PRIME SPECIALIZATION IN HIGHER GENUS II

BRIAN CONRAD, KEITH CONRAD, AND ROBERT GROSS

ABSTRACT. We continue the development of the theory of higher-genus Mébius periodicity
that was studied in Part I for odd characteristic, now treating asymptotic questions and
the case of characteristic 2. The extra difficulties in characteristic 2 are overcome via
rigid geometry in characteristic 0. The results on Mobius periodicity in any positive
characteristic are used to incorporate a correction factor into the false naive conjecture
of Bateman—Horn type concerning how often a polynomial with a higher-genus coefficient
ring takes prime values; numerical evidence is provided to support the suitability of this
correction factor. We also prove some asymptotic and non-triviality properties of the
correction factor.

1. INTRODUCTION

Let k be a finite field with characteristic p > 0, and let C = Spec A be a smooth and
geometrically connected affine curve over x with exactly one geometric point £ at infinity
(so £ is k-rational). Let K = k(C) be the fraction field of A. For a € A — {0}, let

(1.1) deg(a) := —orde(a) > 0.

For f € A[T] that is irreducible in K[T], it is natural to ask how often the ideal (f(a))
in A is prime as deg(a) — oo. This is only interesting when f(T') € A[T] has no local
obstructions: for every maximal ideal m of A the function f: A/m — A/m is not identically
zero. There is a standard conjecture that applies to this setting, as well as to the more
general case when A is replaced by any ring of S-integers in a global field (with finite .S),
and in the case of number fields the numerical evidence looks favorable (even when the
class group is non-trivial). We shall be interested in the case f € A[TP] because in this case
(in striking contrast with what is expected for K-separable f) the statistical properties of
u(f(a)) are often nonrandom. This seems to influence the likelihood that (f(a)) is prime
and gives counterexamples to the standard conjecture. Such nonrandomness in the case
of genus 0 was used in [4] to construct some l-parameter families of elliptic curves with
surprising root number variation, and the main purpose of this paper is to prove and apply
precise statistical properties of u(f(a)) as a varies in a higher-genus coordinate ring.

The study of u(f(a)) in odd characteristic was taken up in [5] for any f = >, a;T" € A[T?]
with degy f > 0 such that f is squarefree in K[T] and f is primitive with respect to A in
the sense that Z; = Spec(A[T]/(f)) € C x A} is quasi-finite over C. Assume in addition
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that f has no local obstructions. Let J be a nonzero ideal of A and consider the function

2 p(f(a))

dega=n,(f(a),J)=1

2 u(f(a))]

dega=n,(f(a),J)=1

(1.2) Fif g (n) =

By [13, Thm. 8.1] (applied to a multiple of f by an element of A with order exactly 1 at
each prime factor of .J), if n is large enough then the denominator in this average is not zero.
The method used in the proof of Lemma 2.1 below shows that such ineffective largeness

for n can be improved a posteriori to only depend on the genus g of K/k, the dimension
dim,(A/J), and the total degree

deg, 1 f := max(—orde(a;) +19).

In Theorem 3.1 we will use the results in [5] to prove the surprising fact that for p # 2 the
complicated-looking average function fis, ; is a function of n mod 4 when n is sufficiently
large (largeness only depending on the genus, the total degree deg, 1 f, and dim,(A/J)),
and that if —1 € k* is a square or degy f is even then it only depends on n mod 2 for such
large n. Beware that the periodic function of large n defined by (1.2) may change if we
work with the scalar extension of the same data A, f, and J over a finite extension of k;
see [3, Ex. 6.6, 6.7].

To explain why such mod-4 periodicity is interesting, let Iy C A be the nonzero radical
ideal such that Spec(A/Iy) C C is the image in C of the finite branch scheme B for
the generically étale projection Zy — Al. (This projection is generically étale by [5,
Lemma 2.2].) The dimension dim,(A4/Iy) may be bounded above in terms of deg, - f and
the genus (see the end of the proof of Lemma 2.1). Our interest in (1.2) is due to the fact
that for p # 2 the periodic function 1 —7i¢ . ; (n) for large n (and a variant in characteristic
2) appears to be the right correction factor to fix the false standard conjecture of Bateman—
Horn type concerning primality statistics for the ideal (f(a)) C A with f € A[TP] anda € A
satisfying dega = n — oo. This conjecture is formulated in §2, and in the appendix we
test it numerically for examples drawn from curves with genus 1 and 2; the numerics work
out well. We do not expect “Mobius periodicity” to occur for polynomials not in 7?. In
Theorem 3.8, for odd p we prove (in a suitable sense) that if . r (n) for large n is often not
identically zero.

Since 1 — iy, 1, (n) is being proposed as a correction factor (when p # 2) in a conjecture
whose formulation over number fields does not appear to require a correction factor, it is
natural to ask if, as we vary f or vary s (with fixed f € A[TP] that is squarefree in K[T]
and primitive over A), the function 7, ; ; on Z/AZ is close to 0. Our main result in this
asymptotic direction is:

Theorem 1.1. Assume p # 2 and let f € A[T?] and B C Zj be as above. Choose
c € {0,1,2,3} and let [iy . . be the common value of [iy . 1, (n) for sufficiently large n with
n = cmod 4 (where the largeness depends only on the genus and deg, 1 f).

As [ K] — 00, Tif . tends to 0, 1, or —1. Moreover, if the branch scheme B has odd
length at some point then iy, . — 0 as [&': k] — oo for all ¢ € {0,1,2,3}.

In §3 (resp. §6) we give the proof of Theorem 1.1 (resp. the proof of the analogue of
Theorem 1.1 for p = 2). By Theorem 3.6 below, for p # 2 and f € A[TP] generic in suitable
algebraic families of polynomials there exists some x € B such that {(0p ) is odd (and
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even a power of p). Hence, for such “generic” f we have 1 —fi;,, . — 1 as [’ : K] — oo for

all ¢ € {0,1,2,3} when p # 2. This fits well with the philosophy in the work of Nick Katz
according to which the “large finite field limit” should reflect behavior similar to what is
expected over number fields. We also emphasize, as was noted above, that in Theorem 3.8
we prove (for p # 2) that our Mébius correction factor is usually nontrivial over large finite
fields as f varies in suitable algebraic families. At the end of §6 we address analogues of
our asymptotic and non-triviality results for p = 2.

We now give a brief outline of the paper. In §2 we formulate our corrected higher-genus
conjecture of Bateman—Horn type. In §3 we use Mobius periodicity to study three aspects
of our correction factor in odd characteristic: (i) its periodicity, (ii) its asymptotic structure
for a single f € A[TP] (considered over k'/k with [k’ : kK] — o00) as well as “on average”
for f varying in suitable families, and (iii) its non-triviality “on average” for varying f over
large finite fields. The case of characteristic 2 is treated in §4-8§6; the main difficulty here
is to find and work with suitable 2-adic liftings (which we analyze via formal and rigid
geometry). The appendix addresses numerical testing of our modified conjecture in §2.

NOTATION AND TERMINOLOGY. Our notation and terminology is largely as in [5]. For
a nonarchimedean place v on a global field (for us, this will always be a function field over
a finite field), Nv denotes the size of its residue field. We will also use the symbol N in
notation for the size of other residue rings or for a norm map between certain rings. The
context should make clear the type of norm that is meant.

If R — R’ is a map of rings and M is an R-module (or R-algebra) then Mg denotes
R ®@pr M.

2. HIGHER-GENUS CONJECTURES

Let k be a perfect field with characteristic p > 0 and let C' = Spec A be a smooth affine
geometrically connected curve over k with one geometric point £ at infinity. Let K = k(C),
and let f € A[TP] be squarefree in K[T'] and primitive with respect to A. Also assume
degy f > 0. We let g denote the genus of the smooth compactification C of C', and we write
V; to denote the affine space associated to the vector space V; = L(d - &) for d € Z. For
d>0,let V) =V;—Vy yandlet V=V, -V, ;.

Lemma 2.1. For d > 2g there is a nonempty Zariski-open subset Uy in Zg such that for
all perfect extensions k' of k, Ug(k') is the set of a € VY(k') C k' ®, A such that f(a) is
squarefree in k' @y, A.

If k is infinite or if k is finite and f has no local obstructions (i.e., the specialization
fe € k(¢)[T] is a nonzero function on k(c) for all c € C), then Uq(k) is nonempty for large
d (with largeness only depending on the total degree deg, p f and the genus g).

Proof. Assume that d > 2g and define Uy to be the Zariski-open complement of the union
of the loci defined by the conditions “a(c) = t” on points a of the hyperplane complement
VY, where z = (c,t) ranges over points in the finite branch scheme B for the generically
étale projection from Z; C C' x A} to A, where Z; is the zero scheme of f € A[T]. (See
[5, Lemma 2.2] for a proof that Z; — A} is generically étale on Z¢.) To make explicit that
the condition “a(c) =t” on a is an algebraic condition on Zg, we use the norm-polynomial
function Py 4(a) = Ny(z)/k(a(c) —t) on V,;. More precisely, the construction

Px’d(a) = Nk/®kk(x)/k/(a(0) — t) ck
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for any k-algebra k' and a € k' @, Vg C k¥ ®i A defines an algebraic function V; — A,lC
whose vanishing locus away from the hyperplane V,;_; defines the condition “a(c) = t7;
V41 is a hyperplane in V; because d > 2¢g. Thus, we may take Uy to be the intersection
of the nonvanishing loci of the P, 4's on Kg for x € B. This is not empty because for each
x € B the Riemann-Roch theorem ensures that P, 4 # 0 for d > 2¢. If B = () then we
understand Uy to be V;. By [5, Theorem 2.5], Uy has the desired interpretation for its
points with values in perfect extensions of k.

Since Uy is a nonempty open in an affine space over k for d > 2g, it has k-rational points
when £ is infinite. If k is finite and f has no local obstructions, to show Uy (k) is nonempty
(provided d is large enough, only depending on deg, r f and g) we use the one-variable
case of a general theorem of Poonen [13, Thm 8.1] concerning squarefree specializations of
squarefree polynomials in several variables over function fields of curves over finite fields.
To formulate Poonen’s result in our situation, for each closed point ¢ € C define

ne = #{a € Oc.e/mg | f(a) = 0}.
Since f has no local obstructions, n. < N(c)? for all c. Poonen’s theorem says

. #{a € A| —ord¢(a) < d, f(a)squarefree} Ne
i (q—1L)g?9 ! <1 - N(C)2> ’

c

with the infinite product absolutely convergent, and in particular nonzero (the local factors
are nonzero and Poonen shows n. = O(1) as N(¢) — o0). Letting P > 0 denote this infinite
product, by subtracting consecutive terms in the limit we get

lim #{a € A| —orde¢(a) = (i, f(a) squarefree} _ < B 1> P
d—oo (¢ —1)g*9 q

The numerator is #U;(k), so we get the desired result for ineffective large d.

By [5, Thm. 2.5], the condition that f(a) is squarefree only depends on a mod I, where
I = Iy is defined as above Theorem 1.1. The preceding limit calculation shows that this
collection of congruence classes modulo [ is not empty, and by the Riemann—Roch theorem
each such congruence class admits a representative with any desired large pole order at &
with largeness only depending on the genus and dim,(A/I). Hence, we just have to bound
this dimension in terms of g and deg,,  f. By construction, dim,(A/I) is bounded above by
the length of the branch scheme for the generically étale projection from Z = Z; C C' x Al
to A, so it is enough to bound the length of the branch scheme in terms of g and deg, r [
If welet D: A — A be a nonzero k-linear derivation that has zero locus on C disjoint
from the zeros of I then the branch scheme is contained in the overlap scheme Zy N Zpy
that is finite. By intersection theory on C x P!, the length of this overlap is bounded
above in terms of deg, ;- f and the degree of the zero-scheme Z(D) of D. By choosing D
appropriately, we may bound deg(Z(D)) in terms of the genus. |

Now assume that k = k is finite, and we shall formulate a conjecture over A that is
analogous to the one given in [3, Conj. 6.2] in the case A = k[u]. The reasonableness of
the conjecture will rest on the Mébius periodicity theorems in [5] in odd characteristic and
the variants proved later in this paper (in §6) for p = 2. The conjecture provides a natural
context for why such Mobius periodicity is useful and interesting. Another context is the
parity problem in sieve theory, as we explained in [5, §1].
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Pick f € A[T] that is squarefree in K[T'] and has no local obstructions; that is, for each
place v of K distinct from the point £ at infinity, we assume that the number

wr(v) == {a € x(v) | f(@) = 0}
of roots of f in k(v) is strictly smaller than Nv = ##(v). Define the infinite product

(2.1) CA(f) = Resl(A) ];Jé ! _1 u_}fl(;})l\/jfvv

where Res(A) is the residue at s = 1 for the zeta-function (4 of Spec A and the product runs
over the places of K other than the unique point at infinity £ for Spec A. The product over
v in (2.1) is generally only conditionally convergent, so it is understood to be an iterated
product anl [Iny—p(:) running over v according to increasing values of Nv. Since & is s-
rational, (4(s) = L(¢™*%)/(1 —q-q~*) with L(¢) a polynomial and ¢ the size of the constant
field x of A. Obviously Res(A) = L(1/q)/log q = h/q? logq, where hs = #Pic%/’{(l-i).

Assume p # 2 and f € A[TP]. For any nonzero ideal J of A, let

> u(f(a))

deg a:n,(f(a),J)Zl

2. |u(f(a))]

dega=n,(f(a),J)=1

(2.2) Aay(fin)=1-

As we saw in the Introduction, the denominator of A4 j(f;n) is nonzero for n > 0, with
largeness that only depends on deg, 1 f, the genus g, and dim,(A4/J). We will generally
restrict attention to the case when J is a nonzero multiple of the radical ideal I = Iy whose
zero locus on C' is the image in C of the finite branch scheme B for the generically étale
projection Zy — AL. Since p # 2, Theorem 1.1 (proved in §3) tells us that for any nonzero
multiple J of I and for sufficiently large n (only depending on deg, 1 f, the genus, and
dim, (A/J)) the function A4 s(f;n) is periodic in n with period 1, 2, or 4; the more precise
formulation in Theorem 3.1 also gives that the periodic sequence of values of A4 j(f;n) for
large n is independent of J.

Now consider p = 2 with f € A[T*#]. Theorem 6.13 gives similar periodicity assertions for
the analogue of (2.2) when .J is taken to be any nonzero multiple of the radical of a certain
nonzero (typically non-radical) ideal If, C A replacing the role of the ideal I in the case
of odd characteristic. Moreover, for any finite extension «'/k the ideal v’ ®, Iy, C K ®x A
is a multiple of Iy ,s. (The definition of Iy, is given in terms of the mod-2 reductions of
certain radical characteristic-0 ideals constructed on 2-adic lifts of C; see Definition 6.4.)
The finite zero-scheme of Iy, on C has degree that is bounded in a manner only depending
on deg,, 1 f and the genus, not on x. By Corollary 6.7, if we write f = h(T?) with h € A[T?]
then in the “generic” case that f has squarefree leading T-coefficient in A (e.g., f is monic
in T') the radical of Iy, is equal to the radical ideal I}, whose zero locus on C' is the
image in C of the finite branch scheme of the generically étale projection Z, — AL. Thus,
Aag,,.(fin) = Aar,(f;n) for such f.

To simplify notation, we shall write A4(f;n) for large n to denote the common periodic
function A j(f;n) for large n and any nonzero multiple J of I = Iy (resp. of Rad(Iy))
when p # 2 (resp. p = 2); if we are interested in uniform largeness statements as we vary
f or the finite base field then we shall take J = I (resp. J = Rad(lf,)). Often we will
only be interested in considering sufficiently large n, so the use of the notation Aa(f;n)
(suppressing mention of J) will not create confusion.
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For nonzero a € A, set N(a) := #(A/(a)) = qdeg“ with ¢ = #k.

Conjecture 2.2. Pick f(T) € A[T]. Assume the following two conditions:

1) f(T) is irreducible in K[T)],

2) f(T) has no local obstructions.

Let m¢(n) = #{a € A : dega = n,(f(a)) is prime}. If f is separable over K then as
n — 0o,

? 1
. T ~C _—
If f is inseparable over K, with f(T) € A[T*] if p =2, then as n — oo,
? 1
. T ~As(f;n)C —_ .,
(2 4) f(n) A(f?n) A(f) deg;zn log(N(f(a)))

Remark 2.3. One can give an alternative conjecture that treats the separable and insepa-
rable cases on an equal footing and is equivalent to Conjecture 2.2 under a reasonable but
unproved “randomness” hypothesis on u(f(a)) for K-separable f € A[T]. Such an alterna-
tive conjecture is stated in [3, Rem. 6.3] for the case of genus 0, and its formulation carries
over to any genus in a straightforward manner. We also note that although

1 (g—1)g""*
29 2 ToN(@)) ~ nlloga) degr ]
dega=n T
as n — oo (by Riemann-Roch), where g is the genus of the function field K/x, we do not
use this asymptotic estimate in numerical examples in the appendix because it gives poor
accuracy for n in the range that can be used on a computer.

For A = k[ul], Conjecture 2.2 for inseparable f is illustrated by numerical examples in
[3, §6]. In the appendix we illustrate Conjecture 2.2 in examples with genera 1 and 2. This
numerical data supports the use of the eventually periodic sequence A 4(f;n) as a correction
factor in (2.4). If 0 is in the periodic sequence of values of A4(f;n) for large n then the
interpretation of (2.4) is that m¢(n) = 0 when As(f;n) = 0 and n >> 0; this particular
instance of (2.4) is easy to prove by unwinding the definition of A4(f;n), as we did in
[3, §6] for A = K[u].

3. MOBIUS PERIODICITY AND ASYMPTOTICS IN ODD CHARACTERISTIC

The following result will be essential for our later formulation of satisfactory asymptotic
questions as we increase the constant field and consider the typical structure of averages of
wu(f(a))’s for f varying in certain families of polynomials.

Theorem 3.1. Assume p # 2 and let f € A[TP] be squarefree in K[T] and primitive with
respect to A. Let the nonzero radical ideal I = Iy C A have zero locus on C' = Spec A
equal to the image in C of the finite branch scheme B of the generically étale projection
Zr = Spec(A[T)/(f)) — AL. Assume moreover that f has no local obstructions: for all
c € C = Spec(A), the nonzero specialization f. € k(c)[T] does not vanish as a function on
k(c). Let J be any nonzero multiple of 1.

There exists an ng only depending on the genus g of K/k, the total degree deg, 1 f, and
dimy(A/J) such that for alln > ng there exists a € A with dega = n such that (f(a),J) =1
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and u(f(a)) # 0. Moreover, by choosing this ng suitably we can arrange that

> n(f(a))

dega=n,(f(a),J)=1

|1(f(a))]

deg a=n,(f(a),J)=1

(3.1) n—

is periodic in n > ng with period dividing 4. If —1 is a square in K™ or degy f is even then
the period divides 2.

For any two nonzero multiples J, and Jo of I, the functions defined by (3.1) for J = Jp
and J = Jy are equal for n > ng with nj determined by deg, 1 f, the genus g, and the
dim,(A/J;)’s.

Proof. Fix a k-basis ¢ = {¢;};>1 for A with —ord¢(e;) strictly increasing in ¢, and for any
n > 2g and a € V) = L(nf) — L((n — 1)¢) define lead(a) € k* to be the ,+1_g-coefficient
in the expansion of a with respect to the basis . (This is analogous to a leading coefficient
in the sense of a Laurent expansion for a at £.) We view the vector space A/I as an affine
space V over Spec k, and for each z = (u,t;) € B C C x A! we view the norm operations
Py i h— Ny /e(h(uz) —t2) as algebraic functions on 'V in the evident manner. Define an
algebraic function £ on V by

(32) L= 1] P = (h—=Np(h = 1)),
z€B

with e; = ¢(0p ). By [5, Thm. 1.4, Thm. 3.1, (3.14)] we get that for all sufficiently large
n (only depending on g and deg,  f) and all a € A with dega = n,

P@) = (1) e D)8 Ty (5, (e ) (£ mod 1)
(3.3) = coctx(bn(lead a)®)x(L(a mod 1)),

where ¢y = (—1)dim(A4/(ead /) ") — (—1)de8r /| y is the quadratic character of K (x(0) = 0),
and the elements e,, € Z and b,, € £* depend on the choice of €. By [5, Thm. 3.6], e,, mod 2
is independent of £ and only depends on n mod 2, and if e, is even then b, mod (k*)? is
independent of £ and only depends on n mod 4 (and only depends on n mod 2 if moreover
—1 is a square in kK* or degy f is even).

Let Ry C A be a set of representatives for A/.J; this set may be chosen so that each of
its members has degree (i.e., pole order at &) bounded above in terms of g and dim(A/J).
We restrict attention to n large as above and also larger than the degrees of the elements
in R;. Hence, for a € V) with representative R, € R for the residue class of a in A/J we
have a — R, € J NV, and lead(a) = lead(a — R,).

For each R € Ry, as a runs over (R+ J)NV?2 = R+ (JNV?) we see that a — R runs
through J N V2 with each possible value of lead(a) € x* realized equally often. Also, the
condition (f(a),JJ) =1 is equivalent to the condition (f(R,),J) = 1 since a = R, mod J.
Thus, upon substituting (3.3) into the numerator and denominator on the right side of
(3.1), the numerator of (3.1) equals

wff Y Y x(ballead Q" )x(&(r mod 1)),

QeJNV,Y x(£(r mod 1))7#0
f(ryeA/a)Xx
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where the inner sum runs over r (which is ranging through A/.J). This double sum equals
the product

(3.4) X(ba) > x(L(rmodI))- > x(lead Q).

x (£ (r mod I))#0 QeJNVY
f(ryea/Jyx

We fix the congruence class of n modulo 4 (resp. modulo 2 if —1 is a square in x or if degp f
is even), so by taking n to be large as above we may suppose that the parity of e, is fixed.

