of K distinct from the point ξ at infinity, we assume that the number

ωf (v) := {a ∈ κ(v) | f(a) = 0}

of roots of f in κ(v) is strictly smaller than Nv = #κ(v). Define the infinite product

(2.1) CA(f) =
1

Res(A)

∏
v 6=ξ

1− ωf (v)/Nv
1− 1/Nv

,

where Res(A) is the residue at s = 1 for the zeta-function ζA of SpecA and the product runs
over the places of K other than the unique point at infinity ξ for SpecA. The product over
v in (2.1) is generally only conditionally convergent, so it is understood to be an iterated
product

∏
n≥1

∏
Nv=n(·) running over v according to increasing values of Nv. Since ξ is κ-

rational, ζA(s) = L(q−s)/(1− q · q−s) with L(t) a polynomial and q the size of the constant
field κ of A. Obviously Res(A) = L(1/q)/ log q = hC/q

g log q, where hC = #Pic0
C/κ

(κ).
Assume p 6= 2 and f ∈ A[T p]. For any nonzero ideal J of A, let

(2.2) ΛA,J(f ;n) = 1−

∑
deg a=n,(f(a),J)=1

µ(f(a))∑
deg a=n,(f(a),J)=1

|µ(f(a))|
.

As we saw in the Introduction, the denominator of ΛA,J(f ;n) is nonzero for n � 0, with
largeness that only depends on degu,T f , the genus g, and dimκ(A/J). We will generally
restrict attention to the case when J is a nonzero multiple of the radical ideal I = If whose
zero locus on C is the image in C of the finite branch scheme B for the generically étale
projection Zf → A1

κ. Since p 6= 2, Theorem 1.1 (proved in §3) tells us that for any nonzero
multiple J of I and for sufficiently large n (only depending on degu,T f , the genus, and
dimκ(A/J)) the function ΛA,J(f ;n) is periodic in n with period 1, 2, or 4; the more precise
formulation in Theorem 3.1 also gives that the periodic sequence of values of ΛA,J(f ;n) for
large n is independent of J .

Now consider p = 2 with f ∈ A[T 4]. Theorem 6.13 gives similar periodicity assertions for
the analogue of (2.2) when J is taken to be any nonzero multiple of the radical of a certain
nonzero (typically non-radical) ideal If,κ ⊆ A replacing the role of the ideal I in the case
of odd characteristic. Moreover, for any finite extension κ′/κ the ideal κ′ ⊗κ If,κ ⊆ κ′ ⊗κ A
is a multiple of If,κ′ . (The definition of If,κ is given in terms of the mod-2 reductions of
certain radical characteristic-0 ideals constructed on 2-adic lifts of C; see Definition 6.4.)
The finite zero-scheme of If,κ on C has degree that is bounded in a manner only depending
on degu,T f and the genus, not on κ. By Corollary 6.7, if we write f = h(T 2) with h ∈ A[T 2]
then in the “generic” case that f has squarefree leading T -coefficient in A (e.g., f is monic
in T ) the radical of If,κ is equal to the radical ideal Ih whose zero locus on C is the
image in C of the finite branch scheme of the generically étale projection Zh → A1

κ. Thus,
ΛA,If,κ

(f ;n) = ΛA,Ih
(f ;n) for such f .

To simplify notation, we shall write ΛA(f ;n) for large n to denote the common periodic
function ΛA,J(f ;n) for large n and any nonzero multiple J of I = If (resp. of Rad(If,κ))
when p 6= 2 (resp. p = 2); if we are interested in uniform largeness statements as we vary
f or the finite base field then we shall take J = I (resp. J = Rad(If,κ)). Often we will
only be interested in considering sufficiently large n, so the use of the notation ΛA(f ;n)
(suppressing mention of J) will not create confusion.
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For nonzero a ∈ A, set N(a) := #(A/(a)) = qdeg a with q = #κ.

Conjecture 2.2. Pick f(T ) ∈ A[T ]. Assume the following two conditions:
1) f(T ) is irreducible in K[T ],
2) f(T ) has no local obstructions.
Let πf (n) = #{a ∈ A : deg a = n, (f(a)) is prime}. If f is separable over K then as

n→∞,

(2.3) πf (n) ?∼ CA(f)
∑

deg a=n

1
log(N(f(a)))

.

If f is inseparable over K, with f(T ) ∈ A[T 4] if p = 2, then as n→∞,

(2.4) πf (n) ?∼ ΛA(f ;n)CA(f)
∑

deg a=n

1
log(N(f(a)))

.

Remark 2.3. One can give an alternative conjecture that treats the separable and insepa-
rable cases on an equal footing and is equivalent to Conjecture 2.2 under a reasonable but
unproved “randomness” hypothesis on µ(f(a)) for K-separable f ∈ A[T ]. Such an alterna-
tive conjecture is stated in [3, Rem. 6.3] for the case of genus 0, and its formulation carries
over to any genus in a straightforward manner. We also note that although

(2.5)
∑

deg a=n

1
log(N(f(a)))

∼ (q − 1)qn−g

n(log q) degT f

as n → ∞ (by Riemann–Roch), where g is the genus of the function field K/κ, we do not
use this asymptotic estimate in numerical examples in the appendix because it gives poor
accuracy for n in the range that can be used on a computer.

For A = κ[u], Conjecture 2.2 for inseparable f is illustrated by numerical examples in
[3, §6]. In the appendix we illustrate Conjecture 2.2 in examples with genera 1 and 2. This
numerical data supports the use of the eventually periodic sequence ΛA(f ;n) as a correction
factor in (2.4). If 0 is in the periodic sequence of values of ΛA(f ;n) for large n then the
interpretation of (2.4) is that πf (n) = 0 when ΛA(f ;n) = 0 and n � 0; this particular
instance of (2.4) is easy to prove by unwinding the definition of ΛA(f ;n), as we did in
[3, §6] for A = κ[u].

3. Möbius periodicity and asymptotics in odd characteristic

The following result will be essential for our later formulation of satisfactory asymptotic
questions as we increase the constant field and consider the typical structure of averages of
µ(f(a))’s for f varying in certain families of polynomials.

Theorem 3.1. Assume p 6= 2 and let f ∈ A[T p] be squarefree in K[T ] and primitive with
respect to A. Let the nonzero radical ideal I = If ⊆ A have zero locus on C = SpecA
equal to the image in C of the finite branch scheme B of the generically étale projection
Zf = Spec(A[T ]/(f)) → A1

κ. Assume moreover that f has no local obstructions: for all
c ∈ C = Spec(A), the nonzero specialization fc ∈ κ(c)[T ] does not vanish as a function on
κ(c). Let J be any nonzero multiple of I.

There exists an n0 only depending on the genus g of K/κ, the total degree degu,T f , and
dimκ(A/J) such that for all n ≥ n0 there exists a ∈ A with deg a = n such that (f(a), J) = 1
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and µ(f(a)) 6= 0. Moreover, by choosing this n0 suitably we can arrange that

(3.1) n 7→

∑
deg a=n,(f(a),J)=1

µ(f(a))∑
deg a=n,(f(a),J)=1

|µ(f(a))|

is periodic in n ≥ n0 with period dividing 4. If −1 is a square in κ× or degT f is even then
the period divides 2.

For any two nonzero multiples J1 and J2 of I, the functions defined by (3.1) for J = J1

and J = J2 are equal for n ≥ n′0 with n′0 determined by degu,T f , the genus g, and the
dimκ(A/Ji)’s.

Proof. Fix a κ-basis ε = {εi}i≥1 for A with − ordξ(εi) strictly increasing in i, and for any
n ≥ 2g and a ∈ V 0

n = L(nξ)− L((n− 1)ξ) define lead(a) ∈ κ× to be the εn+1−g-coefficient
in the expansion of a with respect to the basis ε. (This is analogous to a leading coefficient
in the sense of a Laurent expansion for a at ξ.) We view the vector space A/I as an affine
space V over Specκ, and for each x = (ux, tx) ∈ B ⊆ C ×A1 we view the norm operations
Px : h 7→ Nκ(x)/κ(h(ux)− tx) as algebraic functions on V in the evident manner. Define an
algebraic function L on V by

(3.2) L =
∏
x∈B

P ex
x = (h 7→ NB/κ(h− T )),

with ex = `(OB,x). By [5, Thm. 1.4, Thm. 3.1, (3.14)] we get that for all sufficiently large
n (only depending on g and degu,T f) and all a ∈ A with deg a = n,

µ(f(a)) = (−1)dim(A/(lead f))+n degT fχ(bn(lead a)en)χ(L(a mod I))
= c0c

n
1χ(bn(lead a)en)χ(L(a mod I)),(3.3)

where c0 = (−1)dim(A/(lead f)), c1 = (−1)degT f , χ is the quadratic character of κ× (χ(0) = 0),
and the elements en ∈ Z and bn ∈ κ× depend on the choice of ε. By [5, Thm. 3.6], en mod 2
is independent of ε and only depends on n mod 2, and if en is even then bn mod (κ×)2 is
independent of ε and only depends on n mod 4 (and only depends on n mod 2 if moreover
−1 is a square in κ× or degT f is even).

Let RJ ⊆ A be a set of representatives for A/J ; this set may be chosen so that each of
its members has degree (i.e., pole order at ξ) bounded above in terms of g and dimκ(A/J).
We restrict attention to n large as above and also larger than the degrees of the elements
in RJ . Hence, for a ∈ V 0

n with representative Ra ∈ RJ for the residue class of a in A/J we
have a−Ra ∈ J ∩ V 0

n and lead(a) = lead(a−Ra).
For each R ∈ RJ , as a runs over (R + J) ∩ V 0

n = R + (J ∩ V 0
n ) we see that a − R runs

through J ∩ V 0
n with each possible value of lead(a) ∈ κ× realized equally often. Also, the

condition (f(a), J) = 1 is equivalent to the condition (f(Ra), J) = 1 since a ≡ Ra mod J .
Thus, upon substituting (3.3) into the numerator and denominator on the right side of
(3.1), the numerator of (3.1) equals

c0c
n
1

∑
Q∈J∩V 0

n

∑
χ(L(r mod I)) 6=0

f(r)∈(A/J)×

χ(bn(leadQ)en)χ(L(r mod I)),
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where the inner sum runs over r (which is ranging through A/J). This double sum equals
the product

(3.4) χ(bn)
∑

χ(L(r mod I)) 6=0

f(r)∈(A/J)×

χ(L(r mod I)) ·
∑

Q∈J∩V 0
n

χ(leadQ)en .

We fix the congruence class of n modulo 4 (resp. modulo 2 if −1 is a square in κ or if degT f
is even), so by taking n to be large as above we may suppose that the parity of en is fixed.

Case 1: Suppose en is even. The terms in the second sum in (3.4) all equal 1, so (3.1)
equals

(3.5) c0c
n
1χ(bn) ·

∑
χ(L(r mod I)) 6=0,f(r)∈(A/J)×

χ(L(r mod I))

#{r ∈ A/J |χ(L(r mod I)) 6= 0, f(r) ∈ (A/J)×}
,

where the dependence on n only occurs in cn1χ(bn). By the evenness of en, the sign χ(bn)
is independent of ε and only depends on n mod 4 (or n mod 2 if −1 is a square in κ× or
degT f is even), so we have the desired dependence on n mod 4 for the large n that we
are considering (and the dependence is on n mod 2 if −1 is a square in κ× or degT f is
even). To establish the independence of the choice of J in this case (for large n with en
even), we show that (3.5) is independent of this choice. Write the multiple J of I in the
form J = J ′J ′′ with J ′ having the same prime factors as I and (I, J ′′) = 1. The ring A/J
decomposes as a product (A/J ′) × (A/J ′′). Under this decomposition, write r as (r′, r′′).
Then χ(L(r mod I)) = χ(L(r′ mod I)), and f(r) ∈ (A/J)× if and only if f(r′) ∈ (A/J ′)×

and f(r′′) ∈ (A/J ′′)×. Therefore the numerator and (nonzero) denominator sums in (3.5)
are each given by multiplying the product

(3.6) [I : J ′] ·#{r′′ ∈ A/J ′′ | f(r′′) ∈ (A/J ′′)×}
against the numerator and denominator sums in (3.5) with I in the role of J . The common
factor (3.6) cancels out in the ratio.

Case 2: Suppose en is odd. We claim that (3.1) vanishes, or more specifically that the
second sum in (3.4) vanishes. As we noted above, each element of κ× arises equally often in
the form leadQ as Q ranges over J ∩ V 0

n , so this second sum is a multiple of the character
sum for χ over κ×. This character sum vanishes since χ is nontrivial. �

Remark 3.2. With notation and hypotheses as above, consider the set of nonzero ideals
J of A such that for a, a′ ∈ A with deg(a),deg(a′)� 0,

(3.7) a ≡ a′ mod J,
a

a′
∈ (K×

ξ )2, deg(a) ≡ deg(a′) mod 4⇒ µ(f(a)) = µ(f(a′)).

One such ideal is J = I, by [5, Thm. 1.2]. It is obvious that if J1 and J2 are two such
ideals then (J1, J2) is another such ideal. Hence, there is a minimal such ideal I0 and I0|I.
(For example, in the notation of [3, Def. 3.4, Thm. 4.8], for A = κ[u] we have I = (Mgeom

f )
and I0 = (Mmin

f,κ ).) By (3.3), the nonzero ideals J that “work” in (3.7) are precisely
those such that the set-theoretic function a 7→ χ(L(a mod I)) only depends on a mod J .
Thus, Theorem 3.1 remains true (with the same proof) if we replace I with I0 throughout.
However, the formation of I is compatible with finite extension on κ whereas the formation
of I0 generally is not.

For p 6= 2, we define µf,κ(n) to be (3.1) for large n with J = I (though any nonzero
multiple J of I gives a function with the same tail). The periodic part of this function is
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its periodic sequence of values µf,κ(n) for large n, and this largeness only depends on the
genus g and the total degree degu,T f .

Corollary 3.3. Any nonzero terms in the periodic part of µf,κ are equal up to sign.

Proof. By the proof of Theorem 3.1, a nonzero term occurs for n� 0 only when en is even.
An alternative expression for µf,κ(n) in this case is (3.5) with J = I, in which changing
n mod 4 only affects the term cn1χ(bn) with c1 = ±1. This is at most a sign change. �

Corollary 3.4. Suppose the periodic part of µf,κ is not identically 0 but contains 0. Then 0
occurs in alternate terms of the periodic part and for any finite extension κ′/κ the periodic
part of µf,κ′ vanishes at any large n where the periodic part of µf,κ vanishes.

Proof. If n is large and en is odd then µf,κ(n) = 0 by Case 2 in the proof of Theorem 3.1. If
instead en is even then µf,κ(n) = 0 if and only if the numerator sum in (3.5) vanishes, but
this vanishing is independent of n so such vanishing means that µf,κ(n) = 0 for all large n.
Therefore, if the periodic part of µf,κ contains 0 but is not identically 0 then it vanishes at
the nth term (for large n) if and only if en is odd. Since the parity of en is determined by
n mod 2 for large n [5, Thm. 3.6], the terms in the periodic part are alternately zero and
nonzero in such cases.

If κ is replaced by a finite extension κ′ then by construction (see [5, (3.14)]) en mod 2
does not change, so for n� 0 (with largeness only depending on g and degu,T f) the Möbius
average in degree n over κ′ vanishes if the Möbius average in degree n over κ vanishes. �

Since en mod 2 only depends on n mod 2 for large n, the proofs of Corollaries 3.3 and 3.4
show that in the periodic part of the sequence {ΛA(f ;n)}n�0 at most two values other than
1 can occur, and that if two such values do occur then their average is 1 (e.g., the empirical
pattern for ΛA(f ;n) in Example A.6 that we expect to be the periodic part is 8/9, 1, 10/9, 1).
Corollary 3.4 says that any 1’s in {ΛA(f ;n)}n�0 show up in alternate terms if the tail of this
sequence is not identically 1 and that in such cases an extension of the constant field will
not change any such 1’s into other numbers. For example, in [3, Ex. 6.6] we calculated that
{ΛF3[u](T 3 + u;n)}n�0 has periodic part 1,2,1,0 and {ΛF9[u](T 3 + u;n)}n�0 has periodic
part 1,0,1,0. The following corollary and Case 1 in its proof yield Theorem 1.1.

Corollary 3.5. Fix κ and f ∈ A[T p] as above with p 6= 2, and choose c ∈ {0, 1, 2, 3}. Let
µf,κ,c = µf,κ(n) for large n with n ≡ c mod 4. For finite extensions κ′/κ, the Möbius average
µf,κ′,c either tends to 0 as [κ′ : κ]→∞ or lies in {±1} for all κ′ with value depending only
on the parity of [κ′ : κ].

Proof. Fix a κ-basis ε of A as in the proof of Theorem 3.1. The exponents {ex}x∈B in
(3.2) are unchanged when κ is replaced by a finite extension, although extending κ may
decompose a given point x into several xi’s, where exi = ex. Likewise, by construction, the
exponent en in (3.3) that only matters modulo 2 is unaffected by replacing κ with a finite
extension, and en mod 2 only depends on n mod 2 for large n ≡ c mod 4 (uniformly with
respect to κ′/κ), so en mod 2 for such n is determined by c. Let σc = (−1)en for such n.
There are three cases to consider (and each case is stable under finite extension on κ):

Case 1: Assume some ex is odd (so in particular, the finite branch scheme B for the
generically étale projection Zf → A1

κ is nonempty). If σc = −1, so en is odd for large
n in our fixed residue class c mod 4, then the Möbius average µf,κ′,c vanishes for all finite
extensions κ′/κ (see the proof of Corollary 3.4). Assume now that σc = 1, so µf,κ,c is given
by (3.5) with J = I and large n satisfying n ≡ c mod 4. We are going to show that, as κ
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is replaced by finite extensions κm with degree m tending to ∞, the absolute value of (3.5)
computed for Aκm with J = Iκm is O(q−m/2), where q = #κ, so it tends to 0 as m→∞.

We interpret (3.5) in terms of point-counting on varieties to get an estimate on its size.
We will ignore the factor c0cn1χ(bn), which has absolute value 1 anyway. Let A be the
ring scheme over κ corresponding to the finite κ-algebra A/I, and let A × be its algebraic
unit group. Let L be the nonzero algebraic function on A given by (3.2), and let U be the
non-vanishing locus of L on the preimage of A × under the evaluation mapping f : A → A .
Since f is primitive with respect to A, clearly f−1(U) 6= ∅. Let V be the finite étale double
cover of U given by the square root of L|U . Since some ex is odd, V is geometrically integral
over κ.

We have dimU = dimV (= dimκ(A/I)). Call this common dimension d. Pick a finite
extension κm/κ of degree m and consider (3.5) over κm. The denominator in (3.5) over
κm is #U(κm) and the numerator in (3.5) over κm is #V (κm) − #U(κm). The Lang–
Weil estimate [11] may be applied to U and V since each is geometrically integral over
κ, and the resulting estimate for each of #U(κm) and #V (κm) as m → ∞ is the same:
qmd +O(qm(d−1/2)). Hence, (#V (κm)−#U(κm))/#U(κm) = O(q−m/2).

Case 2: If σc = −1 then the Möbius averages µf,κ′,c all vanish (as in Case 1).
Case 3: Assume all ex’s are even and σc = 1. Since the ex’s are even, for any r ∈ A/I

the value of χ(L(r)) is 1 if it is nonzero. Therefore the numerator and denominator of (3.5)
are equal, which means that for n ≡ c mod 4 with n large we have

µf,κ,c = µf,κ(n) = c0c
n
1χ(bn) = (−1)dim A/(lead f)(−1)n degT fχ(bn) = ±1.

If κ is replaced by an odd degree extension κ′ then the quadratic character of bn in the
extension is unchanged, so µf,κ′,c = µf,κ,c. If κ is replaced by an even degree extension κ′

then the quadratic character of bn becomes 1, so

µf,κ′,c = (−1)dim(A/(lead f))+n degT f = (−1)dim(A/(lead f)) · (−1)c degT f .

�

What does the proof of Corollary 3.5 say about the common value in {ΛA(f ;n)}n�0

indexed by large n in a fixed congruence class modulo 4 as κ is replaced by finite extensions
κ′ of large degree? (The largeness in n may be taken uniformly with respect to κ′ since f
is fixed.) Roughly speaking, the “stable” values that occur are 1 (in Case 2) or 0 and 2 (in
Case 3). Any term in the periodic part (over κ′) other than 0, 1, or 2 must arise through
Case 1 and is replaced by numbers tending to 1 as [κ′ : κ]→∞. In Case 2 there is trivially
limiting behavior toward the value 1. Finally, by [5, Thm. 1.4], if a value of 0 or 2 occurs
in the period then we are in Case 1 (rather than Case 3) if and only if the branch scheme
B has odd length at some point (in particular, B is nonempty), in which case this term in
the periodic part is again replaced by numbers tending to 1 as [κ′ : κ]→∞. For example,
f = T 3 + u over κ/F3 has Λκ[u]-values 0 or 2 that arise in Case 3.

We now wish to address the behavior of the Möbius average function µf,κ,c for typical
f over large finite fields. There are two topics we shall consider: results saying that this
average is small for all c ∈ {0, 1, 2, 3}, and results saying that it is not identically zero. To
this end, define the shape of a nonzero polynomial f =

∑
αiT

ei ∈ A[T ] (with {ei} strictly
increasing and all αi nonzero) to be the data consisting of the ei’s and the pole-orders
ρi = − ordξ(αi) at ξ. We shall be interested in studying all f ∈ (κ′ ⊗κ A)[T p] with a fixed
shape such that f is primitive over κ′ ⊗κ A with positive T -degree and is squarefree over
κ′ ⊗κ K = Frac(κ′ ⊗κ A). Since Zf → A1 is generically étale, in a natural way this set of
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f ’s for varying κ′/κ is identified with the set of κ′-points of a Zariski-open locus in an affine
space over κ. This is what we shall call a family of f ’s (with varying constant field κ′/κ
and a fixed curve C), provided that it is not empty. All members of a family have the same
T -degree and the same total degree. We shall restrict our attention to those κ′/κ for which
#κ′ is strictly larger than the common T -degree of the fixed shape, so all such f have no
local obstructions.

Our above work shows that there is a large n0 determined by the genus and the common
total degree of the members of the family so that for all κ′ (large as above) and f we have:
(i) the denominator in the definition of µf,κ′(n) is nonzero for all n ≥ n0, (ii) the function
µf,κ′(n) is periodic in n ≥ n0 with period dividing 4. For each c ∈ {0, 1, 2, 3} and κ′ and f
as above we define µf,κ′,c to be the common value µf,κ′(n) for all n ≡ c mod 4 with n ≥ n0.
It is reasonable to fix c ∈ {0, 1, 2, 3} and ε > 0 and to ask how often |µf,κ′,c| < ε as f varies
for fixed κ′/κ. And what happens to this proportion of f ’s as [κ′ : κ] → ∞? In terms of
the associated correction factors λf,κ′,c = Λκ′⊗κA(f ;n) = 1 − µf,κ′,c for n ≡ c mod 4 with
n ≥ n0, it is equivalent to consider how often |λf,κ′,c − 1| < ε as f varies over κ′ and to
study how this proportion behaves as [κ′ : κ]→∞.

