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Abstract. Let A′ be a complete characteristic (0, p) discrete valuation ring with absolute ramification de-
gree e and a perfect residue field. We are interested in studying the category FFA′ of finite flat commutative

group schemes over A′ with p-power order. When e = 1, Fontaine formulated the purely ‘linear algebra’

notion of a finite Honda system over A′ and constructed an anti-equivalence of categories between FFA′ and
the category of finite Honda systems over A′ when p > 2. We generalize this theory to the case e ≤ p− 1.

Introduction

This paper lays the foundations for generalizing Ramakrishna’s work [16] on deformations of Galois
representations to settings in which a small amount of ramification is allowed. The motivation is the problem
of proving the Shimura-Taniyama Conjecture in non-semistable cases, and this requires extending the results
of [16] to cases in which there is ramification. The application of our group scheme results to the deformation
theory of Galois representations is given in [4] (below, we will formulate a simplified version of the main result
of [4]). In [5], these deformation-theoretic results are used to establish the Shimura-Taniyama Conjecture
for elliptic curves over Q which acquire semistable reduction over a tamely ramified extension of Q3 (and
in [3] the remaining ‘wild’ cases of the Shimura-Taniyama Conjecture are handled by [2], which generalizes
the results of this paper via much more sophisticated techniques). At the end of this Introduction we make
some remarks on these matters.

First, let’s describe the basic setting which we will consider. Let (A′,m) be a complete mixed characteristic
discrete valuation ring with perfect residue field k having characteristic p, and let A = W (k). We are
interested in studying the category FFA′ of finite flat commutative A′-group schemes with p-power order.
When p > 2 and A′ = A, Fontaine constructs in [8] a fully faithful, essentially surjective functor from FFA′

to the category SHf
A′ of finite Honda systems over A′, whose objects consist of finite-length W (k)-modules

with various extra structures. Fontaine’s central tool is the theory he develops in his book [7]. He obtains a
similar result when p = 2 for unipotent group schemes. But what if one does not require e(A′) = 1?

It follows from [17, Cor 3.3.6(1)] that the category FFA′ is abelian whenever e = e(A′) < p − 1, using
scheme-theoretic kernel as the kernel, so it is natural to ask if Fontaine’s results can be extended to cover
this general case. We have developed such a generalization and following Fontaine, we call the corresponding
category SHf

A′ of module structures finite Honda systems over A′. When e ≤ p−1, we define categories SHf,u
A′

and SHf,c
A′ of unipotent and connected finite Honda systems over A′ and obtain similar results, extending

those of Raynaud and Fontaine for such ramification values.
When e < p − 1, we define a contravariant additive functor LMA′ : FFA′ → SHf

A′ (Theorem 3.4) which
we prove is fully faithful and essentially surjective (Theorem 3.6). The abelian category structure on SHf

A′

is made explicit too (Theorem 4.3). We have similar results for the full subcategories of unipotent and
connected objects when e ≤ p− 1. For e = 1, we recover Fontaine’s original construction.

The full details of the proof of Fontaine’s result in the unramified case have never been published ([8] is a
brief announcement outlining the main steps of the proof). These details are essential for an understanding
of the more general arguments, so we begin by writing them out fully in §1. We use ideas introduced by
Fontaine in [7] in order to generalize everything to the case in which e ≤ p− 1. The calculations required for
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the case e > 1 are far more cumbersome than in the unramified case and some of our arguments will only
work when e > 1, so we first present the e = 1 proof. It should be emphasized that [7] is vital for everything
that we do.

We construct a ‘base change’ functor for finite Honda systems (Theorem 4.8) and we verify that this
construction is compatible with base change of finite flat group schemes (of course only allowing base changes
which preserve the e ≤ p− 1 condition). The base change formalism has some interesting applications. For
example, it can be used to prove a theorem about good reduction of abelian varieties (Theorem 5.3). Also,
this formalism allows us to translate generic fiber Galois descent into the language of finite Honda systems,
thereby laying the groundwork for generalizing the work of Ramakrishna [16] to ramified situations.

This second application is briefly described in §5 and is more fully developed in [4]; it is concerned with a
deformation-theoretic study of certain continuous representations ρ : Gal(Qp/Qp) → GL2(Fp). Fix a finite
extension K/Qp inside of Qp, with e = e(K/Qp) satisfying e ≤ p − 1. We assume that ρ|Gal(Qp/K) is the
generic fiber of a finite flat group scheme G over OK which is connected and has a connected Cartier dual.
There is also the mild technical hypothesis that if M is the Dieudonné module of the closed fiber of G, then
the sequence of groups

0→M/VM
F→M/pM = M →M/FM → 0.

should be exact (this is automatically satisifed if G is the p-torsion of a p-divisible group). For the motivating
application to the study of modularity of certain elliptic curves over Q, these conditions are satisfied. As
long as ρ has trivial centralizer, there is a universal deformation ring RK(ρ) classifying deformations ρ of ρ to
complete local noetherian Zp-algebras R with residue field Fp such that ρ|Gal(Qp/K) mod mn

R is the generic
fiber of a finite flat group scheme over OK for all n ≥ 1. In [4], we use the results in this paper to prove

Theorem. The representation ρ has trivial centralizer and RK(ρ) ' Zp[[T1, T2]].

We also obtain in [4] similar results in somewhat more general settings.
After the writing of this paper was completed, the author found that the general problem of extending

Fontaine’s results on finite flat group schemes to a setting with e > 1 has been considered before, in [18].
However, the methods and results in [18] are very different from ours. Let us explain this point more
carefully. We develop a theory which classifies group schemes in terms of ‘intrinsic’ finite-length module
data. This theory makes it possible to do explicit calculations, even if we are interested in studying maps
between group schemes (as opposed to studying a single group scheme). Such computability is essential in
the proof of the deformation theory result mentioned above. The theory in [18], which applies under less
restrictive conditions on the ramification, is motivated by the theorem of Oort which asserts that any object
in FFA′ arises as the kernel of an isogeny of p-divisible groups. The classification of finite flat group schemes
in [18], which uses very different techniques of proof, is given in terms of pairs of finite free modules with
maps between them [18, pp. 13-15].

That is, in some sense [18] works with a presentation of a finite-length module rather than directly with
the finite-length module itself. This leads to serious difficulties once one tries to study maps between group
schemes. For example, if G and G′ are two objects in FFA′ and Γ1 → Γ2, Γ′1 → Γ′2 are isogenies of p-divisible
groups over A′ with respective kernels G and G′, then it is not generally true that any map f : G → G′ in
FFA′ is induced by a compatible pair of maps Γ1 → Γ′1, Γ2 → Γ′2. Thus, any attempt to study morphisms in
FFA′ by means of [18] requires frequently ‘changing the presentation’, and this makes explicit computations
difficult or impossible to carry out.

The approach in [18], on the other hand, is useful in the study of lifting questions for a single fixed
group scheme. For example, for any e > 1 and p ≥ 5, the theory in [18] enables one to construct ‘lifts to
characteristic 0’ of any object in FFk. This is something our approach cannot establish for e > p− 1.

Due to absent-mindedness of the author, this paper is appearing in print somewhat later than it should
have. It therefore seems appropriate to discuss subsequent developments. In [2], Breuil constructs a ‘linear
algebra’ theory for finite flat group schemes (subject to some flatness conditions on p-power torsion levels,
and with p > 2) without any restrictions on the ramification. When e < p − 1, Breuil’s category of ‘linear
algebra’ objects is equivalent to (but not literally the same as) the category studied in this paper. However,
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whereas our theory is given in terms of filtered modules over a discrete valuation ring, Breuil’s more general
theory works with filtered modules over the p-adic completion of a certain divided power envelope and
depends upon a choice of uniformizer. In the case of p-torsion objects, Breuil’s category of ‘linear algebra’
objects can be identified with a simpler category of finite-length filtered modules over a small artin ring.
This theory provides the necessary local tools to complete the proof of the remaining ‘wild’ cases of the
Shimura-Taniyama Conjecture [3].

There are several reasons why the results in this paper seem to still be of interest (if one is in a situation
with low ramification). First of all, the methods are certainly much more elementary; e.g., there is no use
of the techniques of crystalline cohomology. Also, we make no flatness restriction on the p-power torsion
levels and the intrinsic description of base change (preserving the low ramification condition) is very simple,
whereas base change in the setting of [2] is somewhat complicated; this is mainly due to the fact that the
theory in [2] depends upon a choice of uniformizer of the base. However, the main distinction between the
two approaches is seen if one wants to do explicit calculations with group schemes which are not necessarily
killed by p (over bases with absolute ramification e < p − 1). Without a p-torsion hypothesis, the theory
in [2] is well-suited to theoretical considerations and analysis of p-divisible groups, but it does not yet seem
amenable to explicit calculations “at finite level”. At some future time, this problem will no doubt be
overcome. In the meantime, we should be grateful that the local calculations in [3] only require working
with objects killed by p.

Acknowledgements I would like to thank Wiles for suggesting the problem of generalizing Fontaine’s
theory to ramified settings. I am also grateful to Fred Diamond, Vinayak Vatsal, and (especially) J.-M.
Fontaine for comments and suggestions which led to the removal of some unneccessary hypotheses in earlier
versions of some of the results.

Summary of some results of Fontaine

Fontaine’s book [7] is absolutely essential in everything that we will do. It develops the foundations for
Dieudonné modules as we will use them and also supplies the results on formal group schemes which will
be the starting point for our study of finite flat group schemes. As a convenience to the reader we will now
give an overview of the basic results and notation that we take from [7]. We will only formulate the results
in the most common cases of application for our arguments, but the reader should keep in mind that much
greater generality is needed in order to carry out the proofs of the main results in [7], including ones we will
invoke later on (e.g., Fontaine’s classification of p-divisible groups).

Let k be a perfect field with characteristic p > 0. For any finite k-algebra R, we define the R-valued
Witt covectors CWk(R) to be the set of sequences a = (. . . , a−n, . . . , a0) of elements ai ∈ R indexed by
non-positive integers, with ai nilpotent for large i. This is to be thought of as analogous to Qp/Zp. Letting
Sm ∈ Z[X0, . . . , Xm, Y0, . . . , Ym] denote the mth addition polynomial for p-Witt vectors [7, pp. 71-2], and
choosing a,b ∈ CWk(R), the nilpotence condition ensures that the sequence

{Sm(a−n−m, . . . , a−n, b−n−m, . . . , b−n)}m≥0

is stationary. Denoting the limit by c−n, it is true that c = (c−n) ∈ CWk(R) and defining

a + b def= c

makes CWk(R) into a commutative group with identity (. . . , 0, . . . , 0) [7, Prop 1.4, Ch II]. For R = k′ a
finite extension of k, CWk(k′) is exactly K ′/W (k′), with K ′ the fraction field of W (k′).

We topologize CWk(R) by viewing it as a subset of the product space
∏
n≤0R, where each factor is

discrete. This makes CWk(R) a topological group. Moreover, it admits a unique compatible structure of
topological W (k)-module such that for all x ∈ k, with Teichmüller lift [x] ∈W (k), we have

[x] · a = (. . . , xp
−n
a−n, . . . , x

p−1
a−1, a0).

The operations F, V : CWk(R)→ CWk(R) given by

F (a) = (. . . , ap−n, . . . , a
p
0), V (a) = (. . . , a−n−1, . . . , a−1)
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are additive, continuous, satisfy FV = V F = p, and with respect to the W (k)-module structure are σ and
σ−1-semilinear respectively, where σ : W (k)→W (k) is the Frobenius morphism.

In other words, CWk(R) is a module over the Dieudonné ring Dk = W (k)[F, V ] generated by two com-
muting variables with the usual relations FV = V F = p, Fα = σ(α)F , V α = σ−1(α)V (for α ∈W (k)), and
there is a compatible structure of topological W (k)-module with respect to which F and V act continuously.
We abbreviate this by saying that CWk(R) is a topological Dk-module (though note that we do not put a
topology on Dk). This is all functorial in R. For proofs, see [7, pp. 79-82]. When R = k′ is a finite extension
of k, the topology and Dk-module structure on CWk(k′) ' K ′/W (k′) are as usual.

If R is a complete local noetherian W (k)-algebra with residue field a finite extension of k, we define the
topological Dk-module

ĈWW (k)(R) = lim←−CWk(R/mn
R),

where mR is the maximal ideal of R. This is a Hausdorff topological Dk-module, functorial in R. In fact,
if R is any separated and complete topological W (k)-algebra with a base of open ideals, one can define
a topological Dk-module ĈWW (k)(R) functorially in R [7, Ch II, Prop 2.3]. However, due to pathologies
which arise from the relation between product topologies and direct limit topologies [12, Exer 40A], one
needs to be extremely careful when dealing with such general R. The only such pathological R that will
really arise for us are rings such as the valuation ring of Cp, with the p-adic topology (the problem is that the
quotients of this ring by powers of p do not have a nilpotent nilradical). This ring only arises in formulating
an ‘explicit’ dictionary between ‘linear algebra data’ and Galois representations; since this is not relevant to
our classification theorems, we won’t address this issue any further.