Case 1: Suppose e, is even. The terms in the second sum in (3.4) all equal 1, so (3.1)
equals

X(L(r mod I))
_ X(£(r mod I))#0,f(r)e(A/J)*
#{r € A/J|x(L(r mod I)) # 0, f(r) € (A/J)*}’

where the dependence on n only occurs in ¢}'x(b,). By the evenness of ey, the sign x(by)
is independent of ¢ and only depends on 7 mod 4 (or n» mod 2 if —1 is a square in K* or
degy f is even), so we have the desired dependence on n mod 4 for the large n that we
are considering (and the dependence is on n mod 2 if —1 is a square in k* or degy f is
even). To establish the independence of the choice of J in this case (for large n with e,
even), we show that (3.5) is independent of this choice. Write the multiple J of I in the
form J = J'J” with J’ having the same prime factors as I and (I, J”) = 1. The ring A/J
decomposes as a product (A/J") x (A/J"). Under this decomposition, write r as (r’,r").
Then x(L(r mod I)) = x(L£(r' mod I)), and f(r) € (A/J)* if and only if f(r') € (A/J)*
and f(r") € (A/J")*. Therefore the numerator and (nonzero) denominator sums in (3.5)
are each given by multiplying the product

(3.6) L J)-#{" e AJJ" | f(r") € (A)T")*}

against the numerator and denominator sums in (3.5) with I in the role of .J. The common
factor (3.6) cancels out in the ratio.

Case 2: Suppose e, is odd. We claim that (3.1) vanishes, or more specifically that the
second sum in (3.4) vanishes. As we noted above, each element of k* arises equally often in
the form lead Q as Q ranges over J NV, so this second sum is a multiple of the character
sum for y over k*. This character sum vanishes since  is nontrivial. |

(3.5) coct X (bn)

Remark 3.2. With notation and hypotheses as above, consider the set of nonzero ideals
J of A such that for a,a’ € A with deg(a), deg(a’) > 0,

(3.7) a = a' mod J, % € (Kg)z, deg(a) = deg(a’) mod 4 = u(f(a)) = u(f(d)).

One such ideal is J = I, by [5, Thm. 1.2]. It is obvious that if J; and Jy are two such
ideals then (Ji, J3) is another such ideal. Hence, there is a minimal such ideal Iy and Iy|I.
(For example, in the notation of [3, Def. 3.4, Thm. 4.8], for A = x[u] we have I = (M{*")
and Iy = (M]En;n)) By (3.3), the nonzero ideals J that “work” in (3.7) are precisely
those such that the set-theoretic function a — x(L(a mod I)) only depends on a mod J.
Thus, Theorem 3.1 remains true (with the same proof) if we replace I with Iy throughout.
However, the formation of I is compatible with finite extension on x whereas the formation
of Iy generally is not.

For p # 2, we define 7, (n) to be (3.1) for large n with J = I (though any nonzero
multiple J of I gives a function with the same tail). The periodic part of this function is
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its periodic sequence of values i . (n) for large n, and this largeness only depends on the
genus g and the total degree deg, p f.

Corollary 3.3. Any nonzero terms in the periodic part of [y, are equal up to sign.

Proof. By the proof of Theorem 3.1, a nonzero term occurs for n > 0 only when e, is even.
An alternative expression for s, (n) in this case is (3.5) with J = I, in which changing
n mod 4 only affects the term ¢} x(b,) with ¢; = +1. This is at most a sign change. [

Corollary 3.4. Suppose the periodic part of [is ,, is not identically 0 but contains 0. Then 0
occurs in alternate terms of the periodic part and for any finite extension ' /k the periodic
part of fiy . vanishes at any large n where the periodic part of [y, vanishes.

Proof. If n is large and ey, is odd then fig . (n) = 0 by Case 2 in the proof of Theorem 3.1. If
instead e, is even then fiy . (n) = 0 if and only if the numerator sum in (3.5) vanishes, but
this vanishing is independent of n so such vanishing means that i; . (n) = 0 for all large n.
Therefore, if the periodic part of fis, contains 0 but is not identically 0 then it vanishes at
the nth term (for large n) if and only if e, is odd. Since the parity of e, is determined by
n mod 2 for large n [5, Thm. 3.6], the terms in the periodic part are alternately zero and
nonzero in such cases.

If x is replaced by a finite extension ' then by construction (see [5, (3.14)]) e, mod 2
does not change, so for n > 0 (with largeness only depending on g and deg,, 1 f) the Mobius
average in degree n over x’ vanishes if the Mobius average in degree n over x vanishes. W

Since e,, mod 2 only depends on n mod 2 for large n, the proofs of Corollaries 3.3 and 3.4
show that in the periodic part of the sequence {A4(f;n)}n>0 at most two values other than
1 can occur, and that if two such values do occur then their average is 1 (e.g., the empirical
pattern for A4(f;n) in Example A.6 that we expect to be the periodic part is 8/9,1,10/9, 1).
Corollary 3.4 says that any 1’s in {A4(f;n)}n>0 show up in alternate terms if the tail of this
sequence is not identically 1 and that in such cases an extension of the constant field will
not change any such 1’s into other numbers. For example, in [3, Ex. 6.6] we calculated that
{Ap, ) (T? + u;n) s has periodic part 1,2,1,0 and {Ag,p,;(T° + u;n)}nso has periodic
part 1,0,1,0. The following corollary and Case 1 in its proof yield Theorem 1.1.

Corollary 3.5. Fiz k and f € A[TP] as above with p # 2, and choose ¢ € {0,1,2,3}. Let
Tt e = ig(n) for largen withn = c mod 4. For finite extensions «'/k, the Mébius average
g e cither tends to 0 as [k : k] — oo or lies in {£1} for all " with value depending only
on the parity of [k : K].

Proof. Fix a k-basis € of A as in the proof of Theorem 3.1. The exponents {e;},cp in
(3.2) are unchanged when & is replaced by a finite extension, although extending x may
decompose a given point x into several x;’s, where e,, = e,. Likewise, by construction, the
exponent e, in (3.3) that only matters modulo 2 is unaffected by replacing x with a finite
extension, and e, mod 2 only depends on n mod 2 for large n = ¢ mod 4 (uniformly with
respect to £'/k), so e, mod 2 for such n is determined by ¢. Let o, = (—1)" for such n.
There are three cases to consider (and each case is stable under finite extension on k):
Case 1: Assume some e, is odd (so in particular, the finite branch scheme B for the
generically étale projection Zy — Al is nonempty). If 0. = —1, so e, is odd for large
n in our fixed residue class ¢ mod 4, then the Mdbius average fif s . vanishes for all finite
extensions #'/k (see the proof of Corollary 3.4). Assume now that o. = 1, so iy, . is given
by (3.5) with J = I and large n satisfying n = ¢ mod 4. We are going to show that, as k
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is replaced by finite extensions k,, with degree m tending to oo, the absolute value of (3.5)
computed for A, with J = I, is O(q~"/?), where ¢ = #&, so it tends to 0 as m — oc.

We interpret (3.5) in terms of point-counting on varieties to get an estimate on its size.
We will ignore the factor cocfx(by), which has absolute value 1 anyway. Let 7 be the
ring scheme over  corresponding to the finite x-algebra A/I, and let & be its algebraic
unit group. Let L be the nonzero algebraic function on &7 given by (3.2), and let U be the
non-vanishing locus of £ on the preimage of &/ under the evaluation mapping f : &/ — .
Since f is primitive with respect to A, clearly f~1(U) # 0. Let V be the finite étale double
cover of U given by the square root of L. Since some e, is odd, V' is geometrically integral
over K.

We have dimU = dim V(= dim,(A/I)). Call this common dimension d. Pick a finite
extension kp,/k of degree m and consider (3.5) over ky,. The denominator in (3.5) over
Km 18 #U(km) and the numerator in (3.5) over Ky, is #V (km) — #U(km). The Lang—
Weil estimate [11] may be applied to U and V since each is geometrically integral over
k, and the resulting estimate for each of #U(ky,) and #V (k) as m — oo is the same:
g™ + O(qm\=1/?). Hence, (#V (km) — #U (km))/#U (km) = O(q~™?).

Case 2: If 0. = —1 then the Mobius averages fiy . . all vanish (as in Case 1).

Case 3: Assume all e,’s are even and 0. = 1. Since the e,’s are even, for any r € A/I
the value of x(L(r)) is 1 if it is nonzero. Therefore the numerator and denominator of (3.5)
are equal, which means that for n = ¢ mod 4 with n large we have

Tif e = Fpn(n) = coctx(by) = (—1)dmA/tead N_pyndeer Sy (p) = £1.

If x is replaced by an odd degree extension x’ then the quadratic character of b, in the
extension is unchanged, so fs s . = g, .. If x is replaced by an even degree extension K
then the quadratic character of b, becomes 1, so

ﬁf,n’,c — (_1)dim(A/(1eadf))+ndegTf _ (_1)dim(A/(leadf)) . (_l)cdegT !

What does the proof of Corollary 3.5 say about the common value in {Aa(f;n)}nso0
indexed by large n in a fixed congruence class modulo 4 as « is replaced by finite extensions
k' of large degree? (The largeness in n may be taken uniformly with respect to ' since f
is fixed.) Roughly speaking, the “stable” values that occur are 1 (in Case 2) or 0 and 2 (in
Case 3). Any term in the periodic part (over ') other than 0, 1, or 2 must arise through
Case 1 and is replaced by numbers tending to 1 as [k : K] — oo. In Case 2 there is trivially
limiting behavior toward the value 1. Finally, by [5, Thm. 1.4], if a value of 0 or 2 occurs
in the period then we are in Case 1 (rather than Case 3) if and only if the branch scheme
B has odd length at some point (in particular, B is nonempty), in which case this term in
the periodic part is again replaced by numbers tending to 1 as [’ : k] — oco. For example,
f =T3+u over k/F3 has Ay p-values 0 or 2 that arise in Case 3.

We now wish to address the behavior of the M6bius average function iy, . for typical
f over large finite fields. There are two topics we shall consider: results saying that this
average is small for all ¢ € {0, 1,2, 3}, and results saying that it is not identically zero. To
this end, define the shape of a nonzero polynomial f = > o, T € A[T] (with {e;} strictly
increasing and all «; nonzero) to be the data consisting of the e;’s and the pole-orders
pi = —ordg(a;) at . We shall be interested in studying all f € (k' ®, A)[TP] with a fixed
shape such that f is primitive over x’ ®, A with positive T-degree and is squarefree over
k' ®, K = Frac(k’' ®, A). Since Z; — Al is generically étale, in a natural way this set of
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f’s for varying £'/k is identified with the set of £’-points of a Zariski-open locus in an affine
space over k. This is what we shall call a family of f’s (with varying constant field £'/x
and a fixed curve C), provided that it is not empty. All members of a family have the same
T-degree and the same total degree. We shall restrict our attention to those x’/x for which
#x' is strictly larger than the common T-degree of the fixed shape, so all such f have no
local obstructions.

Our above work shows that there is a large ng determined by the genus and the common
total degree of the members of the family so that for all ’ (large as above) and f we have:
(i) the denominator in the definition of s,/ (n) is nonzero for all n > no, (ii) the function
His . (n) is periodic in n > ng with period dividing 4. For each ¢ € {0,1,2,3} and " and f
as above we define fif ., . to be the common value i ./ (n) for all n = ¢ mod 4 with n > ng.
It is reasonable to fix ¢ € {0,1,2,3} and € > 0 and to ask how often |fif ., .| < e as f varies
for fixed k’/k. And what happens to this proportion of f’s as [k’ : k] — c0? In terms of
the associated correction factors Ay .. = Awg, a(f;n) =1 —Tip 0 . for n = cmod 4 with
n > ng, it is equivalent to consider how often |[Af,s . — 1| < € as f varies over ' and to
study how this proportion behaves as [k’ : k| — oo.

If Z; is étale over A for a generic member of the family then for generic f in the family
the associated algebraic function £ as in (3.2) is identically 1 (there are no z’s) and so the
Moébius average iy . (n) in each large degree n is equal to either +1 or 0, the latter case
being precisely the one in which e,, is odd. In the case of genus 0, [3, Ex. 4.15] explicitly
describes all families whose generic member f has Z; étale over A'l. In general it seems
hopeless to give an explicit description, though in any particular case it is easy to determine
if the generic member f has zero-scheme Z; C C x A! that is étale over A! (and for “most”
families one expects Z; for generic f to not be étale over the affine line). The following
result solves our asymptotic problem for all families aside from those for which Z; — Alis
étale for the generic member of the family:

Theorem 3.6. Fiz x and A as above (with p # 2). Consider a (nonempty) family F C
{f =3, T | deg(cwi) = p;} in the sense defined above such that ple; for all i and such
that the generic member f has Z; not étale over Al Assume that there exist ig and iy
such that L(pi, - & — 3yo) has codimension 3 in L(p;, - &) for some geometric point yo € C
and L(pi, - & — 1) # L(piy - € — 2y1) for all geometric points yy € C. (This is automatically
satisfied with i1 = ig if pi, > 29 + 2 for some ig.)

There exists a Zariski-dense open locus Z° in the family F so that for all finite exten-
sions K'/k and f € FO(k') the branch scheme of Zy — Al contains a point with p-power
multiplicity, so Xf e — 1 as [£": K] — oo for all c € {0,1,2,3}. Moreover, after possibly
shrinking F°, this convergence is uniform in the sense that for all ¢ > 0 and [k : k] > 0,
Afwre—1] <e forall c € {0,1,2,3} and all f € FO(k'); the largeness condition on [k’ : K]
only depends on €, g, and the e;’s and p;’s.

It follows immediately from this theorem and the Lang—Weil estimate that for each € > 0
the proportion of x’-points f in the family such that [Af,/ . — 1] < e for all c € {0,1,2,3}
tends to 1 as [k’ : k] — co. In the case of genus 0, the hypothesis that Z; is not étale over
A! for generic f in the family .Z is equivalent to the condition that p;, > 2 = 2g + 2 for
some ig. (See [3, Ex. 4.15] for a proof.) Hence, the hypotheses in Theorem 3.6 concerning
ip and i are redundant in the case of genus 0.

Proof. We proceed in five steps.
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Step 1. We begin by relativizing some of our preceding considerations over fields. The
family .# is parameterized by the points of a geometrically irreducible x-scheme S of finite
type. Let Z C C x A}Q be the zero scheme of the universal member of the family, so for
each s € S the fiber Z; is the zero scheme Z5, of fo = > a;(s)T € (k(s) ®x A)[T?] in
C x A}{(S). By the local flatness criterion, 2 is S-flat. For each geometric point s of .S, the
polynomial f is primitive with respect to k(s) ®, A and is squarefree in Frac(k(s) ®, A)[T]
by our definition of “family”, so by [5, §2] the projection 2 — A} is quasi-finite and flat
with étale locus that is dense in each fiber %,. Define the relative branch scheme £ C &
to be the zero scheme of the Fitting ideal of Qfgf JAL" The formation of & is compatible
with base change on S, so 4 is quasi-finite over S. By a calculation with the local flatness
criterion we see that £ is also S-flat.

Let n € S be the generic point. For a suitable open neighborhood S° of 7, the restriction
B’ = PB|go is finite and flat over S° and its schematic image in C' x S° has underlying
reduced scheme Y that is also finite and flat over S°. In particular, the formation of the
ideal of Y in C' x S° commutes with base change on SY. We cannot expect Y to be étale
over SV, but for each geometric point s € SY the fiber Y; is defined by an ideal in x(s) ®, A
with radical equal to the ideal Iy, whose zero locus on Cj is the image in C; of the finite
branch scheme for the projection from Z;, to A'. By hypothesis this latter projection is
non-étale for generic s € S, so Y # ).

Letting 1 : Y — S° be the finite flat structure map, consider the (positive-rank) vector
bundle # = 1.(Oy) on S°. This is an Ogo-subalgebra of the pushfoward of the structure
sheaf of %°, and so we can define an S%-map # — A}go by the functorial rule

h = N(@O/so(h — T)

On fibers over closed points s of S° (or more generally, points s valued in a perfect field)
this recovers (3.2) except that h is taken modulo a possibly non-radical ideal whose zero
scheme on the fiber C, has degree equal to the constant rank of Y over S°.

Step 2. We now reduce our problem to an assertion about the relative branch scheme 4,
and we identify S° with a space of hyperplanes. Let m > 0 be maximal such that p™|e; for
all 4 and write f = F(T?") for the universal point f of the family. Let %r be the relative
branch scheme associated to F. As is explained at the end of [5, §4], for each geometric
point s of S there is a natural bijection b — o’ from the set of points of the fiber %, to the
set of points of the fiber (%ZFr)s, and the lengths of the artinian local rings at these points
satisfy (O, ) = p"(O(4,), ). Hence, if we can find an étale point on (%), then after
shrinking S° we can arrange that for each finite extension x’/k and s € SO(x’) the fiber
A5 has odd length p™ at some point. The argument in Case 1 (especially with 0. = 1) in
the proof of Corollary 3.5 works uniformly across all fibers over S°(x’) for all ’/k because
the O-constant in the Lang—Weil estimate is uniform in algebraic families, so to conclude
the proof of the theorem it suffices to find an étale point on (#r),. In Step 1 we saw that
By # 0, s0 (Br)y #0..

Write e; = p™e), so some €, is not divisible by p. Let AN be the affine space with
coordinates labelled by the finite set of elements a;; 7% with {a;;}; a k-basis of L(p; - £)
for i > 0 and {ao;}; € L(po - £) representing a s-basis of the quotient space L(pg - §)/k
for i = 0. (Note that e{, = 0, as otherwise all f’s would be divisible by T? and so would
not be squarefree, contrary to the assumption that the family .% is not empty.) There is a
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canonical map
m:Cx Al — AV

defined by (c,t) — (a;;(c)t%); ;. Since some ¢} is not divisible by p (necessarily this i must
be positive), and any L(p-&) larger than x cannot consist entirely of pth powers in x(C) (so
k(C) is finite separable over k(h) for some h € L(p- &) — k), the map 7 is generically étale
onto its image. Let U C C' x A! be the maximal open subscheme on which 7 is étale. It
is clear that U contains C’ x (Al — {0}) for a sufficiently small dense open C’ C C, so the
positive-dimensional irreducible components of (C' x Al) —U are either of the form {c} x Al
or C x {0}. The restriction of 7 to each component of the first type is generically étale,
and the restriction of m to C' x {0} is either constant (if L(pp - £) = k) or generically étale.
It therefore follows from Bertini’s theorem [10, I, Thm. 6.3] that for a Zariski-dense open
locus of affine hyperplanes H in A" the pullback 7—'(H) is a geometrically irreducible
and smooth curve in C' x A!'; in fact, for generic H the pullback 7~!(H) meets U in a
smooth curve and also has étale overlap with the smooth locus of each curve component of
the complement of U in C' x Al. Since e, = 0, these varying 7—(H)’s are precisely the
zero-schemes Zp when we restrict our attention to the dense open locus of H’s for which
the corresponding polynomial F(TP") is squarefree in K|[T] and primitive with respect to
A. Thus, we may identify S° with an open subscheme of the space of H’s, and for all H in
this open locus the projection from 7~ !(H) to A! is quasi-finite.

Step 3. By hypothesis there is a geometric point yo of C' such that L(p;, - £ — 3yo) has
codimension 3 in L(p;, - £) for some ig. By semi-continuity, the same holds for any yo in a
dense open C° C C. For any (yo,t9) € C° x G, we can certainly find an affine hyperplane
Hy C AV such that 71 (Hy) N C;, contains yg as an isolated point with length 2. (Such an
Hy can be found so that its defining equation has vanishing coefficients for coordinates away
from those corresponding to a basis of L(p;, - £).) Also, for any zo = (yo,t0) € CY x Gy,
the tangent map dm(zg) is injective on the line Ty, (Cy,).

In general, for any affine hyperplane Hy in AY and any point g = (yo,t0) € C° x Gy,
the condition that 7=1(Hp) N Cy, contains x¢g = (yo,t0) as an isolated point with length
greater than 1 is precisely the condition that 7~ !(Hy) — C is quasi-finite at x¢ and the
affine line dm(zo)(Ty,(Cy,)) through 7(zg) is contained in the affine hyperplane Hy through
m(zp). The condition of having length greater than 1 at z( is equivalent to the projection
771 (Hy) — A! being non-étale at 2o when 7~1(Hp) is smooth at ¢ and quasi-finite over
Al at xg. Also, if 7~1(Hy) N Cy, has length 2 at 29 and 7~ 1(Hp) is smooth at z¢ then the
branch scheme for the projection from 7= (Hp) to Al is étale at zo because p # 2. However,
it is not a priori evident if the smoothness condition for 7=1(Hy) at x¢ is a generic property
when we require that 771 (Hp) N Cy, has length > 1 at xg, so we shall avoid imposing such
a smoothness requirement in our study of such triples (Hy, to, xo).

Step 4. Consider the incidence scheme ¥ consisting of triples (H,t,x) with H an affine
hyperplane in AN and z = (y,t) € C° x G,,, a point of 771 (H) lying over t € G,, such that
the map 71 (H) — C is quasi-finite at x and H contains the tangent line T, (C}) (viewed
as an affine line in AN via dz(x)). This incidence scheme makes sense because of openness
of the quasi-finite locus for a morphism of finite type [7, IV3, 13.1.4]. By the infinitesimal
smoothness criterion we see that the projection ¥ — C° x G,,, is a smooth map. Each fiber
of this map is a dense open in the space of affine hyperplanes in A" containing a common
line, so ¥ is irreducible with dimension 2 + (N — 2) = N. The projection from ¥ to the
space of affine hyperplanes in AN has quasi-finite generic fiber because for a generic choice
of H the preimage 7~ 1(H) is a smooth and geometrically irreducible curve in C' x Al whose
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projection to Al is quasi-finite and generically étale. But is this generic fiber in ¥ perhaps
empty? The fiber of ¥ over a generic point H is not empty provided that the generic branch
scheme (%F), is not contained in the union of C' x {0} and finitely many vertical slices of
the form {c} x A! for closed points ¢ € C (such as the points of C — C?). Since (BF), # 0,
this problem for (%r), is settled by:

Lemma 3.7. No point of the n-finite generic branch scheme (#Br), is contained in C x {0}
or in {c} x Al for any closed point c € C.

