
Workshop on group schemes and p-divisible groups: Homework 3.

1. Let K be the fraction field of a complete discrete valuation ring with mixed characteristic
(0, p) and perfect residue field. Let K/K be an algebraic closure and CK its completion. Let
GK = Gal(K/K), so GK acts on CK be isometries in the evident manner.

(i) Prove that if V is a finite-dimensional CK-vector space endowed with a continuous semi-
linear GK-action, then the natural CK-linear GK-equivariant map ⊕i∈Z(CK ⊗K V (i)GK ) → V is
injective, where V (i) = V ⊗Qp Qp(1)⊗i. (Hint: consider a nonzero element in the kernel that is a
sum of a minimal number of elementary tensors.)

(ii) Prove that if χ : GK → K× has finite order then the semi-linear Galois module CK(χ)
given by CK endowed with the action [g](c) = χ(g)g(c) has a nonzero GK-invariant vector, so
CK(χ) ' CK as semi-linear Galois modules. What happens if CK is replaced with K (and χ 6= 1)?

(iii) Let E be an elliptic curve over K with multiplicative reduction, so as a Qp[GK ]-module
Vp(E) is an extension of Qp(χ) by Qp(χεp) where χ2 = 1 and εp is the p-adic cyclotomic character.
Prove that this extension structure becomes semi-linearly split after extending scalars to CK .
(Using the Serre–Tate equivalence between the deformation theory of an abelian variety and its
p-divisible group in residue characteristic p, one can construct many examples of such E for which
K ⊗Qp Vp(E) is a non-split semilinear extension.)

2. Let F/Qp have degree d, and let K be the fraction field of a complete discrete valuation ring R
with mixed characteristic (0, p). Let K/K be an algebraic closure.

(i) Let G be a p-divisible group over R with height d. Assume there is given an action by OF on
G. Prove that Tp(G) = lim←−G[pn](K) is a free OF -module of rank 1. Deduce also that OF acts on
the étale and connected parts of G, and conclude that G is either étale or connected.

(ii) Let A be an abelian scheme over R with relative dimension g. Assume that there is given an
OF -action on A, and that d = 2g. Using that det Tp(A) = εgp (which comes out of the study of the
étale cohomology of abelian varieties), deduce that A[p∞] must be connected and that the action
of Gal(K/K) on Tp(A) is given by a continuous O×F -valued character. (In particular, the splitting
field for AK [p∞] is an abelian extension of K. )

3. Let S be a scheme.
(i) If 0 → G′ → G → G′′ → 0 and 0 → H ′ → H → H ′′ → 0 are diagrams of finite locally free

commutative S-groups, prove that 0 → H ′ × G′ → H × G → H ′′ × G′′ → 0 is short exact if and
only if the two given diagrams are short exact.

(ii) Use the viewpoint of fppf abelian sheaves to prove that if

0 // G′

'
��

// G

��

// G′′

'
��

// 0

0 // H ′ // H // H ′′ // 0

is a commutative diagram of short exact sequences and the outer maps are isomorphisms then so
is the middle map.

(iii) Explain step by step how to construct the inverse map H → G in (ii) via descent theory.
Then give a third proof by passing to geometric fibers over S.

4. Let k be a field and let X be a proper k-scheme satisfying OX(X) = k, and assume X(k) is
non-empty, so upon choosing e ∈ X(k) we get a representable Picard functor PicX/k,e that is locally
of finite type over k.

(i) If Z is any k-scheme locally of finite type and z ∈ Z(k), identify the tangent space Tz(Z) with
the fiber over z for the map of sets Z(k[ε]) → Z(k). Define operations on the k-algebra k[ε] that
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thereby enhance this set-theoretic bijection to a k-linear isomorphism. (Hint: For the fiber-product
ring k[ε]×k k[ε′], note that the natural map Z(k[ε]×k k[ε′])→ Z(k[ε])×Z(k) Z(k[ε′]) is bijective.)

(ii) Prove that the bijection T0(PicX/k,e) ' H1(X,OX) from lecture is a k-linear isomorphism.

5. (i) Use the fibral flatness criterion to prove that if A → S is an abelian scheme with relative
dimension g > 0 and if N ∈ Z−{0} then N : A→ A is a finite locally free map with degree |N |2g.
Deduce that A[N ] is a finite locally free commutative N -torsion S-group of order |N |2g.