The functor CWk on finite k-algebras is pro-represented by a formal affine commutative k-group scheme,
denoted ĈW k [7, §4.2, Ch II]. If R is a complete local noetherian k-algebra with residue field a finite extension
of k, then ĈW k(R) = ĈWW (k)(R). For any p-formal commutative group scheme G over k — i.e., one for
which G ' lim−→G[pn] (e.g., a finite flat commutative k-group scheme with p power order, or a p-divisible
group over k) — we define the Dieudonné module

M(G) = Hom(G, ĈW k),

the group of formal k-group scheme maps from G to ĈW k. This is motivated by the functor

G Hom(G,C×) ' Hom(G,Qp/Zp)

for finite abelian p-groups. The action of Dk on the functor CWk gives rise to an action of Dk on M(G).
One can also define a suitable topology on M(G) with respect to which it is a topological Dk-module [7,
§1.2, Ch III]. All of the standard properties of the classical Dieudonné module theory are proven in [7, Ch III]
based on this definition. The main result of this theory is that the functor M sets up an antiequivalence of
abelian categories between p-formal commutative group schemes over k and certain topological Dk-modules.
There are various specializations of this theorem to finite commutative k-group schemes with p-power order,
connected commutative p-formal k-group schemes, etc.

The main result in [7] is that one can ‘enhance’ this theory to classify p-divisible groups over suitable
bases (up to isogeny or isomorphism, depending on ramification) in terms of ‘linear algebra’ data.

Notation. Throughout this paper, we fix a perfect field k with characteristic p > 0 and let A denote
W (k) and K its fraction field. The Dieudonné ring A[F, V ] of k as introduced above is denoted Dk. Note
that for k 6= Fp, this is not commutative. We let (A′,m) be the valuation ring of a finite totally ramified
extension K ′ of K, with e = e(A′) = [K ′ : K] the absolute ramification index of A′. The category of finite
flat commutative group schemes over A with p power order is denoted FFA, and FFcA, FFuA are the full
subcategories consisting of connected and unipotent (i.e., connected Cartier dual) objects, respectively. We
define FFk, FFA′ , etc. in a similar manner.

A p-adic A′-ring is a flat A′-algebra which is p-adically separated and complete. The main examples to
keep in mind are power series rings A′[[X1, . . . , Xn]], finite flat A′-algebras, and the valuation ring of the
completion of an algebraic closure of K ′.
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1. Finite Flat Group Schemes: The Case e = 1

We wish to develop a ‘linear algebra’ theory of finite flat group schemes. It will always be assumed that
the absolute ramification index e = e(A′) satsifies e ≤ p − 1. Our aim is to construct an equivalence of
categories between FFA′ (resp. FFcA′ , FFuA′) and a certain category of ‘linear algebra data’ when e < p− 1
(resp. e ≤ p− 1).

In the case e = 1, a theorem in this direction has been proven by Fontaine. His brief announcement [8]
sketches the outline of the proof, but omits some technical details. This section is just a technical exposition
of Fontaine’s announcement and contains nothing new (note that we formulate the main result to include
connected group schemes when p = 2, but the argument is essentially the same as Fontaine’s in the unipotent
case). Some of these details are essential for understanding the motivation behind the generalization we will
prove. Therefore, in the interest of completeness (and since the arguments in the case e = 1 are far simpler
to explain), we will first review Fontaine’s proof in full detail for the case e = 1. Then this method will be
generalized in the sections which follow.

It may be instructive to first explain the general strategy. When e < p − 1, Fontaine constructs an
essentially surjective, fully faithful contravariant additive functor LMA′ from the category of p-divisible
groups over A′ to a certain category of ‘linear algebra data’ in which the objects are pairs (L,M) with L

a finite free A′-module and M a finite free A-module, together with various extra structures and properties
required [7, Ch IV, §5, Prop 5.1(i)]. The construction of such a functor depends heavily on the condition
e < p−1. When e ≤ p−1, the method applies to connected and unipotent objects. For arbitrary e, Fontaine
can only describe the category of p-divisible groups over A′ up to isogeny [7, Ch IV, §5, Prop 5.2]. One can
think of the constraint on e as being related to forcing the convergence of the p-adic logarithm on m, which
is relevant because in some sense, the failure of Fontaine’s method to yield a fully faithful functor for large
e is related to the failure of the torsion points of a p-divisible group over A′ to inject into the torsion points
of the closed fiber for large e. A large radius of convergence for the logarithm can ensure such injectivity
(though the logarithm is not explicitly used in Fontaine’s arguments).

The functor LMA′ on p-divisible groups suggests that objects in FFA′ which occur inside p-divisible groups
over A′ ought to correspond to analogous ‘linear algebra data’ in which the A and A′-modules have finite
length. When e = 1, Fontaine carries out this idea while simulataneously showing that for odd p all objects
in FFA occur inside a p-divisible group over A, and similarly for FFuA and unipotent p-divisible groups for
all p. It is a (non-trivial) theorem that every object in FFA′ occurs in a p-divisible group over A′ (with no
conditions on e or p). This suggests that we should try to use Fontaine’s classification of p-divisible groups
over A′ in conjunction with a generalization of his method for analyzing FFA using p-divisible groups in
order to describe FFA′ via ‘linear algebra data’. We will not use the theorem about embedding objects in
FFA′ into p-divisible groups over A′, though our methods rederive this result in the cases we consider.

Briefly, the underlying principle is summed up as follows. Smooth finite-dimensional commutative formal
group schemes over A′ are extensions of etale ones by connected ones, with the connected ones having as
their affine ring a formal power series ring in finitely many variables. This is how Fontaine is able to get
decisive results on such formal group schemes [7, Ch IV, §4.8, Thm 2]. Since p-divisible groups are special
examples of such formal group schemes and they provide a convenient setting in which objects in FFA′ arise
‘in nature,’ a classification theory for p-divisible groups over A′ can be expected to lead to a classification
theory for finite flat closed subgroup schemes of p-divisible groups (and fortunately all objects in FFA′ arise
in this way). Thus, the result of Serre and Tate [19, Prop 1] that connected p-divisible groups are necessarily
smooth (in the formal sense) is the main starting point for everything that follows.

Let’s now derive Fontaine’s results in the case e = 1. Choose an object G in FFA, with M = M(Gk)
the Dieudonne module of the closed fiber Gk of G. By viewing formal k-group scheme homomorphisms
G→ ĈW k as just formal k-scheme homomorphisms, we get a natural embedding of the Dk-module M as a
finite-length A-submodule of the topological Dk-module CWk(Rk), where R is the finite flat A-algebra which
is the affine ring of G (the induced topology on M is exactly the p-adic topology). We denote by Rk and RK
the closed and generic fibers respectively of R over A. Also, ∆ will be our notation for a comultiplication
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map (∆G, ∆Gk , etc.). Let L = LA(G) ⊆M denote kernel of the A-linear composite map

M ↪→ CWk(Rk) wR−→ RK /pR,

where wR is the continuous A-linear map given by

wR((a−n)) =
∑
n≥0

p−nâp
n

−n mod pR,

with â−n ∈ R any lift of a−n ∈ Rk. For a proof that wR is well-defined, A-linear, and continuous, see [7,
Ch II, §5.2].

The motivation for considering this particular L will become clear in the arguments below. At this point
it should be remarked that the topology issues involved are far too cumbersome to review here, but a careful
reading of [7] shows that all formal manipulations we will carry out with limits and infinite sums are valid;
for a ring like R which is a finite flat A-algebra, the topology we use on RK is it’s natural topology as a
finite-dimensional K-vector space, the topology we use on R is the p-adic one, and the topology we use on
Rk is the discrete one.

Observe that since M/FM is killed by p, there is a natural k-linear map L/pL → M/FM . We are now
ready to establish some essential properties of the pair (L,M). It should be pointed out that the first of the
properties we prove is quite natural to expect; cf. [7, Ch IV, Prop 1.6].
Theorem 1.1. The natural k-linear map L/pL → M/FM is an isomorphism and the restriction of V to
L ⊆M is injective.

Proof. We first need to prove the following sufficient criteria for an element of CWk(Rk) to actually lie in
M : if a ∈ CWk(Rk), wR(a) = 0, and V a ∈ M , then a ∈ M (in this proof, we reserve the boldface font
for covectors, and sometimes for elements of M when we wish to emphasize their nature as covectors). In
order to prove this, we write a = (a−n) and because M is by definition the group of formal k-group scheme
homomorphisms from Gk to ĈWk, we need to verify that

(∆Gk(a−n)) ?= (a−n ⊗ 1) + (1⊗ a−n).

Since V is additive and V a ∈ M by hypothesis, applying V does yield an equality. Hence, it remains to
compare the 0th-coordinates on both sides, which is to say that we must check

∆Gk(a0) ?= lim
m→∞

Sm(a−m ⊗ 1, . . . , a0 ⊗ 1; 1⊗ a−m, . . . , 1⊗ a0)

in Rk ⊗k Rk ' (R⊗A R)k. Here, Sm is the usual mth-coordinate addition polynomial for p-Witt vectors (and
indeed this sequence in the discrete Rk ⊗k Rk in we are taking a limit does eventually becomes constant).

Since wR(a) = 0, in RK we have ∑
n≥0

p−nâp
n

−n = py

for some y ∈ R. Replacing â0 by â0 − py, we may assume y = 0. That is,

â0 = −
∑
n≥1

p−nâp
n

−n.

Now G is a lift of Gk as a group scheme, so ∆Gk(a0) ∈ (R⊗A R)k is represented by the element ∆G(â0) ∈
R⊗A R. Since R⊗A R is a p-adic A-ring (i.e, a flat A-algebra which is separated and complete with respect
to the p-adic topology), the addition formulas for ĈWA(R⊗A R) permit us to define

L−m(â) = lim
N→∞

SN (â−N−m ⊗ 1, . . . , â−m ⊗ 1; 1⊗ â−N−m, . . . , 1⊗ â−m)

in R⊗A R, where â = (â−n) ∈ ĈWA(R). We are given that for all m ≥ 1,

∆G(â−m) ≡ L−m(â) mod p(R⊗A R).

We need to prove this when m = 0.
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Combining our expression for â0 in terms of the â−n for n ≥ 1 with the above congruences for m ≥ 1, it
suffices to show that the element ∑

n≥0

p−nL−n(â)p
n

∈ (R⊗A R)K

lies in p(R⊗A R). In other words, we wish to prove

wR⊗A R ((L−n(â) mod p(R⊗A R))) ?= 0.

However, by definition
(L−n(â) mod p(R⊗A R)) = (a−n ⊗ 1) + (1⊗ a−n).

Since wR⊗A R is additive, we conclude that

wR⊗A R ((L−n(â) mod p(R⊗A R))) = wR⊗A R(a−n ⊗ 1) + wR⊗A R(1⊗ a−n).

This is equal to wR(a)⊗ 1 + 1⊗wR(a) in (R⊗A R)K/p(R⊗A R) ' (RK /pR)⊗A (RK /pR) and wR(a) = 0,
so we are done.

Now that we have established a criteria for membership in M , we can begin the proof of the theorem.
First, let’s prove that pL = (FM)∩L, so the map L/pL→M/FM is at least injective. Since one inclusion
is obvious, choose a ∈ (FM) ∩ L, so a = Fb with b ∈M . Define

b = (. . . , b−n+1, . . . , b0, b1) ∈ CWk(Rk),

with b1 ∈ Rk to be chosen later and b = (b−n) = V b. Observe that pb = FV b = Fb = a, so if wR(b) = 0
then V b = b ∈M implies (by our criteria) that b lies in M , thus in L, and so a ∈ pL as desired.

It remains to choose b1 ∈ Rk so that wR(b) = 0. If b̂−n ∈ R is a lift of b−n (so we define â−n = b̂p−n) and
b̂1 ∈ R is a lift of b1, then wR(b) is represented by the element of RK given by

b̂1 +
∑
n≥1

p−nb̂p
n

−n+1 = b̂1 +
1
p

∑
n≥0

p−nâp
n

−n.

The sum ∑
n≥0

p−nâp
n

−n

is a representative for wR(a), which vanishes in RK /pR, so this sum lies in pR. Thus, we can choose

b̂1 = −1
p

∑
n≥0

p−nâp
n

−n ∈ R

and this ensures wR(b) = 0, as desired.
The surjectivity of L/pL ↪→ M/FM will be proven by a length calculation. In order to compute the

relevant lengths, and in order to prove the injectivity of the restricted semilinear map V : L → M , we will
first show that the natural map

L[p]⊕ kerV →M [p]

is a surjection. Choose x = (x−n) ∈ M [p], so xp−n = 0 for all n ≥ 1 (recall p = FV ). We will prove that
there exists a decomposition (in CWk(Rk))

x = y + (. . . , 0, . . . , 0, z)

with yp−n = 0 for all n ≥ 1 and wR(y) = 0. Note that if this holds, then y−n = x−n for all n ≥ 1, so
V y = V x ∈ M and so by our criteria above, y ∈ M and so y ∈ L. Furthermore, since py = V Fy = 0,
y ∈ L[p]. Since this also forces (. . . , 0, . . . , 0, z) = x − y ∈ M as well, the existence of a decomposition as
indicated above is sufficient in order to establish the desired surjectivity.

Hence, we want to find y, z ∈ Rk such that

x = (. . . , x−n, . . . , x−1, y) + (. . . , 0, . . . , 0, z)
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with wR(y) = 0, where y denotes the first covector on the right side. Clearly if y ∈ Rk exists so that
wR(y) = 0, then equating 0th-coordinates shows the existence of z. In other words, it suffices to check that
if x̂−n ∈ R is a lift of x−n for n ≥ 1, then ∑

n≥1

p−nx̂p
n

−n ∈ R,

where the sum a priori lies in RK . We can then set y to be the reduction modulo pR of the negative of this
sum.

But xp−n = 0 for all n ≥ 1, so we have for such n that

p−nx̂p
n

−n = p−n(x̂p−n)p
n−1
∈ pp

n−1−n R .