Proof. 1t is equivalent to work with the generic branch scheme %, for the associated family
of polynomials f = F(T?") = > o;T% in TP, in view of the definition of the bijection of
branch schemes defined at the end of [5, §4], so let us now work with the latter branch
scheme %,. The generic element of L(pg - ) has étale zero-scheme on C, so the generic
branch scheme does not meet C' x {0}. Suppose instead that the generic branch scheme
for the family of f’s meets {c} x A! for some closed point ¢ of C. Let D : A — A be a
k-derivation that induces a basis of the cotangent space at c. Working over an algebraic
closure x(c) of r(c), by the proof of [5, Thm. 2.5] the condition for {c} x A! to meet
the generic branch scheme is that the polynomials ) . o;(c)T% and )_,(Da;)(c)T are not
relatively prime for any (o;) lying in some dense open locus in the affine space [ [, L(p; - €)
over Spec(k).

To prove that this is impossible, note that we can choose the «;’s so that the tuple (c;+b);

is as generic as we wish for b ranging through a fixed subset of k(c) with cardinality exceeding
max;e;. Since D(a; + b) = Day, it follows that for such («;) each of the polynomials
> ;(ai(c) + b)T has a root in common with ) . (Dea;)(c)T“. The point ¢ is not a zero of
all Da;’s, because by hypothesis there exists oy, € L(p;, - £) with a simple zero at ¢ (so
(Dai, )(c) # 0). Hence, by the pigeonhole principle there exist distinct elements b1, ba € k(c)
such that the polynomials ) . (cv;(c) +b1)T% and ), (c(c) +b2)T* have a common root for
generic (o;). This common root is also a root of the nonzero polynomial ), T, so it lies in

r(c). It follows that for sufficiently generic choices of («a;) the polynomials . o;(c)T% have

a common root ry € k(c), and this is a contradiction since we can fix all o; for i > 0 and add
all but finitely many constants to ag without affecting genericity but certainly destroying
the property of ry being a root (because eg = 0). [

Step 5. By Lemma 3.7, the generic point of ¥ maps to the generic point of the space of
affine hyperplanes in A™. In particular, the generic fiber (%p), contains an étale point if
and only if for the generic point (H,,t,,x,) of ¥ the point z, is in the étale locus of the
branch scheme for the quasi-finite and generically étale map 7 1(H,) — A! (with 7—1(H,)
a smooth and geometrically irreducible curve).

Consider the universal triple (", WiV vy gyer . Let 7y : C x AL — AY denote
the base change of 7, s0 X := 75, (H™V) N Clumiv is a subscheme of C' x ¥ that is quasi-finite
over ¥ along the section 2™ and the fiber-degree of X — ¥ along this section is pointwise
greater than 1. By the local flatness criterion, X — ¥ is also flat along z"™. Hence,
by the structure theorem for quasi-finite separated maps [7, IV4, 18.5.11], the fiber-degree
of X — ¥ at the generic point of the section "™V is bounded above by the fiber-degree
at any point of this section (and is bounded below by 2, since all of these fiber degrees
exceed 1 by definition of ¥). But we have already noted that for any geometric point
r = (y,t) € C° x Gy, there is an affine hyperplane H in A" such that (H,t,z) € ¥ and
771 (H) N Cy has length 2 at 2. Thus, the fiber-degree at the generic point of 2"V is equal
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to 2. Since 7y, L(H"™V) has smooth fiber over the generic point of ¥, the corresponding
branch scheme is therefore étale at the generic point of the section "™V, |

Theorem 3.6 makes precise the sense in which (for p # 2) the case when some e, is odd
(in fact, a p-power) is the “generic” case. In such cases, when considering the statistics for
e A(f(a) for o € K’ ®, A as [k : k] — 0o we are in Case 1 in the proof of Corollary 3.5
(so as [k : kK] — oo we have A,g, 4 — 1 as a function on Z/4Z). The following result shows
that for such f it often happens that for finite extensions «'/k with sufficiently divisible
degree the function Awe, 4 =1 =T 1, on Z/4Z is not identically 1.

Theorem 3.8. Consider a non-empty algebraic family of polynomials F satisfying the
hypotheses as in Theorem 3.6. Assume that the generic member of the family has odd T-
degree and that the highest T-degree in which the generic coefficient is not constant is odd.
Also assume that the family is not of the form {anT?" + ag} with r > 0.

There is a Zariski-dense open locus F' C . and a positive integer & depending only on
the total degree of the members of F so that for any finite extension k'/k, any f € F'(K'),
and any finite extension " /K" with [" : k'] divisible by &, the function n — Fig 7 (n) on
Z/4AZ for large n is not identically zero.

Proof. By Theorem 3.6 we can pass to a Zariski-dense open locus in the family to arrange
that the branch scheme B for the projection Zy — A has a point with odd multiplicity
(and in particular By is not empty). That is, we can restrict our attention to Case 1 of the
proof of Corollary 3.5. For any positive integer m the generic member of the linear system
|m - £| has nonempty étale divisor on C'if dim [m-£| > 0, so it is a further Zariski-dense open
condition to require that the nonconstant coefficient in f occurring in highest T-degree has
divisor on C' that is nonempty and étale (and so not divisible by p).

Hence, it follows from [5, Thm. 6.3] that for generic f in the family we have that e, is
even for all large n in some congruence class modulo 4 (where e, is as in (3.3)). Arguing
(and using notation) as in Case 1 of the proof of Corollary 3.5, it is therefore enough to
prove that if such an f is a x’-point of the family then #V (k") — #U (k") # 0 when [ : &/]
is sufficiently divisible (independent of " and f); recall that V and U depend on f. We
will prove this in five steps.

Step 1. We shall first reduce the problem to the non-vanishing of certain quadratic
character sums. The non-empty branch scheme B = By for Z;y — A has degree equal to
a common (positive) value for generic f, and depending just on this degree (and not f) we
can make [k : k'] sufficiently divisible so that Byeq is k”-split for generic f. The image of
B(k") in Cy» therefore is a finite nonempty set Q = @y of x”-rational points, and for each
point ¢ € @ we let B, be the set of points in the nonempty fiber of B(x”) over c. Letting
fe € K"[T] be the nonzero specialization of f € A/[T?] at ¢ € C(k”), we may and do take
[ : k'] to be sufficiently divisible so that f. is x”-split for all ¢ € @ and #x” > degp f. In
particular, if a € A, is such that f(a) is a unit modulo Iy then for all z = (uy,t,) € B(k")
the reduction @ € (A, /1), has u,-component (with respect to the decomposition of this
quotient algebra into a product of copies of k") satisfying f,, (@(uz)) # 0, so a(u,) —t, # 0.

Hence, we have the formula

#V(E) -#UE =TT D xw(Pel2))

c€Q zer":fe(2)#£0
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in which x,» is the quadratic character on (k”)* (xx»(0) = 0), Pe(Z) = [[,ep, (£ —tz) €
k"[Z] is a polynomial of positive degree, and the condition “f.(z) # 0” says exactly that
f(a) mod Iy has unit component at c¢ for a € A,» representing the c-component value
z € k”. Note that if f.(z) # 0 then the point (¢, z) does not lie on the zero locus of f in
C x A! and so it does not lie on B. Hence, z # t, for all x = (c,t,) € B, and thus P.(z) # 0
for such z.

If 2 € B(k") and e, is even then the value (a(u,) —t,)% € k" is a nonzero square for any
a € (Aw/1If)w such that fy, (a(uz)) # 0, and for each ¢ € @ the polynomial f. is nonzero
somewhere on k" since #x” > degp f. To prove the nonvanishing of #V (k") — #U (k")
when [” : k'] is sufficiently divisible (independent of <" and f), it therefore suffices to prove
that each l-variable quadratic character sum .o Xw(Fe(2)) for z € k" is nonzero
when [” : k'] is sufficiently divisible (in a manner that is independent of ¢ € Q).

Step 2. The quadratic character sums ¢ ) .o Xx” (Fc(2)) are related to point-counting
on certain hyperelliptic curves, so we now reformulate our problem in terms of such curves.
For ¢ € Q, define R.(Z) € k"[Z] to be the monic product of linear terms Z — ¢, for z € B,
such that e, is odd, so R.|P. and P./R. is a square in k”[Z]. Thus, X (Pe(2)) = xx" (Re(2))
whenever f.(z) # 0, so we may and do replace P, with R, in the quadratic character sums.
The case R, = 1 is trivial (as then the quadratic character sum for ¢ is a positive integer,
since f, is nonzero somewhere on k"), so we now restrict attention to ¢ such that the
separable polynomial R, has positive degree.

Since the degree of the nonzero f.(T') € k”[T] is bounded by degy f, with enough divisi-
bility for [£” : k'] we can ensure that f. € £”[T] is split and R, has square value (possibly
zero) at each zero of f.. Consider the smooth affine curve 2. = {W? = R.(Z)} with hyper-
elliptic compactification 2 .. The curve 2, has 1 or 2 geometric points at infinity, and by
passing to a quadratic extension if necessary we can assume that such points are x”-rational.
We shall separate the problem into two cases, when the genus g. of 2 . is positive or zero,
and these two cases will be respectively treated via the Riemann Hypothesis and via spe-
cialization arguments. (For “most” families .# and f € .# chosen generically we probably
have that g. = 0, and even deg R. = 1, for all ¢: distinct branch points of Z; — A should
lie in distinct fibers. However, we do not wish to impose the ad hoc hypothesis on % that
this is the case, and we do not know simple hypotheses on the structure of the family that
are sufficient to ensure it.)

Step 3. We first take care of the easier case g. > 0 (i.e., deg R, > 3). Note that g, is
bounded above independently of f in our family. Since

Y Xwr(Re(2) = #2u(r") — #5" — #{z € & | fu(2) = 0, Re(2) # 0},
fe(2)#0

it suffices to arrange that #.2 (k") — (#x" + 1) avoids integral values between 0 and
1 + degy f. By the construction of @, the geometrically connected and smooth proper
curve Z . can be descended to a finite extension of x’ with degree bounded independently
of ¥'/k and the f € .Z (k') that we are considering. Thus, by considering the 2g. Frobenius
eigenvalues in C associated to such a descent of .2, we are reduced to the following concrete
problem: if S C Z is a finite subset, ¢ = p® is a prime power (e > 0), and {aq,..., @}
is a Gal(Q/Q)-stable multiset of Weil g-integers in C with positive weights then for all
sufficiently divisible r (depending only on m, p, and S) the rational integer > j a; does not
lie in S.
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Pick a rational prime ¢ # p so that s Z mmod ¢ for all s € S with s # m. Let
K = Q(a1,...,a;) and let X be a prime of K over ¢, so a?]()‘)_l = 1 mod X for all j.
Hence, taking r divisible by N(A) — 1 forces > af ¢ S if Y af # m. Since [K : Q] is
bounded in terms of m, this divisibility condition on r only depends only on m and S. To
handle the possibility m € S, use the positivity hypothesis on the weights to find a prime
p; of K over p dividing o for each j and let v be a positive integer large enough so that
p” > m. Also let e, and f,, denote the ramification degree and residue field degree at p for
the Galois extension K/Q. By taking 7 to also be divisible by p”(p/r — 1) we ensure that
> aj mod pip " is a sum of m terms each equal to 0 or 1 with at least one such term equal
to 0, so by Galois-invariance the rational integer > o is congruent modulo p” to a rational
integer between 0 and m — 1. Thus, due to the choice of v, we get that > oy % m for all
such divisible r (depending on p and m).

Step 4. Now we turn to the case when .2 . has genus 0, which is to say deg R, < 2. If
deg R. = 1 (resp. 2) then Z; has 1 (resp. 2) points at infinity, so

Z Y (Re(2)) = {—#{z € k" | fe(z) =0, R.(2) # 0}, if degR. =1,

fe(2)#0 e #{Z S ’ fc(z) = OaRc(Z) 7’é 0}7 if deg Rc =2

Thus, the case deg R. = 2 is settled, and to handle the (presumably “generic”) case deg R, =
1 we just need that f. has more than one root in «”; note that deg f. > 0 since there is
a branch point over c. Since deg f. < degp f, we can assume that f. is split and so we
just need to avoid the case when f. has one geometric root. Writing f = > a;TP% with
() € TTL(pi - §)w satisfying —orde (o) = ps, it suffices that for all closed points ¢y € Co/
over which the generically étale projection Z; — A' has a branch point, the nonzero
specialization f., € x/'(co)[T] has more than one geometric root if it has positive degree.

Working over an algebraic closure k of £ and writing e; = p*e} for all ¢ with a maximal
p >0 (so pte} for some i), it suffices to prove that for a generic k-point («;) € []; L(p; - §)
in the sense of the Zariski topology, the specialization of the associated polynomial f =
Zfio «;T% at points of the image in Cj of the branch locus By of Zy — A,lc never has
exactly one geometric root. Suppose otherwise, so for any nonempty Zariski-open subset
U C 11, L(pi - ) there is some (a;) € % (k) and some ¢y € C(k) (depending on (o)) such
that

> " aileo) T = b(T — t)°

with e > 0 and b € k*. We may and do at least require % to be small enough so that «;
and «; have disjoint zero loci on C' for i # j. The only point in the fiber of Zy — C over
co is the point (co, o) at which Z; — A must therefore have a branch point.

If to = 0 then for all but possibly one i we have that «; vanishes at ¢y, so the members
of our family must be binomials in 7. This forces the family to consist of polynomials of
the form {ayTP! + ap}, and we now explain why such cases cannot arise when there is a
branch point (cg,t9) such that ¢y is a zero of ag or a;. Since a; and o have disjoint zero
loci, for f = a1 TP°' 4 o corresponding to the point (ag, 1) € % the fiber of Zy — C over
zeros of oy is empty. Hence, we have to consider the possibility of a branch point (cg, o)
for Z; — A such that ap(co) = 0 (so ai(co) # 0). In such cases we must have ¢y = 0, and
so the branch condition is that ag has a multiple zero at ¢g. But for small enough % the
zero scheme of «y is étale. Hence, the case tyg = 0 (with sufficiently small %) indeed cannot
occur.
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Step 5. Now we may suppose tg # 0 (so ap(cp) # 0). We have to separately treat the
possibilities that an(co) is zero or not, so first assume apy(co) # 0. This forces e = €y

and b = an(cp), so the resulting identity 3 ay(co)T¢ = an(co)(T — o)~ forces p[(eg\’)
whenever j ¢ {0 = e, ..., €y} and also

<ij/\.f> an(co) - (—to) N~ = ai(co)

7

for all 0 < i < N. In particular, since e = 0 we have ag(co) = an(co) - (—to)N, so for
0 <4 < N we must have

/ e \N e e e
(33 o) = () @)

7

By taking % small enough we can ensure that the N — 1 rational functions

I\ €y
! / ! /
aeN _ eN aei aeN_ei
) / NS0

€;

on C' (with 0 < ¢ < N) have disjoint zero loci away from zeros of ag (the exponent ey, — e/
might be negative).

The validity of (3.8) for all 0 < ¢ < N at some common point ¢y € C(k) such that
ap(co) # 0 therefore forces N < 2. If N =1 then p| (63\’) for all j satisfying 0 < j < ¢!y, and
if N = 2 then this divisibility holds for all such j except for possibly j = €. Since e}, = 0,
p > 2, and some €/ is not divisible by p, we readily get a contradiction except if N =1 and
i =1orif N=2ande] =1, e, =2. This second case contradicts the hypothesis that
degy f is odd, so our family of polynomials must be of the type {a1TP" + ag} with some
r > 0. This is the class of families that was specifically ruled out from consideration in the
statement of the theorem.

Finally, we treat the case ay(co) = 0, so ay is nonconstant and «;(cg) # 0 for all i < N.
In particular, N > 2 because if N = 1 then the condition f,(tp) = 0 with an(cp) = 0 would
force ap(co) = 0, yet we are taking % small enough so that a; and «; have disjoint zero loci
on C for any i # j. Thus, arguing as above with N replaced by the positive N — 1 gives (by
taking % small enough) that N — 1 < 2, with (a? — 4agaz)(co) =0if N—-1=2. If N =3
then we can shrink % to force a3 and a? — 4agpas to have disjoint zero loci on C. Since
an(cg) = 0, the case N = 3 is ruled out and so N = 2. Our family of polynomials must
therefore be {aTP®? + a1 TP + o} for some 7 > 0 such that p” < pes. Consider f in this
family such that there is a branch point (co, to) of the map Z; — A! for which as(cp) = 0.
We seek a contradiction if f lies in a sufficiently small dense open % in our family.

At least we may suppose ag(cp) # 0 and a;(cp) # 0 since as(cg) = 0, so we solve to get
tgr = —ap(co)/a1(cp). The branch condition says that for any vector field @ on C' that is
non-vanishing at cg,

(9a2) (o)t + (Den) (co)thy + (Do) (co) = 0.
Hence, if we fix a nonzero vector field D on C' prior to considering f we get

(Das)(co)th™ + (Dax)(co)th + (Day)(co) = 0.
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Raising this to the p"~'th power and using the identity th = —ap(co)/a1(co) gives that the
rational function

r—1 r—1
(Dozg)p (—040/051)62 + ((Dal)(—ag/al) + Dao)p
vanishes at a zero ¢y of as. Since ag is nonconstant, this easily gives a contradiction by
taking % small enough. Hence, this case does not occur. |

Remark 3.9. Assume p # 2. It is natural to ask for the analogue of (2.4) for several
nonconstant elements fi,..., f, in A[T] that are irreducible and pairwise relatively prime
in K[T]. Assume that fi,..., fs lie in K[TP] and (if s < 1) fst+1,..., fr are not in K[TP].
We also assume that szl fj has no local obstructions with respect to A, and we let I,; be
the least common multiple of the polynomials Iy, for 1 < j < s. Based on some numerical
investigations, we believe the correction factor in degree n > 0 should be

n) = Zdega:n,(fj(a),ln)zl Hj:1(|:u‘(fj(a))‘ - M(f](a)))
B9 Al o) = e et I (5 @)

where the condition ged(f;(a),Ix) = 1 (a congruence condition on a modulo Rad(Z))
imposed for all 1 < j < s; we take n large enough so that the denominator in (3.9)
nonzero. (If no f;’s lie in K[T?] then this correction factor is 1.)

As in the case of a single polynomial, it is not obvious that (3.9) is a periodic function
of large n. It is left as an exercise for the interested reader to check that (3.9) satisfies an
analogue of Theorem 3.1 (with essentially the same proof): it is periodic in n mod 4 for
large n (depending only on the genus and the total degrees deg, r f; for j < s), and if we
replace the ideal I, with any nonzero multiple J in the relative primality conditions on the
sums in the numerator and denominator of (3.9) then the resulting function is unaffected in
sufficiently large degrees (depending on the genus, the deg,, 1 f;’s for j < s, and dim,(A4/J)).

€10,2°] N Q,
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4. LIFTING CONSTRUCTIONS

In our previous work in genus 0 in [3], the case of characteristic 2 was more subtle than
the case of odd characteristic. The key source of difficulties was the need to use lifts to
characteristic 0. The necessity of using such lifts for the study of characteristic 2 arises from
the following variant on [5, Thm. 3.1], which is essentially due to Swan and was recorded
in [3, Thm. 2.4]:

Theorem 4.1. Let R be a finite étale algebra over a finite field k of characteristic 2. Let
W =W (k) and let R be the unique lift of R to a finite étale W -algebra. Then

(4.1) (—1)#SpeclB) — (_1)dimn By (Qiseyy R),

where x : K* X (144W) — {£1} is the unique quadratic character whose kernel is the indez-
2 subgroup of elements that are squares in W*. (Explicitly, x is given by c- (1 + 4w) —
(_1)TrK/F2 (w mod 2) )

Remark 4.2. To see that (4.1) makes sense, one needs the well-known fact that the 1-unit
part of the discriminant of a finite étale W-algebra lies in 1 +4W. (The character x has no
natural extension to an order-2 character on W*.)

In this section we focus our efforts on constructing suitable lifts over p-adic fields, as
preparation for proving a 2-adic analogue of [3, Thm. 5.5] in §5 that gives a rigid-analytic
factorization of discriminants (rather than an algebraic factorization) over the fraction field
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of W(k). In §6 we will use this rigid-analytic factorization and Theorem 4.1 “in families”
to establish a characteristic-2 analogue of the theory in §3. We also note at the outset that
rigid-analytic factorization did not arise in the case of genus 0 with p = 2 in [3] because
lifting Al into characteristic 0 can be done very easily and explicitly by using AII/V(H) (and

the generic and closed fibers of P}i[u] — Spec k[u] have the same Weierstrass gap sequence

at 0o, namely the empty set).

To keep the role of the finiteness of x and the parity of char(k) in perspective, for now
we work with an arbitrary perfect field k& of positive characteristic p, any smooth and
geometrically connected affine k-curve C' = Spec A with one geometric point £ at infinity,
and any primitive polynomial h € A[T] such that h(7?) is squarefree in K[T] (so h is also
squarefree in K[T]), where K is the fraction field of A. Our interest will eventually be in
the study of specializations of h(T?) with p = 2. As the reader will see, the parity of char(k)
is irrelevant for the remainder of this section.

We let F' = Frac(W) with (W, my) a complete mixed-characteristic discrete valuation
ring having residue field k. In order to permit the use of certain base-change arguments
in later proofs (e.g., the proof of Lemma 6.1 and the end of the proof of Lemma 5.2),
it is convenient to not require that W be absolutely unramified (although the absolutely
unramified case is the one to which we will apply the theory that we develop below). By
[8, III, Cor. 7.4], there exists a proper smooth curve ¢ over Spec W with closed fiber C.
The generic fiber of € is a geometrically-connected smooth proper curve of genus g over F'.
The W-smoothness allows us to construct a section & € € (W) lifting ¢ € C(k). Since the
divisor E on % is relatively ample over W, 4 = € — 5 (Spec W) is affine with coordinate
ring o/ that satisfies & /my o/ = A.

In the special case g = 0, if we fix an isomorphism A ~ k[u] then the rigidity of P!
ensures that there exists an isomorphism € ~ PII/V that carries E over to co and identifies
o/ with Wu] lifting the isomorphism A ~ k[u|. This provides a link with the algebraic
considerations on the affine line over W in the genus-0 case of characteristic 2 in [3, §5]. In
higher genus there are many non-isomorphic choices of €, and we will have to choose a lift
(€,€) very carefully.