If Zf is étale over A1 for a generic member of the family then for generic f in the family
the associated algebraic function L as in (3.2) is identically 1 (there are no x’s) and so the
Möbius average µf,κ′(n) in each large degree n is equal to either ±1 or 0, the latter case
being precisely the one in which en is odd. In the case of genus 0, [3, Ex. 4.15] explicitly
describes all families whose generic member f has Zf étale over A1. In general it seems
hopeless to give an explicit description, though in any particular case it is easy to determine
if the generic member f has zero-scheme Zf ⊆ C×A1 that is étale over A1 (and for “most”
families one expects Zf for generic f to not be étale over the affine line). The following
result solves our asymptotic problem for all families aside from those for which Zf → A1 is
étale for the generic member of the family:

Theorem 3.6. Fix κ and A as above (with p 6= 2). Consider a (nonempty) family F ⊆
{f =

∑
i αiT

ei | deg(αi) = ρi} in the sense defined above such that p|ei for all i and such
that the generic member f has Zf not étale over A1. Assume that there exist i0 and i1
such that L(ρi0 · ξ − 3y0) has codimension 3 in L(ρi0 · ξ) for some geometric point y0 ∈ C
and L(ρi1 · ξ − y1) 6= L(ρi1 · ξ − 2y1) for all geometric points y1 ∈ C. (This is automatically
satisfied with i1 = i0 if ρi0 ≥ 2g + 2 for some i0.)

There exists a Zariski-dense open locus F 0 in the family F so that for all finite exten-
sions κ′/κ and f ∈ F 0(κ′) the branch scheme of Zf → A1 contains a point with p-power
multiplicity, so λf,κ′′,c → 1 as [κ′′ : κ′]→∞ for all c ∈ {0, 1, 2, 3}. Moreover, after possibly
shrinking F 0, this convergence is uniform in the sense that for all ε > 0 and [κ′ : κ] � 0,
|λf,κ′,c − 1| < ε for all c ∈ {0, 1, 2, 3} and all f ∈ F 0(κ′); the largeness condition on [κ′ : κ]
only depends on ε, g, and the ei’s and ρi’s.

It follows immediately from this theorem and the Lang–Weil estimate that for each ε > 0
the proportion of κ′-points f in the family such that |λf,κ′,c − 1| < ε for all c ∈ {0, 1, 2, 3}
tends to 1 as [κ′ : κ]→∞. In the case of genus 0, the hypothesis that Zf is not étale over
A1 for generic f in the family F is equivalent to the condition that ρi0 ≥ 2 = 2g + 2 for
some i0. (See [3, Ex. 4.15] for a proof.) Hence, the hypotheses in Theorem 3.6 concerning
i0 and i1 are redundant in the case of genus 0.

Proof. We proceed in five steps.
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Step 1. We begin by relativizing some of our preceding considerations over fields. The
family F is parameterized by the points of a geometrically irreducible κ-scheme S of finite
type. Let Z ⊆ C ×A1

S be the zero scheme of the universal member of the family, so for
each s ∈ S the fiber Zs is the zero scheme Zfs of fs =

∑
αi(s)T ei ∈ (κ(s) ⊗κ A)[T p] in

C ×A1
κ(s). By the local flatness criterion, Z is S-flat. For each geometric point s of S, the

polynomial fs is primitive with respect to κ(s)⊗κA and is squarefree in Frac(κ(s)⊗κA)[T ]
by our definition of “family”, so by [5, §2] the projection Z → A1

S is quasi-finite and flat
with étale locus that is dense in each fiber Zs. Define the relative branch scheme B ⊆ Z
to be the zero scheme of the Fitting ideal of Ω1

Z /A1
S
. The formation of B is compatible

with base change on S, so B is quasi-finite over S. By a calculation with the local flatness
criterion we see that B is also S-flat.

Let η ∈ S be the generic point. For a suitable open neighborhood S0 of η, the restriction
B0 = B|S0 is finite and flat over S0 and its schematic image in C × S0 has underlying
reduced scheme Y that is also finite and flat over S0. In particular, the formation of the
ideal of Y in C × S0 commutes with base change on S0. We cannot expect Y to be étale
over S0, but for each geometric point s ∈ S0 the fiber Ys is defined by an ideal in κ(s)⊗κA
with radical equal to the ideal Ifs whose zero locus on Cs is the image in Cs of the finite
branch scheme for the projection from Zfs to A1. By hypothesis this latter projection is
non-étale for generic s ∈ S, so Y 6= ∅.

Letting ψ : Y → S0 be the finite flat structure map, consider the (positive-rank) vector
bundle W = ψ∗(OY ) on S0. This is an OS0-subalgebra of the pushfoward of the structure
sheaf of B0, and so we can define an S0-map W → A1

S0 by the functorial rule

h 7→ NB0/S0(h− T ).

On fibers over closed points s of S0 (or more generally, points s valued in a perfect field)
this recovers (3.2) except that h is taken modulo a possibly non-radical ideal whose zero
scheme on the fiber Cs has degree equal to the constant rank of Y over S0.

Step 2. We now reduce our problem to an assertion about the relative branch scheme B,
and we identify S0 with a space of hyperplanes. Let m > 0 be maximal such that pm|ei for
all i and write f = F (T pm

) for the universal point f of the family. Let BF be the relative
branch scheme associated to F . As is explained at the end of [5, §4], for each geometric
point s of S there is a natural bijection b 7→ b′ from the set of points of the fiber Bs to the
set of points of the fiber (BF )s, and the lengths of the artinian local rings at these points
satisfy `(OBs,b) = pm`(O(BF )s,b′). Hence, if we can find an étale point on (BF )η then after
shrinking S0 we can arrange that for each finite extension κ′/κ and s ∈ S0(κ′) the fiber
Bs has odd length pm at some point. The argument in Case 1 (especially with σc = 1) in
the proof of Corollary 3.5 works uniformly across all fibers over S0(κ′) for all κ′/κ because
the O-constant in the Lang–Weil estimate is uniform in algebraic families, so to conclude
the proof of the theorem it suffices to find an étale point on (BF )η. In Step 1 we saw that
Bη 6= ∅, so (BF )η 6= ∅..

Write ei = pme′i, so some e′i is not divisible by p. Let AN be the affine space with
coordinates labelled by the finite set of elements aijT

e′i with {aij}j a κ-basis of L(ρi · ξ)
for i > 0 and {a0j}j ⊆ L(ρ0 · ξ) representing a κ-basis of the quotient space L(ρ0 · ξ)/κ
for i = 0. (Note that e′0 = 0, as otherwise all f ’s would be divisible by T p and so would
not be squarefree, contrary to the assumption that the family F is not empty.) There is a



PRIME SPECIALIZATION IN HIGHER GENUS II 13

canonical map
π : C ×A1 → AN

defined by (c, t) 7→ (aij(c)te
′
i)i,j . Since some e′i is not divisible by p (necessarily this i must

be positive), and any L(ρ · ξ) larger than κ cannot consist entirely of pth powers in κ(C) (so
κ(C) is finite separable over κ(h) for some h ∈ L(ρ · ξ)− κ), the map π is generically étale
onto its image. Let U ⊆ C ×A1 be the maximal open subscheme on which π is étale. It
is clear that U contains C ′ × (A1 − {0}) for a sufficiently small dense open C ′ ⊆ C, so the
positive-dimensional irreducible components of (C×A1)−U are either of the form {c}×A1

or C × {0}. The restriction of π to each component of the first type is generically étale,
and the restriction of π to C × {0} is either constant (if L(ρ0 · ξ) = κ) or generically étale.
It therefore follows from Bertini’s theorem [10, I, Thm. 6.3] that for a Zariski-dense open
locus of affine hyperplanes H in AN the pullback π−1(H) is a geometrically irreducible
and smooth curve in C × A1; in fact, for generic H the pullback π−1(H) meets U in a
smooth curve and also has étale overlap with the smooth locus of each curve component of
the complement of U in C × A1. Since e′0 = 0, these varying π−1(H)’s are precisely the
zero-schemes ZF when we restrict our attention to the dense open locus of H’s for which
the corresponding polynomial F (T pm

) is squarefree in K[T ] and primitive with respect to
A. Thus, we may identify S0 with an open subscheme of the space of H’s, and for all H in
this open locus the projection from π−1(H) to A1 is quasi-finite.

Step 3. By hypothesis there is a geometric point y0 of C such that L(ρi0 · ξ − 3y0) has
codimension 3 in L(ρi0 · ξ) for some i0. By semi-continuity, the same holds for any y0 in a
dense open C0 ⊆ C. For any (y0, t0) ∈ C0 ×Gm we can certainly find an affine hyperplane
H0 ⊆ AN such that π−1(H0)∩Ct0 contains y0 as an isolated point with length 2. (Such an
H0 can be found so that its defining equation has vanishing coefficients for coordinates away
from those corresponding to a basis of L(ρi0 · ξ).) Also, for any x0 = (y0, t0) ∈ C0 ×Gm

the tangent map dπ(x0) is injective on the line Ty0(Ct0).
In general, for any affine hyperplane H0 in AN and any point x0 = (y0, t0) ∈ C0 ×Gm,

the condition that π−1(H0) ∩ Ct0 contains x0 = (y0, t0) as an isolated point with length
greater than 1 is precisely the condition that π−1(H0) → C is quasi-finite at x0 and the
affine line dπ(x0)(Ty0(Ct0)) through π(x0) is contained in the affine hyperplane H0 through
π(x0). The condition of having length greater than 1 at x0 is equivalent to the projection
π−1(H0) → A1 being non-étale at x0 when π−1(H0) is smooth at x0 and quasi-finite over
A1 at x0. Also, if π−1(H0) ∩ Ct0 has length 2 at x0 and π−1(H0) is smooth at x0 then the
branch scheme for the projection from π−1(H0) to A1 is étale at x0 because p 6= 2. However,
it is not a priori evident if the smoothness condition for π−1(H0) at x0 is a generic property
when we require that π−1(H0) ∩ Ct0 has length > 1 at x0, so we shall avoid imposing such
a smoothness requirement in our study of such triples (H0, t0, x0).

Step 4. Consider the incidence scheme Σ consisting of triples (H, t, x) with H an affine
hyperplane in AN and x = (y, t) ∈ C0×Gm a point of π−1(H) lying over t ∈ Gm such that
the map π−1(H) → C is quasi-finite at x and H contains the tangent line Ty(Ct) (viewed
as an affine line in AN via dπ(x)). This incidence scheme makes sense because of openness
of the quasi-finite locus for a morphism of finite type [7, IV3, 13.1.4]. By the infinitesimal
smoothness criterion we see that the projection Σ→ C0×Gm is a smooth map. Each fiber
of this map is a dense open in the space of affine hyperplanes in AN containing a common
line, so Σ is irreducible with dimension 2 + (N − 2) = N . The projection from Σ to the
space of affine hyperplanes in AN has quasi-finite generic fiber because for a generic choice
of H the preimage π−1(H) is a smooth and geometrically irreducible curve in C×A1 whose
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projection to A1 is quasi-finite and generically étale. But is this generic fiber in Σ perhaps
empty? The fiber of Σ over a generic point H is not empty provided that the generic branch
scheme (BF )η is not contained in the union of C × {0} and finitely many vertical slices of
the form {c}×A1 for closed points c ∈ C (such as the points of C −C0). Since (BF )η 6= ∅,
this problem for (BF )η is settled by:

Lemma 3.7. No point of the η-finite generic branch scheme (BF )η is contained in C×{0}
or in {c} ×A1 for any closed point c ∈ C.

Proof. It is equivalent to work with the generic branch scheme Bη for the associated family
of polynomials f = F (T pm

) =
∑
αiT

ei in T p, in view of the definition of the bijection of
branch schemes defined at the end of [5, §4], so let us now work with the latter branch
scheme Bη. The generic element of L(ρ0 · ξ) has étale zero-scheme on C, so the generic
branch scheme does not meet C × {0}. Suppose instead that the generic branch scheme
for the family of f ’s meets {c} × A1 for some closed point c of C. Let D : A → A be a
κ-derivation that induces a basis of the cotangent space at c. Working over an algebraic
closure κ(c) of κ(c), by the proof of [5, Thm. 2.5] the condition for {c} × A1 to meet
the generic branch scheme is that the polynomials

∑
i αi(c)T ei and

∑
i(Dαi)(c)T ei are not

relatively prime for any (αi) lying in some dense open locus in the affine space
∏

i L(ρi · ξ)
over Spec(κ).

To prove that this is impossible, note that we can choose the αi’s so that the tuple (αi+b)i

is as generic as we wish for b ranging through a fixed subset of κ(c) with cardinality exceeding
maxi ei. Since D(αi + b) = Dαi, it follows that for such (αi) each of the polynomials∑

i(αi(c) + b)T ei has a root in common with
∑

i(Dαi)(c)T ei . The point c is not a zero of
all Dαi’s, because by hypothesis there exists αi1 ∈ L(ρi1 · ξ) with a simple zero at c (so
(Dαi1)(c) 6= 0). Hence, by the pigeonhole principle there exist distinct elements b1, b2 ∈ κ(c)
such that the polynomials

∑
i(αi(c)+ b1)T ei and

∑
i(αi(c)+ b2)T ei have a common root for

generic (αi). This common root is also a root of the nonzero polynomial
∑

i T
ei , so it lies in

κ(c). It follows that for sufficiently generic choices of (αi) the polynomials
∑

i αi(c)T ei have
a common root r0 ∈ κ(c), and this is a contradiction since we can fix all αi for i > 0 and add
all but finitely many constants to α0 without affecting genericity but certainly destroying
the property of r0 being a root (because e0 = 0). �

Step 5. By Lemma 3.7, the generic point of Σ maps to the generic point of the space of
affine hyperplanes in AN . In particular, the generic fiber (BF )η contains an étale point if
and only if for the generic point (Hη, tη, xη) of Σ the point xη is in the étale locus of the
branch scheme for the quasi-finite and generically étale map π−1(Hη)→ A1 (with π−1(Hη)
a smooth and geometrically irreducible curve).

Consider the universal triple (Huniv, tuniv, xuniv) over Σ. Let πΣ : C ×A1
Σ → AN

Σ denote
the base change of π, so X := π−1

Σ (Huniv)∩Ctuniv is a subscheme of C×Σ that is quasi-finite
over Σ along the section xuniv and the fiber-degree of X → Σ along this section is pointwise
greater than 1. By the local flatness criterion, X → Σ is also flat along xuniv. Hence,
by the structure theorem for quasi-finite separated maps [7, IV4, 18.5.11], the fiber-degree
of X → Σ at the generic point of the section xuniv is bounded above by the fiber-degree
at any point of this section (and is bounded below by 2, since all of these fiber degrees
exceed 1 by definition of Σ). But we have already noted that for any geometric point
x = (y, t) ∈ C0 ×Gm there is an affine hyperplane H in AN such that (H, t, x) ∈ Σ and
π−1(H) ∩Ct has length 2 at x. Thus, the fiber-degree at the generic point of xuniv is equal
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to 2. Since π−1
Σ (Huniv) has smooth fiber over the generic point of Σ, the corresponding

branch scheme is therefore étale at the generic point of the section xuniv. �

Theorem 3.6 makes precise the sense in which (for p 6= 2) the case when some ex is odd
(in fact, a p-power) is the “generic” case. In such cases, when considering the statistics for
µκ′⊗κA(f(a′)) for a′ ∈ κ′⊗κA as [κ′ : κ]→∞ we are in Case 1 in the proof of Corollary 3.5
(so as [κ′ : κ]→∞ we have Λκ′⊗κA → 1 as a function on Z/4Z). The following result shows
that for such f it often happens that for finite extensions κ′/κ with sufficiently divisible
degree the function Λκ′⊗κA = 1− µf,κ′,If

on Z/4Z is not identically 1.

Theorem 3.8. Consider a non-empty algebraic family of polynomials F satisfying the
hypotheses as in Theorem 3.6. Assume that the generic member of the family has odd T -
degree and that the highest T -degree in which the generic coefficient is not constant is odd.
Also assume that the family is not of the form {α1T

pr
+ α0} with r > 0.

There is a Zariski-dense open locus F ′ ⊆ F and a positive integer δ depending only on
the total degree of the members of F so that for any finite extension κ′/κ, any f ∈ F ′(κ′),
and any finite extension κ′′/κ′ with [κ′′ : κ′] divisible by δ, the function n 7→ µf,κ′′,If

(n) on
Z/4Z for large n is not identically zero.

Proof. By Theorem 3.6 we can pass to a Zariski-dense open locus in the family to arrange
that the branch scheme Bf for the projection Zf → A1 has a point with odd multiplicity
(and in particular Bf is not empty). That is, we can restrict our attention to Case 1 of the
proof of Corollary 3.5. For any positive integer m the generic member of the linear system
|m ·ξ| has nonempty étale divisor on C if dim |m ·ξ| > 0, so it is a further Zariski-dense open
condition to require that the nonconstant coefficient in f occurring in highest T -degree has
divisor on C that is nonempty and étale (and so not divisible by p).

Hence, it follows from [5, Thm. 6.3] that for generic f in the family we have that en is
even for all large n in some congruence class modulo 4 (where en is as in (3.3)). Arguing
(and using notation) as in Case 1 of the proof of Corollary 3.5, it is therefore enough to
prove that if such an f is a κ′-point of the family then #V (κ′′)−#U(κ′′) 6= 0 when [κ′′ : κ′]
is sufficiently divisible (independent of κ′ and f); recall that V and U depend on f . We
will prove this in five steps.

Step 1. We shall first reduce the problem to the non-vanishing of certain quadratic
character sums. The non-empty branch scheme B = Bf for Zf → A1 has degree equal to
a common (positive) value for generic f , and depending just on this degree (and not f) we
can make [κ′′ : κ′] sufficiently divisible so that Bred is κ′′-split for generic f . The image of
B(κ′′) in Cκ′′ therefore is a finite nonempty set Q = Qf of κ′′-rational points, and for each
point c ∈ Q we let Bc be the set of points in the nonempty fiber of B(κ′′) over c. Letting
fc ∈ κ′′[T ] be the nonzero specialization of f ∈ Aκ′ [T p] at c ∈ C(κ′′), we may and do take
[κ′′ : κ′] to be sufficiently divisible so that fc is κ′′-split for all c ∈ Q and #κ′′ > degT f . In
particular, if a ∈ Aκ′′ is such that f(a) is a unit modulo If then for all x = (ux, tx) ∈ B(κ′′)
the reduction a ∈ (Aκ′/If )κ′′ has ux-component (with respect to the decomposition of this
quotient algebra into a product of copies of κ′′) satisfying fux(a(ux)) 6= 0, so a(ux)− tx 6= 0.

Hence, we have the formula

|#V (κ′′)−#U(κ′′)| =

∣∣∣∣∣∣
∏
c∈Q

∑
z∈κ′′:fc(z) 6=0

χκ′′(Pc(z))

∣∣∣∣∣∣
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in which χκ′′ is the quadratic character on (κ′′)× (χκ′′(0) = 0), Pc(Z) =
∏

x∈Bc
(Z − tx)ex ∈

κ′′[Z] is a polynomial of positive degree, and the condition “fc(z) 6= 0” says exactly that
f(a) mod If has unit component at c for a ∈ Aκ′′ representing the c-component value
z ∈ κ′′. Note that if fc(z) 6= 0 then the point (c, z) does not lie on the zero locus of f in
C×A1 and so it does not lie on B. Hence, z 6= tx for all x = (c, tx) ∈ Bc and thus Pc(z) 6= 0
for such z.

If x ∈ B(κ′′) and ex is even then the value (a(ux)− tx)ex ∈ κ′′ is a nonzero square for any
a ∈ (Aκ′/If )κ′′ such that fux(a(ux)) 6= 0, and for each c ∈ Q the polynomial fc is nonzero
somewhere on κ′′ since #κ′′ > degT f . To prove the nonvanishing of #V (κ′′) − #U(κ′′)
when [κ′′ : κ′] is sufficiently divisible (independent of κ′ and f), it therefore suffices to prove
that each 1-variable quadratic character sum

∑
fc(z) 6=0 χκ′′(Pc(z)) for z ∈ κ′′ is nonzero

when [κ′′ : κ′] is sufficiently divisible (in a manner that is independent of c ∈ Q).
Step 2. The quadratic character sums

∑
fc(z) 6=0 χκ′′(Pc(z)) are related to point-counting

on certain hyperelliptic curves, so we now reformulate our problem in terms of such curves.
For c ∈ Q, define Rc(Z) ∈ κ′′[Z] to be the monic product of linear terms Z − tx for x ∈ Bc

such that ex is odd, so Rc|Pc and Pc/Rc is a square in κ′′[Z]. Thus, χκ′′(Pc(z)) = χκ′′(Rc(z))
whenever fc(z) 6= 0, so we may and do replace Pc with Rc in the quadratic character sums.
The case Rc = 1 is trivial (as then the quadratic character sum for c is a positive integer,
since fc is nonzero somewhere on κ′′), so we now restrict attention to c such that the
separable polynomial Rc has positive degree.

Since the degree of the nonzero fc(T ) ∈ κ′′[T ] is bounded by degT f , with enough divisi-
bility for [κ′′ : κ′] we can ensure that fc ∈ κ′′[T ] is split and Rc has square value (possibly
zero) at each zero of fc. Consider the smooth affine curve Xc = {W 2 = Rc(Z)} with hyper-
elliptic compactification X c. The curve Xc has 1 or 2 geometric points at infinity, and by
passing to a quadratic extension if necessary we can assume that such points are κ′′-rational.
We shall separate the problem into two cases, when the genus gc of X c is positive or zero,
and these two cases will be respectively treated via the Riemann Hypothesis and via spe-
cialization arguments. (For “most” families F and f ∈ F chosen generically we probably
have that gc = 0, and even degRc = 1, for all c: distinct branch points of Zf → A1 should
lie in distinct fibers. However, we do not wish to impose the ad hoc hypothesis on F that
this is the case, and we do not know simple hypotheses on the structure of the family that
are sufficient to ensure it.)