Combining this with pn−1 − n ≥ 0 for all n ≥ 1 then completes the proof that L[p] ⊕ kerV → M [p] is
surjective. This surjection yields the length relation `A(L/pL) ≥ `A(M/pM) − `A(M/VM), so in order to
prove that L/pL ↪→M/FM is an isomorphism, it is sufficient to check that the sequence

0→M/VM
F→M/pM →M/FM → 0,

which is at least right exact, is in fact exact. Since p = FV , this is clearly equivalent to the assertion that
the kernel of F lies in the image of V . This is a very special property of M (e.g., it implies that αp/k cannot
arise as the closed fiber of an object in FFA, though this is also clear by [15, §2, Rem 3]).

To verify this exactness, suppose for some x ∈M ⊆ CWk(Rk) that Fx = 0, so xp−n = 0 for all n ≥ 0. We
want to find some y ∈ Rk so that y = (. . . , x−n+1, . . . , x0, y) lies in M (so then x = V y is in the image of
V ). Thanks to the criteria for membership in M , it is enough to find y so that wR(y) = 0. If x̂−n ∈ R is a
lift of x−n, then as above we see that for n ≥ 1,

p−nx̂p
n

−n+1 ∈ pp
n−1−n R ⊆ R .

Thus, simply define

y = −
∑
n≥1

p−nx̂p
n

−n+1 mod pR .

We may now also conclude that

`A(L/pL) = `A(M/pM)− `A(M/VM),

so the surjection
L[p]⊕ kerV �M [p]

is an isomorphism. This clearly implies the injectivity of V |L.
�

Thanks to this theorem, we are motivated to make the definition (following Fontaine):

Definition 1.2. A finite Honda system over A is a pair (L,M) where M is a Dk-module with finite A-length
and L ⊆M is an A-submodule such that V |L is injective and the natural k-linear map

L/pL→M/FM

is an isomorphism. These objects form a category SHf
A in an obvious manner. The full subcategory SHf,u

A

of unipotent finite Honda systems over A consists of those objects (L,M) for which the action of V on M

is nilpotent. The full subcategory SHf,c
A of connected finite Honda systems consists of those objects (L,M)

for which the action of F on M is nilpotent.

It is because the group schemes µ2 and Z/2 over Z2 have isomorphic generic fibers that we need a
restriction for p = 2.
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Lemma 1.3. The category SHf
A is abelian. For a morphism ϕ : (L1,M1) → (L2,M2), kerϕ = (L′,M ′),

where M ′ = ker(M1 → M2) and L′ = L1 ∩M ′. Also, cokerϕ = (L′′,M ′′), where M ′′ = coker(M1 → M2)
and L′′ is the image of the composite map of A-modules

L2 →M2 →M ′′.

This category is also artinian.
The same statements are true for SHf,u

A and SHf,c
A . The forgetful functors SHf,c

A , SHf,u
A → SHf

A are
exact.

Proof. One way to prove this is to observe that by [9, Prop 8.10], we have an equivalence of categories between
SHf

A and the category denoted MF f,2A,σ,p,tor (in [9]), with explicit functors in both directions. Now simply
examine the proof in [9, Prop 1.8] that this latter category is abelian (and artinian). Similar arguments
apply in the unipotent and connected settings.

A direct proof could also be given by translating the arguments in [9, §1] through the above equivalence
of categories, but this is unnecessary and so we won’t bother with it.

�

The above lemma can also be deduced from the main results below. This will be explained after Corollary
1.6 and will be useful in the proof of our generalization to cases with e > 1.

Theorem 1.1 allows us to define the functor

LM = LMA : FFA → SHf
A

via LM(G) = (LA(G),M(Gk)). This is an additive contravariant functor. Since unipotence and connected-
ness can be detected on the closed fiber, we can ‘restrict’ LM to get an additive contravariant functor

LMu = LMu
A : FFuA → SHf,u

A ,

and LM c = LM c
A is defined similarly. The main theorem in the present setting (e = 1) is

Theorem 1.4. If p > 2, then LM is fully faithful and essentially surjective. The same is true for LMu and
LM c for all p.

In other words, LM (resp. LMu, LM c) is an equivalence of categories for odd p (resp. for all p) in
the usual weak sense. That is, we don’t yet claim to construct an explicit quasi-inverse functor, but for all
practical purposes we can regard LM (resp. LMu) as an equivalence of categories (this is also the sense
in which Fontaine uses this notion in [7, Ch IV] and [8]). With further work, one can construct explicit
quasi-inverses. We’ll say more about this later.

Before proving Theorem 1.4, we record two corollaries as noted in [7]. These are special cases of Raynaud’s
result [17, Cor 3.3.6] (together with an analogous argument when e = 1 = p − 1), and Raynaud’s proof of
the first corollary below is by somewhat different methods.
Corollary 1.5. If p > 2, then FFA is stable under the formation of scheme-theoretic kernels and is an
abelian category. A morphism is a kernel if and only if it is a closed immersion and is a cokernel if and only
if it is faithfully flat. The formation of the cokernel of a closed immersion is as usual.

For all p, the same statements are true for FFuA and FFcA (the full subcategory of connected objects).
Moreover, the forgetful functors from FFuA and FFcA to FFA are exact for odd p.

Proof. We give the argument for odd p and FFA. The arguments for FFuA and FFcA are done similarly.
By Theorem 1.1 and Lemma 1.3, FFA is an abelian category. If f : G→ G′ is a morphism and K denotes

the (abstract) kernel object in the abelian category FFA, then a consideration of Dieudonne modules on the
closed fiber and the definition of LM shows that the natural map Kk → ker(fk) is an isomorphism, with
ker(fk) denoting the scheme-theoretic kernel of fk. Thus, the map K → G is a closed immersion on the
closed fiber and so is a closed immersion. This factors through the scheme-theoretic kernel ker f ↪→ G, so we
get a closed immersion K ↪→ ker f of finite A-group schemes which is an isomorphism on the closed fibers.
Since K is also flat over A, a standard argument shows this map is an isomorphism. The rest is now easy.

�
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Corollary 1.6. If p > 2, then the functor which associates to each G in FFA its generic fiber K-group
scheme GK is a fully faithful functor. For arbitrary p, the same statement is true for the categories FFuA
and FFcA.

Proof. Faithfulness is clear by flatness. Now suppose p > 2 and we’re given a morphism f : GK → HK of
K-group schemes. We want it to arise from a morphism f : G → H in FFA. Let KK = ker fK and let K

denote the scheme-theoretic closure of this in G. Thus, K is a finite flat closed subgroupscheme of G and
fK factors through (G/K)K ' GK/KK . We see now that we may replace G by G/K and so without loss
of generality fK is a closed immersion. By Cartier duality, we may assume that the dual of fK is a closed
immersion, so a consideration of orders shows that fK is an isomorphism.

By Corollary 1.5, a morphism in FFA is an isomorphism if and only if the induced map on generic fibers
is an isomorphism. Now use Raynaud’s result on the existence of a ‘maximal’ prolongation of GK over A to
obtain the desired f [17, Prop 2.2.2].

The same arguments apply to FFuA and FFcA for any p.
�

As we noted above, Raynaud independently deduces Corollary 1.5 and from this one can readily obtain
both Corollary 1.6 and (more importantly) Lemma 1.3 by formal arguments based on Theorem 1.4 (see the
proof of Theorem 4.3 for how this is carried out in a more general setting). In order for this not to be circular,
note that the proof of Theorem 1.4 below does not use Lemma 1.3. This clarifies the comment following
Lemma 1.3 and will also be the means by which we deduce the analogue of Lemma 1.3 in the general case
e ≤ p − 1, as the analogue of Corollary 1.5 for e ≤ p − 1 is proven independently by Raynaud. One could
perhaps avoid using Raynaud’s results in the proof of the analogue of Lemma 1.3 for e ≤ p − 1, instead
using just linear algebra manipulations, but we’ll need Raynaud’s explicit formulas anyway in the proof of
Theorem 1.4 and its generalization for e ≤ p− 1.

We now are ready to prove Theorem 1.4.

Proof. (of Theorem 1.4) The proof consists of five steps. The formulation of these steps is due to Fontaine
[8]; here, we supply some extra technical details. For now, if p = 2 we shall require G to be unipotent. We
will come back to the connected case at the end.

Step 1. Let S be a finite flat A-algebra. Then we claim that the reduction map

G(S)→ G(Sk) = Gk(Sk)

is injective (this is false for G = µ2, S = Z2).
Before checking this, note that this not only permits us to identify G(S) with a subgroup of Gk(Sk) in

a manner which is functorial in both G and S, but it also implies (by Yoneda’s Lemma) that the functor
G Gk from FFA to the category of finite commutative k-group schemes is a faithful functor. Since LM(G)
encodes the Dieudonne module of Gk, it follows that LM is at least faithful for odd p and LMu is faithful
for all p.

In order to verify Step 1, we can base extend by the completion of the strict Henselization of A, so we
may suppose that k is algebraically closed and A is strictly Henselian. Also, if

0→ G′ → G→ G′′ → 0

is a short exact sequence in FFA and the assertion is true for G′ and G′′, then it is trivially true for G.
Hence, the method of scheme-theoretic closure reduces us to the case in which the generic fiber GK is a
simple finite commutative group scheme over K with p-power order.

By [17, Prop 3.2.1, Prop 3.3.2], G is an F-vector scheme with F a finite field of order equal to that of G.
Choosing r so that F has size pr, [17, Cor 1.5.1, Prop 3.3.2(1), Prop 3.3.2(3)] implies that as an A-scheme,

G ' Spec(A[X1, . . . , Xr]/(X
p
i − δiXi+1)),
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where δi ∈ A satisfies ordA(δi) ≤ p− 1 for all i and some ordA(δi0) < p− 1. Here we adopt the convention
that the set of indices are a principal homogenous space for Z/r, and the final condition with i0 is where we
have used the unipotence hypothesis in case e = 1 = p− 1 (see the proof of [17, Prop 3.3.2(3)]).

Choose g ∈ G(S) vanishing in G(Sk), so g corresponds to a choice of x1, . . . , xr ∈ pS satisfying xpi+1 = δixi
(and again we view the indices as a principal homogenous space for Z/r). Iterating this condition, we obtain

xp
r

i = δxi,

with δ =
∏
δi ∈ A satisfying ordA(δ) < r(p − 1). Writing xi = pyi for yi ∈ S and using pr − r(p − 1) ≥ 1,

A-flatness of S allows us to cancel p’s to get yi ∈ pyiS for all i. Thus,

yi ∈
⋂
m≥1

pmS = 0,

so g(IG) = 0. That is, G(S)→ G(Sk) is injective.

Step 2. For each g ∈ G(S), with S a finite flat A-algebra, we get maps gK : RK → SK and gk : Rk → Sk, the
latter giving rise to

CWk(gk) : CWk(Rk)→ CWk(Sk).

The commutative diagram of A-modules

CWk(Rk)
CWk(gk)−→ CWk(Sk)

wR

y ywS

RK /pR
gK−→ SK/pS

(with wS defined by the same formula as wR) shows (via Step 1) that we can identify G(S) with a subgroup
of

G(S) def= {γ ∈ Gk(Sk) | CWk(γ)(L) ⊆ kerwS}
in a manner which is functorial in both G and S. Clearly G is a functor from finite flat A-algebras to Ab in
an obvious manner. Recall that Gk(Sk) ' HomDk(M(Gk), ĈW k(Sk)) [7, Ch III, §1.5, Prop 1.2]

Though G is a priori just a subgroup functor of the functor G on finite flat A-algebras, we’ll show below
that G(S) = G(S) and so the natural transformation G→ G is an isomorphism of group functors.

Step 3. If 1 < p − 1 and f : Γ → Γ′ is an isogeny of p-divisible groups over A with G isomorphic to the
kernel, then we claim G ' G in Step 2. The same holds for all p if Γ, Γ′, and G are all unipotent (i.e., have
connected duals).

In order to show that G(S) ⊆ G(S) fills up the entire group, we need to use Fontaine’s classification of
p-divisible groups over A. More precisely, by [7, Ch IV, §1.10, Rem 2,3] (which covers both the case 1 < p−1
and the unipotent case when 1 = p− 1), for any finite flat A-algebra S, we have functorially as groups that
Γtor(S) def= lim−→Γ[pn](S) is identified via reduction with

{γ ∈ Γk(Sk) |LA(Γ) ↪→M(Γk) ⊆ ĈW k(O(Γk))
ĈWk(γ)−→ ĈW k(Sk) wS−→ SK/pS is 0}

(recall that ĈW k(Sk) = CWk(Sk) since Sk is a finite k-algebra), and likewise for Γ′tor(S). The A-submodule
of ‘logarithms’ LA(Γ) ⊆ M(Γk) has a somewhat complicated definition as an A-module mapping to M(Γk)
[7, p. 167], and [7, Ch IV, Prop 1.1] shows that LA(Γ) is finite and free as an A-module, with LA(Γ)→M(Γk)
injective (here we use that M(Γk) is a finite free A-module, as Γk is a p-divisible group [7, Ch III, §6.1, Rem 3]).
In particular, this functorial description of torsion implies that the natural map of groups Γ′tor(S)→ Γ′k(Sk)
is injective.

Now choose g ∈ Gk(Sk). Of course G(S) ↪→ Γtor(S). Assume CWk(g)(L) ⊆ kerwS (i.e., g ∈ G(S)). We
need to show g ∈ G(S). We first make the crucial claim that M(Γk)�M(Gk) takes LA(Γ) over into LA(G).
In fact, this is the reason for defining LA(G) as we did in the first place. To prove this claim, simply observe
that the given closed immersion of formal A-group schemes i : G ↪→ Γ gives an element of Γ(R) which lies in
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Γtor(R) (G is annihilated by its order!), so by the description of Γtor(R) above, we get precisely the desired
condition.