(ii) Prove that for any prime p, the directed system A[p∞] = {A[pn]} is a p-divisible group of
height 2g over S.

(iii) If S = Spec(R) for a complete local noetherian ring R, by HW2, Exercise 9 we get a
commutative formal Lie group O∧A,0 by completing at the identity on the closed fiber. Prove that
this “is” the identity component of A[p∞] in the sense of the Serre–Tate equivalence, and so this
p-divisible group has relative dimension g over R.

6. This exercise works out descent theory for quasi-coherent sheaves. Let f : S′ → S be a morphism
of schemes and let S′′ = S′ ×S S′ be equipped with the projections p1, p2 : S′′ ⇒ S′. For an OS′-
module F ′, a descent datum on F ′ is an isomorphism ϕ : p∗2(F ′) ' p∗1(F ′) that satisfies the cocycle
condition over the triple product S′′′ (equipped with projections qij : S′′′ → S′′ for 1 ≤ i < j ≤ 3):
q∗13(ϕ) = q∗12(ϕ) ◦ q∗23(ϕ). A morphism of pairs (F ′1, ϕ1)→ (F ′2, ϕ2) is an OS′-linear map F ′1 → F ′2
whose pullbacks under the pi’s are compatible with the descent data in the evident manner (a
certain square commutes).

(i) In the case S′ =
∐
Si for an open covering {Si} of S, explain why a descent datum on an

OS′-module is the same as classical gluing data for OSi-modules on the Si’s.
(ii) If F is an OS-module, explain how to give F ′ = f∗(F ) a canonical descent datum in a

manner that is functorial in F .
(iv) If S′ → S is faithfully flat and quasi-compact, prove that the functor constructed in (ii) is

fully faithful when working with quasi-coherent sheaves. (It is an important result of Grothendieck
that this is actually an equivalence of categories in the quasi-coherent setting; reduce this problem
to the affine case. Can you solve the affine case?)

7. This exercise develops the properties of a very useful notion called the Serre tensor construction.
Let S be a scheme and let A be a commutative ring. (It is of interest to allow some non-commutative
rings, but we suppress such generality here.) Let X be an A-module scheme over S and M a
projective A-module of finite rank.

(i) Using a finite presentation for the dual linear module, prove that the functor T  M⊗AX(T )
is represented by an A-module scheme over S; it is denoted M ⊗AX. Check that M ⊗A (·) carries
closed immersions to closed immersions, surjections to surjections, and commutes with formation
of fiber products in X. How does it behave with respect to direct sums in M?

(ii) Using Serre’s trick from HW2, Exercise 2, prove that if X is S-flat then so is M⊗AX. (Hint:
Express M as a direct summand of a free module.) Is this flatness obvious via the construction of
M ⊗AX? Also check preservation of separatedness and properness via the valuative criterion, and
the property of being locally of finite type (resp. locally of finite presentation).

(iii) By expressing M as a direct summand of a finite free A-module, show that if X is locally
of finite type over S with geometrically connected fibers, then the same holds for M ⊗A X. Is this
obvious via the construction of M ⊗A X?

(iv) Using the functorial description of tangent spaces and the functorial criterion for smoothness,
prove that M ⊗A T0(X) ' T0(M ⊗A X) and that if X is smooth over an algebraically closed field
then so is M ⊗AX and moreover in such cases we have dim(M ⊗AX) = r dimX if M has constant
rank r over A.



3

(v) Explain how the Serre construction behaves with respect to short exact sequences of finite
locally free commutative group schemes, Cartier duality, Dieudonné modules, abelian schemes, Tate
modules of abelian varieties, and complex-analytic uniformizations. All isomorphisms should be
constructed in a canonical manner.

(vi) If X is an abelian variety over a field k and A is its own centralizer in Endk(X), prove
that the natural map M → Homk,A(X,M ⊗A X) to the space of A-linear k-homorphisms is an
isomorphism. In particular, deduce that if M and M ′ are invertible A-modules, then M ⊗AX and
M ′ ⊗A X are A-linearly k-isomorphic if and only if M and M ′ are A-linearly isomorphic.