Step 3. We first take care of the easier case gc > 0 (i.e., degRc ≥ 3). Note that gc is
bounded above independently of f in our family. Since∑

fc(z) 6=0

χκ′′(Rc(z)) = #Xc(κ′′)−#κ′′ −#{z ∈ κ′′ | fc(z) = 0, Rc(z) 6= 0},

it suffices to arrange that #X c(κ′′) − (#κ′′ + 1) avoids integral values between 0 and
1 + degT f . By the construction of Qf , the geometrically connected and smooth proper
curve X c can be descended to a finite extension of κ′ with degree bounded independently
of κ′/κ and the f ∈ F (κ′) that we are considering. Thus, by considering the 2gc Frobenius
eigenvalues in C associated to such a descent of X c we are reduced to the following concrete
problem: if S ⊆ Z is a finite subset, q = pe is a prime power (e > 0), and {α1, . . . , αm}
is a Gal(Q/Q)-stable multiset of Weil q-integers in C with positive weights then for all
sufficiently divisible r (depending only on m, p, and S) the rational integer

∑
j α

r
j does not

lie in S.
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Pick a rational prime ` 6= p so that s 6≡ m mod ` for all s ∈ S with s 6= m. Let
K = Q(α1, . . . , αm) and let λ be a prime of K over `, so α

N(λ)−1
j ≡ 1 mod λ for all j.

Hence, taking r divisible by N(λ) − 1 forces
∑
αr

j 6∈ S if
∑
αr

j 6= m. Since [K : Q] is
bounded in terms of m, this divisibility condition on r only depends only on m and S. To
handle the possibility m ∈ S, use the positivity hypothesis on the weights to find a prime
pj of K over p dividing αj for each j and let ν be a positive integer large enough so that
pν > m. Also let ep and fp denote the ramification degree and residue field degree at p for
the Galois extension K/Q. By taking r to also be divisible by pν(pfp − 1) we ensure that∑
αr

j mod p
epν
1 is a sum of m terms each equal to 0 or 1 with at least one such term equal

to 0, so by Galois-invariance the rational integer
∑
αr

j is congruent modulo pν to a rational
integer between 0 and m − 1. Thus, due to the choice of ν, we get that

∑
αr

j 6= m for all
such divisible r (depending on p and m).

Step 4. Now we turn to the case when X c has genus 0, which is to say degRc ≤ 2. If
degRc = 1 (resp. 2) then Xc has 1 (resp. 2) points at infinity, so∑

fc(z) 6=0

χκ′′(Rc(z)) =

{
−#{z ∈ κ′′ | fc(z) = 0, Rc(z) 6= 0}, if degRc = 1,
−1−#{z ∈ κ′′ | fc(z) = 0, Rc(z) 6= 0}, if degRc = 2.

Thus, the case degRc = 2 is settled, and to handle the (presumably “generic”) case degRc =
1 we just need that fc has more than one root in κ′′; note that deg fc > 0 since there is
a branch point over c. Since deg fc ≤ degT f , we can assume that fc is split and so we
just need to avoid the case when fc has one geometric root. Writing f =

∑
αiT

pei with
(αi) ∈

∏
L(ρi · ξ)κ′ satisfying − ordξ(αi) = ρi, it suffices that for all closed points c0 ∈ Cκ′

over which the generically étale projection Zf → A1 has a branch point, the nonzero
specialization fc0 ∈ κ′(c0)[T ] has more than one geometric root if it has positive degree.

Working over an algebraic closure k of κ and writing ei = pµe′i for all i with a maximal
µ ≥ 0 (so p - e′i for some i), it suffices to prove that for a generic k-point (αi) ∈

∏
i L(ρi · ξ)

in the sense of the Zariski topology, the specialization of the associated polynomial f =∑N
i=0 αiT

e′i at points of the image in Ck of the branch locus Bf of Zf → A1
k never has

exactly one geometric root. Suppose otherwise, so for any nonempty Zariski-open subset
U ⊆

∏
i L(ρi · ξ) there is some (αi) ∈ U (k) and some c0 ∈ C(k) (depending on (αi)) such

that ∑
αi(c0)T e′i = b(T − t0)e

with e > 0 and b ∈ k×. We may and do at least require U to be small enough so that αi

and αj have disjoint zero loci on C for i 6= j. The only point in the fiber of Zf → C over
c0 is the point (c0, t0) at which Zf → A1 must therefore have a branch point.

If t0 = 0 then for all but possibly one i we have that αi vanishes at c0, so the members
of our family must be binomials in T . This forces the family to consist of polynomials of
the form {α1T

pe1 + α0}, and we now explain why such cases cannot arise when there is a
branch point (c0, t0) such that c0 is a zero of α0 or α1. Since α1 and α0 have disjoint zero
loci, for f = α1T

pe1 +α0 corresponding to the point (α0, α1) ∈ U the fiber of Zf → C over
zeros of α1 is empty. Hence, we have to consider the possibility of a branch point (c0, t0)
for Zf → A1 such that α0(c0) = 0 (so α1(c0) 6= 0). In such cases we must have t0 = 0, and
so the branch condition is that α0 has a multiple zero at c0. But for small enough U the
zero scheme of α0 is étale. Hence, the case t0 = 0 (with sufficiently small U ) indeed cannot
occur.
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Step 5. Now we may suppose t0 6= 0 (so α0(c0) 6= 0). We have to separately treat the
possibilities that αN (c0) is zero or not, so first assume αN (c0) 6= 0. This forces e = e′N
and b = αN (c0), so the resulting identity

∑
αi(c0)T e′i = αN (c0)(T − t0)e′N forces p|

(e′N
j

)
whenever j 6∈ {0 = e′0, . . . , e

′
N} and also(
e′N
e′i

)
αN (c0) · (−t0)e′N−e′i = αi(c0)

for all 0 ≤ i < N . In particular, since e′0 = 0 we have α0(c0) = αN (c0) · (−t0)e′N , so for
0 < i < N we must have

(3.8) α
e′N
i (c0) =

(
e′N
e′i

)e′N
(αe′i

Nα
e′N−e′i
0 )(c0).

By taking U small enough we can ensure that the N − 1 rational functions

α
e′N
i −

(
e′N
e′i

)e′N
α

e′i
Nα

e′N−e′i
0

on C (with 0 < i < N) have disjoint zero loci away from zeros of α0 (the exponent e′N − e′i
might be negative).

The validity of (3.8) for all 0 < i < N at some common point c0 ∈ C(k) such that
α0(c0) 6= 0 therefore forces N ≤ 2. If N = 1 then p|

(e′N
j

)
for all j satisfying 0 < j < e′N , and

if N = 2 then this divisibility holds for all such j except for possibly j = e′1. Since e′0 = 0,
p > 2, and some e′i is not divisible by p, we readily get a contradiction except if N = 1 and
e′1 = 1 or if N = 2 and e′1 = 1, e′2 = 2. This second case contradicts the hypothesis that
degT f is odd, so our family of polynomials must be of the type {α1T

pr
+ α0} with some

r > 0. This is the class of families that was specifically ruled out from consideration in the
statement of the theorem.

Finally, we treat the case αN (c0) = 0, so αN is nonconstant and αi(c0) 6= 0 for all i < N .
In particular, N ≥ 2 because if N = 1 then the condition fc0(t0) = 0 with αN (c0) = 0 would
force α0(c0) = 0, yet we are taking U small enough so that αi and αj have disjoint zero loci
on C for any i 6= j. Thus, arguing as above with N replaced by the positive N −1 gives (by
taking U small enough) that N − 1 ≤ 2, with (α2

1 − 4α0α2)(c0) = 0 if N − 1 = 2. If N = 3
then we can shrink U to force α3 and α2

1 − 4α0α2 to have disjoint zero loci on C. Since
αN (c0) = 0, the case N = 3 is ruled out and so N = 2. Our family of polynomials must
therefore be {α2T

pe2 + α1T
pr

+ α0} for some r > 0 such that pr < pe2. Consider f in this
family such that there is a branch point (c0, t0) of the map Zf → A1 for which α2(c0) = 0.
We seek a contradiction if f lies in a sufficiently small dense open U in our family.

At least we may suppose α0(c0) 6= 0 and α1(c0) 6= 0 since α2(c0) = 0, so we solve to get
tp

r

0 = −α0(c0)/α1(c0). The branch condition says that for any vector field ∂ on C that is
non-vanishing at c0,

(∂α2)(c0)t
pe2
0 + (∂α1)(c0)t

pr

0 + (∂α0)(c0) = 0.

Hence, if we fix a nonzero vector field D on C prior to considering f we get

(Dα2)(c0)t
pe2
0 + (Dα1)(c0)t

pr

0 + (Dα0)(c0) = 0.
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Raising this to the pr−1th power and using the identity tp
r

0 = −α0(c0)/α1(c0) gives that the
rational function

(Dα2)pr−1
(−α0/α1)e2 + ((Dα1)(−α0/α1) +Dα0)

pr−1

vanishes at a zero c0 of α2. Since α2 is nonconstant, this easily gives a contradiction by
taking U small enough. Hence, this case does not occur. �

Remark 3.9. Assume p 6= 2. It is natural to ask for the analogue of (2.4) for several
nonconstant elements f1, . . . , fr in A[T ] that are irreducible and pairwise relatively prime
in K[T ]. Assume that f1, . . . , fs lie in K[T p] and (if s < r) fs+1, . . . , fr are not in K[T p].
We also assume that

∏s
j=1 fj has no local obstructions with respect to A, and we let Iκ be

the least common multiple of the polynomials Ifj
for 1 ≤ j ≤ s. Based on some numerical

investigations, we believe the correction factor in degree n� 0 should be

(3.9) ΛA(f1, . . . , fs;n) :=

∑
deg a=n,(fj(a),Iκ)=1

∏s
j=1(|µ(fj(a))| − µ(fj(a)))∑

deg a=n,(fj(a),Iκ)=1

∏s
j=1 |µ(fj(a))|

∈ [0, 2s] ∩Q,

where the condition gcd(fj(a), Iκ) = 1 (a congruence condition on a modulo Rad(Iκ)) is
imposed for all 1 ≤ j ≤ s; we take n large enough so that the denominator in (3.9) is
nonzero. (If no fj ’s lie in K[T p] then this correction factor is 1.)

As in the case of a single polynomial, it is not obvious that (3.9) is a periodic function
of large n. It is left as an exercise for the interested reader to check that (3.9) satisfies an
analogue of Theorem 3.1 (with essentially the same proof): it is periodic in n mod 4 for
large n (depending only on the genus and the total degrees degu,T fj for j ≤ s), and if we
replace the ideal Iκ with any nonzero multiple J in the relative primality conditions on the
sums in the numerator and denominator of (3.9) then the resulting function is unaffected in
sufficiently large degrees (depending on the genus, the degu,T fj ’s for j ≤ s, and dimκ(A/J)).

4. Lifting constructions

In our previous work in genus 0 in [3], the case of characteristic 2 was more subtle than
the case of odd characteristic. The key source of difficulties was the need to use lifts to
characteristic 0. The necessity of using such lifts for the study of characteristic 2 arises from
the following variant on [5, Thm. 3.1], which is essentially due to Swan and was recorded
in [3, Thm. 2.4]:

Theorem 4.1. Let R be a finite étale algebra over a finite field κ of characteristic 2. Let
W = W (κ) and let R̃ be the unique lift of R to a finite étale W -algebra. Then

(4.1) (−1)# Spec(R) = (−1)dimκ Rχ(discW R̃),

where χ : κ××(1+4W )� {±1} is the unique quadratic character whose kernel is the index-
2 subgroup of elements that are squares in W×. (Explicitly, χ is given by c · (1 + 4w) 7→
(−1)Trκ/F2

(w mod 2).)

Remark 4.2. To see that (4.1) makes sense, one needs the well-known fact that the 1-unit
part of the discriminant of a finite étale W -algebra lies in 1+4W . (The character χ has no
natural extension to an order-2 character on W×.)

In this section we focus our efforts on constructing suitable lifts over p-adic fields, as
preparation for proving a 2-adic analogue of [3, Thm. 5.5] in §5 that gives a rigid-analytic
factorization of discriminants (rather than an algebraic factorization) over the fraction field
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of W (κ). In §6 we will use this rigid-analytic factorization and Theorem 4.1 “in families”
to establish a characteristic-2 analogue of the theory in §3. We also note at the outset that
rigid-analytic factorization did not arise in the case of genus 0 with p = 2 in [3] because
lifting A1

κ into characteristic 0 can be done very easily and explicitly by using A1
W (κ) (and

the generic and closed fibers of P1
κ[u] → Specκ[u] have the same Weierstrass gap sequence

at ∞, namely the empty set).
To keep the role of the finiteness of κ and the parity of char(κ) in perspective, for now

we work with an arbitrary perfect field k of positive characteristic p, any smooth and
geometrically connected affine k-curve C = SpecA with one geometric point ξ at infinity,
and any primitive polynomial h ∈ A[T ] such that h(T p) is squarefree in K[T ] (so h is also
squarefree in K[T ]), where K is the fraction field of A. Our interest will eventually be in
the study of specializations of h(T p) with p = 2. As the reader will see, the parity of char(k)
is irrelevant for the remainder of this section.

We let F = Frac(W ) with (W,mW ) a complete mixed-characteristic discrete valuation
ring having residue field k. In order to permit the use of certain base-change arguments
in later proofs (e.g., the proof of Lemma 6.1 and the end of the proof of Lemma 5.2),
it is convenient to not require that W be absolutely unramified (although the absolutely
unramified case is the one to which we will apply the theory that we develop below). By
[8, III, Cor. 7.4], there exists a proper smooth curve C over SpecW with closed fiber C.
The generic fiber of C is a geometrically-connected smooth proper curve of genus g over F .
The W -smoothness allows us to construct a section ξ̃ ∈ C (W ) lifting ξ ∈ C(k). Since the
divisor ξ̃ on C is relatively ample over W , C = C − ξ̃(SpecW ) is affine with coordinate
ring A that satisfies A /mW A = A.

In the special case g = 0, if we fix an isomorphism A ' k[u] then the rigidity of P1

ensures that there exists an isomorphism C ' P1
W that carries ξ̃ over to ∞ and identifies

A with W [u] lifting the isomorphism A ' k[u]. This provides a link with the algebraic
considerations on the affine line over W in the genus-0 case of characteristic 2 in [3, §5]. In
higher genus there are many non-isomorphic choices of C , and we will have to choose a lift
(C , ξ̃) very carefully.

The key property we need is that the leading coefficient a0 ∈ A of h ∈ A[T ] lifts to ã0 ∈ A
with ordeξF

(ã0) = ordξ(a0). In general, we can only say − ordeξF
(ã0) ≥ − ordξ(a0), since the

Laurent expansion of ã0 along ξ̃ in Ô
C ,eξ[1/τ ] ' W [[τ ]][1/τ ] (with τ a local generator of

the ideal sheaf of the section ξ̃) may have its initial nonzero coefficients in mW (or, more
geometrically, ã0/F may have zeros on CF = C F − {ξ̃F } with reduction ξ, and this forces
ã0/F to have a higher-order pole at ξ̃F than a0 has at ξ). Thus, the property we seek for ã0

is that its pole-order along ξ̃ is constant, or equivalently that ã0 is a generating section of
O(d0 · ξ̃) near the support of ξ̃, where d0 = − ordξ(a0). That is, we want {1, ã0} to be a pair
of generating sections for the line bundle O(d0 · ξ̃) over all of C . The case d0 = 0 is trivial,
since then a0 ∈ k× and we may choose ã0 ∈W× to be any lift of a0. The case d0 ≥ 2g − 1
is also trivial (so g ≤ 1 is settled), since we can apply the theorem on cohomology and base
change to O(d0 · ξ̃) to lift the closed-fiber global section a0 that generates the closed-fiber
stalk at ξ. For example, in genus 0 this amounts to the evident fact that a nonzero element
in k[u] may be lifted to an element in W [u] with unit leading coefficient. The situation for
genus g > 1 and 1 ≤ d0 ≤ 2g − 2 will require more work, as we now explain.
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In geometric terms, here is a reformulation of the property that we demand for the lifting
(C , ξ̃): we want a proper smooth lifting C of C over W such that the finite flat map
a0 : C → P1

k of degree d0 > 0 lifts to a finite flat map ã0 : C → P1
W (necessarily of degree

d0) with respect to which the Cartier-divisor preimage of ∞ in C is of the form d0 · ξ̃ for
some ξ̃ ∈ C (W ); such a ξ̃ necessarily lifts ξ. If p ≤ 2g− 2 then it may happen that p|d0, so
a0 : C → P1

k may be wildly ramified at ξ (or elsewhere) or it may be inseparable.
It seems probable that a lifting ã0 generally cannot be found for an arbitrary choice of flat

deformation (C , ξ̃) of (C, ξ) when 1 ≤ d0 ≤ 2g − 2, for in such cases the natural projection

λ : Divd0

C /W
→ Picd0

C /W

is generally not smooth (nor even flat) and so we cannot expect the fiber of λ over the
W -point OC (d0 · ξ̃) to admit a W -point lifting an arbitrary choice of k-point (such as a
degree-d0 effective divisor on C that is supported on C). Thus, we must expect to have to
choose the lift (C , ξ̃) of (C, ξ) at the same time as we choose the lift of the finite map a0.
Here is the solution to our lifting problem for (C, ξ, a0):

Theorem 4.3. Let X be a proper, smooth, and geometrically connected curve over a perfect
field k, and let W be a complete local noetherian ring with residue field k. Fix ξ ∈ X(k).
For any d0 > 0, any finite flat map f : X → P1

k of degree d0 with f−1(∞) = d0 · ξ may be
lifted to a finite flat map f̃ : X → P1

W with W -smooth X such that f̃−1(∞) = d0 · ξ̃ for
some ξ̃ ∈X (W ) lifting ξ.

Proof. In the equicharacteristic case there is a section to Spec k ↪→ SpecW , so pullback
along such a section solves the problem. Thus, we may now assume that k has positive
characteristic p. We shall use a formal-GAGA argument, shown to us by Q. Liu, that is
simpler than our original argument.

Since k is perfect, if f has inseparability-degree pe with e ≥ 0 then it follows that f
uniquely factors as f = h ◦ φP1

k,e with h separable and φP1
k,e equal to the e-fold relative

Frobenius morphism for the target P1
k. Since φP1

k,e is defined by t 7→ tp
e

in terms of a
standard coordinate on P1, by using the map P1

W → P1
W defined by t 7→ tp

e
that has fiber

pe ·∞ over∞ we are immediately reduced to studying h instead of f . Thus, we may assume
that f is separable.

Let P = P1
k and let πξ and π∞ = 1/t be local parameters on X and P at ξ and ∞

respectively. Since f : X → P is a finite map that is totally ramified over ∞, the map
on local rings k[π∞](π∞) = OP,∞ → OX,ξ is a finite flat k-algebra map that is described
by π∞ 7→ uπd0

ξ with u ∈ O×
X,ξ. Thus, for some monic g ∈ k[Z] with nonzero constant

term we can find an open affine neighborhood U∞ = Spec k[π∞, 1/g(π∞)] around ∞ such
that πξ and u respectively extend to sections of OX and O×

X over V∞ = f−1(U∞) (again
denoted πξ and u). Since f is separable we may shrink U∞ so that the finite flat map
V∞ − {ξ} → U∞ − {∞} induced by f is étale. Let R be the coordinate ring of the affine
V∞, so u ∈ R× and Spec(R/πd0

ξ R) = f−1(∞) is equal to d0 · ξ as Cartier divisors on X.
This gives that R/πξR = k with support at ξ ∈ X(k).

Let X be an arbitrary proper smooth W -scheme that lifts X, and let X̂ be the formal
completion of X along X. There is a unique open formal subscheme V̂∞ in X̂ whose
special fiber is V∞, so V̂∞ = Spf R is a formal affine and R/mW R = R. Likewise, there
is a unique open formal affine Û∞ in P̂1

W with special fiber U∞. Let π̂ξ, û ∈ R be lifts of



22 BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

πξ, u ∈ R, and let ĝ ∈W [Z] be a lift of g ∈ k[Z] with leading coefficient in W×, so û lies in
R× and the unique continuous W -algebra map

W{{π̂∞}} → R

sending π̂∞ to û · π̂d0
ξ carries ĝ(π̂∞) to a unit in R (as may be checked in R). Thus, we get

a continuous map of flat adic W -algebras

W{{π̂∞, 1/ĝ(π̂∞)}} → R

that has finite flat reduction

f∗ : k[π∞, 1/g(π∞)] = O(U∞)→ O(V∞) = R

modulo mW and so is a finite and flat map. In other words, we have constructed a finite
flat SpfW -map

f̂∞ : V̂∞ → Û∞

that lifts the finite flat restriction f∞ : V∞ → U∞ with V̂∞ open in X̂ . Moreover, since
Spec(R/πξR) = ξ ∈ X(k) and πξ is not a zero divisor in R, it follows from standard
flatness arguments that Spf(R/π̂ξR) = Spf(W ) defines a formal W -point ξ̂ of V̂∞ lifting
ξ ∈ V∞(k) ⊆ X(k).

By the same argument, if we let U0 = P − {∞} and V0 = X − {ξ}, and let Û0 and V̂0

be the unique open formal affines in P̂1
W and X̂ with special fibers U0 and V0 respectively,

then we may construct a finite flat SpfW -map

f̂0 : V̂0 → Û0

that lifts the finite flat restriction f0 : V0 → U0. The overlap V̂ = V̂0 ∩ V̂∞ with special
fiber V0 ∩ V∞ is thereby realized in two ways as a finite flat covering of the open formal
subscheme Û = Û0 ∩ Û∞ ⊆ P̂1

W such that these coverings lift the same map

f : V0 ∩ V∞ → U0 ∩ U∞.

However, by the construction of U∞ this latter map is finite and étale, and so by the
uniqueness of infinitesimal deformations of finite étale covers there is a unique automorphism
of V̂ carrying f̂∞|bV to f̂0|bV . By gluing V̂0 to V̂∞ along this isomorphism between the open
copies of V̂ in each space we obtain a new formal smooth W -scheme X̂ ′ that is a formal
deformation of X (so X̂ ′ is W -proper) and admits a flat map f̂ to P̂1

W that lifts f and
glues the two flat maps f̂0 and f̂∞. In particular, f̂ is flat. Since f̂ is a map between proper
formal W -schemes and it deforms the finite f , f̂ must be finite.