The functoriality of ĈW k now implies that iSk(g) ∈ Γk(Sk) satisfies the conditions describing Γtor(S).
Thus, there is some γ ∈ Γtor(S) such that γk = iSk(g), so (fS(γ))k = fSk(iSk(g)) = 0 (recall G = ker f). But
fS(γ) lies in Γ′tor(S), which injects into Γ′k(Sk) via reduction. Hence, fS(γ) = 0.

Exactness of the sequence
0→ G(S)→ Γ(S)→ Γ′(S)

implies that γ = iS(g0) for some g0 ∈ G(S), so iSk((g0)k) = γk = iSk(g). That is, g = (g0)k is in G(S),
viewed inside of Gk(Sk). This shows that G(S) = G(S).

We note in passing that if Γ and Γ′ are unipotent, then G is automatically unipotent.

Step 4. Let (L,M) be an object in SHf
A with p 6= 2. We claim there is an object G(L,M) in FFA which is

the kernel of an isogeny of p-divisible groups over A and for which (L,M) ' LM(G(L,M)); in other words,
LM is essentially surjective. If p is arbitrary and (L,M) is an object in SHf,u

A , we make an analogous claim
with G(L,M) in FFuA the kernel of an isogeny of unipotent p-divisible groups. Beware that we don’t (yet)
claim to construct G(L,M) in a manner which is functorial in (L,M).

This step is the heart of the proof and is the most important detail omitted in [8]. First, we will construct
a short exact sequence of Dk-modules

0→M2 →M1 →M → 0

with M1 and M2 finite free A-modules (so by [7, Ch III, §6.1, Rem 3], Mi 'M(Γi) for Γi a p-divisible group
over k). In addition, we will choose M1 and M2 with topologically nilpotent V action (i.e., with Γi unipotent)
when M has nilpotent V action (i.e., when M is the Dieudonne module of a unipotent finite commutative
k-group scheme). Obviously we only need to construct M1 � M and then can set M2 to be the kernel.
We exploit Cartier duality in order to decompose M into a product of étale-connected, connected-étale, and
connected-connected components, so it suffices to consider these three cases separately (and just the first
and third cases are needed in the unipotent setting). See [7, Ch III, §1.7] for the definitions of the notions
of étale and connected in the setting of suitable Dieudonne modules; one can also see from the arguments
in [7, Ch III] that these notions are compatible with the functor between finite flat commutative k-group
schemes of p-power order and their Dieudonne modules. By [7, Ch III, §5.3, Cor 2], one can also explicitly
translate Cartier duality of finite flat commutative k-group schemes with p-power order into the language of
their Dieudonne modules.

If M is étale, then let M1 be a free A-module of finite rank, together with a surjection of M1 onto M
inducing an isomorphism modulo p. Since F : M → M is a Frobenius-semilinear automorphism, we can
lift it to a Frobenius-semilinear automorphism F1 of M1. Defining V1 = pF−1

1 gives an M1 of the desired
sort (with V1 topologically nilpotent). If M has an étale dual, we can proceed similarly using V in place
of F . There remains the connected-connected case, so V n = Fn = 0 for some suitably large n. Choosing
A-module generators of M allows us to take for M1 a product of finitely many copies of A[F, V ]/I, with I
the left ideal generated by Fn − V n. This M is a finite free A-module having topologically nilpotent F and
V actions.

Next, we will construct A-submodules Li ⊆ Mi such that the natural k-linear maps Li/pLi → Mi/FMi

are isomorphisms, M2 ↪→ M1 takes L2 over into L1 (we do not claim L2 = M2 ∩ L1), and the image of L1

under M1 �M is precisely L. It is this construction that will use the injectivity of V |L. In particular, we’ll
have a map

ψ : (L2,M2)→ (L1,M1)

in the category Hd
A when p 6= 2 [7, Ch IV, §1.10, Rem 1] and in the category Hd,u

A in the unipotent case
[7, loc. cit.]. Recall that Hd

A is the category of pairs (L,M) with L an A-submodule of a Dk-module M
such that M is finite free with rank d as an A-module and the natural k-linear map L/pL→ M/FM is an
isomorphism (the definition of morphism is obvious, as are the definitions of the corresponding ‘unipotent’
and ‘connected’ full subcategories Hd,u

A , Hd,c
A ).
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Suppose for the moment that we have carried out the construction of L1 and L2. Let’s see how to use
this to construct G(L,M) of the desired sort. When 1 < p − 1, we can let Γi/A be the ‘unique’ p-divisible
group over A (up to isomorphism) such that in Hd

A,

(Li,Mi) ' LMA(Γi).

When 1 ≤ p − 1 and we are in the unipotent setting, we can uniquely choose such Γi which are unipotent.
Here we are invoking the main classification theorem [7, Ch IV, §1.2, Thm 1], but see [7, Ch IV, §1.2, §1.10]
for the definition of LMA as just used; the discussion in Step 3 shows that, in a reasonable sense, this is
compatible with the notion of LMA on FFA (and similarly in the unipotent case); also see Lemma 4.12
below. Thus, there is a unique morphism f : Γ1 → Γ2 of p-divisible groups such that

LMA(f) : (L2,M2)→ (L1,M1)

is the map ψ we mentioned above. On the closed fibers, which satisfy (Γi)k ' Γi, the induced morphism fk
corresponds to the map

M2 = M(Γ2)→M(Γ1) = M1

which is our original inclusion. As this is injective with a cokernel M that has finite A-length, the morphism
fk is an isogeny. Therefore, f is itself an isogeny and so is ‘formally faithfully flat’ over A (i.e., ‘faithfully
flat’ with respect to the functor ⊗̂A on ‘profinite’ A-modules in the sense of [7, Ch I, §3]).

Hence, G def= ker f is an object in FFA (in particular, it is flat over A) and M 'M(Gk). When Γ1 and Γ2

are unipotent, so is G. Under the Dk-module isomorphism M 'M(Gk), we claim that LA(G) corresponds
to L. Since L1 → L is surjective, certainly L lies inside of LA(G) (see the discussion in Step 3). But the
commutative diagram of k-vector spaces

L/pL −→ LA(G)/pLA(G)
'
y y '

M/FM
∼−→ M(Gk)/F M(Gk)

shows that the top row is an isomorphism, whence LA(G) does correspond precisely to L, so (L,M) '
LM(G). Let G(L,M) = G.

Now let’s see how to construct L1 and L2 as described above. The first thing we need to do is to check
that an abstract object (L,M) in SHf

A enjoys some properties noted earlier (in the proof of Theorem 1.1)
for the essential image of LM . More precisely, we claim that the kernel of F lies in the image of V and

L[p]⊕ kerV = M [p].

In order to establish this decomposition of M [p], note that there is certainly an injection from the left side
to the right side (V |L is injective!) and so a comparsion of the length of both sides (using L/pL 'M/FM)
yields the inequality

`A(M/FM) + `A(M/VM) ≤ `A(M/pM).

In order to establish the reverse inequality, just note that the sequence

0→M/VM
F−→M/pM →M/FM → 0,

is always right exact. Hence, we not only get the decomposition of M [p], but the equality of lengths shows
that the right exact sequence above is in fact exact. However, this exactness is equivalent to the other claim
the kernel of F lies in the image of V .

With these initial observations settled, let e1, . . . , er ∈ M1/FM1 be a basis for the image of M2/FM2,
with representatives ei ∈M2 ⊆M1. Let er+1, . . . , en extend this to a full basis of M1/FM1, so their images
in M/FM give a basis of M/FM

∼← L/pL. Note that we are implicitly using the obvious fact that the
sequence

M2/FM2 →M1/FM1 →M/FM → 0
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is exact. We may (and do) choose representatives er+1, . . . , en ∈M1 so that their images in M lie in L and
constitute a minimal A-basis of L. Define L1 =

∑
Aei. Clearly L1/pL1 'M1/FM1 and

L1 ↪→M1 �M

has image precisely L.
We now seek to find εr+1, . . . , εm ∈M2 ∩ FM1 so that e1, . . . , er, εr+1, . . . , εm is a basis of M2/FM2 and

all εj lie in L1 (note that e1, . . . , er now denote elements of M2/FM2 and not M1/FM1, but this won’t cause
any confusion). Defining

L2 = Ae1 + · · ·+Aer +Aεr+1 + . . . Aεm

will complete our construction. More generally, choose any ε ∈M2∩FM1. It suffices to shows that its image
in M2/FM2 can be represented by an element of M2 which lies in L1.

Well, ε = Fy with the projection P : M1 � M killing ε, so P(y) ∈ kerFM . We claim, however, that
VM (L[p]) = kerFM . Indeed, ‘⊆’ is clear and if Fx = 0, then x lies in the image of V , say x = V z for z ∈M .
But pz = FV z = Fx = 0, so z ∈M [p] = L[p]⊕ kerV. Thus, we can take z ∈ L[p]. Consequently,

P(y) = V

 n∑
j=r+1

aj P(ej)

 ,

so

y ≡ V

 n∑
j=r+1

ajej

 mod M2.

Applying F , we obtain

ε = Fy ≡
n∑

j=r+1

ajpej mod FM2,

which then gives what we sought to prove.

Step 5. We will now show that G(S) = G(S) for all finite flat A-algebras S. Note that the formula for G(S)
and some compatibility checks then will imply that LM is fully faithful for odd p and LMu is fully faithful
for all p, thereby completing the proof of Theorem 1.4.

For p 6= 2 and (L,M) = LM(G) (resp. for arbitrary p and (L,M) = LMu(G)), choose G(L,M) as in Step
4 so that LM(G(L,M)) ' LM(G) (resp. so that LMu(G(L,M)) ' LMu(G)). By Step 3, G ' G(L,M) as
functors on finite flat A-algebras, so G ↪→ G(L,M) as group functors. But the induced map on closed fibers
corresponds to the isomorphism of Dieudonne modules M(

(
G(L,M)

)
k
) 'M(Gk), so the map on closed fibers

is an isomorphism. Hence, by flatness over A, the map of A-group schemes G→ G(L,M) is an isomorphism
also. From this it follows that G(S) = G(S) and we are done with the case of odd p and unipotent G for
p = 2.

Step 6. The case p = 2 and G connected.
We saw above that for any odd p and any G in FFA, or for p = 2 and unipotent G, there is an isomorphism
G ' G(LA(G),M(Gk)), so G arises as the kernel of an isogeny of p-divisible groups over A. Now suppose p = 2
and G is connected. The dual Ĝ is unipotent, so is the kernel of an isogeny of p-divisible groups over A. The

dual isogeny has kernel isomorphic to ̂̂G ' G, so there is a short exact sequence of formal A-group schemes

0→ G→ Γ1 → Γ2 → 0.

Moreover, G lands inside of the connected component of Γ1, so we can easily suppose the Γi are connected.
Now we invoke Fontaine’s classification of p-divisible groups in the connected case over A for p = 2. The

definition of the functor G is slightly different in this case. Since G is connected, M(Gk) has a nilpotent
F -action, so M(Gk) ↪→ CWk(Rk) lies in the ‘connected factor’ CW c

k (Rk) = CWk(rRk), where rRk denotes
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the nilpotent maximal ideal given by augmentation. Since every element of rRk lifts to an element of the
augmentation ideal rR of R, and wR is well-defined, we can define a variant continuous group map

wεR : CWk(rRk)→ RK /prR

using liftings to the augmentation ideal in the formula for wR.
Observe that the composite of wεR with projection RK /prR → RK /pR is exactly wR and the two maps

have the same kernel (since rR is an A-module direct summand of R)! We now interpret LA(G) as the kernel
of wεR, since it is this map which will have a more useful analogue in the setting of connected p-divisible
groups for p = 2. It follows from [7, Ch IV, Prop 1.4′] (and the definitions preceding this Proposition) that
an analogue of [7, Ch IV, §1.10, Rem 2] is true. More precisely, suppose p = 2, Γ is a connected p-divisible
group over A, and S is a p-adic A-ring with rS the ideal of topologically nilpotent elements. There is a
functorial identification of the group Γtor(S) with the group of all Dk-linear maps

γ : M(Γk)→ CWk(rS/prS)

for which the composite map

LA(Γ) ↪→M(Γk)
γ→ CWk(rS/prS)

wcS−→ SK/prS

is zero. Here, wcS is a ‘connected’ variant on wS defined with the same formula, but using liftings to the ideal
rS; cf. [7, pp. 181-2] (where slightly different notation is used).

We define the functor G on p-adic A-rings S to be given by the group of Dk-linear maps

G(S) = {γ : M(Gk)→ CWk(rS/prS) |wcS ◦ γ(LA(G)) = 0}.
Pick any exact sequence 0 → G → Γ1 → Γ2 → 0 with Γi connected. The induced exact sequence of
Dk-modules

0→M((Γ2)k)→M((Γ1)k)→M(Gk)
induces a map LA(Γ1)→ LA(G) for the same reasons as used earlier. Also, the exactness of

0→ G(S)→ (Γ1)tor(S)→ (Γ2)tor(S)

and the above functorial description of torsion in a connected p-divisible group for p = 2 gives rise to an
injective map

jG,S : G(S)→ G(S)
which is functorial in S and is independent of the choice of ‘resolution’ of G by connected p-divisible groups;
from this, functoriality of jG,S in G is clear also.