The key property we need is that the leading coefficient ag € A of h € A[T] lifts to ay € <
with ordg (ap) = orde(ap). In general, we can only say — ordg, (ag) > —orde(ao), since the
Laurent expansion of @ along ¢ in 5’?’5[1 /7] ~ W][r][1/7] (with T a local generator of

the ideal sheaf of the section £) may have its initial nonzero coefficients in my (or, more
geometrically, ag/r may have zeros on ¢ = € r — {£r} with reduction &, and this forces

ag/p to have a higher-order pole at 5 r than ag has at £). Thus, the property we seek for ag

is that its pole-order along 5 _is constant, or equivalently that ag is a generating section of
O(do - &) near the support of &, where dy = —ord¢(ap). That is, we want {1, a0} to be a pair

of generating sections for the line bundle &'(dg - &) over all of ©. The case dy = 0 is trivial,
since then ag € k* and we may choose ag € W* to be any lift of ag. The case dy > 2g — 1
is also trivial (so g < 1 is settled), since we can apply the theorem on cohomology and base
change to O (dy - E ) to lift the closed-fiber global section ay that generates the closed-fiber
stalk at £&. For example, in genus 0 this amounts to the evident fact that a nonzero element
in k[u] may be lifted to an element in Wu] with unit leading coefficient. The situation for

genus g > 1 and 1 < dy < 2g — 2 will require more work, as we now explain.
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In geometric terms, here is a reformulation of the property that we demand for the lifting
(%, E) we want a proper smooth lifting € of C' over W such that the finite flat map
ag: C — P,lc of degree dy > 0 lifts to a finite flat map ag : € — PIl,V (necessarily of degree
do) with respect to which the Cartier-divisor preimage of oo in € is of the form dy - E for
some { € €(W); such a gnecessarily lifts . If p < 2g — 2 then it may happen that p|dy, so
ap : C — P} may be wildly ramified at £ (or elsewhere) or it may be inseparable.

It seems probable that a lifting ag generally cannot be found for an arbitrary choice of flat
deformation (€, €) of (C, &) when 1 < dy < 2g — 2, for in such cases the natural projection

do
A DlV?/W — Plc%,/w

is generally not smooth (nor even flat) and so we cannot expect the fiber of A over the
W-point Oz (do - E) to admit a W-point lifting an arbitrary choice of k-point (such as a
degree-dy effective divisor on C' that is supported on C'). Thus, we must expect to have to
choose the lift (%, 5) of (C,€) at the same time as we choose the lift of the finite map ag.
Here is the solution to our lifting problem for (C, ¢, ag):

Theorem 4.3. Let X be a proper, smooth, and geometrically connected curve over a perfect
field k, and let W be a complete local noetherian ring with residue field k. Fiz £ € X (k).
For any dg > 0, any finite flat map f: X — P}C of degree dy with f~(o0) = dg - € may be
lifted to a finite flat map ]?: X — P, with W-smooth 2 such that ffl(oo) =d - gfor
some ge (W) lifting €.

Proof. In the equicharacteristic case there is a section to Speck — Spec W, so pullback
along such a section solves the problem. Thus, we may now assume that k has positive
characteristic p. We shall use a formal-GAGA argument, shown to us by Q. Liu, that is
simpler than our original argument.

Since k is perfect, if f has inseparability-degree p® with e > 0 then it follows that f
uniquely factors as f = ho ngi e with h separable and ¢P}1€ e equal to the e-fold relative
Frobenius morphism for the target P,lg. Since ¢Pi e is defined by t — t*° in terms of a
standard coordinate on P!, by using the map PII/V — P%V defined by ¢ — tP° that has fiber
p®- 00 over oo we are immediately reduced to studying h instead of f. Thus, we may assume
that f is separable.

Let P = P} and let m¢ and me = 1/t be local parameters on X and P at ¢ and oo
respectively. Since f : X — P is a finite map that is totally ramified over oo, the map
on local rings k[ﬂ'oo]( w) = Opoo — Ox is a finite flat k-algebra map that is described
by oo u7r§ with u € Oy .. Thus, for some monic g € k[Z] with nonzero constant
term we can find an open affine neighborhood Uy, = Spec k[mso, 1/9(Ts0)] around oo such
that m¢ and u respectively extend to sections of Oy and 0% over Voo = f~1(Us) (again
denoted m¢ and u). Since f is separable we may shrink U, so that the finite flat map

o — {&} — Usx — {00} induced by f is étale. Let R be the coordinate ring of the affine
Voo, 80 u € R* and Spec(R/W?OR) = f7(o0) is equal to dy - & as Cartier divisors on X.
This gives that R/m¢R = k with support at £ € X (k).

Let 2 be an arbitrary proper smooth W-scheme that lifts X, and let % be the formal
completion of % along X. There is a unique open formal subscheme 7/00 in 2" whose
special fiber is V,, so ”I/Oo = Spf Z is a formal affine and Z/my % = R. Likewise, there

is a unique open formal affine ZZ;OO in f’%/v with special fiber Us,. Let Tg,u € Z be lifts of
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e, u € R, and let g € W[Z] be a lift of g € k[Z] with leading coefficient in W, so u lies in
Z* and the unique continuous W-algebra map

W{meolt = %

sending T, to U - %go carries §(T) to a unit in #Z (as may be checked in R). Thus, we get

a continuous map of flat adic W-algebras
Wi{Too, 1/9(To0) Yy — #
that has finite flat reduction
[ koo, 1/9(me0)] = O(Uso) — O(Veo) = R
modulo myy and so is a finite and flat map. In other words, we have constructed a finite
flat Spf W-map
foo : :/}oo - é/\oo

that lifts the finite flat restriction foo : Voo — Us with ”/A/oo open in Z. Moreover, since
Spec(R/m¢R) = £ € X(k) and 7¢ is not a zero divisor in R, it follows from standard
flatness arguments that Spf(#/7c%#) = Spf(W) defines a formal W-point £ of 7. lifting
€ € Voo(k) C X (k).

By the same argument, if we let Up = P — {oo} and Vo = X — {¢}, and let % and %

be the unique open formal affines in P and 2" with special fibers Uy and V| respectively,
then we may construct a finite flat Spf W-map

fo: % — U
that lifts the finite flat restriction fy : Vj — Uy. The overlap Y = 770 N “/7 with special

fiber VH N Voo is thereby realized in two ways as a finite flat covering of the open formal
subscheme % = %0 N % C P%,V such that these coverings lift the same map

fVonNVye — UpNUs.

However, by the construction of U, this latter map is finite and étale, and so by the
uniqueness of infinitesimal deformations of ﬁmte étale covers there is a unique automorphism

of ¥ carrylng foo] 7 to fo\ni/ By gluing ”//0 to "I/ along this 1somorphlsm between the open
copies of ¥ in each space we obtain a new formal smooth W-scheme ,%” " that is a formal
deformation of X (so 2 is W- proper) and admits a flat map f to P that lifts f and
glues the two flat maps fo and fC>C> In partlcular f is flat. Since f is a map between proper
formal W-schemes and it deforms the finite f, f must be finite.

By Grothendieck’s formal GAGA [6, 5.1.4], there exists a unique finite Pj;-scheme 27
that algebraizes the finite formal P%/V—scheme 2, and 2" must be flat over P}, since it
is W-proper and 2" is flat over PII/V (via f) Thus, 2" is proper and flat over W with
special fiber X, and so 2" is a proper smooth W-curve such that there exists a finite flat
map F : 27 — PII/V lifting f. We claim that the fiber of F over co € PY(W) is dp - gfor
a section gN € Z'(W) that must necessarily lift £ € X (k). By formal GAGA it suffices
to check this assertion on formal completlons along the special fibers over Spec W, and by
working locally over P the map Fis exactly fOO over the formal open nelghborhood %

of 0 € P%,V(Spf W), so F1(x ) =dp - ¢ for the formal W-point & of ¥4 C . [
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Let (W, my) be a mixed-characteristic complete discrete valuation ring with residue field
k, and let F' denote its fraction field. Choose a lift (%,¢) in accordance with Theorem 4.3

for ag = lead(h) € A with dy = —ordg(ag) > 0, so for Spec & = € := € — £(Spec W) we
can pick ao € 7 with exact order —dy along &, which is to say {1,ap} generates O (dp - E)
(If dg = 0 then we choose ag € W* lifting ag € k*.) For each lower-degree coefficient c; of
h with a pole of order > 2g at &, pick a lift of ¢; to &/ with a pole of constant order along
E; this is possible since N

Yo =H(E,04(d-€))
is a finite flat W-module whose formation commutes with base change for d > 2g — 1. For
d>2g—1,let

¥ q = Spec(Symy, 7y")
be the affine space over Spec W associated to #;. Finally, for each nonzero coefficient of
h in Vag_1 = Yog—1/mw¥ag—1 = L((2g — 1)§), pick a lift to an element of 5,1 C &7.
Lift vanishing coefficients of h to 0 € 7. Using these lifts of the coefficients of h in A to
elements of &7, let H € &/[T] be the resulting lift of h. Due to how we picked H, especially
the lead coefficient, for large d only depending on the total degree deg,, ;- h and genus g the

evaluation of H carries ¥ into 7' 2(d), where
p(d) :=d - degp h + dy
and
ZO = Z(s - Z(S_1
for all § > 2g.

Definition 4.4. We call the triple (?,E, H) an admissible lift of (C,&,h) over W.

The following flatness result will be useful later (and see the proof of [3, Lemma 5.9] for
a genus-zero analogue); in the statement we do not require there to be a unique point at
infinity because the absence of such a requirement allows us to work locally in the proof.

Theorem 4.5. Let ¢ = Spec .o/ be an arbitrary smooth affine W -scheme with geometrically
connected nonempty fibers of dimension 1. Let H € </ [T] be a polynomial whose reduction
h over the domain A = of /my </ satisfies degh = deg H > 0, and also assume that h is
primitive in the sense that the specialization h. € k(c)[T] is nonzero for all ¢ € C' = Spec A.
Let K denote the fraction field of A, and assume that h(TP) is squarefree in K[T)].

Let Z C % x AIl/V be the zero scheme of H. The projection Z& — AIl/V s quasi-finite and

flat, and it is étale away from a closed subset 8 C % that is quasi-finite over Spec W. With
its natural scheme structure defined by the Fitting ideal of Q}'Z/A},V’ this branch scheme %
is quasi-finite and flat over W.
Proof. The closed fiber of 2 over Spec W is the zero-scheme Z = Zj of h. This projects
to A} with finite fibers, since otherwise h € K[T'] would have a root algebraic over k and
so h would have an irreducible factor in k[T], contradicting the fact that k is perfect and
h(TP) is assumed to be squarefree. Thus, Z is a reduced scheme of pure dimension 1 with
quasi-finite projection to the affine line.

On the generic fiber over SpecW we claim that H € F(%)[T] is squarefree without
irreducible factors in F[T] (i.e., there are no roots algebraic over F'), which is exactly the
algebraic translation of the property that 2% is reduced and has quasi-finite projection
to AL. To prove this, let n be the generic point of the closed fiber C of ¢, so H has
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unit leading coefficient as a polynomial over the discrete valuation ring 0y , and hence its
irreducible factorization over the function field F'(¢') = Frac(.«/r) may be chosen over Oy ,,
with unit leading coefficients. In particular, any roots of H that are algebraic over F' are
integral over F'N Oy , = W. It is therefore enough to show that the reduction of H modulo
m,, in K[T] is squarefree and has no roots algebraic over k. The reduction is h € K[T],
which our hypotheses ensure is squarefree and has no roots algebraic over k.

We have now shown that & — A%V is quasi-finite. On fibers over W this map is flat
(being a quasi-finite map from a reduced curve to a regular curve over a field), so as long
as Z is W-flat we may conclude from the fiber-by-fiber flatness criterion that 2 is flat
over Aj,. The coordinate ring of 2 is &/[T]/(H). Since H € & has mod-my reduction
h € A[T] that is not a zero divisor, it follows that </[T]/(H) is torsion-free over W and
hence is W-flat.

With & — A%,V now shown to be quasi-finite and flat, étaleness of this map at a point
is a property that may be checked in fibers over Spec W. More specifically, to prove quasi-
finiteness (over Spec W) of the non-étale locus of 2° — A}, it is enough to check étaleness
over the generic points of A,l~C and A}; by working on k-fibers and F-fibers respectively.
Since 2% is reduced and F(Aj;) = F(T) has characteristic 0, the situation on F-fibers is
clear. For the closed fiber Z C C x Ak, [5, Thm. 2.6] ensures that the quasi-finite projection
Z — A} is generically étale.

To verify W-flatness of the quasi-finite branch scheme % for the map 2 — A‘l,[,, we
only need to look at the local rings at points of # in the closed fiber over Spec W. We
may work locally along the closed fiber of ¥ to reduce to the case when the invertible
sheaf Q}g w is globally free, so there is a nowhere vanishing W-linear derivation D on

/. We make D act W{[T]-linearly on &/[T], so the branch scheme % is cut out by the
two conditions H = DH = 0 on ¢ x A}, = Spec /[T]. Since the local rings of the W-
flat 2 = Spec &/[T]/(H) at closed points on its closed fiber over Spec W are all of pure
dimension 2 (by the dimension formula for flat maps) and the local rings at closed points of
the closed fiber of the subscheme % of Z cut out by the element DH have dimension < 1
(as A is quasi-finite over W) and thus have pure dimension 1 (by Krull’s Hauptidealsatz),
the element DH must be nowhere a zero divisor along points in the closed fiber of Z.
Hence, the Cohen-Macaulay property of 2 (a Cartier divisor on a regular scheme % x AII/V)
is inherited by % along points of its closed fiber over Spec W. Since & — SpecW is a
quasi-finite map from a Cohen-Macaulay scheme to a regular scheme, and the closed-fiber
closed points of Z have local rings of the same dimension as W, by [12, 23.1] we conclude
that £ is flat over W. |

Since & as in Theorem 4.5 is a quasi-finite flat W-scheme and W is a henselian local
ring, the structure theorem for quasi-finite separated maps [7, IVy, 18.5.11] provides a
decomposition

(4.2) #B=21]#

where ' is finite flat over W (it is Spec of a finite product of finite flat local W-algebras)
and %' has empty closed fiber (i.e., %' is a finite F-scheme). In particular, on the special
fiber over Spec W we have that %" mod myy C C x Al is the branch scheme Bj, for the
generically étale projection Z = Z;, — Al. The importance of the decomposition (4.2) is
that it ensures that each point in the closed-fiber branch scheme lifts to a characteristic-0
point of the branch scheme. A typical point of £ is denoted = = (uy,t;) € €p X A}; and
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we functorially define the algebraic map Py 4 : ¥5/p — A}? by the norm construction
(4.3) a+— P%d(fav) = NR®FF(:1:)/R(6(U$) — tx) €ER

for any F-algebra R and @ € ¥ 4(R). Of course, if x € B lies in the W-finite %' then z
uniquely extends to a W (z)-valued point of ¢’ x A}, (where W (z) is the valuation ring of
F(z)), in which case P, 4 uniquely extends to a W-morphism P, qw : ¥, — A}, defined
functorially on W-algebras R by the norm construction analogous to (4.3) using the finite
flat extension W (x) over W. Due to W-flatness of £, those x € % that extend to integral
points of the separated W-scheme ¢ x Al;, are precisely the points in %%

Norm-functions analogous to the P, 4's provide an algebraic factorization of discriminants
in characteristic p in [5, Thm. 4.1]. In §5 we shall use the F-scheme maps in (4.3) to
construct rigid-analytic factorizations of discriminants in characteristic 0. The essential
new ingredient that was not encountered in the analogous problem in genus 0 in [3, §5]
for p = 2 is the possibility of unequal Weierstrass gap sequences on the generic and closed
fibers of the lifted 2-adic curve €, and this is the reason why non-algebraic rigid-analytic
factorizations will intervene in our study of periodicity properties of the M&bius function in
characteristic 2 for higher genus.

Remark 4.6. For our work over finite fields x of characteristic 2 it is enough to work
with a single (well-chosen) lift (%,¢) of (C,&) over W(k), and in what follows it would
simplify matters a lot (and is sufficient) to work with such a lift for which the Weierstrass
gap sequence at fN in characteristic 0 is the same as that at £ in positive characteristic. We
expect that such a lift does not exist in general (we require the lift to be over an absolutely
unramified base), but we do not know any example for which such a lift can be proved to
not exist. One reason for the difficulty of finding such an example is that every known gap
sequence in characteristic p > 0 also arises in characteristic 0.

5. RIGID-ANALYTIC CONSIDERATIONS

With W and F as above, pick an admissible lift (¢, ¢, H) of (C, &, h) over W in the sense
of Definition 4.4, and assume that h € A[T] is primitive and h(T?) € K[T] is squarefree as
in Theorem 4.5. Let <7 be the coordinate ring of the affine open in € complementary to {

Choose a W-basis €1, ..., &4 of #54_1 lifting a basis €1,...,e4 of Vag_1 = Yog_1/my ¥55_1
such that {e1,...,e4} is (as in [5, §3]) adapted to the Weierstrass gap sequence at £ in the

sense that —ordg(e;) is strictly increasing in i. In general we probably cannot pick (¢,¢)
and {€1,...,&g} so that {&;/r} is similarly adapted to the Weierstrass gaps at {r on the
generic fiber €, due to the possible failure of cohomology to commute with base change
for low-degree line bundles on €’; see Remark 4.6. We may extend {&;}1<i<, to compatible
bases of each ¥y for d > 2g, since ¥ is a subbundle of codimension 1 in %31 over W for
d > 2g — 1 with all #3’s commuting with base change on W for d > 2g — 1. We claim
that {&;}i;>1 is a W-module basis of 7. Since ¥; is a direct summand of ¥4, over W for
d > 2g — 1, what must be shown is that 7 is the rising union of its W-submodules ¥; for
large d.

In terms of Weil divisors on the 2-dimensional regular scheme %, the nonzero elements of

the subring ¢ inside of the function field F/(¢) are precisely the elements of F(%)* whose
divisor has nonnegative coefficients away from the irreducible component ¢ (corresponding
to the unique codimension-1 point lying outside of the open subscheme Speco/ C %).
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Likewise, ¥3 — {0} consists of those elements in F(%)* whose divisor has nonnegative
coefficients away from the £-component and whose &-component coefficient is > —d. Taking
d — 0o, we arrive at the description U%; for < (inside of F(%)), as desired. We define
g; € A to be the reduction of &; for all ¢ > 1, so the &;’s reduce to a system of compatible
bases {€1,...,e4—g+1} of the vector spaces Vy = L(d-§) inside A = & /my o/ for d > 2g—1.
Let Vd0 = Vg — V4 for d > 2¢g, and let V; and Kg be the associated affine k-varieties for
such d.

Let {w1,...,wy} be the Weierstrass gap sequence at & on C over k. In what follows we
consider d large enough (depending only on g and deg,, ) so that evaluation of H carries
v 2 into ¥ 2(d)5 here we use the hypotheses on H as a lift of h. For such d and sections
a € YY(W), we claim that if d is large enough (again, only depending on g and deg, 1 h)
then o7 /(H (a)) is finite free over W with basis represented by

(5.1) {E1, - Enarg) — {En@+wrr1-gh1<r<g;

where p(d) is defined above Definition 4.4. Such finite-freeness is useful because if a €
#9(W) is chosen to lift an arbitrarily chosen a € V¥ = V9(k) for such large d then o7 /(H (a))
is a finite flat W-algebra lifting the finite k-algebra A/(h(a)), exactly as required for applying
Theorem 4.1 to compute p(h(a)) if k is finite of characteristic 2 and h(a) is squarefree in
A. Tt is crucial that o/ /(H (a)) has a WW-basis represented by the set (5.1) because this
set is independent of a. For the purpose of applying Yoneda’s lemma to lift the morphism
vy— A} defined by

a — disc, ,q)(A/h(a))
(discriminant defined as a determinant with respect to the basis {e1,...,€,@)1g—1}; cf.

[5, (3.11)]) to a formal-algebraic morphism Zg’/\ — A%/V over W, we need to prove that this
finite-freeness result holds much more generally, as follows.

Let W’ be any W-algebra whose maximal ideals contain the maximal ideal of W (e.g., a
noetherian W-algebra that is separated and complete for the my-adic topology). We pick
a € YYW'), and we would like to show that (W' @y «)/(H(@)) is finite and free as a
W’'-module, with basis represented by (5.1), at least if d is large enough (depending only on
g and deg,,  h, not on W’). Since H(a) € Zg(d)(W’), this is a special case of the following
lemma that partially lifts [5, Lemma 3.3] into characteristic 0:

Lemma 5.1. Let W’ be a W-algebra all of whose mazimal ideals contain my W'. For
a € VW) with § > 2g, the W'-algebra (W' @w )/ () is finite and free as a W'-module

with basis

(5.2) {e1, - &g} — {E51rw r1-g hi<r<y-

This lemma is not generally true if we allow W’ to merely be a W-algebra. For example,
the case W’ = F runs into difficulties if the generic-fiber Weierstrass gap sequence at { F is
different from that on the closed fiber (i.e., the formation of global sections of @(d - £) with
1 < d < 2g — 2 may not commute with base change). In this sense, Lemma 5.1 is not quite
a mixed-characteristic version of [5, Lemma 3.3]; it is, however, the best one can expect in
general.

Proof. Since « generates 0/(0 - EW/) near EW/, and 0(0 - E) restricts to the structure sheaf
of € = Spec .« over the complement of &, we can identify (W' ®w «7)/(«) with the global
sections of the cokernel of the map « : ﬁ;wl — ﬁ?w/ (6 - &) defined by multiplication by a.
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The support of this cokernel is closed in €y yet it is disjoint from the section &y, so we
conclude that Spec(W’' @w o) /(«) is proper and quasi-finite over W', hence finite over W".