By Grothendieck’s formal GAGA [6, 5.1.4], there exists a unique finite P1
W -scheme X ′

that algebraizes the finite formal P̂1
W -scheme X̂ ′, and X ′ must be flat over P1

W since it
is W -proper and X̂ ′ is flat over P̂1

W (via f̂). Thus, X ′ is proper and flat over W with
special fiber X, and so X ′ is a proper smooth W -curve such that there exists a finite flat
map F : X ′ → P1

W lifting f . We claim that the fiber of F over ∞ ∈ P1(W ) is d0 · ξ̃ for
a section ξ̃ ∈ X ′(W ) that must necessarily lift ξ ∈ X(k). By formal GAGA it suffices
to check this assertion on formal completions along the special fibers over SpecW , and by
working locally over P̂1

W the map F̂ is exactly f̂∞ over the formal open neighborhood Û∞

of ∞̂ ∈ P̂1
W (SpfW ), so F̂−1(∞̂) = d0 · ξ̂ for the formal W -point ξ̂ of V̂∞ ⊆ X̂ ′. �
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Let (W,mW ) be a mixed-characteristic complete discrete valuation ring with residue field
k, and let F denote its fraction field. Choose a lift (C , ξ̃) in accordance with Theorem 4.3
for a0 = lead(h) ∈ A with d0 = − ordξ(a0) ≥ 0, so for Spec A = C := C − ξ̃(SpecW ) we
can pick ã0 ∈ A with exact order −d0 along ξ̃, which is to say {1, ã0} generates OC (d0 · ξ̃).
(If d0 = 0 then we choose ã0 ∈ W× lifting a0 ∈ k×.) For each lower-degree coefficient cj of
h with a pole of order ≥ 2g at ξ, pick a lift of cj to A with a pole of constant order along
ξ̃; this is possible since

Vd = H0(C ,OC (d · ξ̃))
is a finite flat W -module whose formation commutes with base change for d ≥ 2g − 1. For
d ≥ 2g − 1, let

V d = Spec(SymW V ∨
d )

be the affine space over SpecW associated to Vd. Finally, for each nonzero coefficient of
h in V2g−1 = V2g−1/mW V2g−1 = L((2g − 1)ξ), pick a lift to an element of V2g−1 ⊆ A .
Lift vanishing coefficients of h to 0 ∈ A . Using these lifts of the coefficients of h in A to
elements of A , let H ∈ A [T ] be the resulting lift of h. Due to how we picked H, especially
the lead coefficient, for large d only depending on the total degree degu,T h and genus g the
evaluation of H carries V 0

d into V 0
ρ(d), where

ρ(d) := d · degT h+ d0

and
V 0

δ := V δ − V δ−1

for all δ ≥ 2g.

Definition 4.4. We call the triple (C , ξ̃, H) an admissible lift of (C, ξ, h) over W .

The following flatness result will be useful later (and see the proof of [3, Lemma 5.9] for
a genus-zero analogue); in the statement we do not require there to be a unique point at
infinity because the absence of such a requirement allows us to work locally in the proof.

Theorem 4.5. Let C = Spec A be an arbitrary smooth affine W -scheme with geometrically
connected nonempty fibers of dimension 1. Let H ∈ A [T ] be a polynomial whose reduction
h over the domain A = A /mW A satisfies deg h = degH > 0, and also assume that h is
primitive in the sense that the specialization hc ∈ k(c)[T ] is nonzero for all c ∈ C = SpecA.
Let K denote the fraction field of A, and assume that h(T p) is squarefree in K[T ].

Let Z ⊆ C ×A1
W be the zero scheme of H. The projection Z → A1

W is quasi-finite and
flat, and it is étale away from a closed subset B ⊆ Z that is quasi-finite over SpecW . With
its natural scheme structure defined by the Fitting ideal of Ω1

Z /A1
W

, this branch scheme B

is quasi-finite and flat over W .

Proof. The closed fiber of Z over SpecW is the zero-scheme Z = Zh of h. This projects
to A1

k with finite fibers, since otherwise h ∈ K[T ] would have a root algebraic over k and
so h would have an irreducible factor in k[T ], contradicting the fact that k is perfect and
h(T p) is assumed to be squarefree. Thus, Z is a reduced scheme of pure dimension 1 with
quasi-finite projection to the affine line.

On the generic fiber over SpecW we claim that H ∈ F (C )[T ] is squarefree without
irreducible factors in F [T ] (i.e., there are no roots algebraic over F ), which is exactly the
algebraic translation of the property that ZF is reduced and has quasi-finite projection
to A1

F . To prove this, let η be the generic point of the closed fiber C of C , so H has
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unit leading coefficient as a polynomial over the discrete valuation ring OC ,η and hence its
irreducible factorization over the function field F (C ) = Frac(AF ) may be chosen over OC ,η

with unit leading coefficients. In particular, any roots of H that are algebraic over F are
integral over F ∩OC ,η = W . It is therefore enough to show that the reduction of H modulo
mη in K[T ] is squarefree and has no roots algebraic over k. The reduction is h ∈ K[T ],
which our hypotheses ensure is squarefree and has no roots algebraic over k.

We have now shown that Z → A1
W is quasi-finite. On fibers over W this map is flat

(being a quasi-finite map from a reduced curve to a regular curve over a field), so as long
as Z is W -flat we may conclude from the fiber-by-fiber flatness criterion that Z is flat
over A1

W . The coordinate ring of Z is A [T ]/(H). Since H ∈ A has mod-mW reduction
h ∈ A[T ] that is not a zero divisor, it follows that A [T ]/(H) is torsion-free over W and
hence is W -flat.

With Z → A1
W now shown to be quasi-finite and flat, étaleness of this map at a point

is a property that may be checked in fibers over SpecW . More specifically, to prove quasi-
finiteness (over SpecW ) of the non-étale locus of Z → A1

W it is enough to check étaleness
over the generic points of A1

k and A1
F by working on k-fibers and F -fibers respectively.

Since ZF is reduced and F (A1
W ) = F (T ) has characteristic 0, the situation on F -fibers is

clear. For the closed fiber Z ⊆ C×A1
k, [5, Thm. 2.6] ensures that the quasi-finite projection

Z → A1
k is generically étale.

To verify W -flatness of the quasi-finite branch scheme B for the map Z → A1
W , we

only need to look at the local rings at points of B in the closed fiber over SpecW . We
may work locally along the closed fiber of C to reduce to the case when the invertible
sheaf Ω1

C /W is globally free, so there is a nowhere vanishing W -linear derivation D on
A . We make D act W [T ]-linearly on A [T ], so the branch scheme B is cut out by the
two conditions H = DH = 0 on C × A1

W = Spec A [T ]. Since the local rings of the W -
flat Z = Spec A [T ]/(H) at closed points on its closed fiber over SpecW are all of pure
dimension 2 (by the dimension formula for flat maps) and the local rings at closed points of
the closed fiber of the subscheme B of Z cut out by the element DH have dimension ≤ 1
(as B is quasi-finite over W ) and thus have pure dimension 1 (by Krull’s Hauptidealsatz),
the element DH must be nowhere a zero divisor along points in the closed fiber of Z .
Hence, the Cohen-Macaulay property of Z (a Cartier divisor on a regular scheme C ×A1

W )
is inherited by B along points of its closed fiber over SpecW . Since B → SpecW is a
quasi-finite map from a Cohen-Macaulay scheme to a regular scheme, and the closed-fiber
closed points of B have local rings of the same dimension as W , by [12, 23.1] we conclude
that B is flat over W . �

Since B as in Theorem 4.5 is a quasi-finite flat W -scheme and W is a henselian local
ring, the structure theorem for quasi-finite separated maps [7, IV4, 18.5.11] provides a
decomposition

(4.2) B = Bf
∐

B′

where Bf is finite flat over W (it is Spec of a finite product of finite flat local W -algebras)
and B′ has empty closed fiber (i.e., B′ is a finite F -scheme). In particular, on the special
fiber over SpecW we have that Bf mod mW ⊆ C × A1

κ is the branch scheme Bh for the
generically étale projection Z = Zh → A1

κ. The importance of the decomposition (4.2) is
that it ensures that each point in the closed-fiber branch scheme lifts to a characteristic-0
point of the branch scheme. A typical point of BF is denoted x = (ux, tx) ∈ CF ×A1

F and
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we functorially define the algebraic map Px,d : Vd/F → A1
F by the norm construction

(4.3) ã 7→ Px,d(ã) = NR⊗F F (x)/R(ã(ux)− tx) ∈ R

for any F -algebra R and ã ∈ V d(R). Of course, if x ∈ BF lies in the W -finite Bf then x
uniquely extends to a W (x)-valued point of C ×A1

W (where W (x) is the valuation ring of
F (x)), in which case Px,d uniquely extends to a W -morphism Px,d,W : V d → A1

W defined
functorially on W -algebras R by the norm construction analogous to (4.3) using the finite
flat extension W (x) over W . Due to W -flatness of B, those x ∈ BF that extend to integral
points of the separated W -scheme C ×A1

W are precisely the points in Bf
F .

Norm-functions analogous to the Px,d’s provide an algebraic factorization of discriminants
in characteristic p in [5, Thm. 4.1]. In §5 we shall use the F -scheme maps in (4.3) to
construct rigid-analytic factorizations of discriminants in characteristic 0. The essential
new ingredient that was not encountered in the analogous problem in genus 0 in [3, §5]
for p = 2 is the possibility of unequal Weierstrass gap sequences on the generic and closed
fibers of the lifted 2-adic curve C , and this is the reason why non-algebraic rigid-analytic
factorizations will intervene in our study of periodicity properties of the Möbius function in
characteristic 2 for higher genus.

Remark 4.6. For our work over finite fields κ of characteristic 2 it is enough to work
with a single (well-chosen) lift (C , ξ̃) of (C, ξ) over W (κ), and in what follows it would
simplify matters a lot (and is sufficient) to work with such a lift for which the Weierstrass
gap sequence at ξ̃ in characteristic 0 is the same as that at ξ in positive characteristic. We
expect that such a lift does not exist in general (we require the lift to be over an absolutely
unramified base), but we do not know any example for which such a lift can be proved to
not exist. One reason for the difficulty of finding such an example is that every known gap
sequence in characteristic p > 0 also arises in characteristic 0.

5. Rigid-analytic considerations

With W and F as above, pick an admissible lift (C , ξ̃, H) of (C, ξ, h) over W in the sense
of Definition 4.4, and assume that h ∈ A[T ] is primitive and h(T p) ∈ K[T ] is squarefree as
in Theorem 4.5. Let A be the coordinate ring of the affine open in C complementary to ξ̃.

Choose a W -basis ε̃1, . . . , ε̃g of V2g−1 lifting a basis ε1, . . . , εg of V2g−1 = V2g−1/mW V2g−1

such that {ε1, . . . , εg} is (as in [5, §3]) adapted to the Weierstrass gap sequence at ξ in the
sense that − ordξ(εi) is strictly increasing in i. In general we probably cannot pick (C , ξ̃)
and {ε̃1, . . . , ε̃g} so that {ε̃i/F } is similarly adapted to the Weierstrass gaps at ξ̃F on the
generic fiber C F , due to the possible failure of cohomology to commute with base change
for low-degree line bundles on C ; see Remark 4.6. We may extend {ε̃i}1≤i≤g to compatible
bases of each Vd for d ≥ 2g, since Vd is a subbundle of codimension 1 in Vd+1 over W for
d ≥ 2g − 1 with all Vd’s commuting with base change on W for d ≥ 2g − 1. We claim
that {ε̃i}i≥1 is a W -module basis of A . Since Vd is a direct summand of Vd+1 over W for
d ≥ 2g − 1, what must be shown is that A is the rising union of its W -submodules Vd for
large d.

In terms of Weil divisors on the 2-dimensional regular scheme C , the nonzero elements of
the subring A inside of the function field F (C ) are precisely the elements of F (C )× whose
divisor has nonnegative coefficients away from the irreducible component ξ̃ (corresponding
to the unique codimension-1 point lying outside of the open subscheme Spec A ⊆ C ).
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Likewise, Vd − {0} consists of those elements in F (C )× whose divisor has nonnegative
coefficients away from the ξ̃-component and whose ξ̃-component coefficient is ≥ −d. Taking
d → ∞, we arrive at the description ∪Vd for A (inside of F (C )), as desired. We define
εi ∈ A to be the reduction of ε̃i for all i ≥ 1, so the ε̃i’s reduce to a system of compatible
bases {ε1, . . . , εd−g+1} of the vector spaces Vd = L(d ·ξ) inside A = A /mW A for d ≥ 2g−1.
Let V 0

d = Vd − Vd−1 for d ≥ 2g, and let V d and V 0
d be the associated affine k-varieties for

such d.
Let {w1, . . . , wg} be the Weierstrass gap sequence at ξ on C over k. In what follows we

consider d large enough (depending only on g and degu,T h) so that evaluation of H carries
V 0

d into V 0
ρ(d); here we use the hypotheses on H as a lift of h. For such d and sections

ã ∈ V 0
d(W ), we claim that if d is large enough (again, only depending on g and degu,T h)

then A /(H(ã)) is finite free over W with basis represented by

(5.1) {ε̃1, . . . , ε̃ρ(d)+g} − {ε̃ρ(d)+wr+1−g}1≤r≤g,

where ρ(d) is defined above Definition 4.4. Such finite-freeness is useful because if ã ∈
V 0

d(W ) is chosen to lift an arbitrarily chosen a ∈ V 0
d = V 0

d(k) for such large d then A /(H(ã))
is a finite flatW -algebra lifting the finite k-algebra A/(h(a)), exactly as required for applying
Theorem 4.1 to compute µ(h(a)) if k is finite of characteristic 2 and h(a) is squarefree in
A. It is crucial that A /(H(ã)) has a W -basis represented by the set (5.1) because this
set is independent of ã. For the purpose of applying Yoneda’s lemma to lift the morphism
V 0

d → A1
k defined by

a 7→ discε,ρ(d)(A/h(a))
(discriminant defined as a determinant with respect to the basis {ε1, . . . , ερ(d)+g−1}; cf.
[5, (3.11)]) to a formal-algebraic morphism V 0,∧

d → Â1
W over W , we need to prove that this

finite-freeness result holds much more generally, as follows.
Let W ′ be any W -algebra whose maximal ideals contain the maximal ideal of W (e.g., a

noetherian W -algebra that is separated and complete for the mW -adic topology). We pick
ã ∈ V 0

d(W
′), and we would like to show that (W ′ ⊗W A )/(H(ã)) is finite and free as a

W ′-module, with basis represented by (5.1), at least if d is large enough (depending only on
g and degu,T h, not on W ′). Since H(ã) ∈ V 0

ρ(d)(W
′), this is a special case of the following

lemma that partially lifts [5, Lemma 3.3] into characteristic 0:

Lemma 5.1. Let W ′ be a W -algebra all of whose maximal ideals contain mWW ′. For
α ∈ V 0

δ(W
′) with δ ≥ 2g, the W ′-algebra (W ′⊗W A )/(α) is finite and free as a W ′-module

with basis

(5.2) {ε̃1, . . . , ε̃δ+g} − {ε̃δ+wr+1−g}1≤r≤g.

This lemma is not generally true if we allow W ′ to merely be a W -algebra. For example,
the case W ′ = F runs into difficulties if the generic-fiber Weierstrass gap sequence at ξ̃F is
different from that on the closed fiber (i.e., the formation of global sections of O(d · ξ̃) with
1 ≤ d ≤ 2g − 2 may not commute with base change). In this sense, Lemma 5.1 is not quite
a mixed-characteristic version of [5, Lemma 3.3]; it is, however, the best one can expect in
general.

Proof. Since α generates O(δ · ξ̃W ′) near ξ̃W ′ , and O(δ · ξ̃) restricts to the structure sheaf
of C = Spec A over the complement of ξ̃, we can identify (W ′ ⊗W A )/(α) with the global
sections of the cokernel of the map α : OC W ′

→ OC W ′
(δ · ξ̃) defined by multiplication by α.
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The support of this cokernel is closed in C W ′ yet it is disjoint from the section ξ̃W ′ , so we
conclude that Spec(W ′⊗W A )/(α) is proper and quasi-finite over W ′, hence finite over W ′.

We will next show that (W ′ ⊗W A )/(a) is W ′-flat. We may localize at maximal ideals
of W ′ and hence may assume W ′ is a local W -algebra with local structure map W → W ′

and residue field denoted k′. By standard direct limit arguments, we may assume W ′

is also noetherian and even complete. A finite W ′-algebra is therefore isomorphic to its
own completion (with respect to the maximal ideal of W ′), so we have an isomorphism
(W ′ ⊗W A )/(α) ' (W ′⊗̂W A ∧)/(α) where A ∧ is the completion of A with respect to
the maximal ideal of W . The completed tensor product R = W ′⊗̂W A ∧ is noetherian and
complete with respect to the topology defined by the maximal ideal of W ′, so all maximal
ideals of R contain the maximal ideal of W ′. Moreover, R is visibly flat (and hence faithfully
flat) over W ′. Consequently, if we use the local flatness criterion for each localization of
W ′⊗̂W A ∧ at a maximal ideal then the W ′-flatness of (W ′⊗̂W A ∧)/(α) follows from the
W ′-flatness of W ′⊗̂W A ∧ and the fact that the reduction α in the domain k′ ⊗k A is not 0
(and hence is not a zero divisor in any localization of R/mW ′R = k′⊗kA). This shows that
(W ′ ⊗W A )/(α) is W ′-flat.

With (W ′ ⊗W A )/(α) now known to be finite and flat over W ′, as well as obviously of
finite presentation (as an algebra, hence as a module due to finiteness), to establish that
(5.1) is a W ′-basis we may again localize at maximal ideals of W ′ and it suffices to check the
basis condition modulo the maximal ideal of W ′. That is, it is enough to treat (k′⊗kA)/(α)
for α ∈ V 0

δ(k
′), where k′ is the residue field of the local W -algebra W ′. This case follows

from [5, Lemma 3.3] (that is stated over the perfect field k but therefore obviously applies
over any extension field k′/k). �

For any W ′ as in Lemma 5.1 and any α ∈ V 0
d(W

′) with d ≥ 2g, we can use the or-
dered basis (5.2) to define the discriminant disceε,W ′((W ′ ⊗W A )/(α)) ∈ W ′ as a specific
determinant (not merely as an element that is well-defined up to unit-square multiple),
and this construction is functorial in such W ′ with fixed ε̃ and d. The cases of interest
for us are those noetherian W ′ that are separated and complete for the topology defined
by the maximal ideal of W . For such W ′ and any affine finite-type W -scheme Y , clearly
Y (W ′) = lim←−Y (W ′/mn+1

W W ′) = Ŷ (W ′), where Ŷ is the formal scheme over Spf(W ) ob-
tained by completing Y along its closed fiber and Ŷ (W ′) denotes the set of Spf(W ′)-points
of Ŷ in the category of formal schemes over Spf(W ). Using the special case Y = V 0

d, by
Yoneda’s lemma we see that the above discriminant construction defines a map

(5.3) disc∧eε,d : V 0,∧
d → Â1

W = Spf(W{{T}})

of topologically finite-type formal W -schemes. This map is a formal deformation of the
algebraic k-morphism discε,d : V 0

d → A1
k defined as in [5, (3.10)]. In particular, if W ′ is the

valuation ring of a finite extension of F = Frac(W ) and we identify V 0
d(W

′) with V 0,∧
d (W ′)

then

disc∧eε,d(ã) = disceε,W ′((W ′ ⊗W A )/(ã))

for ã ∈ V 0
d(W

′). It seems unlikely in general (for g ≥ 2) that there is a map V 0
d → A1

W of
ordinary W -schemes that gives rise to disc∧eε,d by passage to formal completions, so to lift
discε,d : V d → A1

k it seems necessary to use formal schemes as above. (For example, the
coordinate ring of V 0

d does not satisfy the requirements on W ′ in Lemma 5.1.)
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Rather than work only with the normal (even regular) formal schemes Spf(A ∧) = C ∧

and V 0,∧
d , it will be necessary to apply Raynaud’s “generic-fiber” functor (·)rig from the

category of locally topologically finite-type formal W -schemes to the category of rigid-
analytic spaces over F ; we refer the reader to [1] for a development of the basic properties
of this functor. The formal completion C ∧ is open within the proper formal curve C

∧
, and

(C ∧)rig = Sp(F ⊗W A ∧) is an admissible open affinoid inside of the proper rigid-analytic
curve (C

∧
)rig ' C

an
F over F (this latter isomorphism is established via the valuative criterion

for properness; see [2, 5.3.1(4)]). The choice of ε̃ allows us to identify the Raynaud generic-
fiber Ṽ 0

d of V 0,∧
d with an affinoid

Sp(F 〈c̃1, . . . , c̃d+1−g, 1/c̃d+1−g〉) ' Bd−g × ∂B,
where B is the closed unit ball over F and ∂B = Sp(F 〈t, 1/t〉) = {|t| = 1} is the “boundary”.
Let Ṽd = (V ∧

d )rig, so we have a closed immersion Ṽd−1 ↪→ Ṽd. Explicitly, Ṽd is a unit polydisc
on parameters c̃1, . . . , c̃d+1−g, and Ṽ 0

d ⊆ Ṽd is the locus |c̃d+1−g| = 1, whereas Ṽd − Ṽd−1 is
the locus 0 < |c̃d+1−g| ≤ 1.

We define discrigeε,d : Ṽ 0
d → B to be the Raynaud generic-fiber of disc∧eε,d. For large d

(depending only on g and degu,T h), any finite extension F ′/F with valuation ring W ′, and
any α ∈ Ṽ 0

d (F ′) = V 0,∧
d (W ′), we have that discrigeε,ρ(d)(H(α)) ∈ W ′ is a discriminant of the

finite F ′-algebra
AF ′/(H(α)) = F ′ ⊗W ′ (AW ′/(H(α)))

relative to a W ′-basis of the order AW ′/(H(α)). Such an “integral” discriminant in the case
p = 2 is what we will need to use in our study of Möbius-periodicity in characteristic 2.

Pick an F -basis εF = {εi,F }i≥1 of AF adapted to the V d/F ’s in the sense that we require
that − ordeξF

(εi,F ) is strictly increasing in i. Use the choice of εF to define the F -scheme
morphism discεF ,d : V 0

d/F → A1
F as in [5, (3.10)]. It is important to understand how this

algebraic discriminant over SpecF is related to the formal discriminant (5.3) over Spf(W ).
The relation is given by:

Lemma 5.2. For d ≥ 2g, there exists a nonvanishing rigid-analytic function ∆d on Ṽ 0
d

(depending on ε̃ and εF ) such that

(disc∧eε,d)rig = ∆2
d · discan

εF ,d|eV 0
d
.

In the genus-0 case with A = W [u], if we choose εi,F = ui−1 and ε̃i = ui−1 then ∆d = 1.
More generally, the proof of Lemma 5.1 can be modified at the end (adapting the appeal
to [5, Lemma 3.3]) to avoid the requirement that − ordξ(εi) is strictly increasing in i for
i ≤ g (as long as {ε1, . . . , εg} is a basis of L((2g − 1)ξ)), so it is possible to get by with the
choice εi,F = ε̃i for all i even though this makes the pole order of the εi,F ’s along ξ̃F fail
to be strictly increasing for i ≤ g if the gap sequences at ξ and ξ̃F are not the same. The
crucial point is that even if we make such a convenient-looking choice of εi,F , the function
∆d still cannot be expected to be better than rigid-analytic in the case of unequal gap
sequences since the determinants on the two sides of the identity in Lemma 5.2 involve
different subsets of {ε̃1, . . . , ε̃d+g−1}.