Now we show that the inclusion G(S) → G(S) is also surjective. In the earlier discussion, we used
injectivity of ‘passage to closed fiber’ on ‘points’, which is not true anymore (again, recall µ2 over Z2). But
an alternate argument based on the modified definition of G will work, as we now explain. Choose g ∈ G(S),
so composing with π : M((Γ1)k)�M(Gk) gives an element γ = g◦π ∈ (Γ1)tor(S). If γ vanishes in (Γ2)tor(S),
then it comes from an element of G(S) which is easily seen to map to g under jG,S. Since the composite map

M((Γ2)k)→M((Γ1)k)→M(Gk)
g→ CWk(rS/prS)

is certainly zero, we get the desired vanishing.
The isomorphism of functors G ' G on p-adic A-rings, together with naturality in the connected G, yields

full faithfulness of LM c for p = 2. Essential surjectivity is proven by exactly the same argument as we used
in Step 4 above.

�

For its independent interest, we now record a corollary mentioned above:
Corollary 1.7. For p > 2, any G in FFA arises as the kernel of an isogeny of p-divisible groups over A.
The same statement is true with unipotent and connected group objects for all p.

Next, note that for odd p and any G in FFA (resp. for arbitrary p and G in FFuA), both G and G make
sense as functors on p-adic A-rings and as such there is a natural map G→ G.
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Corollary 1.8. G(S) ' G(S) for all p-adic A-rings S.

Proof. Note that G(S) makes sense, because wS makes sense, using the same formula as when S is finite flat
over A; [7, Ch II, §5.1,§5.2] has a discussion of this. For odd p, let Γ→ Γ′ be an isogeny of p-divisible groups
over A such that G is the kernel. In the unipotent setting with arbitrary p, choose such p-divisible groups
which are unipotent (the connected case for p = 2 was settled above, so we ignore this case now). The map
G(S)→ Γ(S) is injective, with image inside of Γtor(S), and by [7, Ch IV, §1.10, Rem 3],

Γtor(S)→ Γtor(Sk)

is injective. From this it easily follows that G(S)→ G(Sk) is injective, so G(S)→ G(S) is injective.
Consequently, Step 1 is now valid for all p-adic A-rings S. But this step was the only reason to restrict to

finite flat A-algebras rather than to p-adic A-rings above (as this restriction was needed in order to permit
the base extension argument involving passage to the strictly Henselian case). All other steps in the proof
of Theorem 1.4 go through for p-adic A-rings once Step 1 does. One simply replaces ‘finite flat A-algebra’
with ‘p-adic A-ring’ everywhere and the references to [7] remain applicable.

�

Note that as we promised earlier, Lemma 1.3 was never used in the proof of Theorem 1.4. We’ll later
return to this point in our discussion of the case e ≤ p− 1.

We conclude our discussion of the e = 1 case with an explicit description of a quasi-inverse functor to
LM for odd p and to LMu, LM c for arbitrary p. This result is implicit in [8] but is not explicitly stated
there (though it is given in a slightly less precise form in [9, Prop 9.12]). Let CK denote the completion of a
chosen algebraic closure K of K, with valuation ring (OCK

,mCK
). For arbitrary p > 2 and (L,M) in SHf

A

(or p = 2 and (L,M) in SHf,u
A ), define

ρ(L,M) = {φ ∈ HomDk(M, ĈW k(OCK
/p)) | φ(L) ⊆ kerwOCK

}

as a Z[Gal(K/K)]-module (via the canonical isomorphism Gal(K/K) ' Autcont(CK/K)). For p = 2 and
(L,M) in SHf,c

A , define ρc(L,M) in a similar way, using ĈW (mCK
/pmCK

) and wcOCK
. Note that if p = 2 and

G is connected and unipotent, there is a natural map ρc(L,M) → ρ(L,M) of Z[Gal(K/K)]-modules (since F is

nilpotent on M , any φ ∈ ρ(L,M) has image in ĈW k(mCK
/pOCK

)).

Theorem 1.9. Assume p 6= 2 or else that (L,M) lies in SHf,u
A or SHf,u

A . The abelian group underlying
ρ(L,M) is finite p-group and Gal(K/K) acts through the quotient by an open normal subgroup. Consider the
finite flat commutative group scheme G(ρ(L,M)) of p-power order over K which is canonically attached to
ρ(L,M) (using our fixed choice of K). This is the generic fiber of a canonically determined object G(L,M)

in FFA if p 6= 2, and similarly with FFuA if (L,M) lies in SHf,u
A and p is arbitrary. In this way, we get a

functor (L,M)  G(L,M) which is a quasi-inverse to LM for odd p and which is a quasi-inverse to LMu

for arbitrary p.
If p = 2, the same assertions holds for connected objects, using ρc(L,M). If in addition (L,M) is unipotent,

then ρc(L,M) → ρ(L,M) is an isomorphism.

Proof. Since (L,M) ' LM(G) for some G in FFA, with G unipotent if (L,M) lies in SHf,u
A , ρ(L,M) '

G(OCK
) as a Z[Gal(K/K)]-module (this is where the definition of ρ(L,M) comes from). By Corollary 1.8,

this can be identified with G(OCK
) in a manner which is functorial in OCK

— that is, as a Z[Gal(K/K)]-
module. Since this is canonically the same as G(K), we obtain the claim that ρ(L,M) has an underlying
abelian group which is a finite p-group on which Gal(K/K) acts continuously.

Because ρ(L,M) ' G(K) as a Galois module, it follows from Corollary 1.5 and [17, Cor 2.2.3(2)] that the
affine K-algebra of G(ρ(L,M)) contains a unique finite (flat) A-subalgebra which has generic fiber G(ρ(L,M))
and which admits a (necessarily unique, commutative, p-power order) group scheme structure over A com-
patible with this generic fiber identification, with the added condition of unipotence or connectedness for
p = 2. Also, if (L,M) lies in SHf,u

A for p > 2, the resulting A-group scheme must be unipotent (resp.
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connected). Define G(L,M) to be the corresponding object in FFA (and it lies in FFuA when (L,M) lies in
SHf,u

A ). Note that the passage from G(ρ(L,M)) to G(L,M) does not depend on our choice of K; it is only the
passage from ρ(L,M) to G(ρ(L,M)) that depends on this choice.

It is now straightfoward to check that

(L,M) G(L,M)

is a functor of (L,M) in an obvious manner and that this is a quasi-inverse to LM for odd p and to LMu

for arbitrary p. If we change K, upon choosing an isomorphism between the two algebraic closures we easily
get an explicit isomorphism between the resulting functors (the only point of the construction that really
changes is the passage from a Galois representation to a finite group scheme over K).

In the connected case with p = 2, the same arguments carry over for ρc. Finally, if p = 2 and (L,M)
is unipotent and connected, then a G in FFuA with LMu(G) ' (L,M) has M(Gk) ' M , so G lies in FFcA.
Thus, LM c(G) ' (L,M) and we have a commutative diagram

G(OCK
) ' ρc(L,M)

‖ ↓
G(OCK

) ' ρ(L,M)

This proves that ρc(L,M) → ρ(L,M) is an isomorphism.
�

2. Defining Honda Systems when e ≤ p− 1

We now wish to extend all of the arguments in §1 to the case where e ≤ p − 1. The first main point is
to figure out what the definition of a Honda system should be. Before getting into the details, we should
emphasize that a potentially serious technical problem for us when e > 1 is the fact that for G in FFA′ and
M = M(Gk), the sequence

0→M/V
F→M/p→M/F → 0,

which is always right exact, does not have to be exact. The fact that this is always exact when e = 1 was
critical for Fontaine’s argument in §1 to work (see Step 4). The formulas of Oort-Tate in [15, §2, Rem 3] show
that when e > 1, there always exists G in FFA′ with closed fiber αp/k, in which case the above sequence is

0→M
0→M

id→M → 0,

which is not exact. Fortunately, the case e > 1 has other significant features that will enable us to circumvent
this issue.

Before giving the definitions (or, rather, the motivation), we need to recall a crucial general construction,
due to Fontaine, which attaches to a Dk-module a certain A′-module (note that it generally makes no sense
to have F or V operators on an A′-module when e > 1 because Frobenius-semilinearity wouldn’t make
any sense). We will only discuss this construction in the case e ≤ p − 1, as that’s all we’ll need and quite
fortunately it is possible to make things very explicit in this case. This explicitness will be useful when
carrying out various computations.

It should be emphasized that the computations in this section are very formal and so if we consider
the construction below without conditions on e, the basic formalism still goes through for tame extensions
(though it does not coincide with Fontaine’s general construction in [7, Ch IV, §2] once e > p− 1). In later
sections, the restriction e ≤ p− 1 will be essential.

Let M be a Dk-module. We define M (j) to be the Dk-module whose underlying A-module is A ⊗A M ,
using σj : A ' A (σ denoting the Frobenius map), F (λ⊗ x) = σ(λ)⊗F (x), and V (λ⊗ x) = σ−1(λ)⊗ V (x).
Thus, we obtain A-linear maps

Fj : M (j+1) →M (j), Vj : M (j) →M (j+1),

satisfying FjVj = pM(j) , VjFj = pM(j+1) . We’ll only use M (0) = M and M (1). We will not abuse notation
and write F , V for F0, V0, as this might cause confusion with respect to issues of A-linearity.
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Definition 2.1. We define MA′ to be the direct limit of the diagram

m⊗AM
VM−→ p−1m⊗AM (1)

ϕM0

y xϕM1
A′ ⊗AM

FM←− A′ ⊗AM (1)

in the category of A′-modules, where ϕM0 , ϕM1 are the obvious ‘inclusion’ maps (which might not be injective!),
VM (λ⊗ x) = p−1λ⊗ V0(x), and FM (λ⊗ x) = λ⊗ F0(x).

More explicitly, MA′ is the quotient of (A′ ⊗AM)⊕ (p−1m⊗AM (1)) by the submodule

{(ϕM0 (u)− FM (w), ϕM1 (w)− VM (u)) | u ∈ m⊗AM,w ∈ A′ ⊗AM (1)}.

For x ∈ A′ ⊗A M and y ∈ p−1m ⊗A M (1), we let (x, y) denote the residue class in MA′ represented by
(x, y). Trivially M  MA′ is a covariant additive functor from Dk-modules to A′-modules. When e = 1,
the obvious A-module isomorphism pA ⊗AM ' M shows that MA is isomorphic to the direct limit of the
diagram

M
V0−→ M (1)

p
y ∥∥∥
M

F0←− M (1)

in the category of A-modules and so the natural A-module map ιM : M →MA given by ιM (m) = (m, 0) is
an isomorphism. This will motivate how we define and study finite Honda systems over A′.

There are maps
ιM : A′ ⊗AM →MA′

and
FM : p−1m⊗AM (1) →MA′

of A′-modules, natural in M . Also, it is easy to check that the A′-linear maps

1⊗ V0 : A′ ⊗AM → A′ ⊗AM (1), p⊗ id : p−1m⊗AM (1) → A′ ⊗AM (1)

satisfy the necessary compatibilies to induce an A′-linear map

VM : MA′ → A′ ⊗AM (1)

on the direct limit MA′ . For accuracy these maps should be denoted ιM,A′ , FM,A′ , and VM,A′ (and likewise
we should have written VM,A′ , FM,A′ , ϕM,A′

0 , ϕM,A′

1 above), but we’ll only use the more precise notation
when the less precise notation may cause confusion (e.g., in our discussion of base change in §4). Also,
observe that via ιM,A : M 'MA, FM,A is exactly F0 : M (1) →M and VM,A is exactly V0 : M →M (1).

Using the natural A-linear maps M → A′ ⊗AM
ιM→ MA′ and M (1) → p−1m⊗AM (1), it is easy to check

that the diagram

M (1) F0−→ M
V0−→ M (1)

↓ ↓ ↓
p−1m⊗AM (1) FM−→ MA′

VM−→ A′ ⊗AM (1)

commutes.

Warning In [7, Ch IV, §2.4ff], p−1m⊗AM (1) is denoted MA′ [1].

Before proceeding further, we should remark that since K ′/K is a tamely totally ramified extension, we
can choose a uniformizer π of A′ such that πe = pε for a suitable unit ε ∈ A×. Fix such a choice of π now
and forever. This will be essential for many of our calculations, since it makes the matrix for multiplication
by π on A′ extremely simple with respect to the A-basis 1, . . . , πe−1.
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Lemma 2.2. If `A(M) <∞, then

`A′(MA′) = `A′(p−1m⊗AM (1)) = `A′(A′ ⊗AM) = e`A(M).

Also, the functor M  MA′ is exact on the category of Dk-modules with finite A-length.
Remark 2.3. This extends [7, Ch IV, §2.6, Cor 1] to the finite-length case.

Proof. It is not hard to check ‘by hand’ that M  MA′ is right exact as asserted. Thus, exactness will follow
from the length result. The essential point here and for what follows is the simple observation that because
A→ A′ induces an isomorphism of residue fields, for any A′-module N we have the equality `A′(N) = `A(N).
It is now obvious that `A′(p−1m⊗AM (1)) = e`A(M) = `A′(A′ ⊗AM). As for `A′(MA′), which is at least a
priori finite, we see from the explicit description of MA′ that `A′(MA′) is equal to the A′-length of

{(u,w) ∈ (m⊗AM)⊕ (A′ ⊗AM (1)) | ϕM0 (u) = FM (w), ϕM1 (w) = VM (u)}.