We will next show that (W’ @w «7)/(a) is W'-flat. We may localize at maximal ideals
of W’ and hence may assume W' is a local W-algebra with local structure map W — W’
and residue field denoted k’. By standard direct limit arguments, we may assume W’
is also noetherian and even complete. A finite W’ -algebra is therefore isomorphic to its
own completion (with respect to the maximal ideal of W’), so we have an isomorphism
(W' @w &)/(a) ~ (Wew")/(a) where /" is the completion of &/ with respect to
the maximal ideal of W. The completed tensor product R = W’y <" is noetherian and
complete with respect to the topology defined by the maximal ideal of W', so all maximal
ideals of R contain the maximal ideal of W’. Moreover, R is visibly flat (and hence faithfully
flat) over W’'. Consequently, if we use the local flatness criterion for each localization of
W'&w./" at a maximal ideal then the W'-flatness of (W& .o7")/(a) follows from the
W’ -flatness of W&y a7 and the fact that the reduction @ in the domain k&’ ®j, A is not 0
(and hence is not a zero divisor in any localization of R/my R = k' @ A). This shows that
(W' ew o) /(«) is W'-flat.

With (W’ @w «7)/(«) now known to be finite and flat over W, as well as obviously of
finite presentation (as an algebra, hence as a module due to finiteness), to establish that
(5.1) is a W'-basis we may again localize at maximal ideals of W’ and it suffices to check the
basis condition modulo the maximal ideal of W’. That is, it is enough to treat (k' ®; A)/(@)
for @ € V(K'), where k' is the residue field of the local W-algebra W’. This case follows
from [5, Lemma 3.3] (that is stated over the perfect field k but therefore obviously applies
over any extension field &'/k). [ |

For any W’ as in Lemma 5.1 and any a € ¥9(W’) with d > 2g, we can use the or-
dered basis (5.2) to define the discriminant discz (W’ @w «7)/(a)) € W' as a specific
determinant (not merely as an element that is well-defined up to unit-square multiple),
and this construction is functorial in such W’ with fized € and d. The cases of interest
for us are those noetherian W’ that are separated and complete for the topology defined
by the maximal ideal of W. For such W' and any affine finite-type W-scheme Y, clearly
Y(W') = @Y(W’/mWIW’) = Y (W'), where Y is the formal scheme over Spf(W) ob-
tained by completing Y along its closed fiber and ?(W’ ) denotes the set of Spf(W')-points
of Y in the category of formal schemes over Spf(W). Using the special case Y = ¥ Y by
Yoneda’s lemma we see that the above discriminant construction defines a map

(5.3) disc2y: V9" — Al = SpE(W{T})

of topologically finite-type formal W-schemes. This map is a formal deformation of the
algebraic k-morphism disc, 4 : vy — A} defined as in [5, (3.10)]. In particular, if W’ is the
valuation ring of a finite extension of F' = Frac(W) and we identify #J(W’) with ZS’A(W’ )
then

discgd(a) = disczw (W' @w <)/ (a))

for @ € #(W'). Tt seems unlikely in general (for g > 2) that there is a map ¥ — A}, of
ordinary W-schemes that gives rise to discg 4 by passage to formal completions, so to lift
disccq : Vg — A,lg it seems necessary to use formal schemes as above. (For example, the
coordinate ring of #Y does not satisfy the requirements on W' in Lemma, 5.1.)
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Rather than work only with the normal (even regular) formal schemes Spf(«”") = €/
and ¥ 2’/\, it will be necessary to apply Raynaud’s “generic-fiber” functor (-)"& from the
category of locally topologically finite-type formal W-schemes to the category of rigid-
analytic spaces over F'; we refer the reader to [1] for a development of the basic properties
of this functor. The formal completion ¢ is open within the proper formal curve ?A, and
(6" )" = Sp(F ®@w /") is an admissible open affinoid inside of the proper rigid-analytic
curve (?A)rig o~ ?;n over F' (this latter isomorphism is established via the valuative criterion
for properness; see [2, 5.3.1(4)]). The choice of € allows us to identify the Raynaud generic-
fiber Vd of “//0 " with an affinoid

Sp(F<Cl, - fcvd+17g, 1/fcvd+1,g>) ~ B4 9 x 0B,

where B is the closed unit ball over I and 0B = Sp(F'(t,1/t)) = {|t| = 1} is the “boundary”.
Let Vd = (¥} /\)“g so we have a closed immersion Vd 1< Vd Explicitly, Vd is a unit polydlsc
on parameters Ci,...,Cqy1—g, and Vd - Vd is the locus [Cgq1— g\ = 1, whereas Vd — Vd 1 18
the locus 0 < [¢g41- g\ <1

We define discx ng Vd — B to be the Raynaud generic-fiber of dlSCEd For large d
(depending only on g and deg, 1 h), any finite extension F’/F with valuation ring W', and
any a € XZ?(F’) = ZS’A(W’), we have that disc2® (d)(H(a)) € W' is a discriminant of the
finite F’-algebra

dp [(H(a)) = F' @w ([ (H(a)))

relative to a W/'-basis of the order &y /(H (). Such an “integral” discriminant in the case
p = 2 is what we will need to use in our study of Mobius-periodicity in characteristic 2.

Pick an F-basis ep = {¢; r}i>1 of @/ adapted to the Zd/F’s in the sense that we require
that — ordgF (€i,F) is strictly increasing in i. Use the choice of e to define the F-scheme
morphism disc,, 4 : ZS/F — AL asin [5, (3.10)]. It is important to understand how this
algebraic discriminant over Spec F' is related to the formal discriminant (5.3) over Spf(W).
The relation is given by:

Lemma 5.2. For d > 2g, there exists a nonvanishing rigid-analytic function Ag on Vdo
(depending on € and ) such that

(disct d)“g—Ad disc” d‘VO

In the genus-0 case with & = W{u], if we choose €; p = u'~! and &; = u’~! then A, = 1.
More generally, the proof of Lemma 5.1 can be modified at the end (adapting the appeal
o [5, Lemma 3.3]) to avoid the requirement that — orde(e;) is strictly increasing in i for
i < g (as long as {e1,...,e4} is a basis of L((2g — 1)¢)), so it is possible to get by with the
choice €; r = &; for all i even though this makes the pole order of the ¢; r’s along E F fail
to be strictly increasing for ¢ < g if the gap sequences at £ and E r are not the same. The
crucial point is that even if we make such a convenient-looking choice of ¢; r, the function
Ay still cannot be expected to be better than rigid-analytic in the case of unequal gap
sequences since the determinants on the two sides of the identity in Lemma 5.2 involve
different subsets of {€1,...,Eq49-1}-

Proof. We will construct Ay by Yoneda’s lemma. Let R be an F-affinoid algebra, so R =
F @w Z% for a topologically finite-type and flat adic W-algebra %, and consider a point
@ € VO(R) having the form @ = a8 for some (necessarily unique) a € Zg’/\(%). An
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important special case is to take a to be the identity point of the functor represented by
the affinoid V) = (¥ S’A)rig . By functoriality of (-)''® we have

(discl 1) (@) = disel 4(a) = discz,w (@Ew ™) /(@)),

with this final discriminant computed for the finite flat Z-algebra (Z&w /") /(a) relative
to the basis of &;’s for ¢ < g + d omitting €414, +1—4’s for 1 < r < g. On the other hand,

identifying ZS/F(Spec R) with #%2(Sp(R)), say with @€ going over to @, discg? 4(a) is the

2d/F
discriminant of the finite flat R-algebra (R®p </)/(a*#) relative to the F-basis of ¢; p’s for
i < d+ g omitting €415, 41—g,r's for 1 <r < g with {wy,...,w,} denoting the Weierstrass

gap sequence at 5 F on the F-fiber of €.
The R-algebra map R ®p @ = F Qw (Z Qw &) — F Qw (Z2w./") carries a™# to
1 ® a, and passing to the quotient induces a map of R-algebras

0: (Rop or)/(@8) — F @w (Z2wa")/(a)).

The source and target have R-bases {€; r}i<dtg,itdta,+1—g and {&;}i<digitdtw,+1—g T€-
spectively. Thus, as long as 6 is an isomorphism in general we may form the determinant of
the change-of-basis matrix to get a unit in R. In the universal case with R the coordinate
ring of VC?, this unit (or its reciprocal) is the desired analytic function Ay. The possible
failure of the gap sequence {w,} to equal the gap sequence {w,} (see Remark 4.6) is the
reason why Ay may not be taken to be identically 1 in general.

Since 6 is an R-linear map between finite free R-modules of the same rank, to prove that
f is an isomorphism it is enough to prove surjectivity modulo maximal ideals of R. Every
maximal ideal m of R has the form F' @y p for a prime p of #Z meeting W in {0} with
dimZ/p = 1 [1, Lemma 3.4], so by functoriality in Z we may replace #Z with Z/p to reduce
to the case in which R = F” is a finite extension of F' and % is W-finite (more specifically,
a W-order in F’). We then have an isomorphism

Fow (2w ~ F ow (% ow o) ~ F ow (W ow o)
where W' is the valuation ring of F’. Making the base change from W to W' typically
increases the absolute ramification degree, but we were careful to not make ramification
restrictions on W at the outset in §4 and so we are reduced to the special case R = F' and
X =W.

Since ZS’A(Spf (W) = #%Spec W), « is induced by an algebraic section a?'¢ of #Y over
Spec W. Clearly a# has generic fiber ¢, and @/”/(«) is the my-adic completion of the
W-algebra o7 /(a®8), so 6 is F @y (-) applied to the natural map from .«7/(a®#) to its
myy-adic completion 27" /(«). This map is an isomorphism since <7 /(o) is W-finite. W

Consider d > 2g with d sufficiently large (depending only on g and deg, 1 h) so that H

carries ¥y into ¥ ;. We want to study discz

)0 H'& by using the analytification of the
algebraic factorization of discz, ,4) © Hr over Spec F given by [5, (4.10)]. First, we need
to define several functions. The analytification functor from algebraic F-schemes to rigid
spaces over F' provides rigid-analytic maps

(5.4) v Ve — AR

for any x € $Bp. Since 731/1F(SpR) = ¥ 4(Spec R) for any F-affinoid algebra R, we have the
functorial description P;7(a) = Npg . r(z)/r(@(us) — tz) for any F-affinoid algebra R and
any a € 731/1F(SpR). Similarly, for z in the F-fiber %%, of %' as in (4.2), by passing to formal
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completions and Raynaud generic-fibers we see that the W-scheme map P, qw : ¥y — A%,V
induces a rigid-analytic map

(5.5) PrE L Vy= (X)) — A = B = SpF(T).

It is important that (5.4) and (5.5) are compatible for € %%.. This compatibility is a spe-
cial case of the general compatibility of Raynaud’s generic-fiber functor with analytification
[2 5.3.1]. To be precise, if Y is any finite-type separated W-scheme with formal completion
Y along its closed fiber, there is a functorial quasi-compact open immersion yris < Yit
that is an isomorphism for W-proper Y; applying such functorlahty for Y =7, 1mphes
that for z € ,%’ ; restricting Pply to the affinoid subdomain Vd in V%) P gives erlgl W

Ve nC ”i/dr/lF we define Pgﬁn to be the restriction of ij;l, this is
also the analytification of the restriction P:g g f Prato? 2 NE When x € %r is an integral

On the admissible open 0

point (i.e., lies in the generic fiber of %), we can use the algebraic function Pyaw on ¥,
over Spec W to define a formal function on ¥/ over Spf W that we may restrict to the
formal completion ¥ 2’/\ of the open ¥ 2 (or equivalently, we may restrict P, 4y to 12 and
then pass to formal completions), and then Raynaud’s functor provides us with an analytic

function P, ’;%V on the generic fiber YN/O of ¥ O’A. This latter function is the restriction of

P;%l,w to the affinoid subdomain Vd within Vd , and so for x € %’f we have that P Grll%v is

the restriction of Pﬁgn to Vd ”I/g /a;
Choose gp as in Lemma 5.2. By applying [5, Thm. 4.5] to the characteristic-0 triple

(€r,&p, Hr) and using the algebraic factorization of discz,, ,@) © Hr in [5, (4.10)] in this

situation, Lemma 5.2 yields an identity of rigid-analytic meromorphic functions on ‘7(10 :

(N%lp(d) °© H%n”@

" Za(Hp, DHp)™ o

. i i 0
(5.6) (disc2 ;)8 o H"& = AZ-bacit, [ (P 3“!V0)
TERBR

where D : o/ — @/ is any nonzero F-linear derivation, e, € Z is a suitable positive integer
for each x € B, the elements by € F* and e¢; € Z may depend on g5 (and the e,’s, by, and
eq do not depend on D), and the functorial norm function Np ,q) (vesp. Z4(Hp, DHF)) is
defined in [5, (4.2)] (resp. [5, (4.4)]). If we choose D to arise from a W-linear self-derivation
of &/ then the numerator and denominator in the fraction on the right side of (5.6) acquire
integral structure (and have restrictions to 1~/do that arise by the Raynaud construction
applied to analogous functorial norms on the formal-scheme side).

The fraction on the right side of (5.6) is a priori independent of D, for reasons explained
below [5, (4.9)], and we now make the independence of D explicit in an important special
case. Consider a € V) C A such that the nonzero h(aP) is squarefree in A. (Such a exists
if d is sufficiently large, where largeness only depends on g and deg, rh.) Since d > 2g
we can pick a € ¥, C & lifting a, and by Lemma 5.1 the zero-scheme Spec &/ /(H (aP)) is
a closed subscheme of ¢ that is (nonempty and) finite étale over W. Pick D : &/ — o/
such that near the W-finite support of Spec.o//(H (aP)) it is dual to a local generator of
the invertible sheaf Q. ywe Let D : A — A be the (nonzero) reduction of D and define
DH € &/[T] by letting D act on </ [T] as a W[T]-linear derivation restricting to D on 7.
Since (Dh)(a?) = D(h(aP)) is necessarily a unit in the k-étale A/(h(aP)), (DH)(aP) has
unit image in < /(H (a?)). We conclude that N /(g ey w((DH)(aP)) € W*, so we may
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consider the integral ratio
Np p(pa) (H (")) — Ny /(H a0 W <D(H(5p))> W
= = y ar T T~
Nt w (DH) (@) — /@D (D) (@)
that is visibly independent of D. This obviously has reduction 1 in k. Note that this

entire setup is compatible with flat local base change W — W’ to another complete discrete
valuation ring.

Theorem 5.3. Pick d large as above, and consider a € V9(k) such that the nonzero h(aP)
18 squarefree in A. Define the rational 1-form
(Orh)(aP)aP~!
Wha = — 77 -~
h(aP)

on C. Choose a W -linear derivation D : o — o lifting a k-linear derivation D : A — A
that is dual to a local generator of QlC/k near zeros of h(a?) on C.

The 1-form wp,q has at worst simple poles on C, and if p = 2 then for sufficiently large d

(5.7) N/ (m@ry)) W (fm) = 1-—pordg(a)degp(h) +

p? g Resy, wp oResy,wn, o mod pPmyy,
{y1,y2}

where {y1,y2} runs over all unordered pairs of distinct geometric poles of wp q on C and
a e YYW) lifts a. The largeness of d is determined by g and deg, 1 h.

Due to the residue theorem and the fact that the residue characteristic is 2 in (5.7), we
can include pairs y; = y9 in the residue sum in (5.7) without affecting the value of the sum.
The congruence (5.7) was proved in [3, Thm. 5.5] in the genus-0 case, with & = W (k)[u]
and D = 0,. The reader may easily check that our proof of (5.7) works modulo p? for any
prime p, but (5.7) is only useful for us because for p = 2 it holds modulo p?myy .

Proof. Since h(aP) is squarefree in A, it is obvious that wy, , has at worst simple poles away
from £. The pole-order of (Orh)(aP)a? at £ cannot exceed that of h(a?) when d = —ordg(a)
is sufficiently large (as determined by deg, 1 h), so it is clear that (Orh)(a?)a”/h(aP) cannot
have a pole at § for such large d, and hence orde¢(wpq) > —1 for such large d. In what
follows, we shall take — ord¢(a) large as just required (in particular, a # 0). We also take
d so large (depending only on g and deg, - h) that evaluation of H carries #Y into ¥ 2( )
To establish (5.7), we will not need that p = 2 until near the end of the proof. Thus,
we initially work with a general prime p. Making a base change to the completion of a
strict henselization of W, we may reduce to the case of algebraically closed k. Let ¢ € C'(k)
run over the zeros of the nonzero non-unit h(a?) € A, and let ¢ € (W) run over the
zeros of H(aP), so each c lifts a unique ¢ since &7 /(H (aP)) is finite étale over W. Clearly
(DH)(aP) € </ has unit value at each c, since its reduction (Dh)(a?) = D(h(a”)) on C has
nonzero value at each zero ¢ of h(aP) (because h(aP) is squarefree and D is dual to a local
generator of Q1 /j near each ¢). By using the Chain Rule to compute D(H (aP)) we have

D(H(Zip)){ 14, OrH)@) @ - (Da) |
(D)@'~ F om@)
The product of these 1-units over all ¢ is the left side of (5.7).

(5.8)
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Let P = H(a”). For each ¢ € ¢ (W) as above, P is a local parameter at cr on the generic
fiber ¢’ since &/ /(H (aP)) is finite étale over F. Thus,

(0rH)(aP)-aP~' - (Da), (OrH)(aP)aP~!- Da dP
R [N e N T IR

Since dP = (dH)(aP) + p(0rH)(a?)aP~1da, where dH denotes the application of d to the

coefficients of H € &/[T] (just like our convention for defining DH by extending D to a

W T]-linear derivation of <7 [T']), expanding out dP/P in (5.9) yields

@) @)@~ D ([@H)@) |, o ((@eH)@)a (Da))? (DH)@) -da
H (@) (DH)(@)  © (DH)(a) H(@) - Da

(note that Da # 0 since a ¢ F and F' has characteristic 0). Hence, the right side of (5.8) is

Ori) @) da o o ((@rH)@)@(Da)\" (dH)@)
H(ar) “\" om@) H(ar)

p-Res,

(5.10) 1+ p-Res.

due to the identity
(dH)(a") _ (DH)(@”)

da Da
of meromorphic 1-forms on %; this identity follows from the more precise identity do/da =
Da/Da for each coefficient o of H € o/[T]. This latter identity is an immediate consequence
of the universal property of d : & — Q}J/W'

Consider the product of (5.10) over the finitely many ¢ € € (W) as considered above. We
are interested in computing this product modulo p?myy, so it suffices to compute the final
residue term in (5.10) modulo myy, or in other words as a residue in k at the reduction
¢ € C(k). In characteristic p we have (dh)(a?) = d(h(a?)), and h(a?) is a local coordinate
at ¢. Hence, (5.10) modulo p?myy is

SN - — 2
(OrH)(aP)a? da 9 ((8Th)(ap)ap_1(Da)> d(h(aP))
14+p-Resc ——=+— = +Dp" - Resg — :
Y H(aP) a (Dh)(a?) h(aP)
Note that the first residue term lies in W and the second lies in k. Define

oy Q)@@ da <<6Th><ap>ap-1<Da>>2,d(h(ap))
T Gy A (Dh) (@) h(a?)

Since a and h(aP) are nonzero in A, the rational 1-form wy z on % is regular near the generic
point of the closed fiber. Thus, the reduction of wg 3 to a meromorphic 1-form on C' makes
sense and is given by using h and a in the respective roles of H and a. More importantly,
this reduction process is compatible with reduction of residues along the generic and closed
fibers of any section ¢ € € (W) that is a zero of H(aP) since o/ /(H (a?)) is finite étale over
the strictly henselian W. That is, Res.(wgz) € W reduces to Resz(wp,o) € k for such c. We
conclude that the norm in (5.7) is congruent to

(5.11) 1+ pz Rescwpg + P Z Res¢, wyg - Rese, wyg + P> Z Resz 1, mod pPmyy,
. —

c17#c2 ¢

mod p*myy.

where the generic-fiber geometric points cp € €(F) in the first two sums in (5.11) run over
all points in the geometric generic fiber of the support of the W-finite étale Spec <7 /(H (a?)),
which is to say (by looking at the definition of wy z) that they run over all geometric poles

of wgg on % except for the unique point r complementary to € = Spec.a/r if this
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point is a pole. Also, the final sum in (5.11) runs over the (pairwise distinct) reductions
of these points. By the residue theorem over F', we conclude that the first sum over ¢’s in
(5.11) equals —Resg wpyg. Since F' has characteristic 0 and (€,¢, H) satisfies Definition
4.4, by taking d sufficiently large (with largeness only depending on deg, ;- h) we see that
the residue of wy 5 at E F is equal to ordgF (a) - degp H, and since a is a W-section of ¥ 2 we
can write this residue-value as ord¢(a) degy h.

Since (Dh)(a?) = D(h(aP)) in characteristic p, we have

_ pgr-1_da_\* d(h(a)
o = (e g ) iy

If we use the residue theorem to express the final sum ) _Reseny 4 in (5.11) as the negative
of the sum of residues of 7, at its poles on C' away from the ¢’s, there is no reason in
general to expect the residue at £ to be the only contribution from poles away from the
€’s; N, Probably has many poles on C' away from the ¢’s. However, when p = 2 a miracle
happens: the residue at any such pole must be 0! To see this, recall that for a rational point
x and a meromorphic 1-form sPdr/r on a smooth algebraic curve in characteristic p > 0,
Res,(sPdr/r) = (Resz(sdr/r))P. Thus, in characteristic p = 2, for any = € C(k) where
h(aP) is nonvanishing, the residue Resy 1, 4 is the square of

da  d(h(a"))
d(h(ar))  h(aP)

da
— py,,p—1
= Res;(0rh)(aP)a 7h(ap) = 0.

Res, (Orh)(aP)aPt

It follows that when p = 2,

(8rh)(aP)a?  da\*
; ReSE T]hqa = —Resf 77h,a - - (ReS£h(ap) . ;
= —(Res§wh,a)2

= Rescwp,q - Z Rescwp q,
¢
the final equality following from the residue theorem for wp, on C. Putting everything
together, taking the product of the left side of (5.8) over all ¢’s yields (5.7) whenp =2. W

Motivated by (5.7) and following [3], we shall use the following notation:

Definition 5.4. For a € A, let wy, = ((9rh)(a?)aP~/h(aP))da. For a meromorphic 1-
form w on C, let s3(w) be the second symmetric function of the residues of w, indexed by
the geometric poles.

Note that Definition 5.4 makes sense without requiring h(a”) to be squarefree. Clearly
so(wh,qr) = 0 since wp e = 0. Also, if h is a polynomial in 7% (so dprh = 0 and hence
wh,e = 0 for all a) then we have sa(wp ) = 0 for all a. As we noted in [3, §5], sa(w) is not
“algebraic” in w if we do not restrict w to have an étale polar divisor with a fixed degree.
The cases of most interest to us will be 1-forms with such a divisor.