8. Let X and Y be abelian varieties over a field k and let K/k be an extension field. Assume either
that k is separably closed or that K/k is purely inseparable. (Important examples are k = Q and
K = C, or k imperfect and K its perfect closure.)

(i) Prove that Spec(K ⊗k K) is connected.
(ii) Fix a prime ` 6= char(k) and let f : XK → YK be a map of abelian varieties. Use (i) to prove

that if k is separably closed then p∗1(f), p∗2(f) : XK⊗kK ⇒ YK⊗kK coincide on the constant (!) `n-
torsion subgroup schemes for all n ≥ 1 by comparing them over the diagonal point. Conclude that
these maps coincide on all fibers. Do the same without restriction on k for K/k purely inseparable
by using Galois theory to descend from the setup for (ks ⊗k K)/ks.

(iii) By reducing to K/k finitely generated (so K ⊗k K is noetherian), deduce p∗1(f) = p∗2(f), so
by fpqc descent f uniquely descends to a k-map X → Y that is also a k-group map! In particular,
for an abelian variety over K there is at most one descent to an abelian variety over k and such
a descent is functorial if it exists. Thus, it is unambiguous to speak of “the” descent to k for an
abelian variety over K (if one exists); what if k = Q?

9. Let A be an abelian variety over an algebraically closed field k and let K/k be an extension.
(i) If dimA = 1, prove that any isogeny AK → B over K is uniquely “defined” over k. (That is,

any finite K-subgroup of AK has the form GK for a unique finite k-subgroup G ⊆ A.)
(ii) If char(K) = 0, prove the same conclusion without restriction on dimA.
(iii) Let A = E × E be a product of two supersingular elliptic curves. By studying order-p

subgroups of αp×αp, prove that if K 6= k then AK contains order-p subgroups not arising from A.
Using Exercise 8, conclude that the quotient of AK by such a subgroup cannot be defined over k
as an abstract abelian variety (ignoring the isogeny with AK).

10. This exercise proves the Poincaré reducibility theorem over an arbitrary ground field k, using
Exercise 8 to handle imperect k. Let X be an abelian variety over k.

(i) If End0
k(X) is not a division algebra, construct a nonzero map f : X → X that is not an

isogeny. Show that the scheme-theoretic image Y = f(X) is a nonzero proper abelian subvariety.
(ii) If i : Y ↪→ X is a nonzero proper abelian subvariety over k and if k is perfect, find an “isogeny

complement” as follows. Pick an ample invertible sheaf L on X and let Z = ker(i∨ ◦φL )0
red. Using

perfectness, show that Z is an abelian subvariety of X (over k) with dimZ ≥ dimX − dimY
(equality holds a priori but we do not need to check this) and explain why i∨ ◦ φL |Y = φL |Y (an
isogeny since L |Y is ample). Deduce that Y ∩ Z is finite, so Z × Y → X is an isogeny.

(iii) In the general case, if kp/k is the perfect closure and Y is a nonzero proper abelian subvariety
of X over k then find an “isogeny complement” as follows. Let Z ′ ⊆ Xkp be an abelian subvariety
over kp such that Ykp×Z ′ → Xkp is an isogeny (use (ii) over kp). Let Xkp → Ykp×Z ′ be an isogeny
over kp, and consider the composite kp-map

Xkp → Ykp × Z ′
pr2→ Z ′ ↪→ Xkp .
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By Exercise 8, this composite map descends to Endk(X). Prove that its scheme-theoretic image is
an abelian subvariety Z of X over k and that Y × Z → X is an isogeny.

(iv) Prove the Poincaré reducibility theorem over k: every nonzero abelian variety over k is k-
isogenous to a product

∏
Xei
i of pairwise non-isogenous abelian varieties Xi that are k-simple in the

sense that Xi is nonzero and contains no proper nonzero abelian subvarieties over k, with all ei > 0.
Prove that the Xi’s and ei’s are unique, and that End0

k(X) '
∏

Matei(Di) where Di = End0
k(Xi)

is a division algebra finite-dimensional over Q.
(v) For K/k as in Exercise 8, use the trick in (iii) to prove that an abelian subvariety of XK has

the form YK for a unique abelian subvariety Y ⊆ X.