We will show that as an A-module, this is (non-canonically) isomorphic to

M ⊕ (M (1))
⊕(e−1)

,

so `A′(MA′) = `A(MA′) = e`A(M) as desired.
In order to get the A-module isomorphism mentioned above, recall our uniformizer π. Any u ∈ m⊗AM

and w ∈ A′ ⊗AM (1) can be uniquely written in the form

u =
e∑
j=1

πj ⊗ uj , w =
e−1∑
j=0

πj ⊗ wj ,

with uj ∈M , wj ∈M (1). The condition ϕM0 (u) = FM (w) says that in A′ ⊗AM ,

1⊗ pεue +
e−1∑
j=1

πj ⊗ uj = 1⊗ F0w0 +
e−1∑
j=1

πj ⊗ F0wj ,

so the precise conditions are pεue = F0w0 and uj = F0wj for 1 ≤ j ≤ e − 1. Meanwhile, ϕM1 (w) = VM (u)
says that in p−1m⊗AM (1),

1⊗ εV0ue +
e−1∑
j=1

p−1πj ⊗ V0uj = 1⊗ w0 +
e−1∑
j=1

p−1πj ⊗ pwj ,

so the precise conditions are εV0ue = w0 and V0uj = pwj for 1 ≤ j ≤ e− 1.
Hence, we see that we are free to choose ue ∈M and w1, . . . , we−1 ∈M (1), with everything else uniquely

determined. This gives rise to the desired A-module isomorphism.
�

Lemma 2.4. If `A(M) <∞, then

`A′(ker ιM ) = `A′(coker ιM ) = (e− 1)`A(kerV ),

`A′(ker FM ) = `A′(coker FM ) = `A(kerF ),
and

`A′(ker VM ) = `A′(coker VM ) = `A(kerV ).
Also, the kernels and cokernels of FM and VM are annihilated by m (this is true even without a finiteness
assumption on `A(M)). Finally, the commutative diagram above Lemma 2.2 induces k-linear isomorphisms

kerF0 ' ker FM , cokerF0 ' coker FM ,

and
kerV0 ' ker VM , cokerV0 ' coker VM .

Remark 2.5. This lemma extends [7, Ch IV, §2.5, Cor 2] to the finite-length case.
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Proof. Certainly `A′(ker ιM ) = `A′(coker ιM ), since ιM is an A′-linear map between A′-modules with the
same finite A′-length, and likewise for FM and VM . We’ll now explicitly compute the lengths of the kernels.

By definition, ker ιM = {ϕM0 (u)− FM (w) | ϕM1 (w) = VM (u)}. Writing

u =
e∑
j=1

πj ⊗ uj ∈ m⊗AM, w =
e−1∑
j=0

πj ⊗ wj ∈ A′ ⊗AM (1)

as usual, ϕM1 (w) = VM (u) says exactly that w0 = εV0ue and, for 1 ≤ j ≤ e − 1, pwj = V0uj . In this case,
we compute in A′ ⊗AM that

ϕM0 (u)− FM (w) = 1⊗ (pεue − F0w0) +
e−1∑
j=1

πj ⊗ (uj − F0wj).

But
pεue − F0w0 = pεue − F0εV0ue = ε(p− F0V0)ue = 0

and for 1 ≤ j ≤ e− 1,
V0(uj − F0wj) = V0uj − pwj = 0,

so easily

ker ιM =


e−1∑
j=1

πj ⊗ u′j |V u′j = 0

 .

This enables us to see that

`A′(ker ιM ) = `A(ker ιM ) = (e− 1)`A(kerV ).

Meanwhile,
ker FM = {ϕM1 (w)− VM (u) | ϕM0 (u) = FM (w)}.

Doing a similar computation as above (in fact, just extending the one in the proof of Lemma 2.2), we find

ker FM = {1⊗ w ∈ p−1m⊗AM (1) | F0w = 0}.
Note that if 1⊗ w ∈ ker FM , then π(1⊗ w) = p−1π ⊗ pw = 0, so ker FM is annihilated by m and clearly

`A′(ker FM ) = `A(ker FM ) = `A(kerF ).

The description of ker FM also shows that the natural k-linear map kerF0 → ker FM is an isomorphism.
Let’s next check that m annihilates coker FM . Choose x ∈M . We need to show that for 1⊗x ∈ A′⊗AM ,

π · ιM (1⊗ x) maps to 0 in coker FM . This says that ιM (π ⊗ x) is in the image of FM . But this is obvious:

ιM (π ⊗ x) = FM (VM (π ⊗ x))

(the careful reader will note the harmless fact that the two π ⊗ x’s in the above equality live in different
tensor product modules; with this point clarified, above we are implicitly using π ⊗ x = ϕ0

M (π ⊗ x)).
Observe also that for x ∈ M (1), ιM (1 ⊗ F0x) = FM (ϕM1 (1 ⊗ x)). This gives rise to the natural k-linear

map
M/FM = cokerF0 → coker FM

induced by the commutative diagram above Lemma 2.2. This is a map between k-vector spaces with the
same dimension. In order to show that this map is an isomorphism, we need only check that it is surjective.
But this is obvious since the A′-linear composite map

A′ ⊗AM
ιM−→MA′ → coker FM

is surjective, with coker FM annihilated by m.
Finally, we consider VM . By definition, coker VM is the quotient of A′ ⊗A M (1) by the A′-submodule

consisting of elements of the form
e∑
j=1

πj ⊗mj +
e−1∑
i=0

πi ⊗ V0ni,
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with arbitrary mj ∈ M (1) and ni ∈ M . Since p = V0F0, this submodule is the same as the submodule of
elements of the form

1⊗ V0µ+
e−1∑
i=1

πi ⊗ µi,

with arbitrary µ ∈ M , µi ∈ M (1). It is now clear that coker VM is killed by m and that as a vector space
over A′/m ' k,

coker VM 'M (1)/V0(M) = cokerV0.

This map is easily checked to be an inverse to the natural map arising from the commutative diagram above
Lemma 2.2.

Now we check that ker VM is killed by m and that the natural k-linear map kerV0 → ker VM is surjective
(and therefore is an isomorphism). Choose (u,w) ∈ (A′⊗AM)⊕ (p−1m⊗AM (1)) such that VM ((u,w)) = 0.
Writing

u =
e−1∑
i=0

πi ⊗ ui, w =
e∑
j=1

p−1πj ⊗ wj

as usual, the vanishing condition says precisely that
e−1∑
i=0

πi ⊗ V0ui +
e∑
j=1

πj ⊗ wj = 0

in A′ ⊗AM (1). Thus, wj = −V0uj for 1 ≤ j ≤ e − 1 and V0(u0 + F0εwe) = 0. Using the ‘explicit’ defining
conditions of MA′ , we readily see that such an element can also be represented by (u′, 0) with V0u

′ = 0.
Thus,

ker VM = ker(1⊗ V0)/{ϕM0 (u)− FM (w) |ϕM1 (w) = VM (u)},
where 1⊗ V0 : A′⊗AM → A′⊗AM (1) is the natural map. The submodule which we are quotienting out by
is nothing other than ker ιM . Using our explicit desciption above for ker ιM , we see that ker VM is killed by
m and is naturally isomorphic to kerV0 as a k-vector space in the desired natural way.

�

We’re now almost ready to define what a finite Honda system over A′ is. Our motivation is Fontaine’s
classification of p-divisible groups for e ≤ p − 1 as mentioned earlier, together with the arguments we have
already seen in the case e = 1. First of all, observe that if L ⊂ MA′ is any A′-submodule, where M is a
Dk-module, there are natural k-linear maps

L/mL→ coker FM

and
L[m]⊕ ker VM →MA′ [m].

Also, we define the A′-linear isomorphism

ξM = ξMπ : A′ ⊗AM ' m⊗AM

by λ ⊗ x 7→ πλ ⊗ x. Of course this depends heavily on the choice of π, but if we replace π by any other
uniformizer, this would only have the effect of composing ξM with multiplication by an element of (A′)× on
m⊗AM and so this would have no effect on the image of an A′-submodule of A′ ⊗AM under ξM . For this
reason, the role of π here is actually irrelevant to the way in which we will use ξM below (though we will
use the notation ξMπ when it is needed to avoid confusion).

In the arguments when e = 1, the essential use of the condition that V |L is injective was to show that
V (L[p]) ⊆ kerF is an equality. It was this condition which was what we needed in the proof of Theorem 1.3.
Since VM (ξM (ι−1

M (L[m]))) (which does not depend on the choice of π used to define ξM !) is one generalization
of V (L[p]) and inside of p−1m⊗AM (1) we have

VM (ξM (ι−1
M (L[m]))) ⊆ ker FM ,
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we might expect to require this to be an equality. Unfortunately this condition will turn out to be too strong
in general, but will cover many cases of interest (e.g., pn-torsion of a p-divisible group over A′; cf. Theorems
3.3, 3.5, Corollary 4.11).

Before defining SHf
A′ , we make one final observation. The description of ker FM in the proof of Lemma

2.4 shows that we have a k-linear map

ker FM → ker(M (1)/V0M
F0→M/p)

given by 1 ⊗ w → w mod V0M . It is clear that this map annihilates VM (ξM (ι−1
M (L[m]))), so we have a

natural k-linear map
ker FM/V

M (ξM (ι−1
M (L[m])))→ ker(M (1)/V0M

F0→M/p).
This will be used in Theorem 3.3.
Definition 2.6. A finite pre-Honda system over A′ is a triple (L,M, j) with M a Dk-module satisfying
`A(M) < ∞, L an finite-length A′-module, and j : L → MA′ an A′-linear map. These form an abelian
category PSHf

A′ in an obvious manner (here we implicitly use the exactness assertion in Lemma 2.1, and it
is also important here that we do not require j to be injective). When e < p− 1, we define the category of
finite Honda systems over A′ to be the full subcategory SHf

A′ consisting of objects (L,M, j) in PSHf
A′ such

that the natural k-linear map
L/mL→ coker FM

is an isomorphism and VM ◦j is injective (so in particular, j is injective). When e ≤ p − 1, we define the
category of unipotent finite Honda systems over A′ to be the full subcategory SHf,u

A′ in PSHf
A′ consisting of

triples (L,M, j) in which the action of V on M is nilpotent, L/mL ' coker FM , and VM ◦j is injective. The
category SHf,c

A′ of connected finite Honda systems over A′ is defined similarly, with a nilpotence condition
on the F -action.

It is clear that when e = 1, the definitions of SHf
A′ and SHf,u

A′ coincide with the ones given previously;
we should also mention that the notion of a finite pre-Honda system is introduced primarily to simplify the
exposition in certain places, when we wish to discuss certain constructions prior to checking that they make
sense within the restricted categories SHf

A′ and SHf,u
A′ . Also, when discussing Honda systems, we usually

omit reference to the injective map j and regard L as an A′-submodule of MA′ .
We conclude this section with some observations that will be particularly useful when e ≥ 2.

Lemma 2.7. Let (L,M, j) denote an object in PSHf
A′ such that L/mL → coker FM is an isomorphism.

Then VM ◦j is injective if and only if the natural k-linear map

L[m]⊕ ker VM →MA′ [m]

is an isomorphism.
If M is any Dk-module (in particular, we do not require M to have finite A-length) and 2 ≤ e ≤ p − 1,

then there is a natural k-linear isomorphism

kerV0 ⊕ kerF0 'MA′ [m]

taking kerV0 into ker VM .
If e ≤ p− 1, M ↪→ N is an injection of Dk-modules, and `A(M) <∞, then the natural A′-linear map

MA′ → NA′

is injective.

Proof. The last part of the lemma is obvious when e = 1. When 2 ≤ e ≤ p − 1, it follows easily from
the second part of the lemma. Under either case in the first part, j is injective, so we may safely view L
there as an A′-submodule of MA′ . The ‘if’ direction is obvious, so now assume VM |L is injective. Thus,
the map L[m] ⊕ ker VM → MA′ [m] is injective. By Lemma 2.4, the left side has k-dimension equal to
dimk kerF0 + dimk kerV0. When e = 1, we have already seen in Step 4 of the proof of Theorem 1.4 that
MA′ [m] = M [p] ' M/p has the same k-dimension. It therefore suffices to prove the second part of the
lemma.
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Consider the natural map kerV0 ⊕ kerF0 →MA′ given by

(u,w) 7→ (1⊗ u, p−1πe−1 ⊗ w).

Note that this requires e − 1 ≥ 1 in order to make sense. It is trivial to check that the image of this map
lies inside of MA′ [m]. We will show that the resulting k-linear map to MA′ [m] is an isomorphism.

We first will check that the image is all of MA′ [m]. Choose as usual

u =
e−1∑
j=0

πj ⊗ uj ∈ A′ ⊗AM, w =
e∑
j=1

p−1πj ⊗ wj ∈ p−1m⊗AM (1)

and assume m = (u,w) ∈MA′ is killed by m. The condition πm = 0 says that the element

(1⊗ pεue−1 +
e−1∑
j=1

πj ⊗ uj−1, p
−1π ⊗ pεwe +

e∑
j=2

p−1πj ⊗ wj−1)

in (A′ ⊗AM)⊕ (p−1m⊗AM (1)) is equal to

(1⊗ (pεxe − F0y0) +
e∑
j=1

πj ⊗ (xj − F0yj), 1⊗ (y0 − εV0xe) +
e−1∑
j=1

p−1πj ⊗ (pyj − V0xj))

for suitable xj ∈M and yj ∈M (1). Choosing y1, . . . , ye−1 ∈M (1) and xe ∈M , we readily see that we must
have y0 = εV0xe + εwe−1 and

xj = uj−1 + F0yj

for 1 ≤ j ≤ e − 1, with the consistency conditions wj = −V0uj for 1 ≤ j ≤ e − 2 (a vacuous condition if
e = 2) and

F0we−1 = −pue−1, −pεwe = V0u0.