Proof. We will construct ∆d by Yoneda’s lemma. Let R be an F -affinoid algebra, so R =
F ⊗W R for a topologically finite-type and flat adic W -algebra R, and consider a point
ã ∈ Ṽ 0

d (R) having the form ã = αrig for some (necessarily unique) α ∈ V 0,∧
d (R). An
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important special case is to take α to be the identity point of the functor represented by
the affinoid Ṽ 0

d = (V 0,∧
d )rig. By functoriality of (·)rig we have

(disc∧eε,d)rig(ã) = disc∧eε,d(α) = disceε,W ((R⊗̂W A ∧)/(α)),

with this final discriminant computed for the finite flat R-algebra (R⊗̂W A ∧)/(α) relative
to the basis of ε̃i’s for i ≤ g + d omitting ε̃d+wr+1−g’s for 1 ≤ r ≤ g. On the other hand,
identifying V 0

d/F (SpecR) with V 0,an
d/F (Sp(R)), say with ãalg going over to ã, discan

εF ,d(ã) is the
discriminant of the finite flat R-algebra (R⊗F AF )/(ãalg) relative to the F -basis of εi,F ’s for
i ≤ d+ g omitting εd+ ewr+1−g,F ’s for 1 ≤ r ≤ g with {w̃1, . . . , w̃g} denoting the Weierstrass
gap sequence at ξ̃F on the F -fiber of C .

The R-algebra map R ⊗F AF = F ⊗W (R ⊗W A ) → F ⊗W (R⊗̂W A ∧) carries ãalg to
1⊗ α, and passing to the quotient induces a map of R-algebras

θ : (R⊗F AF )/(ãalg)→ F ⊗W ((R⊗̂W A ∧)/(α)).

The source and target have R-bases {εi,F }i≤d+g,i6=d+ ewr+1−g and {ε̃i}i≤d+g,i6=d+wr+1−g re-
spectively. Thus, as long as θ is an isomorphism in general we may form the determinant of
the change-of-basis matrix to get a unit in R. In the universal case with R the coordinate
ring of Ṽ 0

d , this unit (or its reciprocal) is the desired analytic function ∆d. The possible
failure of the gap sequence {wr} to equal the gap sequence {w̃r} (see Remark 4.6) is the
reason why ∆d may not be taken to be identically 1 in general.

Since θ is an R-linear map between finite free R-modules of the same rank, to prove that
θ is an isomorphism it is enough to prove surjectivity modulo maximal ideals of R. Every
maximal ideal m of R has the form F ⊗W p for a prime p of R meeting W in {0} with
dim R/p = 1 [1, Lemma 3.4], so by functoriality in R we may replace R with R/p to reduce
to the case in which R = F ′ is a finite extension of F and R is W -finite (more specifically,
a W -order in F ′). We then have an isomorphism

F ⊗W (R⊗̂W A ∧) ' F ⊗W (R ⊗W A ∧) ' F ⊗W (W ′ ⊗W A ∧)

where W ′ is the valuation ring of F ′. Making the base change from W to W ′ typically
increases the absolute ramification degree, but we were careful to not make ramification
restrictions on W at the outset in §4 and so we are reduced to the special case R = F and
R = W .

Since V 0,∧
d (Spf(W )) = V 0

d(SpecW ), α is induced by an algebraic section αalg of V 0
d over

SpecW . Clearly αalg has generic fiber ãalg, and A ∧/(α) is the mW -adic completion of the
W -algebra A /(αalg), so θ is F ⊗W (·) applied to the natural map from A /(αalg) to its
mW -adic completion A ∧/(α). This map is an isomorphism since A /(αalg) is W -finite. �

Consider d ≥ 2g with d sufficiently large (depending only on g and degu,T h) so that H
carries V 0

d into V 0
ρ(d). We want to study discrigeε,ρ(d) ◦H

rig by using the analytification of the
algebraic factorization of disceεF ,ρ(d) ◦ HF over SpecF given by [5, (4.10)]. First, we need
to define several functions. The analytification functor from algebraic F -schemes to rigid
spaces over F provides rigid-analytic maps

(5.4) P an
x,d : V an

d/F → A1,an
F

for any x ∈ BF . Since V an
d/F (SpR) = V d(SpecR) for any F -affinoid algebra R, we have the

functorial description P an
x,d(ã) = NR⊗F F (x)/R(ã(ux) − tx) for any F -affinoid algebra R and

any ã ∈ V an
d/F (SpR). Similarly, for x in the F -fiber Bf

F of Bf as in (4.2), by passing to formal



30 BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

completions and Raynaud generic-fibers we see that the W -scheme map Px,d,W : V d → A1
W

induces a rigid-analytic map

(5.5) P rig
x,d,W : Ṽd = (V ∧

d )rig → Â1,rig
W = B = SpF 〈T 〉.

It is important that (5.4) and (5.5) are compatible for x ∈ Bf
F . This compatibility is a spe-

cial case of the general compatibility of Raynaud’s generic-fiber functor with analytification
[2, 5.3.1]. To be precise, if Y is any finite-type separated W -scheme with formal completion
Ŷ along its closed fiber, there is a functorial quasi-compact open immersion Ŷ rig ↪→ Y an

F
that is an isomorphism for W -proper Y ; applying such functoriality for Y = V d implies
that for x ∈ Bf

F , restricting P an
x,d to the affinoid subdomain Ṽd in V an

d/F gives P rig
x,d,W .

On the admissible open V 0,an
d/F ⊆ V an

d/F we define P 0,an
x,d to be the restriction of P an

x,d; this is
also the analytification of the restriction P 0

x,d of Px,d to V 0
d/F . When x ∈ BF is an integral

point (i.e., lies in the generic fiber of Bf), we can use the algebraic function Px,d,W on V d

over SpecW to define a formal function on V ∧
d over SpfW that we may restrict to the

formal completion V 0,∧
d of the open V 0

d (or equivalently, we may restrict Px,d,W to V 0
d and

then pass to formal completions), and then Raynaud’s functor provides us with an analytic
function P 0,rig

x,d,W on the generic fiber Ṽ 0
d of V 0,∧

d . This latter function is the restriction of

P rig
x,d,W to the affinoid subdomain Ṽ 0

d within Ṽ 0
d , and so for x ∈ Bf

F we have that P 0,rig
x,d,W is

the restriction of P 0,an
x,d to Ṽ 0

d ⊆ V 0,an
d/F .

Choose εF as in Lemma 5.2. By applying [5, Thm. 4.5] to the characteristic-0 triple
(C F , ξ̃F ,HF ) and using the algebraic factorization of disceεF ,ρ(d) ◦ HF in [5, (4.10)] in this
situation, Lemma 5.2 yields an identity of rigid-analytic meromorphic functions on Ṽ 0

d :

(5.6) (disc∧eε,d)rig ◦Hrig = ∆2
d · bdc̃

ed
d+1−g

∏
x∈BF

(P 0,an
x,d |eV 0

d
)ex ·

(Nan
D,ρ(d) ◦H

an
F )|eV 0

d

Rd(HF , DHF )an|eV 0
d

,

where D : AF → AF is any nonzero F -linear derivation, ex ∈ Z is a suitable positive integer
for each x ∈ B, the elements bd ∈ F× and ed ∈ Z may depend on εF (and the ex’s, bd, and
ed do not depend on D), and the functorial norm function ND,ρ(d) (resp. Rd(HF , DHF )) is
defined in [5, (4.2)] (resp. [5, (4.4)]). If we choose D to arise from a W -linear self-derivation
of A then the numerator and denominator in the fraction on the right side of (5.6) acquire
integral structure (and have restrictions to Ṽ 0

d that arise by the Raynaud construction
applied to analogous functorial norms on the formal-scheme side).

The fraction on the right side of (5.6) is a priori independent of D, for reasons explained
below [5, (4.9)], and we now make the independence of D explicit in an important special
case. Consider a ∈ V 0

d ⊆ A such that the nonzero h(ap) is squarefree in A. (Such a exists
if d is sufficiently large, where largeness only depends on g and degu,T h.) Since d ≥ 2g
we can pick ã ∈ V 0

d ⊆ A lifting a, and by Lemma 5.1 the zero-scheme Spec A /(H(ãp)) is
a closed subscheme of C that is (nonempty and) finite étale over W . Pick D : A → A
such that near the W -finite support of Spec A /(H(ãp)) it is dual to a local generator of
the invertible sheaf Ω1

C /W . Let D : A → A be the (nonzero) reduction of D and define
DH ∈ A [T ] by letting D act on A [T ] as a W [T ]-linear derivation restricting to D on A .
Since (Dh)(ap) = D(h(ap)) is necessarily a unit in the k-étale A/(h(ap)), (DH)(ãp) has
unit image in A /(H(ãp)). We conclude that N(A /(H(eap)))/W ((DH)(ãp)) ∈ W×, so we may
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consider the integral ratio
ND,ρ(pd)(H(ãp))

N(A /(H(eap)))/W ((DH)(ãp))
= N(A /(H(eap)))/W

(
D(H(ãp))
(DH)(ãp)

)
∈W

that is visibly independent of D. This obviously has reduction 1 in k. Note that this
entire setup is compatible with flat local base change W →W ′ to another complete discrete
valuation ring.

Theorem 5.3. Pick d large as above, and consider a ∈ V 0
d(k) such that the nonzero h(ap)

is squarefree in A. Define the rational 1-form

ωh,a =
(∂Th)(ap)ap−1

h(ap)
da

on C. Choose a W -linear derivation D : A → A lifting a k-linear derivation D : A → A
that is dual to a local generator of Ω1

C/k near zeros of h(ap) on C.
The 1-form ωh,a has at worst simple poles on C, and if p = 2 then for sufficiently large d

N(A /(H(eap)))/W

(
D(H(ãp))
(DH)(ãp)

)
≡ 1− p ordξ(a) degT (h) +(5.7)

p2
∑

{y1,y2}

Resy1ωh,aResy2ωh,a mod p2mW ,

where {y1, y2} runs over all unordered pairs of distinct geometric poles of ωh,a on C and
ã ∈ V 0

d(W ) lifts a. The largeness of d is determined by g and degu,T h.

Due to the residue theorem and the fact that the residue characteristic is 2 in (5.7), we
can include pairs y1 = y2 in the residue sum in (5.7) without affecting the value of the sum.
The congruence (5.7) was proved in [3, Thm. 5.5] in the genus-0 case, with A = W (k)[u]
and D = ∂u. The reader may easily check that our proof of (5.7) works modulo p2 for any
prime p, but (5.7) is only useful for us because for p = 2 it holds modulo p2mW .

Proof. Since h(ap) is squarefree in A, it is obvious that ωh,a has at worst simple poles away
from ξ. The pole-order of (∂Th)(ap)ap at ξ cannot exceed that of h(ap) when d = − ordξ(a)
is sufficiently large (as determined by degu,T h), so it is clear that (∂Th)(ap)ap/h(ap) cannot
have a pole at ξ for such large d, and hence ordξ(ωh,a) ≥ −1 for such large d. In what
follows, we shall take − ordξ(a) large as just required (in particular, a 6= 0). We also take
d so large (depending only on g and degu,T h) that evaluation of H carries V 0

d into V 0
ρ(d).

To establish (5.7), we will not need that p = 2 until near the end of the proof. Thus,
we initially work with a general prime p. Making a base change to the completion of a
strict henselization of W , we may reduce to the case of algebraically closed k. Let c ∈ C(k)
run over the zeros of the nonzero non-unit h(ap) ∈ A, and let c ∈ C (W ) run over the
zeros of H(ãp), so each c lifts a unique c since A /(H(ãp)) is finite étale over W . Clearly
(DH)(ãp) ∈ A has unit value at each c, since its reduction (Dh)(ap) = D(h(ap)) on C has
nonzero value at each zero c of h(ap) (because h(ap) is squarefree and D is dual to a local
generator of Ω1

C/k near each c). By using the Chain Rule to compute D(H(ãp)) we have

(5.8)
D(H(ãp))
(DH)(ãp)

∣∣
c
= 1 + p · (∂TH)(ãp) · ãp−1 · (Dã)

(DH)(ãp)

∣∣
c
.

The product of these 1-units over all c is the left side of (5.7).
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Let P = H(ãp). For each c ∈ C (W ) as above, P is a local parameter at cF on the generic
fiber C F since AF /(H(ãp)) is finite étale over F . Thus,

(5.9) p · (∂TH)(ãp) · ãp−1 · (Dã)
(DH)(ãp)

∣∣
c
= p · Resc

(∂TH)(ãp)ãp−1 ·Dã
(DH)(ãp)

· dP
P
.

Since dP = (dH)(ãp) + p(∂TH)(ãp)ãp−1dã, where dH denotes the application of d to the
coefficients of H ∈ A [T ] (just like our convention for defining DH by extending D to a
W [T ]-linear derivation of A [T ]), expanding out dP/P in (5.9) yields

p ·Resc
(∂TH)(ãp)ãp−1 ·Dã

H(ãp)
· (dH)(ãp)
(DH)(ãp)

+p2 ·Resc

(
(∂TH)(ãp)ãp−1(Dã)

(DH)(ãp)

)2

· (DH)(ãp) · dã
H(ãp) ·Dã

(note that Dã 6= 0 since ã 6∈ F and F has characteristic 0). Hence, the right side of (5.8) is

(5.10) 1 + p · Resc
(∂TH)(ãp)ãp−1 · dã

H(ãp)
+ p2 · Resc

(
(∂TH)(ãp)ãp−1(Dã)

(DH)(ãp)

)2

· (dH)(ãp)
H(ãp)

,

due to the identity
(dH)(ãp)

dã
=

(DH)(ãp)
Dã

of meromorphic 1-forms on C ; this identity follows from the more precise identity dα/dã =
Dα/Dã for each coefficient α ofH ∈ A [T ]. This latter identity is an immediate consequence
of the universal property of d : A → Ω1

A /W .
Consider the product of (5.10) over the finitely many c ∈ C (W ) as considered above. We

are interested in computing this product modulo p2mW , so it suffices to compute the final
residue term in (5.10) modulo mW , or in other words as a residue in k at the reduction
c ∈ C(k). In characteristic p we have (dh)(ap) = d(h(ap)), and h(ap) is a local coordinate
at c. Hence, (5.10) modulo p2mW is

1 + p · Resc
(∂TH)(ãp)ãp

H(ãp)
· dã
ã

+ p2 · Resc

(
(∂Th)(ap)ap−1(Da)

(Dh)(ap)

)2

· d(h(ap))
h(ap)

mod p2mW .

Note that the first residue term lies in W and the second lies in k. Define

ωH,ea :=
(∂TH)(ãp)ãp

H(ãp)
· dã
ã
, ηh,a :=

(
(∂Th)(ap)ap−1(Da)

(Dh)(ap)

)2

· d(h(ap))
h(ap)

.

Since a and h(ap) are nonzero in A, the rational 1-form ωH,ea on C is regular near the generic
point of the closed fiber. Thus, the reduction of ωH,ea to a meromorphic 1-form on C makes
sense and is given by using h and a in the respective roles of H and ã. More importantly,
this reduction process is compatible with reduction of residues along the generic and closed
fibers of any section c ∈ C (W ) that is a zero of H(ãp) since A /(H(ãp)) is finite étale over
the strictly henselian W . That is, Resc(ωH,ea) ∈W reduces to Resc(ωh,a) ∈ k for such c. We
conclude that the norm in (5.7) is congruent to

(5.11) 1 + p
∑

c

Resc ωH,ea + p2
∑

c1 6=c2

Resc1 ωH,ea · Resc2 ωH,ea + p2
∑

c

Resc ηh,a mod p2mW ,

where the generic-fiber geometric points cF ∈ C (F ) in the first two sums in (5.11) run over
all points in the geometric generic fiber of the support of the W -finite étale Spec A /(H(ãp)),
which is to say (by looking at the definition of ωH,ea) that they run over all geometric poles
of ωH,ea on C F except for the unique point ξ̃F complementary to CF = Spec AF if this
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point is a pole. Also, the final sum in (5.11) runs over the (pairwise distinct) reductions
of these points. By the residue theorem over F , we conclude that the first sum over c’s in
(5.11) equals −ReseξF

ωH,ea. Since F has characteristic 0 and (C , ξ̃, H) satisfies Definition
4.4, by taking d sufficiently large (with largeness only depending on degu,T h) we see that
the residue of ωH,ea at ξ̃F is equal to ordeξF

(ã) · degT H, and since ã is a W -section of V 0
d we

can write this residue-value as ordξ(a) degT h.
Since (Dh)(ap) = D(h(ap)) in characteristic p, we have

ηh,a =
(

(∂Th)(ap)ap−1 da
d(h(ap))

)2

· d(h(ap))
h(ap)

.

If we use the residue theorem to express the final sum
∑

c Resc ηh,a in (5.11) as the negative
of the sum of residues of ηh,a at its poles on C away from the c’s, there is no reason in
general to expect the residue at ξ to be the only contribution from poles away from the
c’s; ηh,a probably has many poles on C away from the c’s. However, when p = 2 a miracle
happens: the residue at any such pole must be 0! To see this, recall that for a rational point
x and a meromorphic 1-form spdr/r on a smooth algebraic curve in characteristic p > 0,
Resx(spdr/r) = (Resx(sdr/r))p. Thus, in characteristic p = 2, for any x ∈ C(k) where
h(ap) is nonvanishing, the residue Resx ηh,a is the square of

Resx(∂Th)(ap)ap−1 da
d(h(ap))

· d(h(ap))
h(ap)

= Resx(∂Th)(ap)ap−1 da
h(ap)

= 0.

It follows that when p = 2,∑
c

Resc ηh,a = −Resξ ηh,a = −
(

Resξ
(∂Th)(ap)ap

h(ap)
· da
a

)2

= −(Resξωh,a)2

= Resξωh,a ·
∑

c

Resc ωh,a,

the final equality following from the residue theorem for ωh,a on C. Putting everything
together, taking the product of the left side of (5.8) over all c’s yields (5.7) when p = 2. �

Motivated by (5.7) and following [3], we shall use the following notation:

Definition 5.4. For a ∈ A, let ωh,a = ((∂Th)(ap)ap−1/h(ap)) da. For a meromorphic 1-
form ω on C, let s2(ω) be the second symmetric function of the residues of ω, indexed by
the geometric poles.

Note that Definition 5.4 makes sense without requiring h(ap) to be squarefree. Clearly
s2(ωh,ap) = 0 since ωh,ap = 0. Also, if h is a polynomial in T p (so ∂Th = 0 and hence
ωh,a = 0 for all a) then we have s2(ωh,a) = 0 for all a. As we noted in [3, §5], s2(ω) is not
“algebraic” in ω if we do not restrict ω to have an étale polar divisor with a fixed degree.
The cases of most interest to us will be 1-forms with such a divisor.

In the case p = 2 with large d as required for (5.7), we shall combine the congruence (5.7)
and the rigid-analytic factorization obtained by evaluating (5.6) on Ṽ 0

pd at ãp for points ã
of Ṽ 0

d . More generally, allowing any p and taking d large as required for (5.6), consider the
contribution to (5.6) by P 0,an

x,d for x ∈ BF . If x ∈ Bf
F then we have a compatibility of (5.4)

and (5.5): the restriction of P 0,an
x,d to an analytic function on Ṽ 0

d is equal to the Raynaud
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generic-fiber P 0,rig
x,d,W of the map P 0,∧

x,d,W : V 0,∧
d → Â1

W . If x = (ux, tx) 6∈ Bf
F then either

|tx| > 1 or ux ∈ C (F ) ⊆ C (F ) = C (W ) is not a W -point of C (where W is the valuation
ring of an algebraic closure F of F ), which is to say that either |tx| > 1 or ux has reduction
ξ ∈ C(k). We shall describe this second possibility by writing “|ux| > 1” (since in the
genus-0 case A = W [u], this inequality on the absolute value of the standard coordinate
of ux in CF = A1

F is exactly the condition that ux has reduction ξ =∞ ∈ P1(k)). We will
likewise write “|ux| ≤ 1” when ux does extend to an integral point of C .

The factor P 0,an
x,d |eV 0

d
in (5.6) for points x ∈ BF with |ux| > 1 can be absorbed into ∆d

when d is a large multiple of p and we evaluate on pth powers ãp, due to:

Lemma 5.5. If x ∈ BF with |ux| > 1 then the restriction of P 0,an
x,d to Ṽ 0

d is nonvanishing

on Ṽ 0
d when d is sufficiently large. Moreover, for sufficiently large d, the analytic function

ã 7→ P 0,an
x,pd (ãp) on Ṽ 0

d is the pth power of a nonvanishing analytic function on Ṽ 0
d . If

W = W (k) then this largeness for d only depends on g and degu,T h.

See [3, Thm. 5.7] for a simpler genus-0 analogue with p = 2.

Proof. For F -affinoid algebras F ′ and ã ∈ Ṽ 0
d (F ′), we have the factorization

P 0,an
x,d (ã) = NF ′⊗F F (x)/F ′(ã(ux)− tx)

= NF ′⊗F F (x)/F ′(ã(ux)) ·NF ′⊗F F (x)/F ′(1− txã(ux)−1) ∈ F ′

if ã(ux) ∈ F ′⊗F F (x) is a unit. We will show that for any N > 0, if we make d large enough
then for any finite extension F ′/F and ã ∈ Ṽ 0

d (F ′), the image of ã(ux) in each factor field
of F ′⊗F F (x) is not only nonzero, but has absolute value > N (all absolute values on finite
extensions of F are required to extend the standard absolute value on Qp); the dependencies
for such largeness of d will be addressed later. Grant this for now, so for such large d the
analytic function P 0,an

x,d is nonvanishing on Ṽ 0
d and, for ã ∈ Ṽ 0

d (F ′) with F -affinoid F ′,

P 0,an
x,pd (ãp) = NF ′⊗F F (x)/F ′(ã(ux))pNF ′⊗F F (x)/F ′(1− ã(ux)−ptx).

Define q = p2 if p is odd and q = 8 if p = 2. The p-adic logarithm t 7→ logp(1 + qt) and
p-adic exponential t 7→ expp(qt) on the closed unit disc over Qp provide canonical pth roots
of analytic functions of the form 1 + qf in affinoid algebras over any analytic extension
field of Qp when ||f ||sup ≤ 1. Thus, it would follow that P 0,an

x,pd ((·)p) is the pth power of a

nonvanishing analytic function on Ṽ 0
d as long as we use d adapted to a choice of N satisfying

Np ≥ |tx/q|, since then ã 7→ 1− ã(ux)−ptx has a canonical pth root as an analytic function
(Ṽ 0

d )F (x) → B1
F (x).