In the case p = 2 with large d as required for (5.7), we shall combine the congruence (5.7)
and the rigid-analytic factorization obtained by evaluating (5.6) on 17}% at a? for points a

of 12?. More generally, allowing any p and taking d large as required for (5.6), consider the
contribution to (5.6) by P4 for z € Bp. If x € . then we have a compatibility of (5.4)

and (5.5): the restriction of Pg’sn to an analytic function on ‘70? is equal to the Raynaud
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generic-fiber P;},)”;%V of the map Pxo:é\’W 4 2’/\ — K%/V If 2 = (ug,t;) ¢ P then either
[ts] > 1 or u, € €(F) C€(F)=%(W) is not a W-point of ¢ (where W is the valuation
ring of an algebraic closure F of F), which is to say that either |t,| > 1 or u, has reduction
¢ € C(k). We shall describe this second possibility by writing “|u,| > 17 (since in the
genus-0 case &/ = Wu|, this inequality on the absolute value of the standard coordinate
of u, in €F = AL is exactly the condition that u, has reduction £ = co € P1(k)). We will
likewise write “|uy| < 1”7 when u, does extend to an integral point of &.

The factor Pg’snh;o in (5.6) for points x € %Bp with |u,| > 1 can be absorbed into Ay
) d
when d is a large multiple of p and we evaluate on pth powers a?, due to:

Lemma 5.5. If x € Br with |u,| > 1 then the restriction of Pf’jn to XN/dO s nonvanishing

on ‘N/do when d is sufficiently large. Moreover, for sufficiently large d, the analytic function

a — P;)”;g('dp) on Vdo is the pth power of a monwvanishing analytic function on ‘N/do. If
W = W (k) then this largeness for d only depends on g and deg, r h.

See [3, Thm. 5.7] for a simpler genus-0 analogue with p = 2.
Proof. For F-affinoid algebras F’ and a € ‘7d0(F "), we have the factorization

ij;;n(a) = Npopre)r (@) — t)
= Npgpre)r(@(us))  Npg,pe) e (1 — taa(ug) ™) € F/

if a(ug) € F'®@p F(x) is a unit. We will show that for any N > 0, if we make d large enough
then for any finite extension F'/F and a € VdO(F "), the image of a(u;) in each factor field
of F'®p F(x) is not only nonzero, but has absolute value > N (all absolute values on finite
extensions of F are required to extend the standard absolute value on Q,); the dependencies
for such largeness of d will be addressed later. Grant this for now, so for such large d the
analytic function ngn is nonvanishing on VY and, for @ € V) (F’) with F-affinoid F”,

Ppoi(@) = Nprgem(ey (@) PN g ey 0 (1 = 1) Pt).

Define q = p? if p is odd and q = 8 if p = 2. The p-adic logarithm ¢ — log,(1 + qt) and
p-adic exponential ¢ +— expp(qt) on the closed unit disc over Q, provide canonical pth roots
of analytic functions of the form 1 + qf in affinoid algebras over any analytic extension
field of Q, when |f|sup < 1. Thus, it would follow that Pf’;f;((-)p) is the pth power of a
nonvanishing analytic function on Vdo as long as we use d adapted to a choice of N satisfying
NP > |t,/ql, since then @ — 1 — a(uy;) Pt; has a canonical pth root as an analytic function

We may make a (typically ramified) finite extension of F' so that all ’s are F-rational,

and our problem is to give a large universal lower bound on |a(u;)| for a € ‘7d0(F ") with F’
a varying finite extension of F' and d fixed but large. Let W’ denote the valuation ring of F’

and note that VC?(F’) = ZS’A(Spf W) = #9(Spec W'). The point u, € €& C € = z"e
has reduction £ € C(k). Using Berthelot’s generalization of Raynaud’s “rigid generic fiber”
construction (see [9, §7], especially [9, 7.2.5]), the preimage of £ under the specialization
mapping sp : ?;n o~ ?A’rig — C is an admissible open in ?A’rig that is compatibly identified
with the Berthelot generic fiber of the formal completion of z" along &, which is to say
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sp~ (&) = Spf (ﬁ%A E)rig as admissible opens in @y ~ Z""'®. This admissible open sp1(€)

is an open unit disc since C' is smooth at .

Explicitly, the section £ € CW) = ?A(W) lifts £, so if we choose a local generator
y € ﬁg’g for the ideal of the section §~ then since W is complete we get a topological
isomorphism

ﬁ%Aﬁ ~ W[[y]]

where W[y] has its maximal-adic topology. This identifies sp~!(£) C € with an open
unit disc {|y| < 1}, so the point u, with reduction £ corresponds to some value y(u;) € myy.
Since the Berthelot and Raynaud constructions are compatible with base change on W, the
meromorphic function defined by @ € V)(F') = ¥ S’A(W' ) on this open disc has a formal
Laurent series

a= Cd+1—g(5)y_d + Cd+g(5)y_d+1 +--€ Frac(ﬁ%;r;&,) = Ffac(ﬁ%w,gp,) ~ F'((y))

with a W™ -coefficient in degree —d and W'-coefficients in all other degrees. That is, this
power series lies in W/[y][1/y]*. Thus,

aug) = y(uw)id(chrlfg(a) + Carg(@)y(ug) +...)

with |y(uz)| < 1, so |a(uz)| = |y(ug)|~¢. Since |y(uz)|~™* > 1 and y(u,) has nothing to do
with @, we can make |a(u;)| as large as we please uniformly with respect to all @ € IZ?(F’ )
and all finite extensions F’/F by choosing d > 0 to make |y(u,)|™? large.

It remains to explain why the largeness condition on d to make |y(u;)™t,| < |q| for
an integral formal parameter y as above can be chosen to only depend on g and deg, 1 h.

Recall that we chose the lift (¢, &) of (C, &) so that there exists a lift H € /[T of h such
that degp H = degyp h, deg, p H < deg, ph + 2g, and the Laurent expansion of leadp H
along the W-point E has unit leading coefficient. (This summarizes the essential properties of
working with an admissible triple (¢, §~, H) in the sense of Definition 4.4.) These properties,
especially the unit condition on leadrH € W{y] and the relation H(y(ug),tz) = 0 with
degr H = degp h > 0, permit us to use an elementary integrality argument to show that
ly(uz)?tz| < 1 for d large in a sense determined by deg, rh and g. Thus, we only have
to prove |y(u,)*P~1| < p~3 for d large in a sense depending only on deg, r h and g when
W = W(k). But y(uz) € F(x) with |y(uz)| < 1, so it is enough to bound [F(z) : F]
in terms of deg, rh and g. Since deg, 7 H is bounded in terms of deg, h and g, and
[F(z) : F] < deg%p, the problem comes down to bounding the degree of the branch
scheme B of the projection Zy — A}, in terms of g and the total degree deg, r H of H.
Such a bound is easily obtained by intersection theory on €z x P};, as we explained at the
end of the proof of Lemma 2.1. [

When |u,| <1 and [¢t| > 1, we have
(5.12) (@) = Np@)/r(te)Nprapr@) e (t  a(ug) — 1)

for F-affinoid algebras F’ and @ € V4 (F’). We absorb the nonzero constant N F(z)/F(tz) into
by in (5.6) for such z’s, and the remaining part on the right side of (5.12) is the Raynaud
generic fiber of the formal completion of the W-morphism 7 ; — A‘l,[, defined by

Neaw @ Nwrgyw@)w: (t; a(u.) — 1)
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for a € ¥ ;(W') with W' a W-algebra. By computing on the generic fiber of the W-flat
universal case (i.e., taking a to be the identity Yoneda-point of the affine W-scheme 7 ;)
one sees that the behavior of N, 4y under base change on F' is just like the behavior of P, 4
under such base change. We have therefore almost proved the following result that gives
an integral variant on the identity (5.6) when p = 2, and it specializes to [3, (5.17)] in the
genus-zero case (when we use o/ = Wu] and £ = {u*"'};>1):

Theorem 5.6. Assume p = 2. If d is sufficiently large (determined by g and deg,, 1 h) then
there exists Bq = gz € W* and a map Ug = Uy : Zg’/\ — ‘&II/V of formal W -schemes
such that
e U, has nonzero reduction modulo myy,
e U.® is a unit on V) = (ZS’A)“g,
e for all finite extensions F'/F, with valuation ring W' and residue field k', the con-
gruence class discz ,(2q) (H(a?)) mod 4myy is equal to

(5.13) Ba-(1+4s2(wna)) Ua(@?® [[ Peoaw)“@)-  J[  Neopaw (@) mod dmy

ve#, iz | <L [t |>1

when a € ‘N/dO(F’) = VYW lifts an a € VY(K') for which h(a®) € kK @ A is
squarefree; sa(wp.q) is given in Definition 5.4.

Moreover, if W is absolutely unramified then the unit residue class 34 mod (W*)? is inde-
pendent of the choices of Ugz and of €.

For any a € VdO(F’) = #9(W’) all factors in (5.13) are in W', so the reduction a € VY(k)
yields squarefree h(a?) in A if and only if all such factors are in (W’)*.

Proof. By applying the congruence (1 — pr)(1 +p?s) = 1 — pr + p*s mod p*myy to the right
side of (5.7) and noting that Cagi1-4(a%)/Car1-g(a)? is a nonzero constant in F that is
independent of @ (but depends on €), the preceding considerations give the desired identity
up to the denominator-chasing that ensures that the element 8; € F'* really lies in W*.
To prove that (3; is an integral unit, it is only necessary to check that all other (formal)
functions of a € Zg’/\ under consideration have nonzero reduction modulo myy. This is
obvious for all functions in (5.13), and the reduction disc, ,(pq) 0 h(()?) of discgpd o HM(+)?)

is nonzero on Z?l for large d since (for large d) there exists a € k ®; A with an order-d pole
at ¢ such that h(aP) is squarefree in k ®j A.

Finally, we address the intrinsic nature of the unit residue class 8y mod (W*)? in the
absolutely unramified case. In this case we have 1+ 4my = 1 +8W C (W*)2. We
consider d so large that there exists a € V9(k) for which h(a?) is squarefree, in which case
we may pick a lift @ € #9(W) such that H(a?) has unit discriminant (for any choice of
£). The only property we require for the unit 4 is the congruence formula in (5.13), and
knowing 34 modulo 4myy certainly determines it modulo (W*)2. Since changing Z changes
the discriminant by a unit square algebraic function, and working modulo unit squares
eliminates the intervention of the unit square Ugy(a)?, we get the desired result. |

6. QUASI-PERIODICITY IN CHARACTERISTIC 2

In this final section, we shall use Theorem 5.6 to the study periodicity properties of
w(h(a?)) for a € A when k = & is finite with characteristic p = 2 and h € A[T] is primitive
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over A with h(T?) squarefree in K[T]. We also consider questions concerning asymptotics
and non-triviality of a correction factor as in §3.

Theorem 4.1 and the inclusion 1+4my, C (W*)? for absolutely unramified W essentially
reduce us to understanding the quadratic character of (5.13) when it is a unit and W =
W (k). In such cases, the mysterious unit-square contribution Uy(@)? can be ignored and
(by Theorem 5.6) 35 modulo unit squares is independent of all choices once the admissible
lift (€, &, H) is selected.

Our treatment of the case of non-unit discriminants rests on a general lemma that has
nothing to do with the restriction to residue characteristic 2. Thus, now let W be a mixed-
characteristic (0, p) complete discrete valuation ring with perfect residue field k£ and fraction
field F'. Using notation as in §5, we prove:

Lemma 6.1. For all sufficiently large d (determined by g and deg, rh) and for any

ae W), if discz p(pa)(H (aP)) € W is a non-unit then for some x € 9% the element

Py paw(aP) € W is a non-unit.

Proof. We can make a finite (possibly ramified) base change on F' to reduce to the case
when all x € $Bpr are F-rational. Thus, for z € %’% with reduction z € B, P, 5w has
reduction Py for all large §. The finite flat W-algebra o/ /(H (a”)) is non-étale over W
(i.e., has non-unit discriminant) if and only if its reduction A/(h(aP)) is non-étale over k.
By Theorem 4.5, the branch scheme of Z;, C C' x A,}/, is the closed fiber of the finite flat
W-scheme Z!. Thus, each point of this closed-fiber branch scheme is the reduction of some
point in the generic fiber %%.. It therefore remains to check that h(a?) is not squarefree if

and only if Py pq(aP) = 0 for some branch point Z of the generically étale projection from
Zn CC x A,lg to Allc' This follows from [5, Thm. 2.6]. [ |

Now assume k = k is finite with characteristic p = 2 and let W = W (k). Fix an
admissible lifting (€,&, H) of (C, &, h) over W in the sense of Definition 4.4. Define y :
KX X (14+4W) — {£1} as in Theorem 4.1, and define x(my,) = {0}. Since dimy, A/(h(a?)) =
—ordg(h(a?)) = — ordg(lead(h)) mod 2 when — ord¢(a) > 0, by using Theorem 4.1, Theo-
rem 5.6, and Lemma 6.1 we conclude:

Theorem 6.2. For sufficiently large d and any a € VY(x), u(h(a?)) is given by the formula
(6.1)

(_1>do+Tr;<u/F2(S2(wh,a))X By H Px,2d,W(a2)ez' H NW(I)/W(tl’_la(u.’E)Q_]‘)ez :
z€AB, [ug|<1, [tz |>1

where dy = — ord¢(lead(h)), @ € XY(W) lifts a, and sa(wpq) is given in Definition 5.4. The
largeness of d is determined by g and deg,, 1 h.

Implicit in this theorem is the fact (immediate from Remark 4.2, (5.13), and Lemma 6.1)
that if the quantity on which we are evaluating x in (6.1) is a unit then its 1-unit part
lies in 1 + 4W. Observe that the only ingredient “inside” of x in (6.1) that depends on
d = —ordg(a) is By, since Py 24w is a norm-evaluation construction having no dependence
on pole-orders at ¢ (the subscript 2d merely indicates that we are evaluating on points a2

of Z2d)‘

Corollary 6.3. For all d,d' >0 (only depending on g and deg, v h), Ba/Ba € W lies in
KX X (1 +4W).
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This corollary ensures that for large d and d’ it makes sense to compute x(84/8a)-

Proof. To deduce properties of 3, as d varies through large values as above, pick d > 0 and
use Lemma 2.1 to find a € VY(k) with h(a?) squarefree. Let % C & be the closure of the
union of the closed points u, € €F with |u;| < 1 for z € B, so ¥ is a relative effective
Cartier divisor and its reduction %, C C is supported in C' = Spec A with r-degree equal
to deg(#p) = >, |<1[F'(usz) : F]. For any large d' (only depending on the genus of C and
deg(#%')) we can find ¢’ € A with a pole of order d’ at £ and with values along % equal to
those of a. Hence, for any @ € #Y(W) and @ € #% (W) lifting a and o’ respectively, we
are assured that the values a(uy) and @' (uz) in the valuation ring W (u;) of F'(u,) have the
same image in the residue field of W(u,) whenever |u,| < 1. (Such lifts @ and @’ can always
be found provided that d and d’' are large enough in a manner that is determined by the
genus of the curve.)

Since p(h(a2)) # 0, it follows from (6.1) and the congruence of ug-values that p(h(a'?)) #
0. The congruence of a(u;) and @'(u,) modulo myy(,,) whenever [u,| < 1 implies that
a?(ug) = (@')%*(ug) mod 2myy(,,, for such u,. Thus, by Galois-invariance the two products
in (6.1) for @ and @ are congruent modulo 2my; = 4W. However, the 1-unit part of the
expression “inside” of x in (6.1) for @ and @’ both lie in 14 4W, so taking ratios gives that
the W-unit 84/64 has 1-unit part in 1+ 4W. |

Once the choice of admissible lift (€,&, H) over W = W (k) is fixed, the e,’s do not
depend on any further non-canonical choices (such as ), and likewise the unit 5; € W*
taken modulo (W*)2 for d >> 0 is also independent of non-canonical choices. In particular,
X(Ba/Ba) is independent of the choices of ¢ and €. However, the 8;’s (as well as Py oqw
and #) depend on (%, ¢, H).

Motivated by (6.1), we now use (%, &, H) to define a nonzero (possibly non-radical) ideal
in A that will play the role for characteristic 2 that the radical ideal Iy as in §1 played in
our considerations in odd characteristic in [5].

Definition 6.4. Define the ideal . C &7 to be the radical ideal such that Spec(<// %) C
% has support equal to the union of the closed subschemes {u,} in ¢ as x ranges over
points of A such that |uy| < 1. Equivalently, Spec <7 /.9y is the W-finite flat reduced
closed subscheme of %’ obtained by forming the closure in % of the reduced divisor on ¢r
supported at the u, € € whose reduction in C is not &.

Define the nonzero ideal Iy C A = &7 /myy o/ to be the reduction (S +my o) /myyof ~
I /mw Iy of Ly, so Spec A/Iy C C is the closed fiber of the W-flat Spec o/ / #y C €.
Define Iy, C A to be the ged of the Iy’s as we vary over all admissible triples (?,fi H)
over W (k) lifting (C, &, h).

The ideal Iy depends on the admissible triple (?,E,H ), as does the ideal .y, but
we prefer to emphasize just the dependence on H in the notation. Note that Iy need
not be a radical ideal (an explicit non-radical example is given in the case A = k[u] in
[3, Ex. 5.15], with £y and Iy equal to the principal ideals generated by (MF°™)<! and
M5 in Wu] and k[u] respectively). By Theorem 6.2, the property of u(h(a?)) vanishing
or not is determined by a mod Iy for —ord¢(a) > 0, with largeness that is determined by
g and deg,, 7 h.
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The W-algebra o7 /%y is finite and flat, and the two products in (6.1) define a map of
sets of | Iy — W via

Lw:a = ] Nweyw@w)®—t) [ Nweywts alu)? —1)=

ve B, g | <1, [t >1

= Ngyw(@ —-T)- H Ny () w (5 Ta(ug)® — 1)
o | <1 Jta|>1

The same formula makes sense after the finite étale extension of scalars W = W(k) —
W(x') = W’ for any finite extension «’/k; we simply have to take into account that each
of the z’s may decompose in several points (and this is compatible with formation of the
associated valuation rings since the base change W — W’ is finite étale). Likewise, for
n > 1 we get maps modulo 2" given by the same formula, and if n > 1 then when working
modulo 2" it suffices to take the source modulo 2"~ since squaring promotes a congruence
modulo 2”71 to a congruence modulo 2" for n > 1.

We need to precisely formulate the fact that these maps modulo 2™ are algebraic in
the varying «’. For n > 1 and a finite flat W, (x)-algebra ./, the functor Wy, : R ~
Wi(R) @w, (x) - on k-algebras is represented by a ring scheme over x whose underlying -
scheme is an affine space; here and below, W, denotes the functor of 2-adic truncated Witt
vectors (wo, . .., w,—1) of length n. Let Z, denote the ring scheme representing W ,, in the
case . = o/ [(2", Sy), so for n > 1 we may using the “squaring” morphism %,,_1 — %
to obtain a unique map of x-schemes L,, : Z,,_1 — W,, whose induced map on «’-points is

LW(HI) mod 2" : Wn_l(lﬁ/) ®Wn—1(fﬁ) (%/fH) = (W/ Rw ,527)/(2n_1, fH) — W//QnW,

for varying finite extensions x'/k.

By Theorem 6.2 and the existence of squarefree values h(a?) for a with sufficiently large
&-degree, the L3-preimage U’ C %5 of the Zariski-dense open subvariety of units W3 C W3
is nonempty (hence Zariski-dense in the affine space %#3). Moreover, as we noted after
Theorem 6.2, for all large d (and fixed £) the product map BqLls|yr : U — W3 against
Ba = Baz is valued in the subgroup Gy, x G, of units with vanishing middle component:
(u,0,utz) = [u] - (1,0, 2) (with [] denoting the Teichmiiller section G, — W3°).

Our primary interest will be the case when h is a polynomial in T? (i.e., f = h(T?) lies
in A[T?]), so consider the composition of L3 with the “squaring map” #; — %>. By the
same method as above, this composite hits W5* and so on the Zariski-dense open preimage
U C % of W3 we get a k-map L : U — W3, For any point u = (ug, ... ) of the unit group
functor W, we write (u) to denote the 1-unit factor [ug]~'u, and for any point w of the
ring functor W,, we write w; to denote the ith coordinate of this truncated Witt vector for
0<1<n—-1.

For large d, since the product S4L : U — W; has its 1-unit factor lying in G, =
{(1,0, z)}, the formation of this 1-unit gives an algebraic map of k-varieties (G4L)2 : U —
Al. We emphasize that U is a dense open in the ring scheme %; associated to the finite
k-algebra A/Iy. By Corollary 6.3, for large d and d' the ratio B;3/8y mod 8 has 1-unit
component of the form (1,0, zd7d/) for some zq 4 € K since we are assuming h is a polynomial
in T?; Corollary 6.12 below ensures that we can take 24 = 0 when d and d have the
same parity. In particular, the isomorphism class of the double cover of U defined by
y? —y = (B4L)2 only depends on d mod 2 for large d.
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We conclude that the two maps

(Bal)a, (BarL)e : U = A},

are related through additive translation by z44, and by (6.1) the study of u(h(a?)) for
h € A[T?] and sufficiently large d = —ord¢(a) is governed by the Artin-Schreier covering of
U defined by y? — y = {84L)2 because (i) h(a?) is squarefree if and only if @ mod Iy lies in
U(k) inside of A/Iy, and (ii) for any finite extension £'/k, a point w = (u,0, z) € W3(x')*
is a square if and only if its 1-unit coordinate (w)y = u~*z € &’ has vanishing trace into Fa,
or equivalently v~*z has the form 32 — y for some y € &'.

Remark 6.5. Fix f € A[T?] as in §3 with p # 2. In our study of Mobius averages for f in
83, we saw that the asymptotic behavior of the periodic sequence of such averages across

large degrees for increasing constant fields (with f fixed) is controlled by a degree-2 Kummer

. . . . L(OB.«
covering of a dense open in an affine space (via extraction of a square root of [ [, 5 Px( b )).