These last two conditions are independent of each other since e > 1. A simple calculation shows that
m = (1⊗ u, p−1πe−1w), with u = u0 + εF0we and w = −(we−1 + V0ue−1). Since V0u = 0 and F0w = 0, the
desired surjectivity is proven.

Now choose (u,w) ∈ kerV0 ⊕ kerF0 which is sent to 0 in MA′ . Writing out the explicit meaning of this
condition, we see that there exist x1, . . . , xe ∈M and y0, . . . , ye−1 ∈M (1) such that

u = pεxe − F0y0, w = pye−1 − V0xe−1,

with the extra conditions y0 = εV0xe and xj = F0yj for 1 ≤ j ≤ e− 1. Thus,

u = F0(εV0xe − y0) = F0(0) = 0

and
w = V0(F0ye−1 − xe−1) = V0(0) = 0.

�

3. A Functor on Group Schemes when e ≤ p− 1

For any G in FFA′ , we define LMA′(G) to be the object (LA′(G),M(Gk), j) in PSHf
A′ , where LA′(G) is

the kernel of the A′-linear map

M(Gk)A′ → CWk,A′(Rk) w′R−→ RK′ /mR,

with R the affine ring of G/A′ , CWk,A′(Rk) = (CWk(Rk))A′ , and j the inclusion. The continuous A′-linear
map w′R is a generalization of wR, defined in [7, p. 197], and it is induced by wR and a natural surjection
A′ ⊗A CWk(Rk) → CWk,A′(Rk). By the last part of Lemma 2.7, we note that we can (and will) view
M(Gk)A′ as an A′-submodule of CWk,A′(Rk). Because K ⊗A R ' K ′ ⊗A′ R, no confusion should arise from
our use of the notation RK′ for what Fontaine writes as RK in [7]. Since e ≤ p−1, we also have mR = P ′(R)
in the notation of [7, Ch IV, §3.1]. Clearly LMA′ is an additive contravariant functor from FFA′ to PSHf

A′ .



24 BRIAN CONRAD

For ease of notation, we now fix a choice of G in FFA′ , with G in FF
f,u
A′ or FF

f,c
A′ if e(A′) = p − 1. Let

L = LA′(G) and M = M(Gk). We begin with a length calculation.

Lemma 3.1. `A′(VM (ξM (ι−1
M (L[m])))) = `A′(ιM (ι−1

M (L[m]))) ≤ `A′(L[m]).

Remark 3.2. Note that VM ◦ ξM kills ker ιM (see the proof of Lemma 2.4 for an explicit description of
ker ιM ). Thus, there is a surjective A′-linear map from ιM (ι−1

M (L[m])) to VM (ξM (ι−1
M (L[m]))) given by

x 7→ VM (ξM (y)),

where y ∈ A′ ⊗A M is any element satisfying ιM (y) = x. This map depends on the choice of π implicit
in the definition of ξM = ξMπ . The length result we are about to prove implies that this surjection is an
isomorphism and when there is a full equality in the lemma, then we have a natural isomorphism L[m] '
VM (ξM (ι−1

M (L[m]))). We’ll later see that this full equality holds for LMA′(G) if and only if the right exact
sequence of k-vector spaces

0→M (1)/V0M
F0→M/pM →M/FM → 0

is actually exact.

Proof. Since

`A′(VM (ξM (ι−1
M (L[m])))) = `A′(ξM (ι−1

M (L[m])))− `A′((kerVM ) ∩ ξM (ι−1
M (L[m]))),

but `A′(ξM (ι−1
M (L[m]))) = `A′(ι−1

M (L[m])) is equal to

`A′(ιM (ι−1
M (L[m]))) + `A′(ker ιM ) = `A′(ιM (ι−1

M (L[m]))) + (e− 1)`A(kerV )

(by Lemma 2.4), it suffices to show

`A′((kerVM ) ∩ ξM (ι−1
M (L[m]))) = (e− 1)`A(kerV ).

However, kerVM is given by
e∑
j=1

πj ⊗ uj ∈ m⊗AM |
e∑
j=1

p−1πj ⊗ V0uj = 0 in p−1m⊗AM (1)


and since the defining condition says precisely that V0uj = 0 for 1 ≤ j ≤ e, we see that

`A′(kerVM ) = `A(kerVM ) = e`A(kerV ).

We’ll now show that (kerVM ) ∩ ξM (ι−1
M (L[m])) consists of precisely those elements in kerVM for which

u1 = 0, which gives what we need. For an element

e∑
j=1

πj ⊗ uj = ξM

e−1∑
j=0

πj ⊗ uj+1


in kerVM , V0u1 = · · · = V0ue = 0. Thus, we want to determine precisely when the element

e−1∑
j=0

πj ⊗ uj+1 ∈ A′ ⊗AM

has image in MA′ which is m-torsion and in L.
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The m-torsion condition is automatically satsified, since

π · ιM

e−1∑
j=0

πj ⊗ uj+1

 = ιM

 e∑
j=1

πj ⊗ uj


= ιM ◦ ϕM0

 e∑
j=1

πj ⊗ uj


= FM ◦ VM

 e∑
j=1

πj ⊗ uj


= FM

 e∑
j=1

p−1πj ⊗ V0uj


= 0.

On the other hand, uj ∈M(Gk) ⊆ CWk(Rk) has the form

uj = (. . . , 0, . . . , 0, uj,0)

since V0uj = 0, so we easily compute that in RK′ /mR,

w′R ◦ ιM

e−1∑
j=0

πj ⊗ uj+1

 =
e−1∑
j=0

πj ûj+1,0 mod mR,

where ûi,0 ∈ R is a a lift of ui,0. Beware that here and later we abuse notation and do not indicate the
presence of the injective A′-linear map MA′ → CWk,A′(Rk) between w′R and ιM . Modulo mR = πR, the
right side is represented by û1,0 and so vanishes if and only if u1,0 = 0, which is to say that u1 = 0.

�

The next result nicely explains the failure of the exactness of

0→M/VM
F→M/pM →M/FM → 0

for Dieudonne modules of closed fibers of objects in FFA′ when e > 1. Also, the essential calculation in the
proof will be needed in the proof of the important Theorem 3.4.
Theorem 3.3. The inclusion

VM (ξM (ι−1
M (L[m]))) ⊆ ker FM

is an equality if and only if the sequence

0→M (1)/V0M
F0−→M/pM →M/FM → 0,

which is always right exact, is actually exact. More generally, the 4-term sequence

0→ ker FM/V
M (ξM (ι−1

M (L[m])))→M (1)/V0M
F0→M/p→M/F → 0

is always exact.

Proof. When e = 1, we saw in §1 that the theorem is true (in fact, the inclusion is always an equality and
the sequence is always exact), so we may assume now that e > 1. In a couple of places below it will be
crucial that e− 1 ≥ 1.

Recall from the proof of Lemma 2.4 that

ker FM =
{

1⊗ w ∈ p−1m⊗AM (1) | F0w = 0
}
.
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Our first step is to reformulate when 1 ⊗ w ∈ ker FM lies in VM (ξM (ι−1
M (L[m]))). More precisely, we claim

that this is equivalent to the statement that for our w ∈ M (1) with F0w = 0, there exist w′ and w′′ in M
such that V0w

′ = w, V0w
′′ = 0, and

w′R(ιM (πe−1 ⊗ ε−1w′ + 1⊗ w′′)) = 0.

First assume this latter statement. Then for 1⊗ w ∈ ker FM , we see that

πe−1 ⊗ ε−1w′ + 1⊗ w′′ ∈ ι−1
M (L)

and VM (ξM (πe−1 ⊗ ε−1w′ + 1⊗ w′′)) is equal to

VM (πe ⊗ ε−1w′ + π ⊗ w′′) = p−1πe ⊗ ε−1V0w
′ + p−1π ⊗ V0w

′′

= 1⊗ V0w
′

= 1⊗ w,

so 1⊗ w ∈ VM (ξM (ι−1
M (L))). But since pw′ = F0V0w

′ = F0w = 0,

π · ιM (πe−1 ⊗ ε−1w′ + 1⊗ w′′) = ιM (πe ⊗ ε−1w′ + π ⊗ w′′)
= ιM (1⊗ pw′) + ιM (π ⊗ w′′)
= ιM ◦ ϕM0 (π ⊗ w′′)
= FM ◦ VM (π ⊗ w′′)
= FM (p−1π ⊗ V0w

′′)
= 0,

so in fact 1⊗ w ∈ VM (ξM (ι−1
M (L[m]))).

Conversely, assume 1⊗ w ∈ VM (ξM (ι−1
M (L[m]))), whence

1⊗ w = VM ◦ ξM
e−1∑
j=0

πj ⊗ uj

 ,

where uj ∈M and

ιM

e−1∑
j=0

πj ⊗ uj

 ∈ L[m].

Thus,

1⊗ w = VM

 e∑
j=1

πj ⊗ uj−1

 =
e∑
j=1

p−1πj ⊗ V0uj−1,
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so w = εV0ue−1 = V0(εue−1) and V0uj = 0 for 0 ≤ j < e− 1. The calculation

π · ιM

e−1∑
j=0

πj ⊗ uj

 = ιM

e−1∑
j=0

πj+1 ⊗ uj


= ιM ◦ ϕM0

e−1∑
j=0

πj+1 ⊗ uj


= FM ◦ VM

e−1∑
j=0

πj+1 ⊗ uj


= FM

e−1∑
j=0

p−1πj+1 ⊗ V0uj


= FM (p−1πe ⊗ V0ue−1)
= FM (1⊗ εV0ue−1)
= FM (1⊗ w)
= 0

shows that the m-torsion condition is superfluous, so it remains to see what constraints arise from the
condition

w′R ◦ ιM

e−1∑
j=0

πj ⊗ uj

 = 0.

If we can show that

w′R ◦ ιM

 ∑
1≤j<e−1

πj ⊗ uj

 = 0,

then defining w′ = εue−1 and w′′ = u0 yields what we want. For 1 ≤ j < e − 1, we have uj =
(. . . , 0, . . . , 0, uj,0) since V0uj = 0. Thus, if ûj,0 ∈ R is a lift of uj,0, then the element

w′R ◦ ιM

 ∑
1≤j<e−1

πj ⊗ uj

 ∈ RK′ /mR

is represented by ∑
1≤j<e−1

πj ûj,0 ∈ πR = mR,

thereby giving the desired vanishing.
Now that we have reformulated our main condition, pick w ∈ M (1) with F0w = 0. We must determine

precisely when we can construct w′, w′′ ∈M with the properties described above.
Identifying M and M (1) as additive groups (via x 7→ 1⊗ x), we can write w = (w−n) ∈ M ⊆ CWk(Rk),

with w−n ∈ Rk satisfying wp−n = 0. Our task is to find w′ and w′′ in Rk such that the element

w′
def= (. . . , w−n+1, . . . , w0, w

′) ∈ CWk(Rk)

lies in M , as does w′′ def= (. . . , 0, . . . , 0, w′′), and moreover

w′R ◦ ιM (πe−1 ⊗ ε−1w′ + 1⊗ w′′) = 0.
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Let ŵ−n ∈ R lift w−n and ŵ′, ŵ′′ ∈ R lift w′ and w′′ repsectively. The final condition above says

ε−1πe−1

ŵ′ +∑
n≥1

p−nŵp
n

−n+1

+ ŵ′′ ∈ πR .

But e− 1 ≥ 1 (!), so ε−1πe−1ŵ′ ∈ πR and so the above condition is in fact independent of ŵ′ (and even w′),
being equivalent to

ε−1πe−1

p

∑
n≥0

p−n(ŵp−n)p
n

+ ŵ′′ ∈ πR .

Since ε−1πe−1/p = π−1 and
p−n(ŵp−n)p

n

∈ p−n(πR)p
n

= πp
n−ne R,

with pn − ne ≥ pn − n(p− 1) ≥ 2 for n ≥ 2 (and even for n ≥ 1 if e < p− 1), our condition is equivalent to

(pπ)−1ŵp
2

−1 + π−1ŵp0 + ŵ′′ ∈ πR .

Thus, we are forced to choose w′′ ∈ Rk to be represented by −((pπ)−1ŵp
2

−1 + π−1ŵp0) ∈ R. Let’s check
that w′′ ∈ CWk(Rk) does lie in M = M(Gk). It is enough to check that

∆G(π−1ŵp0) ≡
(
π−1ŵp0

)
⊗ 1 + 1⊗

(
π−1ŵp0

)
mod π(R⊗A′ R)

and
∆G((pπ)−1ŵp

2

−1) ≡
(

(pπ)−1ŵp
2

−1

)
⊗ 1 + 1⊗

(
(pπ)−1ŵp

2

−1

)
mod π(R⊗A′ R).

Equivalently, we want to show that

∆G(ŵ0)p
?≡ ŵp0 ⊗ 1 + 1⊗ ŵp0 mod π2(R⊗A′ R)

and
∆G(ŵ−1)p

2 ?≡ ŵp
2

−1 ⊗ 1 + 1⊗ ŵp
2

−1 mod pπ2(R⊗A′ R).
Once we prove the result for ŵ0, we can apply the same argument to V w ∈M . It is then straightfoward to
keep track of powers of π in order to see that this gives the desired result modulo pπ2 for ŵ−1 (keep in mind
that F0w = 0 forces ŵp−1 ∈ πR). So we now only consider the congruence for ŵ0.