We may make a (typically ramified) finite extension of F so that all x’s are F -rational,
and our problem is to give a large universal lower bound on |ã(ux)| for ã ∈ Ṽ 0

d (F ′) with F ′

a varying finite extension of F and d fixed but large. Let W ′ denote the valuation ring of F ′

and note that Ṽ 0
d (F ′) = V 0,∧

d (SpfW ′) = V 0
d(SpecW ′). The point ux ∈ C an

F ⊆ C
an
F = C

∧,rig

has reduction ξ ∈ C(k). Using Berthelot’s generalization of Raynaud’s “rigid generic fiber”
construction (see [9, §7], especially [9, 7.2.5]), the preimage of ξ under the specialization
mapping sp : C

an
F ' C

∧,rig → C is an admissible open in C
∧,rig

that is compatibly identified
with the Berthelot generic fiber of the formal completion of C

∧
along ξ, which is to say
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sp−1(ξ) = Spf(O∧
C
∧

,ξ
)rig as admissible opens in C

an
F ' C

∧,rig
. This admissible open sp−1(ξ)

is an open unit disc since C is smooth at ξ.
Explicitly, the section ξ̃ ∈ C (W ) = C

∧
(W ) lifts ξ, so if we choose a local generator

y ∈ OC ,ξ for the ideal of the section ξ̃ then since W is complete we get a topological
isomorphism

O∧
C
∧

,ξ
'W [[y]]

where W [[y]] has its maximal-adic topology. This identifies sp−1(ξ) ⊆ C
an
F with an open

unit disc {|y| < 1}, so the point ux with reduction ξ corresponds to some value y(ux) ∈ mW .
Since the Berthelot and Raynaud constructions are compatible with base change on W , the
meromorphic function defined by ã ∈ Ṽ 0

d (F ′) = V 0,∧
d (W ′) on this open disc has a formal

Laurent series

ã = cd+1−g(ã)y−d + cd+g(ã)y−d+1 + · · · ∈ Frac(O∧
C

an
F ′ ,

eξF ′
) ' Frac(O∧

C F ′ ,
eξF ′

) ' F ′((y))

with a W ′×-coefficient in degree −d and W ′-coefficients in all other degrees. That is, this
power series lies in W ′[[y]][1/y]×. Thus,

ã(ux) = y(ux)−d(cd+1−g(ã) + cd+g(ã)y(ux) + . . . )

with |y(ux)| < 1, so |ã(ux)| = |y(ux)|−d. Since |y(ux)|−1 > 1 and y(ux) has nothing to do
with ã, we can make |ã(ux)| as large as we please uniformly with respect to all ã ∈ Ṽ 0

d (F ′)
and all finite extensions F ′/F by choosing d� 0 to make |y(ux)|−d large.

It remains to explain why the largeness condition on d to make |y(ux)dptx| ≤ |q| for
an integral formal parameter y as above can be chosen to only depend on g and degu,T h.
Recall that we chose the lift (C , ξ̃) of (C, ξ) so that there exists a lift H ∈ A [T ] of h such
that degT H = degT h, degu,T H ≤ degu,T h + 2g, and the Laurent expansion of leadTH

along theW -point ξ̃ has unit leading coefficient. (This summarizes the essential properties of
working with an admissible triple (C , ξ̃, H) in the sense of Definition 4.4.) These properties,
especially the unit condition on leadTH ∈ W [[y]] and the relation H(y(ux), tx) = 0 with
degT H = degT h > 0, permit us to use an elementary integrality argument to show that
|y(ux)dtx| ≤ 1 for d large in a sense determined by degu,T h and g. Thus, we only have
to prove |y(ux)d(p−1)| ≤ p−3 for d large in a sense depending only on degu,T h and g when
W = W (k). But y(ux) ∈ F (x) with |y(ux)| < 1, so it is enough to bound [F (x) : F ]
in terms of degu,T h and g. Since degu,T H is bounded in terms of degu,T h and g, and
[F (x) : F ] ≤ deg BF , the problem comes down to bounding the degree of the branch
scheme BF of the projection ZH → A1

F in terms of g and the total degree degu,T H of H.
Such a bound is easily obtained by intersection theory on C F ×P1

F , as we explained at the
end of the proof of Lemma 2.1. �

When |ux| ≤ 1 and |tx| > 1, we have

(5.12) P an
x,d(ã) = NF (x)/F (tx)NF ′⊗F F (x)/F ′(t

−1
x ã(ux)− 1)

for F -affinoid algebras F ′ and ã ∈ Ṽd(F ′). We absorb the nonzero constant NF (x)/F (tx) into
bd in (5.6) for such x’s, and the remaining part on the right side of (5.12) is the Raynaud
generic fiber of the formal completion of the W -morphism V d → A1

W defined by

Nx,d,W : ã 7→ NW ′⊗W W (x)/W ′(t−1
x ã(ux)− 1)
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for ã ∈ V d(W ′) with W ′ a W -algebra. By computing on the generic fiber of the W -flat
universal case (i.e., taking ã to be the identity Yoneda-point of the affine W -scheme V d)
one sees that the behavior of Nx,d,W under base change on F is just like the behavior of Px,d

under such base change. We have therefore almost proved the following result that gives
an integral variant on the identity (5.6) when p = 2, and it specializes to [3, (5.17)] in the
genus-zero case (when we use A = W [u] and ε̃ = {ui−1}i≥1):

Theorem 5.6. Assume p = 2. If d is sufficiently large (determined by g and degu,T h) then
there exists βd = βd,eε ∈ W× and a map Ud = Ud,eε : V 0,∧

d → Â1
W of formal W -schemes

such that
• Ud has nonzero reduction modulo mW ,
• Urig

d is a unit on Ṽ 0
d = (V 0,∧

d )rig,
• for all finite extensions F ′/F , with valuation ring W ′ and residue field k′, the con-

gruence class disceε,ρ(2d)(H(ã2)) mod 4mW is equal to

(5.13) βd ·(1+4s2(ωh,a)) ·Ud(ã)2 ·
∏

x∈Bf
F

(Px,2d,W )ex(ã2) ·
∏

|ux|≤1,|tx|>1

Nx,2d,W (ã2)ex mod 4mW

when ã ∈ Ṽ 0
d (F ′) = V 0

d(W
′) lifts an a ∈ V 0

d(k
′) for which h(a2) ∈ k′ ⊗k A is

squarefree; s2(ωh,a) is given in Definition 5.4.
Moreover, if W is absolutely unramified then the unit residue class βd mod (W×)2 is inde-
pendent of the choices of Ud,eε and of ε̃.

For any ã ∈ Ṽ 0
d (F ′) = V 0

d(W
′) all factors in (5.13) are in W ′, so the reduction a ∈ V 0

d(k
′)

yields squarefree h(a2) in A if and only if all such factors are in (W ′)×.

Proof. By applying the congruence (1− pr)(1 + p2s) ≡ 1− pr+ p2s mod p2mW to the right
side of (5.7) and noting that c̃2d+1−g(ã2)/c̃d+1−g(ã)2 is a nonzero constant in F that is
independent of ã (but depends on ε̃), the preceding considerations give the desired identity
up to the denominator-chasing that ensures that the element βd ∈ F× really lies in W×.
To prove that βd is an integral unit, it is only necessary to check that all other (formal)
functions of ã ∈ V 0,∧

d under consideration have nonzero reduction modulo mW . This is
obvious for all functions in (5.13), and the reduction discε,ρ(pd) ◦h((·)p) of disc∧eε,pd ◦H∧((·)p)
is nonzero on V 0

d for large d since (for large d) there exists a ∈ k⊗k A with an order-d pole
at ξ such that h(ap) is squarefree in k ⊗k A.

Finally, we address the intrinsic nature of the unit residue class βd mod (W×)2 in the
absolutely unramified case. In this case we have 1 + 4mW = 1 + 8W ⊆ (W×)2. We
consider d so large that there exists a ∈ V 0

d(k) for which h(a2) is squarefree, in which case
we may pick a lift ã ∈ V 0

d(W ) such that H(ã2) has unit discriminant (for any choice of
ε̃). The only property we require for the unit βd is the congruence formula in (5.13), and
knowing βd modulo 4mW certainly determines it modulo (W×)2. Since changing ε̃ changes
the discriminant by a unit square algebraic function, and working modulo unit squares
eliminates the intervention of the unit square Ud(ã)2, we get the desired result. �

6. Quasi-periodicity in characteristic 2

In this final section, we shall use Theorem 5.6 to the study periodicity properties of
µ(h(a2)) for a ∈ A when k = κ is finite with characteristic p = 2 and h ∈ A[T ] is primitive
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over A with h(T 2) squarefree in K[T ]. We also consider questions concerning asymptotics
and non-triviality of a correction factor as in §3.

Theorem 4.1 and the inclusion 1+4mW ⊆ (W×)2 for absolutely unramified W essentially
reduce us to understanding the quadratic character of (5.13) when it is a unit and W =
W (κ). In such cases, the mysterious unit-square contribution Ud(ã)2 can be ignored and
(by Theorem 5.6) βd modulo unit squares is independent of all choices once the admissible
lift (C , ξ̃, H) is selected.

Our treatment of the case of non-unit discriminants rests on a general lemma that has
nothing to do with the restriction to residue characteristic 2. Thus, now let W be a mixed-
characteristic (0, p) complete discrete valuation ring with perfect residue field k and fraction
field F . Using notation as in §5, we prove:

Lemma 6.1. For all sufficiently large d (determined by g and degu,T h) and for any
ã ∈ V 0

d(W ), if disceε,ρ(pd)(H(ãp)) ∈ W is a non-unit then for some x ∈ Bf
F the element

Px,pd,W (ãp) ∈W is a non-unit.

Proof. We can make a finite (possibly ramified) base change on F to reduce to the case
when all x ∈ BF are F -rational. Thus, for x ∈ Bf

F with reduction x ∈ B, Px,δ,W has
reduction Px,δ for all large δ. The finite flat W -algebra A /(H(ãp)) is non-étale over W
(i.e., has non-unit discriminant) if and only if its reduction A/(h(ap)) is non-étale over k.
By Theorem 4.5, the branch scheme of Zh ⊆ C × A1

k is the closed fiber of the finite flat
W -scheme Bf . Thus, each point of this closed-fiber branch scheme is the reduction of some
point in the generic fiber Bf

F . It therefore remains to check that h(ap) is not squarefree if
and only if Px,pd(ap) = 0 for some branch point x of the generically étale projection from
Zh ⊆ C ×A1

k to A1
k. This follows from [5, Thm. 2.6]. �

Now assume k = κ is finite with characteristic p = 2 and let W = W (κ). Fix an
admissible lifting (C , ξ̃, H) of (C, ξ, h) over W in the sense of Definition 4.4. Define χ :
κ××(1+4W )� {±1} as in Theorem 4.1, and define χ(mW ) = {0}. Since dimk A/(h(a2)) =
− ordξ(h(a2)) ≡ − ordξ(lead(h)) mod 2 when − ordξ(a) � 0, by using Theorem 4.1, Theo-
rem 5.6, and Lemma 6.1 we conclude:

Theorem 6.2. For sufficiently large d and any a ∈ V 0
d(κ), µ(h(a2)) is given by the formula

(6.1)

(−1)d0+Trκ/F2
(s2(ωh,a))χ

βd

∏
x∈Bf

F

Px,2d,W (ã2)ex ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x ã(ux)2 − 1)ex

 ,

where d0 = − ordξ(lead(h)), ã ∈ V 0
d(W ) lifts a, and s2(ωh,a) is given in Definition 5.4. The

largeness of d is determined by g and degu,T h.

Implicit in this theorem is the fact (immediate from Remark 4.2, (5.13), and Lemma 6.1)
that if the quantity on which we are evaluating χ in (6.1) is a unit then its 1-unit part
lies in 1 + 4W . Observe that the only ingredient “inside” of χ in (6.1) that depends on
d = − ordξ(a) is βd, since Px,2d,W is a norm-evaluation construction having no dependence
on pole-orders at ξ (the subscript 2d merely indicates that we are evaluating on points ã2

of V 2d).

Corollary 6.3. For all d, d′ � 0 (only depending on g and degu,T h), βd/βd′ ∈W× lies in
κ× × (1 + 4W ).



38 BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

This corollary ensures that for large d and d′ it makes sense to compute χ(βd/βd′).

Proof. To deduce properties of βd as d varies through large values as above, pick d� 0 and
use Lemma 2.1 to find a ∈ V 0

d(κ) with h(a2) squarefree. Let Y ⊆ C be the closure of the
union of the closed points ux ∈ CF with |ux| ≤ 1 for x ∈ BF , so Y is a relative effective
Cartier divisor and its reduction Yκ ⊆ C is supported in C = SpecA with κ-degree equal
to deg(YF ) =

∑
|ux|≤1[F (ux) : F ]. For any large d′ (only depending on the genus of C and

deg(Y )) we can find a′ ∈ A with a pole of order d′ at ξ and with values along Yκ equal to
those of a. Hence, for any ã ∈ V 0

d(W ) and ã′ ∈ V 0
d′(W ) lifting a and a′ respectively, we

are assured that the values ã(ux) and ã′(ux) in the valuation ring W (ux) of F (ux) have the
same image in the residue field of W (ux) whenever |ux| ≤ 1. (Such lifts ã and ã′ can always
be found provided that d and d′ are large enough in a manner that is determined by the
genus of the curve.)

Since µ(h(a2)) 6= 0, it follows from (6.1) and the congruence of ux-values that µ(h(a′2)) 6=
0. The congruence of ã(ux) and ã′(ux) modulo mW (ux) whenever |ux| ≤ 1 implies that
ã2(ux) ≡ (ã′)2(ux) mod 2mW (ux) for such ux. Thus, by Galois-invariance the two products
in (6.1) for ã and ã′ are congruent modulo 2mW = 4W . However, the 1-unit part of the
expression “inside” of χ in (6.1) for ã and ã′ both lie in 1 + 4W , so taking ratios gives that
the W -unit βd/βd′ has 1-unit part in 1 + 4W . �

Once the choice of admissible lift (C , ξ̃, H) over W = W (κ) is fixed, the ex’s do not
depend on any further non-canonical choices (such as ε), and likewise the unit βd ∈ W×

taken modulo (W×)2 for d� 0 is also independent of non-canonical choices. In particular,
χ(βd/βd′) is independent of the choices of ε and ε̃. However, the βd’s (as well as Px,2d,W

and B) depend on (C , ξ̃, H).
Motivated by (6.1), we now use (C , ξ̃, H) to define a nonzero (possibly non-radical) ideal

in A that will play the role for characteristic 2 that the radical ideal If as in §1 played in
our considerations in odd characteristic in [5].

Definition 6.4. Define the ideal IH ⊆ A to be the radical ideal such that Spec(A /IH) ⊆
C has support equal to the union of the closed subschemes {ux} in C as x ranges over
points of BF such that |ux| ≤ 1. Equivalently, Spec A /IH is the W -finite flat reduced
closed subscheme of C obtained by forming the closure in C of the reduced divisor on CF

supported at the ux ∈ CF whose reduction in C is not ξ.
Define the nonzero ideal IH ⊆ A = A /mW A to be the reduction (IH +mW A )/mW A '

IH/mW IH of IH , so SpecA/IH ⊆ C is the closed fiber of the W -flat Spec A /IH ⊆ C .
Define If,κ ⊆ A to be the gcd of the IH ’s as we vary over all admissible triples (C , ξ̃, H)
over W (κ) lifting (C, ξ, h).

The ideal IH depends on the admissible triple (C , ξ̃, H), as does the ideal IH , but
we prefer to emphasize just the dependence on H in the notation. Note that IH need
not be a radical ideal (an explicit non-radical example is given in the case A = κ[u] in
[3, Ex. 5.15], with IH and IH equal to the principal ideals generated by (Mgeom

H )≤1 and
M

geom
H in W [u] and κ[u] respectively). By Theorem 6.2, the property of µ(h(a2)) vanishing

or not is determined by a mod IH for − ordξ(a)� 0, with largeness that is determined by
g and degu,T h.
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The W -algebra A /IH is finite and flat, and the two products in (6.1) define a map of
sets A /IH →W via

LW : ã 7→
∏

x∈Bf
F

NW (x)/W (ã(ux)2 − tx)ex ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x ã(ux)2 − 1)ex

= NBf/W (ã2 − T ) ·
∏

|ux|≤1,|tx|>1

NW (x)/W (t−1
x ã(ux)2 − 1)ex .

The same formula makes sense after the finite étale extension of scalars W = W (κ) →
W (κ′) = W ′ for any finite extension κ′/κ; we simply have to take into account that each
of the x’s may decompose in several points (and this is compatible with formation of the
associated valuation rings since the base change W → W ′ is finite étale). Likewise, for
n ≥ 1 we get maps modulo 2n given by the same formula, and if n > 1 then when working
modulo 2n it suffices to take the source modulo 2n−1 since squaring promotes a congruence
modulo 2n−1 to a congruence modulo 2n for n > 1.

We need to precisely formulate the fact that these maps modulo 2n are algebraic in
the varying κ′. For n ≥ 1 and a finite flat Wn(κ)-algebra S , the functor WS ,n : R  
Wn(R)⊗Wn(κ) S on κ-algebras is represented by a ring scheme over κ whose underlying κ-
scheme is an affine space; here and below, Wn denotes the functor of 2-adic truncated Witt
vectors (w0, . . . , wn−1) of length n. Let Rn denote the ring scheme representing WS ,n in the
case S = A /(2n,IH), so for n > 1 we may using the “squaring” morphism Rn−1 → Rn

to obtain a unique map of κ-schemes Ln : Rn−1 →Wn whose induced map on κ′-points is

LW (κ′) mod 2n : Wn−1(κ′)⊗Wn−1(κ) (A /IH) = (W ′ ⊗W A )/(2n−1,IH)→W ′/2nW ′

for varying finite extensions κ′/κ.
By Theorem 6.2 and the existence of squarefree values h(a2) for a with sufficiently large

ξ-degree, the L3-preimage U ′ ⊆ R2 of the Zariski-dense open subvariety of units W×
3 ⊆W3

is nonempty (hence Zariski-dense in the affine space R2). Moreover, as we noted after
Theorem 6.2, for all large d (and fixed ε̃) the product map βdL3|U ′ : U ′ → W×

3 against
βd = βd,eε is valued in the subgroup Gm ×Ga of units with vanishing middle component:
(u, 0, u4z) = [u] · (1, 0, z) (with [·] denoting the Teichmüller section Gm →W×

3 ).
Our primary interest will be the case when h is a polynomial in T 2 (i.e., f = h(T 2) lies

in A[T 4]), so consider the composition of L3 with the “squaring map” R1 → R2. By the
same method as above, this composite hits W×

3 and so on the Zariski-dense open preimage
U ⊆ R1 of W×

3 we get a κ-map L : U →W×
3 . For any point u = (u0, . . . ) of the unit group

functor W×
n we write 〈u〉 to denote the 1-unit factor [u0]−1u, and for any point w of the

ring functor Wn we write wi to denote the ith coordinate of this truncated Witt vector for
0 ≤ i ≤ n− 1.

For large d, since the product βdL : U → W×
3 has its 1-unit factor lying in Ga =

{(1, 0, z)}, the formation of this 1-unit gives an algebraic map of κ-varieties 〈βdL〉2 : U →
A1

κ. We emphasize that U is a dense open in the ring scheme R1 associated to the finite
κ-algebra A/IH . By Corollary 6.3, for large d and d′ the ratio βd/βd′ mod 8 has 1-unit
component of the form (1, 0, zd,d′) for some zd,d′ ∈ κ since we are assuming h is a polynomial
in T 2; Corollary 6.12 below ensures that we can take zd,d′ = 0 when d and d′ have the
same parity. In particular, the isomorphism class of the double cover of U defined by
y2 − y = 〈βdL〉2 only depends on d mod 2 for large d.
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We conclude that the two maps

〈βdL〉2, 〈βd′L〉2 : U ⇒ A1
κ

are related through additive translation by zd,d′ , and by (6.1) the study of µ(h(a2)) for
h ∈ A[T 2] and sufficiently large d = −ordξ(a) is governed by the Artin–Schreier covering of
U defined by y2 − y = 〈βdL〉2 because (i) h(a2) is squarefree if and only if a mod IH lies in
U(κ) inside of A/IH , and (ii) for any finite extension κ′/κ, a point w = (u, 0, z) ∈W3(κ′)×

is a square if and only if its 1-unit coordinate 〈w〉2 = u−4z ∈ κ′ has vanishing trace into F2,
or equivalently u−4z has the form y2 − y for some y ∈ κ′.

Remark 6.5. Fix f ∈ A[T p] as in §3 with p 6= 2. In our study of Möbius averages for f in
§3, we saw that the asymptotic behavior of the periodic sequence of such averages across
large degrees for increasing constant fields (with f fixed) is controlled by a degree-2 Kummer
covering of a dense open in an affine space (via extraction of a square root of

∏
x∈B P

`(OB,x)
x ).

An analogous result will be proved in Theorem 6.14 for p = 2 and f ∈ A[T 4] by working
with Artin–Schreier double covers as above.

Returning now to the general case with h ∈ A[T ] for which h(T 2) ∈ K[T ] is squarefree
(but perhaps h is not in A[T 2]), we have seen that congruence modulo the ideal IH in A for
any choice of H as above controls whether or not h(a2) is squarefree in A. It is reasonable to
ask if we can construct a nonzero multiple of IH without appealing to lifts into characteristic
0. In the “generic” case when lead(h) ∈ A has no double zeros (e.g., when h is monic),
we can control some properties of IH by using equicharacteristic geometric constructions;
in particular, we can bound IH by equicharacteristic methods when lead(h) has no double
zeros. This is the content of the next theorem.

Theorem 6.6. Let B ⊆ Z = Zh be the κ-finite branch scheme of the projection Z → A1
κ.

Define the nonzero ideal FittB/C ⊆ A to be the Fitting ideal of OB viewed as a finite-length
A-module. Assume that lead(h) ∈ A has no double zeros on C. The ideal IH divides the
Fitting ideal FittB/C , and these have the same radical, with zero locus equal to the image
of B in C.

This theorem specializes to [3, Lemma 5.9] in the genus-0 case, and by [3, Ex. 5.15] the
irreducible factors of IH may occur with higher multiplicity in FittB/C than they do in IH .

Proof. To establish equality of zero loci, we just have to show that if x ∈ BF satisfies
|ux| ≤ 1 then necessarily |tx| ≤ 1 (so x ∈ Bf

F ). Since H(ux, tx) = 0, if lead(H) has integral
unit value at ux then certainly |tx| ≤ 1. However, since A /(lead(H)) is finite flat of degree
d0 over W (because lead(H) ∈ V 0

d0
(W ) by construction of (C ,H, ξ̃)) and its reduction

A/(lead(h)) is finite étale over κ, it follows that A /(lead(H)) is finite étale over W . Since
Ω1

A /W is an invertible A -module with reduction Ω1
A/κ as an A-module, we can find a W -

linear derivation D : A → A that is dual to a local generator of Ω1
A /W near the zeros of

lead(h) on C.
Assuming lead(H) has value at ux that is not an integral unit, it follows from the “simple

zeros” hypothesis and the condition |ux| ≤ 1 that D(lead(H))(ux) must be an integral unit.
Since the point (ux, tx) in the branch scheme B of Z (H)→ A1

W must lie in the zero locus
of DH, the resulting equation (DH)(ux, tx) = 0 is a polynomial relation for tx with integral
coefficients and unit leading coefficient. Hence, once again |tx| ≤ 1. This proves that IH
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and FittB/C have the same zero locus on C, namely the image of B in C (i.e., the support
of OB as an A-module).