An analogous result will be proved in Theorem 6.14 for p = 2 and f € A[T*] by working
with Artin—Schreier double covers as above.

Returning now to the general case with h € A[T] for which h(T?) € K[T] is squarefree
(but perhaps h is not in A[T?]), we have seen that congruence modulo the ideal I in A for
any choice of H as above controls whether or not h(a?) is squarefree in A. It is reasonable to
ask if we can construct a nonzero multiple of Iy without appealing to lifts into characteristic
0. In the “generic” case when lead(h) € A has no double zeros (e.g., when h is monic),
we can control some properties of Iy by using equicharacteristic geometric constructions;
in particular, we can bound Iz by equicharacteristic methods when lead(h) has no double
zeros. This is the content of the next theorem.

Theorem 6.6. Let B C Z = Zj, be the x-finite branch scheme of the projection Z — Al.
Define the nonzero ideal Fittg,c C A to be the Fitting ideal of Op viewed as a finite-length
A-module. Assume that lead(h) € A has no double zeros on C. The ideal Iy divides the

Fitting ideal Fittp,c, and these have the same radical, with zero locus equal to the image
of B in C.

This theorem specializes to [3, Lemma 5.9] in the genus-0 case, and by [3, Ex. 5.15] the
irreducible factors of Iy may occur with higher multiplicity in Fittp,c than they do in Iy.

Proof. To establish equality of zero loci, we just have to show that if x € %Bp satisfies
luz| < 1 then necessarily |t,| <1 (so z € %%,). Since H(uy,t,) = 0, if lead(H) has integral
unit value at u, then certainly |t,| < 1. However, since o7 /(lead(H)) is finite flat of degree
dy over W (because lead(H) € ¥4 (W) by construction of (¢, H, ¢)) and its reduction
A/(lead(h)) is finite étale over k, it follows that o7 /(lead(H)) is finite étale over W. Since
Q}Q{ W is an invertible «/-module with reduction 9}4 /i A5 an A-module, we can find a W-

linear derivation D : &/ — & that is dual to a local generator of Q}Z{ Jw hear the zeros of
lead(h) on C.

Assuming lead(H) has value at u, that is not an integral unit, it follows from the “simple
zeros” hypothesis and the condition |uy| < 1 that D(lead(H))(uy;) must be an integral unit.
Since the point (ug,t;) in the branch scheme % of 2 (H) — Aj; must lie in the zero locus
of DH, the resulting equation (DH)(ug,t;) = 0 is a polynomial relation for ¢, with integral
coefficients and unit leading coefficient. Hence, once again |t;| < 1. This proves that Iy
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and Fittp,c have the same zero locus on C, namely the image of B in C (i.e., the support
of Op as an A-module).

To prove that Iy |Fittp,c, recall that Iy is the reduction of S, with o7/ %y flat over W.
Also, by Theorem 4.5, Fittg/c is the reduction of the Fitting ideal of the W-finite &y over
/. The inclusion Fittg,c C Iy holds if and only if Fittp,c has vanishing image in A/l
so it suffices to show that Fitt. (& 4¢) vanishes in o/ /. #. This latter quotient is W-flat, so
it suffices to check the vanishing on generic fibers over W. That is, it suffices to show that
the Fitting ideal of %’% as a finite-length o/p-module is divisible by the generic-fiber ideal
F ®w Fg. This latter ideal is the radical ideal with zero-locus equal to the image of %’%
under projection to € (since |u,| < 1 forces |t;| < 1, as we saw above), so we are reduced
to showing that the image of the projection 95’% — %F is contained in the zero locus of
the Fitting ideal of & gt As an @r-module. The zero-locus of the Fitting ideal of a finitely
presented module is equal to the support of the module, so we just have to observe that
the support of ﬁ%% as a finite(-length) o/F-module is obviously equal to the image of @%
under projection to € = Spec . |

Now suppose (with p = 2) that f € A[T?] is primitive with respect to A and squarefree
in K[T] with positive degree. Write f = h(T?) with h € A[T?], so by [5, Thm. 2.6] the
quasi-finite projection Z, — Al is generically étale. Let I;, C A be the nonzero radical
ideal whose zero locus is the image in C of the finite branch scheme for projection from Zj
to A'. By Theorem 6.6, under a mild hypothesis on f the ideal I}, is useful in the study of
Mobius periodicity:

Corollary 6.7. With notation and hypotheses as above, assume that the leading coefficient
lead(f) = lead(h) in A has no double zeros on C. The radical of the ideal Iy, in Definition
6.4 is equal to the radical ideal Ij,.

We are now in position to state the main periodicity theorem in characteristic 2, analogous
to [5, Thm. 1.2] for p # 2. The genus-0 case was treated in [3, Thm. 5.12], and this special
case will be used in the proof of the general case via essentially the same projection technique
that we used in odd characteristic in [5, §6] to relate higher genus and genus 0.

Theorem 6.8. Assume k = r is finite of characteristic 2, and let f € A[T?] be primitive
with f € K|[T) squarefree of positive degree. Write f = h(T?). Choose an admissible lifting
(%, E, H) of (C,&,h) over W = W(k), and define the nonzero ideal Iy C A as in Definition
6.4. For any a € A, define the meromorphic 1-form wp . = ((drh)(a®)a/h(a?))da on C,
and define sy(wp q) € K to be the second symmetric function of its residues, indexed by the
geometric poles.

Consider the function [if : a — (=1)Trw/ra(52@na)) y(f(a)) on A. Ifa,a’ € A are nonzero
then

(6.2) a =a mod Iy, orde(a) = orde(a’) mod 4 = fif(a) = fis(a’)

provided — orde(a), —ordg(a) > 0 (with largeness determined by g and deg, 1 f).
If deg h is even then the congruence on orde’s in (6.2) need only be taken modulo 2, and
if [k : Fa is even or 4| deg h then this congruence condition can be dropped.

The congruence between a and @’ in (6.2) may even be taken modulo the ideal If,

that is the ged of the nonzero ideals Iy as we vary over all admissible lifts (¢, §~, H) over
W (k). This is an easy consequence of Theorem 6.8, using the Chinese remainder theorem
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and Riemann-Roch. Before we begin the proof of Theorem 6.8, we record the following
immediate corollary concerning Mc6bius periodicity in characteristic 2.

Corollary 6.9. Assume k = x is finite of characteristic 2, and let f € A[T*] be primitive
with f € K[T] squarefree of positive degree. Define the nonzero ideal If,, C A as in
Definition 6.4. For a,a’ € A with sufficiently large pole orders at &,

a=da mod Iy, orde(a) =orde(a’) mod 2 = u(f(a)) = u(f(a)).

The congruence condition modulo 2 may be dropped if [k : Fa| is even or degy f is divisible
by 8. The “sufficiently largeness™ of pole-orders at £ is determined by g and deg, r f.

The proof of Theorem 6.8 requires a standard cohomological result that we recall for ease
of reference (and whose proof we omit):

Lemma 6.10. Let X — S be a proper smooth map with geometrically connected fibers of
dimension 1, with S local and s its closed point. Let D1, Do C X be relative effective Cartier
divisors. For sufficiently large d only depending on the deg D;’s and the genus of X, the
natural map HY(X, Ox (d - D1 — D3)) — H%(X,, Ox,(d - (D1)s — (D2)s)) is surjective.

Proof. (of Theorem 6.8). The proof is long, so we break it up into several steps.

Step 1. We begin by rephrasing the problem in terms of the quadratic character of
Ba/Bay € W* (as in Corollary 6.3) for large d and d’ that are congruent modulo 4. Consider
Spec o/ / #;. By definition, this is the schematic closure of an F-finite (reduced) closed
subscheme of @5 and it is disjoint from the section §~, so it is finite and flat over W. In
particular, it is a relative effective Cartier divisor on € over W. Thus, Lemma 6.10 ensures
that any congruence a = a’ mod Iy (i.e., equality in the closed fiber A/Iy of o/ / Zy) with
a € VY(x) and a’ € VY (k) may be lifted to a congruence @ = @ mod . with @ € ¥ (W)
and @ € #% (W) when d and d’ are sufficiently large (with largeness only depending on g
and deg,, 1 f).

Recall that the only ingredient in the formation of (6.1) that depends on d = — ord¢(a)
is 4, and (as we recorded in Corollary 6.3) the ratios By/By € W* lie in k* x (1 +4W)
for d,d’ > 0. We may therefore conclude from the Mobius formula (6.1) that Theorem 6.8
is equivalent to the claim that for d,d’ > 0, (i) x(84/Ba) =1 if d = d’ mod 4 and (ii) this
congruence condition can be weakened to d = d’ mod 2 when degh is even and it can be
eliminated (i.e., Ba/Ba € (W*)? for all d,d’ > 0) when [k : Fo] is even or 4|degh. This
dependence can be made very explicit in the genus-0 case, since our explicit formula for
p(h(a?)) in [3] yields x(Ba/Ba) = (—1)lwF21(L(+ddegh)/2]+{(1+d"degh)/2]) i the genus-0 case.

To understand how ;3 modulo (W*)? depends on d for higher-genus cases, we will use a
modification of the method applied in [5, §6] in odd characteristic. Recall that in [5, §6] we
used well-chosen projections to the projective line to pull up properties from the genus-0
case. We will need a variant on this method, adapted to the use of lifts to characteristic 0.

Step 2. We want to construct a projection from % to PIl/V that relativizes the construction
over k in [5, §5]. For conceptual clarity, briefly fix a base scheme Sy (such as Spec W) and
a proper smooth morphism ¢ : X — Sy with 1-dimensional fibers that are geometrically
connected of genus g (e.g., €), as well as a section x € X(Sp). Fix an integer r > 2g — 1.
By the theorem on cohomology and base change, ¥, = ¢, (€(r-x)) is a vector bundle on Sy
of rank r 4+ 1 — g whose formation commutes with base change, and #;_1 is a codimension-1
subbundle of ¥, for r > 2g. For r > 2g, define the functor H, on Sp-schemes S by letting
H,(S) be the set of finite flat S-maps 7 : X x 5,5 — P} of degree 7 such that 77! (c0) = r-zg
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as relative effective Cartier divisors on X xg, S. This functor is represented by the open
subscheme #¥ := ¥ — ¥, , inside of ¥,, and we shall also write H, to denote this
representing object. The subfunctor H? classifying those © € H,.(S) such that 75 € H,.(s)
is generically étale for all s € S is represented by an open subscheme in H,, and this open
subscheme is also denoted HY. Note that H? is smooth over Sy and is fiberwise nonempty
(hence fiberwise dense) in H, when r > 2g + 1 (see the beginning of [5, §5] for proofs of
these claims when Sy = Spec L for a field L; the proofs in the general case go the same
way).

We apply these considerations to our curve € over Sy = Spec W with x = E Fix an odd
integer r > 2g+1, and let 7" : € x g, H? — P}LO be the universal degree-r morphism over

the smooth faithfully flat W-scheme H?. By [5, Thm. 5.2], the locus of points s in the closed
fiber (H?), such that Nuniv(h) € k(s)[u, T is squarefree is a dense Zariski-open in (H?)...
The scheme (H?), is a nonempty open inside of an affine space, so by [5, Lemma 6.1] it must
contain closed points over a finite extension of x that may be chosen with k-degree relatively
prime to any specified nonzero integer. Pick a closed point sg in the closed fiber of H? with
[k(s0) : k] odd. Let ' = k(sp) and let W' = W (x') be the finite étale local extension of
W with residue field #’. Let mg : C.v — Pk/ be the x’-map corresponding to sg, and let
X K x (14 4W’') — {£1} be the unique quadratic character with kernel (W’*)2. Note
that the restriction of ' to £* x (1+4W) is x because y(c- (14 4w)) = (—1)T/F(wmod 2)
and the transitivity of traces yields

Tlrﬁ//FQ],.i =[x : K] Try/p, = Tre/r,

since [« : k] = 1mod 2. Thus, by Theorem 4.1 we can rename ' as x (so H(x) is

nonempty), and we can make further odd-degree extensions on x without loss of generality.

Choose integers d; > 0 forming a system of representatives for Z/rZ such that there
exist a; € ¥ (W) with reduction a; € Zgi(k) not vanishing at the zeros of h(0) # 0;
such a; can be found for d; > 0 (only depending on g) by Riemann—Roch. Define the
primitive polynomial h;(T) = h(a?T) € A[T], so hi(T?) = f(a;T) is squarefree in K[T
and H;(T) := H(a?T) € </[T)] is an admissible lift of h;(T) (in the sense of Definition 4.4).
Since W is henselian, smoothness of H? over W ensures that H? (W) — H? (k) is surjective.
Thus, by the functorial interpretation of H? as a Hom-scheme, we may pick a degree-r
finite flat map 7 : ¢ — P{;, lifting mo such that 7=*(c0) = r - E and the open étale locus
for m in € is dense in fibers of € over Spec W. Since h;(T?) is squarefree and any two
nonempty Zariski-opens in an affine space over a field must have nonempty intersection, by
[5, Thm. 5.2] over k we may also suppose (upon making a further odd-degree extension of
k that we promptly rename as x) that my was chosen so that the mp-norm of h;(7?) down
to the affine line A} is squarefree in x[u, T).

Step 3. Let us now introduce the objects that will enable us to relate the general case
with the genus-0 case. Using h; and H; as in Step 2, define h; = N (h;) € r[u|[T] (a
primitive polynomial in 7') and H; = N (H;) € W[u][T], so h;(T?) is squarefree over r(u)
and H; is a lift of h; with the same T-degree such that the respective leading coefficients
of H; and h; in Wiu] and k[u] have the same u-degree. Beware that the total degree
deg,, 7 H; may be larger than that of deg, - h;, but this will be unimportant later because
what matters is that the possible excess is bounded above depending only on r, d;, and
deg, 7 h. (Keep in mind that > 2g + 1 and the total degree deg,  H is bounded above
in terms of g and deg,, r h.)
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For a € A and ¢ € k[u], define the meromorphic 1-forms

b @R (@rh)
hi,a — hi(a2) ’ hi,p — hz(g02)

on C and P} respectively. (The denominators in these two definitions are nonzero because
hi(T?) and h;(T?) are squarefree in the Fy-algebras K[T] and (u)[T] respectively.) Define
the invertible ideal . C W{u] to be the product of the invertible .#5, and the invertible
ideal defining the W-finite flat schematic image of the finite map Spec & /%y, — Al
induced by 7. The quotient Wu]/.%; is finite and flat over W. Define I; C k[u] to be the
nonzero reduction of .%;.

Fix ¢ with 1 < i < r. By Lemma 2.1, for d > 0 (with largeness depending only on the
genus, r, and deg,, 7 f) there exists ¢ € s[u] of degree d such that h;(¢?) € [u] is squarefree.
Since h;(¢?) = Ny, (hi(7g()?)), obviously the nonzero h;(7f(¢)?) € A is squarefree with
physical zeros in distinct fibers of mg. Thus, by the definition of the Mdbius function,
w(A/(hi(mg(9)?)) = p(k[u]/(hi(p?))). Since the desired implication (6.2) involves the
intervention of symmetric functions of residues, in order to pull up results from genus 0 we
want s2(Wp, x(p)) = S2(wh,,p) in . This is a special case of:

de

Lemma 6.11. Let 7:C — C be a finite generically-étale map of degree r between proper
smooth geometrically-connected curves over a perfect field k, and let n > 0 be a positive
integer. Assume 7~ 1(c0) = r - £ for rational points oo € 6/(k) and £ € C(k). Let Spec A =
C—{¢} and Spec A’ = C'—{c}. Pick a nonzero h € A[T| and define h = Ny ar(h) € A'[T].

Define wp.q = (Orh)(a™)a™ ' da/h(a"™) and wpe = (Orh)(a™)a™ " dd’ /h(a™) for any
a € Aanda € A with h(a™) and h(a’™) nonzero. If p € A’ has the property that h(¢") € A’
is nonzero and squarefree then sa(wp r+o) = s2(Wh ) in k.

Proof. We may assume k is algebraically closed. Since N 4/4/(h(7*(¢"))) = h(¢") is nonzero
and squarefree in A, the physical zeros of h(7*()™) on Spec A are simple and lie in distinct
fibers of 7, with 7 étale at each such zero. Thus, for each zero z’ € Spec A’ of h(¢") there
is a unique zero z of h(7*(p)") in 7~ 1(z). We have a factorization 7*(h) = h - h in A[T],
and so

(6.3) T (Whyp) = Whyr*p + Wiy v

If z is a zero of h(7*(p)") and 2/ = m(z) then h(7*()™) is nonvanishing at = and  is étale
at x, so (6.3) implies Resy(wp r+p») = Resy (wh,,). Thus, if Z C Spec A and Z’ C Spec A’
are the respective zero-loci of h(7m*(¢)") and h(p™) then these loci contain all respective
poles of wy, 7+, and wy , away from § and oo, and 7 induces a residue-preserving bijection
from Z to Z'. The respective residues at £ and oo are determined by the residues along
Z and Z' by the residue formula, so so(wp x+y) = s2(wh,) (and likewise with any higher
symmetric function of the residues indexed by the geometric poles). |

By Lemma 6.11, we get

(6.4)  (=1)Termal2ne) (A f (hi(m5()?))) = (= 1) T2 emee)) y(kfu] /(i (%))

By the genus-0 version of Theorem 6.8 in [3, Thm. 5.10], for sufficiently large d (with
largeness depending only on g, r, and deg, f) the right side of (6.4) only depends on ¢
modulo the reduction of ., and on d modulo 4, with the congruence on d relaxed to
d mod 2 if degh; = degh is even and relaxed to no dependence on large d when [k : Fs]
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is even or 4|degh. (There is a minor technical point: the hypothesis of equality of total
degrees in [3, Thm. 5.10] may not hold for H; and h;, as we have noted earlier. The only
purpose of that hypothesis was to have certain lower bounds in the conclusion be determined
by the total degree of the input polynomial in [u][T?] in characteristic 2. Since the possible
excess of deg, m H; beyond deg, 1 h; is bounded in terms of r, d;, and deg, 1 h, and the
choice of d; can be bounded in terms of r and g, the above conclusion via [3, Thm. 5.10] is
therefore nonetheless true.)

Step 4. We are now in position to use the genus-0 results in [3] to show that the quadratic
character of (3,,,/B,y € W* is trivial for sufficiently large m and m’ with m’ = m mod 4r
(and we can use weaker congruence conditions on m and m’ when [k : Fa] or deg h are even,
or when 4|degh). Pick ¢ > 0 satisfying § = d mod 4 (or merely § = d mod 2 when degh
is even, or no congruence condition when [k : Fs] is even or 4|degh). Pick ¢ € x[u] of
degree 0 with ¥ = ¢ mod I;; such 1 can be found as long as d, ¢ > dim(x[u]/I;), and it is
automatic that h;(¢?) is squarefree (that is, h;(?) has nonvanishing Mé&bius value) since
the reduction of 4, into k[u] divides I;. These largeness conditions on § only depend on r,
the genus, and deg, 1 f (since dim,(x[u]/I;) can be bounded in terms of these parameters).

Choose ® € W{u] of degree d with unit leading coefficient and reduction ¢ € k[u], so
a?r*(®?) € Zg(di—&-rd)(W)' Since d and ¢ are large and Wu]/.%; is finite and flat over W,
we can choose ¥ € W{u] of degree ¢ with unit leading coefficient and reduction ¢ € k[u]
such that ¥ = ® mod .%. We now use (6.1) for h; with the admissible lift H; and for
O,V € Wlu] C & (in the role of a) lifting ¢,¢ € klu] C A (in the role of a) with the
inclusions Wu] — & and k[u] — A defined by 7* and 7. Forming ratios between (6.4)
for ¢ and its analogue for ¢ yields x(84,4rd/Bd;+rs) = 1 since 7*¥ = 7*® mod Sy, (due
to the definition of .%). This proves that for large m (only depending on r, the genus, and
deg,, 7 f) the class of 3, € W* /(W*)? only depends on m mod 4r (or merely on m mod 2r
when degh is even, resp. on m mod r when [k : Fs] is even or 4| degh). Running through
the same argument with an odd r’ > 2¢g 4 1 satisfying ged(r,7’) = 1, possibly replacing &
with an odd-degree extension in the process, we get the same conclusion with 7’ replacing
r. Thus, an application of the Chinese remainder theorem completes the proof of Theorem
6.8. [

Let us record the key fact shown in the preceding proof:

Corollary 6.12. With notation and hypotheses as above, B3q4/By € (W*)? for all sufficiently
large d and d' (only depending on g and deg, 1 f) such that d = d' mod 4. The congruence

condition may be taken modulo 2 if degh is even, and it may be dropped if [k : Fo] is even
or 4| degh.

As an application of our periodicity results for the Mdbius function in characteristic 2,
we get an analogue of Theorem 1.1 in characteristic 2:

Theorem 6.13. Assume p =2 and let f € A[T*] be squarefree in K[T)] with positive degree
such that for all c € C = Spec(A) the restriction f. € k(c)[T] does not vanish as a function
on k(c). Define the nonzero ideal If,, C A as in Definition 6.4.

Let J be any nonzero ideal in A that is a multiple of Rad(I). For large n, the function

> p(f(a))

deg a:n,(f(a),J):1
H

|u(f(a))]

deg a=n,(f(a),J)=1

(6.5)
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is periodic in n > 0 with period dividing 2. If [k : Fa| is even or 8| degy f then the period
for large n is 1. The largeness in n only depends on g, deg,, r f, and dim,(A/J).

If Ji and Jy are two nonzero multiples of Rad(Iy,) then the functions defined by (6.5)
for J =J1 and J = Jy coincide for large n, with largeness that only depends on g, deg,, r [,
and the dim,(A/J;)’s.

Recall that if f has leading coefficient that has no double zeros on C' and f = h(T?) then
Corollary 6.7 gives an “equicharacteristic” formula for Rad(Iy ).

Proof. Since f(T) = h(T?) with h a polynomial in T2, the trace term in the exponent in
(6.1) vanishes in this case. Thus, it is straightforward to carry over the proof of Theorem
3.1 to the case of characteristic 2 by using (6.1) in the role of (3.3) and using Corollary 6.12
in the role of [5, Thm. 3.6], as follows.