To prove that IH |FittB/C , recall that IH is the reduction of IH , with A /IH flat over W .
Also, by Theorem 4.5, FittB/C is the reduction of the Fitting ideal of the W -finite OBf over
A . The inclusion FittB/C ⊆ IH holds if and only if FittB/C has vanishing image in A/IH ,
so it suffices to show that FittA (OBf ) vanishes in A /IH . This latter quotient is W -flat, so
it suffices to check the vanishing on generic fibers over W . That is, it suffices to show that
the Fitting ideal of Bf

F as a finite-length AF -module is divisible by the generic-fiber ideal
F ⊗W IH . This latter ideal is the radical ideal with zero-locus equal to the image of Bf

F
under projection to CF (since |ux| ≤ 1 forces |tx| ≤ 1, as we saw above), so we are reduced
to showing that the image of the projection Bf

F → CF is contained in the zero locus of
the Fitting ideal of OBf

F
as an AF -module. The zero-locus of the Fitting ideal of a finitely

presented module is equal to the support of the module, so we just have to observe that
the support of OBf

F
as a finite(-length) AF -module is obviously equal to the image of Bf

F

under projection to CF = Spec AF . �

Now suppose (with p = 2) that f ∈ A[T 4] is primitive with respect to A and squarefree
in K[T ] with positive degree. Write f = h(T 2) with h ∈ A[T 2], so by [5, Thm. 2.6] the
quasi-finite projection Zh → A1 is generically étale. Let Ih ⊆ A be the nonzero radical
ideal whose zero locus is the image in C of the finite branch scheme for projection from Zh

to A1. By Theorem 6.6, under a mild hypothesis on f the ideal Ih is useful in the study of
Möbius periodicity:

Corollary 6.7. With notation and hypotheses as above, assume that the leading coefficient
lead(f) = lead(h) in A has no double zeros on C. The radical of the ideal If,κ in Definition
6.4 is equal to the radical ideal Ih.

We are now in position to state the main periodicity theorem in characteristic 2, analogous
to [5, Thm. 1.2] for p 6= 2. The genus-0 case was treated in [3, Thm. 5.12], and this special
case will be used in the proof of the general case via essentially the same projection technique
that we used in odd characteristic in [5, §6] to relate higher genus and genus 0.

Theorem 6.8. Assume k = κ is finite of characteristic 2, and let f ∈ A[T 2] be primitive
with f ∈ K[T ] squarefree of positive degree. Write f = h(T 2). Choose an admissible lifting
(C , ξ̃, H) of (C, ξ, h) over W = W (κ), and define the nonzero ideal IH ⊆ A as in Definition
6.4. For any a ∈ A, define the meromorphic 1-form ωh,a = ((∂Th)(a2)a/h(a2)) da on C,
and define s2(ωh,a) ∈ κ to be the second symmetric function of its residues, indexed by the
geometric poles.

Consider the function µ̃f : a 7→ (−1)Trκ/F2
(s2(ωh,a))µ(f(a)) on A. If a, a′ ∈ A are nonzero

then

(6.2) a ≡ a′ mod IH , ordξ(a) ≡ ordξ(a′) mod 4⇒ µ̃f (a) = µ̃f (a′)

provided − ordξ(a),− ordξ(a′)� 0 (with largeness determined by g and degu,T f).
If deg h is even then the congruence on ordξ’s in (6.2) need only be taken modulo 2, and

if [κ : F2] is even or 4|deg h then this congruence condition can be dropped.

The congruence between a and a′ in (6.2) may even be taken modulo the ideal If,κ

that is the gcd of the nonzero ideals IH as we vary over all admissible lifts (C , ξ̃, H) over
W (κ). This is an easy consequence of Theorem 6.8, using the Chinese remainder theorem
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and Riemann–Roch. Before we begin the proof of Theorem 6.8, we record the following
immediate corollary concerning Möbius periodicity in characteristic 2.

Corollary 6.9. Assume k = κ is finite of characteristic 2, and let f ∈ A[T 4] be primitive
with f ∈ K[T ] squarefree of positive degree. Define the nonzero ideal If,κ ⊆ A as in
Definition 6.4. For a, a′ ∈ A with sufficiently large pole orders at ξ,

a ≡ a′ mod If,κ, ordξ(a) ≡ ordξ(a′) mod 2⇒ µ(f(a)) = µ(f(a′)).

The congruence condition modulo 2 may be dropped if [κ : F2] is even or degT f is divisible
by 8. The “sufficiently largeness” of pole-orders at ξ is determined by g and degu,T f .

The proof of Theorem 6.8 requires a standard cohomological result that we recall for ease
of reference (and whose proof we omit):

Lemma 6.10. Let X → S be a proper smooth map with geometrically connected fibers of
dimension 1, with S local and s its closed point. Let D1, D2 ⊆ X be relative effective Cartier
divisors. For sufficiently large d only depending on the degDj’s and the genus of Xs, the
natural map H0(X,OX(d ·D1 −D2))→ H0(Xs,OXs(d · (D1)s − (D2)s)) is surjective.

Proof. (of Theorem 6.8). The proof is long, so we break it up into several steps.
Step 1. We begin by rephrasing the problem in terms of the quadratic character of

βd/βd′ ∈W× (as in Corollary 6.3) for large d and d′ that are congruent modulo 4. Consider
Spec A /IH . By definition, this is the schematic closure of an F -finite (reduced) closed
subscheme of C F and it is disjoint from the section ξ̃, so it is finite and flat over W . In
particular, it is a relative effective Cartier divisor on C over W . Thus, Lemma 6.10 ensures
that any congruence a ≡ a′ mod IH (i.e., equality in the closed fiber A/IH of A /IH) with
a ∈ V 0

d(κ) and a′ ∈ V 0
d′(κ) may be lifted to a congruence ã ≡ ã′ mod IH with ã ∈ V 0

d(W )
and ã′ ∈ V 0

d′(W ) when d and d′ are sufficiently large (with largeness only depending on g
and degu,T f).

Recall that the only ingredient in the formation of (6.1) that depends on d = − ordξ(a)
is βd, and (as we recorded in Corollary 6.3) the ratios βd/βd′ ∈ W× lie in κ× × (1 + 4W )
for d, d′ � 0. We may therefore conclude from the Möbius formula (6.1) that Theorem 6.8
is equivalent to the claim that for d, d′ � 0, (i) χ(βd/βd′) = 1 if d ≡ d′ mod 4 and (ii) this
congruence condition can be weakened to d ≡ d′ mod 2 when deg h is even and it can be
eliminated (i.e., βd/βd′ ∈ (W×)2 for all d, d′ � 0) when [κ : F2] is even or 4|deg h. This
dependence can be made very explicit in the genus-0 case, since our explicit formula for
µ(h(a2)) in [3] yields χ(βd/βd′) = (−1)[κ:F2](b(1+d deg h)/2c+b(1+d′ deg h)/2c) in the genus-0 case.

To understand how βd modulo (W×)2 depends on d for higher-genus cases, we will use a
modification of the method applied in [5, §6] in odd characteristic. Recall that in [5, §6] we
used well-chosen projections to the projective line to pull up properties from the genus-0
case. We will need a variant on this method, adapted to the use of lifts to characteristic 0.

Step 2. We want to construct a projection from C to P1
W that relativizes the construction

over k in [5, §5]. For conceptual clarity, briefly fix a base scheme S0 (such as SpecW ) and
a proper smooth morphism φ : X → S0 with 1-dimensional fibers that are geometrically
connected of genus g (e.g., C ), as well as a section x ∈ X(S0). Fix an integer r ≥ 2g − 1.
By the theorem on cohomology and base change, Vr = φ∗(O(r ·x)) is a vector bundle on S0

of rank r+1− g whose formation commutes with base change, and Vr−1 is a codimension-1
subbundle of Vr for r ≥ 2g. For r ≥ 2g, define the functor Hr on S0-schemes S by letting
Hr(S) be the set of finite flat S-maps π : X×S0S → P1

S of degree r such that π−1(∞) = r·xS
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as relative effective Cartier divisors on X ×S0 S. This functor is represented by the open
subscheme V 0

r := V r − V r−1 inside of V r, and we shall also write Hr to denote this
representing object. The subfunctor H0

r classifying those π ∈ Hr(S) such that πs ∈ Hr(s)
is generically étale for all s ∈ S is represented by an open subscheme in Hr, and this open
subscheme is also denoted H0

r . Note that H0
r is smooth over S0 and is fiberwise nonempty

(hence fiberwise dense) in Hr when r ≥ 2g + 1 (see the beginning of [5, §5] for proofs of
these claims when S0 = SpecL for a field L; the proofs in the general case go the same
way).

We apply these considerations to our curve C over S0 = SpecW with x = ξ̃. Fix an odd
integer r ≥ 2g+1, and let πuniv : C ×S0H

0
r → P1

H0
r

be the universal degree-r morphism over
the smooth faithfully flat W -scheme H0

r . By [5, Thm. 5.2], the locus of points s in the closed
fiber (H0

r )κ such that Nπuniv
s

(h) ∈ k(s)[u, T ] is squarefree is a dense Zariski-open in (H0
r )κ.

The scheme (H0
r )κ is a nonempty open inside of an affine space, so by [5, Lemma 6.1] it must

contain closed points over a finite extension of κ that may be chosen with κ-degree relatively
prime to any specified nonzero integer. Pick a closed point s0 in the closed fiber of H0

r with
[κ(s0) : κ] odd. Let κ′ = κ(s0) and let W ′ = W (κ′) be the finite étale local extension of
W with residue field κ′. Let π0 : Cκ′ → P1

κ′ be the κ′-map corresponding to s0, and let
χ′ : κ′× × (1 + 4W ′)� {±1} be the unique quadratic character with kernel (W ′×)2. Note
that the restriction of χ′ to κ×× (1+4W ) is χ because χ(c · (1+4w)) = (−1)Trκ/F2

(w mod 2)

and the transitivity of traces yields

Trκ′/F2
|κ = [κ′ : κ] · Trκ/F2

= Trκ/F2

since [κ′ : κ] ≡ 1 mod 2. Thus, by Theorem 4.1 we can rename κ′ as κ (so H0
r (κ) is

nonempty), and we can make further odd-degree extensions on κ without loss of generality.
Choose integers di > 0 forming a system of representatives for Z/rZ such that there

exist ãi ∈ V 0
di

(W ) with reduction ai ∈ V 0
di

(k) not vanishing at the zeros of h(0) 6= 0;
such ãi can be found for di � 0 (only depending on g) by Riemann–Roch. Define the
primitive polynomial hi(T ) = h(a2

iT ) ∈ A[T ], so hi(T 2) = f(aiT ) is squarefree in K[T ]
and Hi(T ) := H(ã2

iT ) ∈ A [T ] is an admissible lift of hi(T ) (in the sense of Definition 4.4).
Since W is henselian, smoothness of H0

r over W ensures that H0
r (W )→ H0

r (κ) is surjective.
Thus, by the functorial interpretation of H0

r as a Hom-scheme, we may pick a degree-r
finite flat map π : C → P1

W lifting π0 such that π−1(∞) = r · ξ̃ and the open étale locus
for π in C is dense in fibers of C over SpecW . Since hi(T 2) is squarefree and any two
nonempty Zariski-opens in an affine space over a field must have nonempty intersection, by
[5, Thm. 5.2] over κ we may also suppose (upon making a further odd-degree extension of
κ that we promptly rename as κ) that π0 was chosen so that the π0-norm of hi(T 2) down
to the affine line A1

κ is squarefree in κ[u, T ].
Step 3. Let us now introduce the objects that will enable us to relate the general case

with the genus-0 case. Using hi and Hi as in Step 2, define hi = Nπ0(hi) ∈ κ[u][T ] (a
primitive polynomial in T ) and Hi = Nπ(Hi) ∈ W [u][T ], so hi(T 2) is squarefree over κ(u)
and Hi is a lift of hi with the same T -degree such that the respective leading coefficients
of Hi and hi in W [u] and κ[u] have the same u-degree. Beware that the total degree
degu,T Hi may be larger than that of degu,T hi, but this will be unimportant later because
what matters is that the possible excess is bounded above depending only on r, di, and
degu,T h. (Keep in mind that r ≥ 2g + 1 and the total degree degu,T H is bounded above
in terms of g and degu,T h.)
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For a ∈ A and ϕ ∈ κ[u], define the meromorphic 1-forms

ωhi,a =
(∂Thi)(a2)a
hi(a2)

da, ωhi,ϕ =
(∂Thi)(ϕ2)ϕ

hi(ϕ2)
dϕ

on C and P1
κ respectively. (The denominators in these two definitions are nonzero because

hi(T 2) and hi(T 2) are squarefree in the F2-algebras K[T ] and κ(u)[T ] respectively.) Define
the invertible ideal Ii ⊆ W [u] to be the product of the invertible IHi and the invertible
ideal defining the W -finite flat schematic image of the finite map Spec A /IHi → A1

W
induced by π. The quotient W [u]/Ii is finite and flat over W . Define Ii ⊆ κ[u] to be the
nonzero reduction of Ii.

Fix i with 1 ≤ i ≤ r. By Lemma 2.1, for d � 0 (with largeness depending only on the
genus, r, and degu,T f) there exists ϕ ∈ κ[u] of degree d such that hi(ϕ2) ∈ κ[u] is squarefree.
Since hi(ϕ2) = Nπ0(hi(π∗0(ϕ)2)), obviously the nonzero hi(π∗0(ϕ)2) ∈ A is squarefree with
physical zeros in distinct fibers of π0. Thus, by the definition of the Möbius function,
µ(A/(hi(π∗0(ϕ)2))) = µ(κ[u]/(hi(ϕ2))). Since the desired implication (6.2) involves the
intervention of symmetric functions of residues, in order to pull up results from genus 0 we
want s2(ωhi,π∗0(ϕ)) = s2(ωhi,ϕ) in κ. This is a special case of:

Lemma 6.11. Let π : C → C
′ be a finite generically-étale map of degree r between proper

smooth geometrically-connected curves over a perfect field k, and let n > 0 be a positive
integer. Assume π−1(∞) = r · ξ for rational points ∞ ∈ C ′(k) and ξ ∈ C(k). Let SpecA =
C−{ξ} and SpecA′ = C

′−{∞}. Pick a nonzero h ∈ A[T ] and define h = NA/A′(h) ∈ A′[T ].
Define ωh,a = (∂Th)(an)an−1 da/h(an) and ωh,a′ = (∂Th)(a′n)a′n−1 da′/h(a′n) for any

a ∈ A and a′ ∈ A′ with h(an) and h(a′n) nonzero. If ϕ ∈ A′ has the property that h(ϕn) ∈ A′
is nonzero and squarefree then s2(ωh,π∗ϕ) = s2(ωh,ϕ) in k.

Proof. We may assume k is algebraically closed. Since NA/A′(h(π∗(ϕn))) = h(ϕn) is nonzero
and squarefree in A′, the physical zeros of h(π∗(ϕ)n) on SpecA are simple and lie in distinct
fibers of π, with π étale at each such zero. Thus, for each zero x′ ∈ SpecA′ of h(ϕn) there
is a unique zero x of h(π∗(ϕ)n) in π−1(x′). We have a factorization π∗(h) = h · h̃ in A[T ],
and so

(6.3) π∗(ωh,ϕ) = ωh,π∗ϕ + ωeh,π∗ϕ
.

If x is a zero of h(π∗(ϕ)n) and x′ = π(x) then h̃(π∗(ϕ)n) is nonvanishing at x and π is étale
at x, so (6.3) implies Resx(ωh,π∗ϕ) = Resx′(ωh,ϕ). Thus, if Z ⊆ SpecA and Z ′ ⊆ SpecA′

are the respective zero-loci of h(π∗(ϕ)n) and h(ϕn) then these loci contain all respective
poles of ωh,π∗ϕ and ωh,ϕ away from ξ and ∞, and π induces a residue-preserving bijection
from Z to Z ′. The respective residues at ξ and ∞ are determined by the residues along
Z and Z ′ by the residue formula, so s2(ωh,π∗ϕ) = s2(ωh,ϕ) (and likewise with any higher
symmetric function of the residues indexed by the geometric poles). �

By Lemma 6.11, we get

(6.4) (−1)Trκ/F2
(s2(ωhi,ϕ))µ(A/(hi(π∗0(ϕ)2))) = (−1)Trκ/F2

(s2(ωhi,ϕ))µ(κ[u]/(hi(ϕ2))).

By the genus-0 version of Theorem 6.8 in [3, Thm. 5.10], for sufficiently large d (with
largeness depending only on g, r, and degu,T f) the right side of (6.4) only depends on ϕ
modulo the reduction of IHi and on d modulo 4, with the congruence on d relaxed to
d mod 2 if deg hi = deg h is even and relaxed to no dependence on large d when [κ : F2]
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is even or 4|deg h. (There is a minor technical point: the hypothesis of equality of total
degrees in [3, Thm. 5.10] may not hold for Hi and hi, as we have noted earlier. The only
purpose of that hypothesis was to have certain lower bounds in the conclusion be determined
by the total degree of the input polynomial in κ[u][T 2] in characteristic 2. Since the possible
excess of degu,T Hi beyond degu,T hi is bounded in terms of r, di, and degu,T h, and the
choice of di can be bounded in terms of r and g, the above conclusion via [3, Thm. 5.10] is
therefore nonetheless true.)

Step 4. We are now in position to use the genus-0 results in [3] to show that the quadratic
character of βm/βm′ ∈ W× is trivial for sufficiently large m and m′ with m′ ≡ m mod 4r
(and we can use weaker congruence conditions on m and m′ when [κ : F2] or deg h are even,
or when 4|deg h). Pick δ � 0 satisfying δ ≡ d mod 4 (or merely δ ≡ d mod 2 when deg h
is even, or no congruence condition when [κ : F2] is even or 4|deg h). Pick ψ ∈ κ[u] of
degree δ with ψ ≡ ϕ mod Ii; such ψ can be found as long as d, δ ≥ dimκ(κ[u]/Ii), and it is
automatic that hi(ψ2) is squarefree (that is, hi(ψ2) has nonvanishing Möbius value) since
the reduction of IHi into κ[u] divides Ii. These largeness conditions on δ only depend on r,
the genus, and degu,T f (since dimκ(κ[u]/Ii) can be bounded in terms of these parameters).

Choose Φ ∈ W [u] of degree d with unit leading coefficient and reduction ϕ ∈ κ[u], so
a2

iπ
∗(Φ2) ∈ V 0

2(di+rd)(W ). Since d and δ are large and W [u]/Ii is finite and flat over W ,
we can choose Ψ ∈ W [u] of degree δ with unit leading coefficient and reduction ψ ∈ κ[u]
such that Ψ ≡ Φ mod Ii. We now use (6.1) for hi with the admissible lift Hi and for
Φ,Ψ ∈ W [u] ⊆ A (in the role of ã) lifting ϕ,ψ ∈ κ[u] ⊆ A (in the role of a) with the
inclusions W [u] ↪→ A and κ[u] ↪→ A defined by π∗ and π∗0. Forming ratios between (6.4)
for ϕ and its analogue for ψ yields χ(βdi+rd/βdi+rδ) = 1 since π∗Ψ ≡ π∗Φ mod IHi (due
to the definition of Ii). This proves that for large m (only depending on r, the genus, and
degu,T f) the class of βm ∈W×/(W×)2 only depends on m mod 4r (or merely on m mod 2r
when deg h is even, resp. on m mod r when [κ : F2] is even or 4|deg h). Running through
the same argument with an odd r′ ≥ 2g + 1 satisfying gcd(r, r′) = 1, possibly replacing κ
with an odd-degree extension in the process, we get the same conclusion with r′ replacing
r. Thus, an application of the Chinese remainder theorem completes the proof of Theorem
6.8. �

Let us record the key fact shown in the preceding proof:

Corollary 6.12. With notation and hypotheses as above, βd/βd′ ∈ (W×)2 for all sufficiently
large d and d′ (only depending on g and degu,T f) such that d ≡ d′ mod 4. The congruence
condition may be taken modulo 2 if deg h is even, and it may be dropped if [κ : F2] is even
or 4|deg h.

As an application of our periodicity results for the Möbius function in characteristic 2,
we get an analogue of Theorem 1.1 in characteristic 2:

Theorem 6.13. Assume p = 2 and let f ∈ A[T 4] be squarefree in K[T ] with positive degree
such that for all c ∈ C = Spec(A) the restriction fc ∈ κ(c)[T ] does not vanish as a function
on κ(c). Define the nonzero ideal If,κ ⊆ A as in Definition 6.4.

Let J be any nonzero ideal in A that is a multiple of Rad(If,κ). For large n, the function

(6.5) n 7→

∑
deg a=n,(f(a),J)=1

µ(f(a))∑
deg a=n,(f(a),J)=1

|µ(f(a))|
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is periodic in n � 0 with period dividing 2. If [κ : F2] is even or 8|degT f then the period
for large n is 1. The largeness in n only depends on g, degu,T f , and dimκ(A/J).

If J1 and J2 are two nonzero multiples of Rad(If,κ) then the functions defined by (6.5)
for J = J1 and J = J2 coincide for large n, with largeness that only depends on g, degu,T f ,
and the dimκ(A/Ji)’s.

Recall that if f has leading coefficient that has no double zeros on C and f = h(T 2) then
Corollary 6.7 gives an “equicharacteristic” formula for Rad(If,κ).

Proof. Since f(T ) = h(T 2) with h a polynomial in T 2, the trace term in the exponent in
(6.1) vanishes in this case. Thus, it is straightforward to carry over the proof of Theorem
3.1 to the case of characteristic 2 by using (6.1) in the role of (3.3) and using Corollary 6.12
in the role of [5, Thm. 3.6], as follows.

Pick an admissible triple (C , ξ̃, H) over W = W (κ) and a W -basis ε̃ of the coordinate
ring of C − ξ̃ as in §5. Using notation as in the discussion preceding Remark 6.5, it follows
from Corollary 6.12 that for sufficiently large n with a fixed parity, the algebraic map
〈βnL〉2 : U → A1

κ is independent of n and ε̃ up to adding a constant of the form c2 − c for
some c ∈ κ; write Lσ to denote such a map with (−1)n = σ. The map

Trκ/F2
◦ Lσ : U(κ)→ F2

is intrinsic to the quotient algebra A/IH because the value of the function (−1)ordξ(lead(h)) ·
(−1)Trκ/F2

◦Lσ on a mod IH ∈ U(κ) ⊆ A/IH is equal to µ(h(a2)) for a in a residue class of
A/IH on whose representatives the values of h(T 2) in A are squarefree. Thus, if we only
consider large n with such a fixed parity then the value of (6.5) with J = IH is

(6.6) (−1)ordξ(lead(f)) ·
∑

a∈U(κ)(−1)Trκ/F2
(Lσ(a))

#U(κ)
,

and likewise (for the same large n) after any finite extension of the constant field. This
expression is intrinsic to A/IH and only involves the large n through its parity, so we deduce
the asserted periodic dependence on n mod 2 for uniformly large n when using J = IH . Due
to the intrinsic nature of (6.6) once IH is given, the method as in the case p 6= 2 carries over
to handle both the periodicity and “independence of J” aspects for more general J . �

In our asymptotic study of odd characteristic in §3, we saw that for “generic” f ∈ A[T p]
(i.e., those f such that some exponent ex = `(OB,x) in [5, (3.14), Thm. 4.5] is odd) the
length-4 periodic sequence of values Λκ′⊗κA(f ;n) for large n converges to the constant
sequence {1, 1, 1, 1} as [κ′ : κ] → ∞, and that in general for each fixed congruence class
mod 4 the periodic value of Λκ′⊗κA(f ;n) on that congruence class for large n converges to
0, 1, or 2. We wish to prove a similar result for p = 2, at least in the case f ∈ A[T 4].

Assume p = 2 and let f ∈ A[T 4] be as in Theorem 6.13. For each sign σ = ±1 we let
Lσ : U → A1

κ be the map as in the proof of Theorem 6.13. Let λκ′(f, σ) be the common
value of Λκ′⊗κA(f ;n) for all large n with (−1)n = σ. As [κ′ : κ] → ∞, the asymptotic
behavior of λκ′(f ;σ) (or equivalently the Möbius average (6.5) in degree n, formed with
κ′ ⊗κ A) is governed by the degree-2 Artin–Schreier covering Vσ : y2 − y = Lσ over the
smooth geometrically integral κ-scheme U . There are three mutually exclusive possibilities:
Vσ is geometrically connected over κ, Vσ is connected but geometrically disconnected over
κ, or Vσ is disconnected. Since the difference function L1 − L−1 : U → A1

κ is a constant
function, geometric connectivity for V1 over κ is equivalent to geometric connectivity for
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V−1 over κ. In view of how L1 and L−1 were constructed, the case of geometric connectivity
seems to be the “generic” case (as we vary f); however, unlike the case of odd characteristic,
we do not know a convenient criterion (e.g., in terms of the branch multiplicities `(OB,x))
that is sufficient to ensure geometric connectivity.

Theorem 6.14. For p = 2 and f ∈ A[T 4] as in Theorem 6.13, let d0 = −ordξ(lead(f)) and
fix σ = ±1. If the Artin-Schreier double cover Vσ of U as above is geometrically connected
then λκ′(f ;σ)→ 1 as [κ′ : κ]→∞. If Vσ is disconnected then λκ′(f ;σ) = 1− (−1)d0 for all
κ′/κ. Finally, if Vσ is connected but geometrically disconnected then λκ′(f ;σ) = 1− (−1)d0

if [κ′ : κ] is even and λκ′(f ;σ) = 1 + (−1)d0 if [κ′ : κ] is odd.

Proof. If the double cover Vσ → U is connected but geometrically disconnected over κ then
it splits over even-degree extensions but not over odd-degree extensions. Since λκ′(f ;σ) is
given by 1 minus the expression in (6.6) with κ′ replacing κ, to handle the cases when Vσ

is not geometrically connected we must show that if Vσ is disconnected (resp. connected
but geometrically disconnected) then (6.6) is equal to (−1)d0 (resp. −(−1)d0). In the
disconnected case we must have Lσ = φ2 − φ for some global function φ on the normal
variety U , so this case is obvious. In the connected but geometrically disconnected case it
follows from the geometric connectivity of U over κ and the standard short exact sequence

1→ π1(Uκ)→ π1(U)→ Gal(κ/κ)→ 1

of étale fundamental groups that the cohomology class of the Z/2Z-torsor Vσ → U is “the
same” as that of its fiber over any point a ∈ U(κ). Hence, all such fibers

Specκ[y]/(y2 − y − Lσ(a))

are connected, so by Artin–Schreier theory Lσ(a) ∈ κ has non-vanishing F2-trace for all
a ∈ U(κ). This gives that (6.6) is equal to −(−1)d0 as desired.

It remains to consider the case when Vσ is geometrically connected. For each κ′/κ and
a ∈ U(κ′), the sign (−1)Trκ/F2

(Lσ(a)) is equal to 1 (resp. −1) when the finite étale degree-2
connected covering Vσ/κ′ → Uκ′ has a-fiber that is disconnected (resp. connected), so (6.6)
with κ′ in the role of κ is (−1)d0(#Vσ(κ′) − #U(κ′))/#U(κ′). Hence, exactly as in the
case of odd characteristic, by geometric connectivity of Vσ and U we may infer from the
Lang–Weil estimate that this ratio approaches 0 (and so λκ′(f ;σ)→ 1) as [κ′ : κ]→∞. �

By adapting the proof of Theorem 3.8, an argument with quadratic (Artin-Schreier)
character sums gives non-triviality of characteristic-2 correction factors over large finite
fields when f is fixed:

Theorem 6.15. For p = 2 and f ∈ A[T 4] as in Theorem 6.13, λκ′(f ;σ) 6= 1 for all
extensions κ′/κ with sufficiently divisible degree (depending only on the total degree of f).

Before we prove Theorem 6.15, we make some remarks. Of course, by Theorem 6.14
we only need to do some work in the case that the double covers V±1 are geometrically
connected. Also, though some aspects of our treatment of non-triviality in characteristic 2
will be more complicated than in our earlier work for odd p (due to the use of truncated
Witt vectors), there is an important simplification: the intervention of en mod 2 in the
case of odd p does not arise in the case p = 2. Finally, we note that it is unclear how to
prove analogues of Theorems 3.6 and 3.8 for families of f ’s with p = 2 (though we are sure
that reasonable analogues must hold) because we lack a convenient sufficient criterion for
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geometric connectedness of V±1 in terms of discrete invariants of f (as we have when p 6= 2
via oddness of the multiplicity at some point on the branch scheme B of Zf → A1).

Proof. To adapt the method of proof of Theorem 3.8 in the case p = 2 with a fixed f , the
main issue is to handle truncated Witt vectors as in the discussion preceding Remark 6.5.
The first step is to eliminate the intervention of the mysterious unit βn that arises in the
definition of the algebraic function Lσ = 〈βnL〉2 on U for n such that σ = (−1)n.

�

Appendix A. Numerical testing

In this appendix we address the testing of the conjectural asymptotic (2.4). As in [3], we
have not made error estimates to justify our data rigorously.

Our examples will be affine curves given by the complement of a κ-rational point in a
smooth hyperelliptic curve. More specifically, for g ≥ 1 we use affine curves of the form

(A.1) C : y2 + c0(x)y = c1(x),

where c0(x) and c1(x) are in κ[x] with

deg(c0(x)) ≤ g, deg(c1(x)) = 2g + 1,

and we require c0(x) 6= 0 when p = 2. These conditions guarantee that in odd characteristic
c0(x)2 + 4c1(x) has odd degree (so it is nonzero and not a square), whence (A.1) is geomet-
rically integral in odd characteristic. The degree conditions force (A.1) to have no solution
y ∈ κ(x) in characteristic 2, so geometric integrality holds in all characteristics. The affine
curve (A.1) is smooth if and only if there is no point (x0, y0) on the curve satisfying the two
conditions

2y0 + c0(x0) = 0, c′0(x0)y0 = c′1(x0).
Let us suppose c0 and c1 are chosen so that C is smooth, and let

A = κ[C] = κ[x, y]/(y2 + c0y − c1).
Elements of A can be uniquely written as

a = a0(x) + a1(x)y,

where a0(x) and a1(x) are in κ[x]. The equation (A.1) has a singular point on the line at
infinity in P2

κ when g ≥ 2, and for all g ≥ 1 the smooth compactification of C has genus g
and exactly one (κ-rational) geometric point ξ at infinity.

Our method of estimating CA(f) and calculating ΛA(f ;n), two terms which appear in
(2.4), differs in the higher genus setting from the procedure we followed in genus 0 in [3]. Let
us explain the difference. In [3], we accurately estimated the constant Cκ[u](f) by modifying
its definition as an infinite product in a way that sped up convergence of the product. For
practical purposes we use a method of estimating CA(f) in higher genus that avoids infinite
products at the expense of less rigor in the numerical verification: we exploit a connection
between separable and inseparable irreducible polynomials, as follows. Let f(T ) ∈ A[T p]
be irreducible in K[T ] without local obstructions. Write f(T ) = F (T pm

) with m ≥ 1 as big
as possible, so F (T ) ∈ A[T ] is irreducible and separable in K[T ] with no local obstructions
over A. Note CA(f) = CA(F ). Since F (T ) is irreducible and separable in K[T ], we believe
F (T ) satisfies (2.3). Granting this, we can get an estimate for CA(F ) by computing all
parts of (2.3) other than CA(F ) as n grows. Then we use this as our estimate for CA(f) in
testing (2.4).
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Now we turn to the calculation of ΛA(f ;n) in the hyperelliptic case, where A is presented
as a degree-2 finite flat extension of κ[x]. We also assume that the leading coefficient of f
in A has at worst simple zeros on C. If p 6= 2 then we let I = If ⊆ A denote the nonzero
radical ideal as in §2: its zero locus on C is the image in C of the finite branch scheme for
the generically étale projection Zf → A1

κ (where Zf ⊆ C ×A1
κ is the zero scheme of f). If

p = 2 and f ∈ A[T 4], then we let I = If,κ ⊆ A be the nonzero (possibly nonradical) ideal as
in Definition 6.4. By Corollary 6.7, since the leading T -coefficient of f has at worst simple
zeros on C it follows that Rad(If,κ) = Ih where f = h(T 2). For the purposes of computing
the periodic tail of the values ΛA(f ;n) as in (2.2) (see Theorem 6.13 for the periodicity in
case p = 2), we just need to know Rad(If,κ) rather than If,κ.

Hence, over finite fields of any characteristic we are motivated to address the problem of
computing the ideal If when f ∈ A[T p] is squarefree in K[T ] and primitive with respect to
A such that lead(f) ∈ A has at worst simple zeros on C. For such f we shall give a formula
for If in terms of resultants. To establish such a formula it is convenient (as in [5, §2]) to
permit C = SpecA to have no restrictions on its locus at infinity and to permit the base
field to be an arbitrary perfect field with characteristic p > 0; note that the definition of
If makes sense without any restrictions at infinity and for any such perfect base field. We
write RA(h1, h2) ∈ A to denote the resultant of h1, h2 ∈ A[T ] (taken to be 0 if some hj

vanishes). A preliminary “formula” for If is given by:

Theorem A.1. Assume that lead(f) ∈ A − {0} has at worst simple zeros on C. Let I be
the ideal generated by the resultants RA(f, ∂f) ∈ A as ∂ runs over all κ-derivations A→ A
(extended to κ[T ]-derivations on A[T ] by acting on coefficients). Then If = Rad(I).

Proof. Since Ω1
A/κ is locally free of rank 1 and the formation of RA(f, ∂f) is local on SpecA,

the identity RA(f, a · ∂f) = adegT fRA(f, ∂f) shows that the problem is Zariski-local on C.
Our problem is one of comparing two ideals in a Dedekind domain. Let Z ⊆ C×A1

k be the
zero scheme of f , and let pr1 and pr2 denotes its projections to C and A1

k respectively. Also
let B ⊆ Z be the finite branch scheme for the generically étale projection pr2 : Z → A1

k.
Localizing to the case when Ω1

A/k is free of rank 1 with basis corresponding to a k-linear
derivation D : A → A, we want to show that RA(f,Df) generates I. We may replace the
base field with an algebraic closure since the formation of I is compatible with change in the
base field. In other words, now we take the base field to be an algebraically closed field k of
characteristic p. As a first step toward proving I = (RA(f,Df)) in A, we show that the k-
finite closed subschemes Spec(A/(RA(f,Df))) and Spec(A/I) in C have the same support.
Since lead(f) has simple zeros, for each c ∈ C(k) at least one of the specializations fc or
(Df)c = Dc(fc) in k(c)[T ] = k[T ] has the same T -degree as f or Df respectively. Hence,
RA(f,Df) has a zero at c if and only if the specializations fc and Dc(fc) have a common
zero at some t ∈ k, which certainly forces (c, t) ∈ C ×A1

k to lie on the zero scheme Z = Zf

of f on C ×A1
k. Meanwhile, c is a zero of I if and only if there is some point (c, t′) ∈ Z at

which pr2 : Z → A1
k is not étale. Thus, it suffices to prove that for any point z = (c, t) ∈ Z,

the specializations fc and (Df)c in k(c)[T ] vanish at t ∈ k if and only if pr2 : Z → A1
k

is non-étale at z. This equivalence was established in the proof of [5, Thm. 2.5]. Thus,
RA(f,Df) 6= 0 and, since A is Dedekind, it remains to compare the k-lengths of the artin
local rings of Spec(A/(RA(f,Df))) and Spec(A/I) at each c ∈ C that lies in their common
support.
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Fix such a point c ∈ C and choose an isomorphism ÔC,c ' k[[u]]. This carries D over to
a unit multiple of ∂u. The finite-length stalk of Ω1

Z/A1
k

at a point (c, t) ∈ Z is isomorphic
to its completion, which is (k[[u, T − t]]/(f, ∂uf))du. Thus, we need to show

(A.2) ordRk[[u]](f, ∂uf) ?=
∑

t

dimk k[[u, T − t]]/(f, ∂uf),

where the sum runs over the finitely many t ∈ k such that (c, t) ∈ B (the dimension
term is zero at other t ∈ k). Viewing f in k[[u]][T ], the proof of [5, Thm. 2.5] shows that
(c, t) ∈ Z lies in B if and only if fc(t) and (∂uf)c(t) vanish. Thus, closely approximating
k[[u]]-coefficients of f by elements of k[u] without a common factor does not change either
side of (A.2) and provides an element f̃ in k[u, T p] satisfying our basic assumptions from
the start in the case of the affine base curve Spec k[u]. In this way, we are reduced to the
case of plane curves.

It now suffices to show that if {f(u, T ) = 0} and {h(u, T ) = 0} are (possibly empty)
plane curves over an algebraically closed field K such that lead(f), lead(h) ∈ K[u] do not
have a common zero and if these plane curves have no common irreducible components then

(A.3) ord0RK[u](f, h) =
∑
t∈K

i(0,t)(f, h),

where i(0,t)(f, h) = dimK ÔA2
K ,(0,t)/(f, h) is the intersection number. This is Zeuthen’s rule;

see [3, Lemma 4.6] for a proof of Zeuthen’s rule in arbitrary characteristic. �

Suppose Ω1
A/k is free with basis corresponding to a k-linear derivation D : A → A. It

follows from Theorem A.1 and the formula RA(f, a∂f) = adegT fRA(f, ∂f) that I is principal
with generator Rad(RA(f,Df)) if lead(f) ∈ A− {0} has at worst simple zeros on C. This
applies when A = κ[u] by taking D = ∂u, thereby recovering [5, Ex. 2.4] if leadT (f) ∈ κ[u]
is separable. We now will show that an analogous calculation applies in the hyperelliptic
case.

Corollary A.2. If C is given by (A.1) and lead(f) ∈ A has at worst simple zeros then
If = Rad(RA(f,D(f))), where D : A→ A is the derivation determined by D(x) = 2y+c0(x)
and D(y) = c′1(x)− c′0(x)y.

Proof. The derivationD is the unique extension of (2y+c0(x))∂x on κ[x] to A. We show that
Ω1

A/κ is free with generator corresponding to D. Choose any κ-linear derivation ∂ : A→ A.
By (A.1),

(2y + c0(x))∂(y) = (c′1(x)− c′0(x)y)∂(x).

The smoothness of C implies that the ideals (2y+ c0(x)) and (c′1(x)− c′0(x)y) are relatively
prime, so ∂(x) = (2y + c0(x))h and ∂(y) = (c′1(x) − c′0(x)y)h for some h ∈ A. Thus
∂ = hD. �

In odd characteristic, a change of variables lets us take c0(x) = 0, in which case

D(a0(x) + a1(x)y) = a1(x)c′1(x) + 2a′1(x)c1(x) + 2a′0(x)y.

Example A.3. Consider the elliptic curve y2 = x3 − x in characteristic p 6= 2. We have
D(x) = 2y and D(y) = 3x2 − 1. For f(T ) = T p + a, where c ∈ A, we have D(f) = D(a).
This is in A, so R(f,D(f)) = (D(f))degT f = (D(a))p. Therefore I = Rad(D(a)).
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Example A.4. Consider the genus 2 hyperelliptic curve y2 = x5−x in characteristic p 6= 2.
We have D(x) = 2y and D(y) = 5x4 − 1.

Since we always work in the setup in Corollary A.2, we let R = Rf denote the specific
resultant in this corollary. The conditions (f(a), If ) = (1) for p 6= 2 and (f(a), If,κ) = (1)
for p = 2 are not easy to check directly by computer calculation, but replacing If and
If,κ with the nonzero multiple NA/κ[x](R) · A gives the condition (f(a),NA/κ[x](R)) = (1),
or equivalently (NA/κ[x](f(a)),NA/κ[x](R)) = (1). This latter condition can be checked in
κ[x] very quickly on a computer. Thus, in our numerical work with hyperelliptic curves we
computed

(A.4) ΛA,N(R)(f ;n) = 1−

∑
deg a=n,(f(a),N(R))=1

µ(f(a))∑
deg a=n,(f(a),N(R))=1

|µ(f(a))|

using the norm ideal N(R) for R as above; by Theorem 3.1 for p 6= 2 and Theorem 6.13 for
p = 2, (A.4) recovers ΛA(f ;n) for sufficiently large n.

In our treatment of the numerical examples in [3], we rigorously computed µ(f(a)) for
all a ∈ A = κ[u]. However, in the higher genus case we have not computed explicit
general formulas for µ(f(a)) in nontrivial examples, essentially because the proofs of the
higher-genus Möbius periodicity theorems are too abstract (whereas the proofs in genus 0
in [3] are more concrete and algebraic, thereby making them effective in specific examples).
Consequently, for higher genus we computed ΛA,N(R)(f ;n) until we saw a plausible periodic
pattern in n mod 4 and then we assumed this to be the true period in our check on (2.4).

We now present our numerical data for polynomials having coefficient rings corresponding
to the curves listed in Table 1. We list the affine equation, the constant field, the genus,
and the numerator of the zeta function of the affine curve over the constant field.

Equation Constant Field Genus Zeta Numerator
C1 : y2 + xy = x3 + 1 F2 1 1 + t+ 2t2

C2 : y2 = x3 − x F3 1 1 + 3t2

C3 : y2 = x5 − x F3 2 1− 2t2 + 9t4

C4 : y2 = x5 − x F5 2 (1− 5t2)2

Table 1. Affine curves

In each example below, when the (apparent) period length for ΛA,N(R)(f ;n) exceeds 1
we list as the first term of the (apparent) periodic sequence of values the value that occurs
for n ≡ 1 mod 4.

Example A.5. Let f(T ) = xT 16 + y2T 8 + xy in F2[C1][T ], where C1 is the first curve
in Table 1. For n ≥ 1 define ΛA,N(R)(f ;n) as in (A.4). For 8 ≤ n ≤ 18, we computed
ΛA,N(R)(f ;n) = 16/15.

A check on (2.4) using f(T ) is given in Table 2. The second column in Table 2 gives the
number of occurrences of primality for the ideal (f(a)) when deg a = n. The third column
gives the estimate coming from the right side of (2.4).

Example A.6. Let f(T ) = T 9 + T 6 + 2x3 + x2 + 2 in F3[C2][T ]. For 4 ≤ n ≤ 14,
ΛA,N(R)(f ;n) has the periodic pattern 8/9, 1, 10/9, 1. (The 8/9 occurs for n ≡ 1 mod 4.)
We use this as the periodic pattern for all n. See Table 3.



52 BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

n Count Estimate Ratio
10 6 4.25 1.41
11 10 7.70 1.30
12 19 14.08 1.35
13 19 25.90 0.73
14 46 48.07 0.96
15 80 89.91 0.89
16 164 168.66 0.97
17 317 317.66 1.00
18 584 600.26 0.97
19 1138 1137.70 1.00
20 2162 2162.25 1.00
21 4118 4119.85 1.00
22 7842 7867.34 1.00
23 14962 15054.21 0.99
24 28768 28860.23 1.00
25 55315 55423.28 1.00
26 106420 106603.61 1.00

Table 2. xT 16 + y2T 8 + xy over F2[C1]

n Count Estimate Ratio
5 2 2.848 0.70
6 12 8.010 1.50
7 20 22.843 0.88
8 70 54.023 1.30
9 118 128.160 0.92

10 338 389.286 0.87
11 1152 1179.646 0.98
12 2959 2919.645 1.01
13 7040 7186.849 0.98
14 22674 22522.963 1.01
15 70162 70071.480 1.00
16 177207 177368.456 1.00

Table 3. T 9 + T 6 + 2x3 + x2 + 2 over F3[C2]

In the next two examples for curves with genus > 1 we work with n ≥ 4 because smaller
values of n are not values of deg = −ordξ on A (due to Weierstrass gaps at ξ).

Example A.7. Let f(T ) = T 3 + x2y in F3[C3][x]. For 4 ≤ n ≤ 12, ΛA,N(R)(f ;n) has the
pattern 1,2,1,0. We use this for all n. The exact value of CA(f) is (log 3)(9/8). See Table
4.

Example A.8. Let f(T ) = yT 5+x4+2 in F5[C4][x]. For 4 ≤ n ≤ 10, ΛA,N(R)(f ;n) has the
alternating pattern 1,2. We use this for all n. The exact value of CA(f) is (log 5)(64/125).
See Table 5.
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n Count Estimate Ratio
4 0 0.0
5 4 4.1 0.988
6 30 20.2 1.485
7 30 26.0 1.152
8 0 0.0
9 192 182.3 1.053

10 962 984.2 0.977
11 1304 1342.0 0.972
12 0 0.0
13 10232 10220.0 1.001
14 57042 56940.2 1.001
15 79880 79716.1 1.002
16 0 0.0

Table 4. T 3 + x2y over F3[C3]

n Count Estimate Ratio
4 32 38.14 0.84
5 84 79.63 1.05
6 688 680.92 1.01
7 1589 1490.12 1.07
8 13568 13245.58 1.02
9 29596 29802.32 0.99

10 271812 270930.30 1.00
Table 5. yT 5 + x4 + 2 over F5[C4]
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[9] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études
Sci. Publ. Math. 82 (1995), 5–96 (1996).MR 97f:14047
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