Pick an admissible triple (?,5, H) over W = W (k) and a W-basis € of the coordinate
ring of € — E as in §5. Using notation as in the discussion preceding Remark 6.5, it follows
from Corollary 6.12 that for sufficiently large n with a fixed parity, the algebraic map

(B,L)2 : U — AL is independent of n and € up to adding a constant of the form ¢ — ¢ for
some ¢ € k; write L, to denote such a map with (—1)" = 0. The map

Try./p, © Lo : U(k) — Fa
is intrinsic to the quotient algebra A /Iy because the value of the function (—1)°rde(ead(h)) .

(=1)Trw/P2°le on g mod Iy € U(k) € A/Iy is equal to pu(h(a?)) for a in a residue class of
A/Ig on whose representatives the values of h(T?) in A are squarefree. Thus, if we only
consider large n with such a fixed parity then the value of (6.5) with J = I is

TrN/FQ (LU (a))

(6.6) (—1)ordeCiead(£) . 2ot (1) )
#U (k)

and likewise (for the same large n) after any finite extension of the constant field. This

expression is intrinsic to A/Iy and only involves the large n through its parity, so we deduce

the asserted periodic dependence on n mod 2 for uniformly large n when using J = I. Due

to the intrinsic nature of (6.6) once Iy is given, the method as in the case p # 2 carries over

to handle both the periodicity and “independence of J” aspects for more general J. [

In our asymptotic study of odd characteristic in §3, we saw that for “generic” f € A[TP]
(i.e., those f such that some exponent e, = ¢(0p,) in [5, (3.14), Thm. 4.5] is odd) the
length-4 periodic sequence of values A,/g. a(f;n) for large n converges to the constant
sequence {1,1,1,1} as [k’ : kK] — oo, and that in general for each fixed congruence class
mod 4 the periodic value of Ay/g, a(f;n) on that congruence class for large n converges to
0, 1, or 2. We wish to prove a similar result for p = 2, at least in the case f € A[T4].

Assume p = 2 and let f € A[T%] be as in Theorem 6.13. For each sign o = +1 we let
L, : U — Al be the map as in the proof of Theorem 6.13. Let A\ (f,o) be the common
value of Ay, a(f;n) for all large n with (—1)" = 0. As [s/ : k] — o0, the asymptotic
behavior of A\ (f;0) (or equivalently the Mébius average (6.5) in degree n, formed with
k' ®, A) is governed by the degree-2 Artin-Schreier covering V, : y*> —y = L, over the
smooth geometrically integral k-scheme U. There are three mutually exclusive possibilities:
V, is geometrically connected over k, V, is connected but geometrically disconnected over
K, or V is disconnected. Since the difference function Ly — L_1 : U — A,l€ is a constant
function, geometric connectivity for Vi over k is equivalent to geometric connectivity for
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V_1 over k. In view of how L; and L_; were constructed, the case of geometric connectivity
seems to be the “generic” case (as we vary f); however, unlike the case of odd characteristic,
we do not know a convenient criterion (e.g., in terms of the branch multiplicities £(Op ))
that is sufficient to ensure geometric connectivity.

Theorem 6.14. Forp =2 and f € A[T?] as in Theorem 6.13, let dy = —ord¢(lead(f)) and
fix 0 = £1. If the Artin-Schreier double cover V, of U as above is geometrically connected
then \w (f;0) — 1 as [k : k] — oo. If V, is disconnected then A\ (f;0) = 1—(=1)% for all
«'/k. Finally, if Vy is connected but geometrically disconnected then Ay (f;0) =1 — (—1)%
if [k : K] is even and Mo (f;0) =1+ (—=1)% if [ : K] is odd.

Proof. 1f the double cover V, — U is connected but geometrically disconnected over s then
it splits over even-degree extensions but not over odd-degree extensions. Since A\ (f;0) is
given by 1 minus the expression in (6.6) with &’ replacing s, to handle the cases when V
is not geometrically connected we must show that if V, is disconnected (resp. connected
but geometrically disconnected) then (6.6) is equal to (—1)% (resp. —(—1)%). In the
disconnected case we must have L, = ¢? — ¢ for some global function ¢ on the normal
variety U, so this case is obvious. In the connected but geometrically disconnected case it
follows from the geometric connectivity of U over x and the standard short exact sequence

1 —-mUg) »mU) - Gal(F/k) — 1

of étale fundamental groups that the cohomology class of the Z/2Z-torsor V, — U is “the
same” as that of its fiber over any point a € U(k). Hence, all such fibers

Specklyl/(y> —y — Ly(a))

are connected, so by Artin—Schreier theory L,(a) € x has non-vanishing Fa-trace for all
a € U(k). This gives that (6.6) is equal to —(—1)% as desired.

It remains to consider the case when V, is geometrically connected. For each k’/x and
a € U(K'), the sign (—1)T/F2(Eo(9) ig equal to 1 (resp. —1) when the finite étale degree-2
connected covering Vs — U, has a-fiber that is disconnected (resp. connected), so (6.6)
with #’ in the role of  is (—1)%(#V, (k") — #U(x))/#U(x"). Hence, exactly as in the
case of odd characteristic, by geometric connectivity of V, and U we may infer from the
Lang—Weil estimate that this ratio approaches 0 (and so A/ (f;0) — 1) as [/ : k] > 0. W

By adapting the proof of Theorem 3.8, an argument with quadratic (Artin-Schreier)
character sums gives non-triviality of characteristic-2 correction factors over large finite
fields when f is fixed:

Theorem 6.15. For p = 2 and f € A[T*] as in Theorem 6.13, A\ (f;0) # 1 for all
extensions k' [k with sufficiently divisible degree (depending only on the total degree of f).

Before we prove Theorem 6.15, we make some remarks. Of course, by Theorem 6.14
we only need to do some work in the case that the double covers Vi; are geometrically
connected. Also, though some aspects of our treatment of non-triviality in characteristic 2
will be more complicated than in our earlier work for odd p (due to the use of truncated
Witt vectors), there is an important simplification: the intervention of e, mod 2 in the
case of odd p does not arise in the case p = 2. Finally, we note that it is unclear how to
prove analogues of Theorems 3.6 and 3.8 for families of f’s with p = 2 (though we are sure
that reasonable analogues must hold) because we lack a convenient sufficient criterion for
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geometric connectedness of Vi in terms of discrete invariants of f (as we have when p # 2
via oddness of the multiplicity at some point on the branch scheme B of Z; — Ab).

Proof. To adapt the method of proof of Theorem 3.8 in the case p = 2 with a fixed f, the
main issue is to handle truncated Witt vectors as in the discussion preceding Remark 6.5.
The first step is to eliminate the intervention of the mysterious unit 3, that arises in the
definition of the algebraic function L, = (£,L)2 on U for n such that o = (—1)".

|

APPENDIX A. NUMERICAL TESTING

In this appendix we address the testing of the conjectural asymptotic (2.4). As in [3], we
have not made error estimates to justify our data rigorously.

Our examples will be affine curves given by the complement of a k-rational point in a
smooth hyperelliptic curve. More specifically, for g > 1 we use affine curves of the form

(A1) C:y* 4 o)y = e1(x),
where ¢y(x) and ¢1(x) are in k[z] with
deg(co(z)) < g, deg(ei(z)) =29 +1,

and we require co(x) # 0 when p = 2. These conditions guarantee that in odd characteristic
co(z)? + 41 (z) has odd degree (so it is nonzero and not a square), whence (A.1) is geomet-
rically integral in odd characteristic. The degree conditions force (A.1) to have no solution
y € R(z) in characteristic 2, so geometric integrality holds in all characteristics. The affine
curve (A.1) is smooth if and only if there is no point (g, yo) on the curve satisfying the two
conditions

2y0 + co(w0) = 0,  cp(z0)yo = ¢ (wo).
Let us suppose ¢y and ¢q are chosen so that C is smooth, and let

A = k[C] = klz, 4]/ (y* + coy — c1).
Elements of A can be uniquely written as
a = ao(z) + a1(x)y,

where ag(z) and a;(z) are in x[z]. The equation (A.1) has a singular point on the line at
infinity in P2 when g > 2, and for all g > 1 the smooth compactification of C has genus g
and exactly one (k-rational) geometric point £ at infinity.

Our method of estimating C'4(f) and calculating A 4(f;n), two terms which appear in
(2.4), differs in the higher genus setting from the procedure we followed in genus 0 in [3]. Let
us explain the difference. In [3], we accurately estimated the constant C,j(f) by modifying
its definition as an infinite product in a way that sped up convergence of the product. For
practical purposes we use a method of estimating C4(f) in higher genus that avoids infinite
products at the expense of less rigor in the numerical verification: we exploit a connection
between separable and inseparable irreducible polynomials, as follows. Let f(T') € A[T?]
be irreducible in K [T] without local obstructions. Write f(T) = F(T?") with m > 1 as big
as possible, so F(T') € A[T] is irreducible and separable in K[T] with no local obstructions
over A. Note Ca(f) = Ca(F). Since F(T) is irreducible and separable in K[T], we believe
F(T) satisfies (2.3). Granting this, we can get an estimate for C4(F) by computing all
parts of (2.3) other than C'4(F') as n grows. Then we use this as our estimate for C4(f) in
testing (2.4).
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Now we turn to the calculation of A4(f;n) in the hyperelliptic case, where A is presented
as a degree-2 finite flat extension of k[z]. We also assume that the leading coefficient of f
in A has at worst simple zeros on C. If p # 2 then we let I = Iy C A denote the nonzero
radical ideal as in §2: its zero locus on C is the image in C' of the finite branch scheme for
the generically étale projection Zy — Al (where Zy C C' x Al is the zero scheme of f). If
p=2and f € A[T?], then we let I = Iy, C A be the nonzero (possibly nonradical) ideal as
in Definition 6.4. By Corollary 6.7, since the leading T-coefficient of f has at worst simple
zeros on C' it follows that Rad([y,) = I, where f = h(T?). For the purposes of computing
the periodic tail of the values A4(f;n) as in (2.2) (see Theorem 6.13 for the periodicity in
case p = 2), we just need to know Rad(Iy,) rather than Iy ,.

Hence, over finite fields of any characteristic we are motivated to address the problem of
computing the ideal Iy when f € A[TP] is squarefree in K[T] and primitive with respect to
A such that lead(f) € A has at worst simple zeros on C. For such f we shall give a formula
for Ir in terms of resultants. To establish such a formula it is convenient (as in [5, §2]) to
permit C' = Spec A to have no restrictions on its locus at infinity and to permit the base
field to be an arbitrary perfect field with characteristic p > 0; note that the definition of
Iy makes sense without any restrictions at infinity and for any such perfect base field. We
write Ra(hi1,h2) € A to denote the resultant of hi,hy € A[T] (taken to be 0 if some h;
vanishes). A preliminary “formula” for I is given by:

Theorem A.1l. Assume that lead(f) € A — {0} has at worst simple zeros on C. Let J be
the ideal generated by the resultants Ra(f,0f) € A as O runs over all k-derivations A — A
(extended to k[T]-derivations on A[T] by acting on coefficients). Then Iy = Rad(J).

Proof. Since QL/H is locally free of rank 1 and the formation of R4(f,df) is local on Spec A,

the identity R4(f,a-0f) = a8t R4(f,df) shows that the problem is Zariski-local on C.
Our problem is one of comparing two ideals in a Dedekind domain. Let Z C C' x A}Eu, be the
zero scheme of f, and let pr; and pry denotes its projections to C and A,l'C respectively. Also
let B C Z be the finite branch scheme for the generically étale projection pry : Z — A}C.
Localizing to the case when Qi‘ Ik is free of rank 1 with basis corresponding to a k-linear

derivation D : A — A, we want to show that R4(f, Df) generates J. We may replace the
base field with an algebraic closure since the formation of J is compatible with change in the
base field. In other words, now we take the base field to be an algebraically closed field k of
characteristic p. As a first step toward proving J = (R4(f, Df)) in A, we show that the k-
finite closed subschemes Spec(A/(Ra(f,Df))) and Spec(A/J) in C have the same support.
Since lead(f) has simple zeros, for each ¢ € C(k) at least one of the specializations f. or
(Df)e = Dc(fe) in k(c)[T] = k[T] has the same T-degree as f or D f respectively. Hence,
R4(f,Df) has a zero at c if and only if the specializations f. and D.(f.) have a common
zero at some ¢ € k, which certainly forces (c,t) € C' x A} to lie on the zero scheme Z = Z;
of fon C x A,{E. Meanwhile, ¢ is a zero of J if and only if there is some point (¢,t') € Z at
which pry: Z — A,1ﬁ is not étale. Thus, it suffices to prove that for any point z = (¢, t) € Z,
the specializations f. and (Df). in k(c)[T] vanish at ¢ € k if and only if pry: Z — A}
is non-étale at z. This equivalence was established in the proof of [5, Thm. 2.5]. Thus,
Ra(f,Df) # 0 and, since A is Dedekind, it remains to compare the k-lengths of the artin
local rings of Spec(A/(Ra(f,Df))) and Spec(A/J) at each ¢ € C that lies in their common
support.
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Fix such a point ¢ € C' and choose an isomorphism @’C,C ~ k[u]. This carries D over to
a unit multiple of 0,. The finite-length stalk of le /Al at a point (¢,t) € Z is isomorphic
k

to its completion, which is (k[u,T — t]/(f, Ouf))du. Thus, we need to show

(A2) ord Ryp,y (f,0uf) £ 3 dimy k[u, T = 11/(f. 0. f),
t

where the sum runs over the finitely many ¢ € k such that (¢,t) € B (the dimension
term is zero at other ¢ € k). Viewing f in k[u][T], the proof of [5, Thm. 2.5] shows that
(c,t) € Z lies in B if and only if f.(t) and (9, f).(t) vanish. Thus, closely approximating
ku]-coefficients of f by elements of k[u] without a common factor does not change either
side of (A.2) and provides an element f in k[u, T*] satisfying our basic assumptions from
the start in the case of the affine base curve Spec k[u]. In this way, we are reduced to the
case of plane curves.

It now suffices to show that if {f(u,T) = 0} and {h(u,T) = 0} are (possibly empty)
plane curves over an algebraically closed field K such that lead(f),lead(h) € K[u] do not
have a common zero and if these plane curves have no common irreducible components then

(A.3) ordy Rycpy (f, 1) =D iy (f:h),

teK

where i(g ;) (f, h) = dimg @Aﬁ(,(w)/(f? h) is the intersection number. This is Zeuthen’s rule;
see [3, Lemma 4.6] for a proof of Zeuthen’s rule in arbitrary characteristic. [

Suppose Q Alk is free with basis corresponding to a k-linear derivation D : A — A. It
follows from Theorem A.1 and the formula Ra(f,adf) = a8t R ,(f,df) that J is principal
with generator Rad(Ra(f, Df)) if lead(f) € A — {0} has at worst simple zeros on C. This
applies when A = k[u] by taking D = 9,, thereby recovering [5, Ex. 2.4] if leadr(f) € r[u]
is separable. We now will show that an analogous calculation applies in the hyperelliptic
case.

Corollary A.2. If C is given by (A.1) and lead(f) € A has at worst simple zeros then
I+ = Rad(Ra(f,D(f))), where D: A — A is the derivation determined by D(x) = 2y+co(x)
and D(y) = ¢}(z) — ch{z)y.

Proof. The derivation D is the unique extension of (2y+co(z))0; on k[z] to A. We show that
9}4 I is free with generator corresponding to D. Choose any k-linear derivation 0 : A — A.

By (A.1),
(2y + co(2))0(y) = (i () — cp(2)y)d().

(c)
The smoothness of C' implies that the ideals (2y+ co(x)) and (¢} (z) — c¢j(x)y) are relatively
prime, so d(z) = (2y + co(z))h and I(y) = (cj(z) — ¢i(x)y )h for some h € A. Thus
0=hD. [ ]

In odd characteristic, a change of variables lets us take co(z) = 0, in which case
D(ao(x) + a1(2)y) = a1(x)cy (x) + 2a3(x)er (2) + 2ap(2)y.

Example A.3. Consider the elliptic curve y?> = 23 — z in characteristic p # 2. We have
D(x) = 2y and D(y) = 322 — 1. For f(T) = TP + a, where ¢ € A, we have D(f) = D(a).
This is in A, so R(f, D(f)) = (D(f))%r/ = (D(a))P. Therefore I = Rad(D(a)).
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5

Example A.4. Consider the genus 2 hyperelliptic curve y? = x° —z in characteristic p # 2.

We have D(z) = 2y and D(y) = 5z* — 1.

Since we always work in the setup in Corollary A.2, we let R = R; denote the specific
resultant in this corollary. The conditions (f(a),Iy) = (1) for p # 2 and (f(a), ) = (1)
for p = 2 are not easy to check directly by computer calculation, but replacing I; and
I, with the nonzero multiple N4 /.(,(R) - A gives the condition (f(a),N4/x2)(R)) = (1),
or equivalently (N4 .z (f(@)); Na/kz)(R)) = (1). This latter condition can be checked in
k[z] very quickly on a computer. Thus, in our numerical work with hyperelliptic curves we
computed

> n(f(a))
dega=n,(f(a),N(R))=1
u(f(a))]
dega=n,(f(a),N(R))=1
using the norm ideal N(R) for R as above; by Theorem 3.1 for p # 2 and Theorem 6.13 for
p =2, (A.4) recovers A4(f;n) for sufficiently large n.

In our treatment of the numerical examples in [3], we rigorously computed p(f(a)) for
all a € A = k[u]. However, in the higher genus case we have not computed explicit
general formulas for p(f(a)) in nontrivial examples, essentially because the proofs of the
higher-genus Mobius periodicity theorems are too abstract (whereas the proofs in genus 0
in [3] are more concrete and algebraic, thereby making them effective in specific examples).
Consequently, for higher genus we computed A 4 n(r)(f;7) until we saw a plausible periodic
pattern in n mod 4 and then we assumed this to be the true period in our check on (2.4).

We now present our numerical data for polynomials having coefficient rings corresponding
to the curves listed in Table 1. We list the affine equation, the constant field, the genus,
and the numerator of the zeta function of the affine curve over the constant field.

(A.4) Aanw)(fin) =1—

Equation Constant Field | Genus | Zeta Numerator
Cr:y?+ay=23+1 F, 1 1+t+2t2
Co:y?=23—x Fs3 1 1+ 3¢2
Cy:y’=2°—x F3 2 1—2t2+9t4
Cy:y?=2a"—z F5 2 (1 —5t%)2

TABLE 1. Affine curves

In each example below, when the (apparent) period length for Ay n(g)(f;n) exceeds 1
we list as the first term of the (apparent) periodic sequence of values the value that occurs
for n = 1 mod 4.

Example A.5. Let f(T) = 2T + y?T® + zy in F3[C4][T], where C; is the first curve
in Table 1. For n > 1 define Ay n(g)(f;n) as in (A.4). For 8 < n < 18, we computed
A (fin) = 16/15.

A check on (2.4) using f(T') is given in Table 2. The second column in Table 2 gives the
number of occurrences of primality for the ideal (f(a)) when dega = n. The third column
gives the estimate coming from the right side of (2.4).

Example A.6. Let f(T) = T° + T% + 22® + 22 + 2 in F3[Cy][T]. For 4 < n < 14,
Ay n(r)(f;n) has the periodic pattern 8/9,1,10/9,1. (The 8/9 occurs for n = 1 mod 4.)
We use this as the periodic pattern for all n. See Table 3.
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n || Count | Estimate | Ratio

10 6 4.25 | 1.41
11 10 7.70 | 1.30
12 19 14.08 | 1.35
13 19 25,90 | 0.73
14 46 48.07 | 0.96
15 80 89.91 | 0.89

16 164 168.66 | 0.97
17 317 317.66 | 1.00
18 o84 600.26 | 0.97
19 1138 1137.70 | 1.00
20 2162 2162.25 | 1.00
21 4118 4119.85 | 1.00
22 7842 7867.34 | 1.00
23 || 14962 | 15054.21 | 0.99
24 || 28768 | 28860.23 | 1.00
25 || 55315 | 55423.28 | 1.00
26 || 106420 | 106603.61 | 1.00

TABLE 2. 716 + 42T 4 zy over F[C}]

n || Count | Estimate | Ratio
5 2 2.848 | 0.70
6 12 8.010 | 1.50
7 20 22.843 | 0.88
8 70 54.023 | 1.30
9 118 128.160 | 0.92

10 338 389.286 | 0.87
11 1152 1179.646 | 0.98
12 2959 2919.645 | 1.01
13 7040 7186.849 | 0.98
14 || 22674 | 22522.963 | 1.01
15 || 70162 | 70071.480 | 1.00
16 || 177207 | 177368.456 | 1.00

TABLE 3. T? + T6 + 223 + 2% + 2 over F3[Cs]

In the next two examples for curves with genus > 1 we work with n > 4 because smaller
values of n are not values of deg = —ord¢ on A (due to Weierstrass gaps at &).

Example A.7. Let f(T) = T3 + 22y in F3[Cs][z]. For 4 <n < 12, Ay n(r)(f;n) has the
pattern 1,2,1,0. We use this for all n. The exact value of C4(f) is (log3)(9/8). See Table
4.

Example A.8. Let f(T) = yT°+x*+2 in F5[Cy][z]. For 4 <n < 10, A 4 n(r)(f;m) has the
alternating pattern 1,2. We use this for all n. The exact value of C4(f) is (log5)(64/125).
See Table 5.
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n || Count | Estimate | Ratio

4 0 0.0

5 4 4.1 0.988

6 30 20.2 | 1.485

7 30 26.0 | 1.152

8 0 0.0

9 192 182.3 | 1.053
10 962 984.2 | 0.977

11 1304 1342.0 | 0.972
12 0 0.0
13 || 10232 | 10220.0 | 1.001
14 || 57042 | 56940.2 | 1.001
15 || 79880 | 79716.1 | 1.002
16 0 0.0
TABLE 4. T2 + 2%y over F3[C3]

Count | Estimate | Ratio
32 38.14 0.84
84 79.63 | 1.05

688 680.92 | 1.01
1589 1490.12 | 1.07
13568 | 13245.58 | 1.02
29596 | 29802.32 | 0.99
10 || 271812 | 270930.30 | 1.00
TABLE 5. yT° + x + 2 over F5[Cy]
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