Since w ∈M , we have that in Rk ⊗k Rk,

∆Gk(w0) = lim
N→∞

SN (w−N ⊗ 1, . . . , w0 ⊗ 1; 1⊗ w−N , . . . , 1⊗ w0),

whence
∆G(ŵ0) ≡ lim

N→∞
SN (ŵ−N ⊗ 1, . . . , ŵ0 ⊗ 1; 1⊗ ŵ−N , . . . , 1⊗ ŵ0) mod π(R⊗A′ R).

Because SN ∈ Z[X−N , . . . , X0;Y−N , . . . , Y0] and p ∈ π2 R (e > 1!), we can raise both sides to the pth power
so as to obtain

∆G(ŵ0)p ≡ lim
N→∞

SN (ŵp−N ⊗ 1, . . . , ŵp0 ⊗ 1; 1⊗ ŵp−N , . . . , 1⊗ ŵ
p
0) mod π2(R⊗A′ R).

Combining the property ŵp−n ∈ πR for all n ≥ 0 with the fact that SN is equal to X0 +Y0 plus higher degree
terms in the X−j and Y−j for j > 0, it follows that

SN (ŵp−N ⊗ 1, . . . , ŵp0 ⊗ 1; 1⊗ ŵp−N , . . . , 1⊗ ŵ
p
0) ≡ ŵp0 ⊗ 1 + 1⊗ ŵp0 mod π2(R⊗A′ R)

for all N ≥ 1. Thus, w′′ as defined above is necessarily in M .
Therefore, we have shown that 1⊗ w ∈ ker FM lies in the A′-submodule VM (ξM (ι−1

M (L[m]))) if and only
if some w′ ∈ Rk can be chosen so that w′ ∈ CWk(Rk) lies in M . That is, w is required to lie in V0M . This
is equivalent to the assertion that the sequence

0→ ker FM/V
M (ξM (ι−1

M (L[m])))→M (1)/V0M
F−→M/pM →M/FM → 0

is exact.
�
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It may be possible to prove Theorem 3.3 purely from the definition of a finite Honda system (once
Theorems 3.4 and 3.6 are proven), but it is not clear how to do this.

Theorem 3.4. (L,M) is an object in SHf
A′ when e < p−1 and (L,M) is an object in SHf,u

A′ (resp. SHf,c
A′ )

when e ≤ p− 1 and G is unipotent (resp. connected).

Proof. Without loss of generality, e ≥ 2. First, we will prove that the natural map

L/mL→ coker FM

is injective, so `A′(L/m) ≤ `A′(coker FM ). We will then show that the natural map

L[m]⊕ ker VM →MA′ [m]

is surjective. By Lemma 2.4 and the second part of Lemma 2.7 (since e ≥ 2), this surjectivity implies
`A′(L/m) ≥ `A′(coker FM ), so this inequality is forced to be an equality and both maps above are isomor-
phisms. Using the first part of Lemma 2.7 then finishes the proof. The arguments we use are simply more
elaborate versions of the arguments used in the case e = 1, except we need to keep track of the powers of π.

Choose ` ∈ L ⊆MA′ lying in the image of FM , so there is an element

u =
e∑
j=1

p−1πj ⊗ uj ∈ p−1m⊗AM (1)

such that FM (u) = ` ∈ L. Choosing u′j ∈ CWk(Rk) such that V0u
′
j = uj , this says that

e∑
j=1

πjwR(u′j) = 0

in RK′ /mR (here, we have used the isomorphism supplied by [7, Ch IV, §2.7, Prop 2.5], applied to the
Dk-module CWk(Rk)). We need to construct some `′ ∈ L such that ` = π`′. We’ll show that we can choose
u′1 ∈M (that is, u1 ∈ V0(M)) and then that this is enough to construct the desired `′.

Let û′i,−n ∈ R be a lift of u′i,−n (= ui,−n+1 if n ≥ 1), where u′i,0 ∈ Rk can be chosen at random for now.
We’re given that in RK′ ,

e−1∑
j=0

πj

( ∞∑
n=0

p−n(û′j+1,−n)p
n

)
∈ R,

so changing û′1,0 modulo R (i.e., changing u′1,0), we can even assume that in RK′ we have the essential
relation

e−1∑
j=0

πj

( ∞∑
n=0

p−n(û′j+1,−n)p
n

)
= 0.

Letting u′i ∈ ĈWA(R) denote the covector (û′i,−n), the above can be rewritten as

e−1∑
j=0

πjŵR(u′j+1) = 0.

See [7, Ch II, §5.1, Prop 5.1] (and also [7, Ch II, §5.6, Prop 5.4 Remark]) for a discussion of ŵR : ĈWA(R)→
RK′ , defined analogously to wR : ĈW k(Rk)→ RK′ . Define

L−m(u′i) = lim
N→∞

SN (û′i,−N−m ⊗ 1, . . . , û′i,−m ⊗ 1; 1⊗ û′i,−N−m, . . . , 1⊗ û′i,−m)

in R. We first claim that for all n ≥ 1,

∆G(û′j,−n)p
n

≡ L−n(u′j)p
n

mod pnπ(R⊗A′ R).

Fix n ≥ 1. Since uj ∈M = Homgp−sch/k(Gk, ĈW k), we have that in Rk ⊗k Rk,

∆Gk(uj,−n+1) = lim
N→∞

SN (uj,−N−n+1 ⊗ 1, . . . , uj,−n+1; 1⊗ uj,−N−n+1, . . . , 1⊗ uj,−n+1),
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which says exactly that

∆G(û′j,−n) ≡ L−n(u′j) mod π(R⊗A′ R).

Since πp = π · πp−1 ∈ pπR, as e ≤ p− 1 (!), we can raise both sides to the pth power in order to get

∆G(û′j,−n)p ≡ L−n(u′j)p mod pπ(R⊗A′ R).

An easy induction now shows that

∆G(û′j,−n)p
r

≡ L−n(u′j)p
r

mod prπ(R⊗A′ R)

for all r ≥ 1, so taking r = n gives what we claimed above.
This can be conveniently rewritten as

p−n∆G(û′j,−n)p
n

≡ p−nL−n(u′j)p
n

mod π(R⊗A′ R),

but be careful to note that the terms in this congruence generally lie in (R⊗A′ R)K′ ' RK′ ⊗K′ RK′ and not
in R⊗A′ R. Summing over n ≥ 1, we obtain∑

n≥1

p−n∆G(û′j,−n)p
n

≡
∑
n≥1

p−nL−n(u′j)p
n

mod π(R⊗A′ R).

From what we have so far, we may deduce that in RK′ ⊗K′ RK′ ,
e−1∑
j=0

πj
∑
n≥1

p−n∆G(û′j+1,−n)p
n

=
e−1∑
j=0

πj
∑
n≥1

p−n∆GK′ (û
′
j+1,−n)p

n

= ∆GK′

e−1∑
j=0

πj
∑
n≥1

p−n(û′j+1,−n)p
n


= −∆GK′

e−1∑
j=0

πj û′j+1,0


= −∆G

e−1∑
j=0

πj û′j+1,0

 ,

so in fact the element
e−1∑
j=0

πj
∑
n≥1

p−nL−n(u′j)p
n

∈ RK′ ⊗K′ RK′

lies in R⊗A′ R and modulo π(R⊗A′ R) is congruent to

−∆G

e−1∑
j=0

πj û′j+1,0

 .

Since by definition

(L−n(u′j)) = (û′j,−n ⊗ 1) + (1⊗ û′j,−n)

in ĈWA(R⊗A′ R) and ŵR is additive, in RK′ ⊗K′ RK′ we apply ŵR to get

L0(u′j) +
∑
n≥1

p−nL−n(u′j)p
n

= ŵR(u′j)⊗ 1 + 1⊗ ŵR(u′j).
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Therefore, modulo π(R⊗A′ R), we have

∆G

e−1∑
j=0

πj û′j+1,0

 ≡ −
e−1∑
j=0

πj
∑
n≥1

p−nL−n(u′j+1)p
n

≡
e−1∑
j=0

πjL0(u′j)−

e−1∑
j=0

πjŵR(u′j+1)

⊗ 1− 1⊗

e−1∑
j=0

πjŵR(u′j+1)


=

e−1∑
j=0

πjL0(u′j)

(recall
∑
πjŵR(u′j+1) = 0). Hence,

∆G(û′1,0) ≡ L0(u′1) mod π(R⊗A′ R),

which says exactly that u′1 ∈M (since u′1,−j = u1,−j+1 for j ≥ 1 and u1 ∈M , so the 0th coordinate of u′1
is all we need to check).

Now we define `′ ∈ MA′ and we will show that `′ ∈ L and π`′ = `. In terms of our original explicit
description of MA′ as a quotient module, define `′ to be the element represented by1⊗ u′1,

e−1∑
j=1

p−1πj ⊗ uj+1

 .

Thus,

w′R(`′) = wR(u′1) +
e−1∑
j=1

πjwR(u′j+1)

is represented by
e−1∑
j=0

πjŵR(u′j+1) = 0,

so `′ ∈ L. Also,

π`′ = (π ⊗ u′1, 0) +

0,
e∑
j=2

p−1πj ⊗ uj


= (0, p−1π ⊗ V0u′1) +

0,
e∑
j=2

p−1πj ⊗ uj


= (0, p−1π ⊗ u1) +

0,
e∑
j=2

p−1πj ⊗ uj


= FM (u),

which is equal to `. This completes the proof of injectivity of L/m→ coker FM .
As we explained at the beginning, it remains to prove that the natural k-linear map

L[m]⊕ ker VM →MA′ [m]

is surjective. Since e ≥ 2, the second part of Lemma 2.7 shows that it necessary and sufficient to prove that
for w ∈ kerF0, there exists u ∈ kerV0 such that the element

(1⊗ u, p−1πe−1 ⊗ w) ∈MA′ [m]
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lies in L. We may write w = (w−n) in CWk(Rk), with w−n ∈ Rk satisfying wp−n = 0 for all n ≥ 0. Choose
u1, w1 ∈ Rk and consider

u = (. . . , 0, . . . , 0, u1), w̃ = (. . . , w−n+1, . . . , w0, w1) ∈ CWk(Rk),

so V u = 0 and V w̃ = w in CWk(Rk). In CWk,A′(Rk), we have

(1⊗ u, p−1πe−1 ⊗ w) = ιCWk(Rk)(1⊗ u+ πe−1 ⊗ w̃),

so

w′R((1⊗ u, p−1πe−1 ⊗ w)) = û1 + πe−1

( ∞∑
n=0

p−nŵp
n

1−n

)
mod πR

inside of RK′ /mR, with û1 ∈ R a lift of u1. Since e ≥ 2 and ŵp−m ∈ πR for all m ≥ 0, clearly πe−1p−nŵp
n

1−n ∈
πR for n ≥ 3 and n = 0.

Thus, we are reduced to checking that for

u1 = −πe−1(p−1ŵp0 + p−2ŵp
2

−1) = −ε−1((pπ)−1ŵp
2

−1 + π−1ŵp0) mod πR,

we have u ∈M (since e ≤ p−1, the right side does lie in R). Since e ≥ 2, this is exactly the same calculation
we did at the end of the proof of Theorem 3.3 (up to the factor of ε−1 ∈ A′×, which can be cancelled at the
start).

�

Theorem 3.5. The sequence

0→M/V
F→M/p→M/F → 0

is exact if and only if there is equality in Lemma 3.1. This exactness condition is satisfied when G ' Γ[pn]
for Γ/A′ a p-divisible group.

Proof. Thanks to Theorem 3.3, all we have to verify is the short exact sequence condition when G is the
full pn torsion of a p-divisible group. This is standard: since M/p ' M(G[p]k), it is enough to pick Γ/k a
p-divisible group and to check that for M = M(Γ), the sequence

0→M/V
F→M/p→M/F → 0

is not just right exact but is actually exact. The A-module underlying M is finite and free with p = V F , so
F acts injectively. Thus, Fm = pm′ = FVm′ yields m = V m′, as desired.

�

We now come to the essential result.

Theorem 3.6. LMA′ is fully faithful and essentially surjective when e < p− 1. This is also true for LMu
A′

and LM c
A′ when e ≤ p− 1.

Proof. The argument is a generalization of the steps in the proof of Theorem 1.4. As before, when e = p− 1
we stick with the unipotent case for now, and will return to the connected case at the end. First, let’s show
that Step 1 holds for any G in FFA′ and any finite flat A′-algebra S. Essentially the same argument works
for e ≤ p − 1, since Raynaud’s results [17, §3] apply whenever e ≤ p − 1. More precisely, because we are
claiming Step 1 goes through for all objects in FFA′ for e < p−1 and for all objects in FFuA′ when e ≤ p−1,
as in the case e = 1 ≤ p− 1 we can reduce the proof of the injectivity of

G(S)→ Gk(Sk)

to the case where A′ is strictly Henselian with algebraically closed residue field k and GK′ is a simple object
in the category of finite commutative K ′-group schemes. In this case, we can argue exactly as we did in Step
1 in the proof of Theorem 1.4.
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With the analogue of Step 1 pushed through, it is now straightfoward to see that Step 2 makes sense for
any G in FFA′ , where we use CWk,A′ in place of CWk, w′R and w′S in place of wR and wS respectively, and
we define the functor from finite flat A′-algebras to Ab via the formula

G(S) = {γ ∈ Gk(Sk) |CWk,A′(γ)(L) ⊆ kerw′S}.

Via Fontaine’s classification of p-divisible groups over A′ [7, Ch IV, §5, Prop 5.1(i)], the assertion in Step 3
applies whenever e ≤ p−1, using unipotence conditions and the remark following [7, Ch IV, §4.8, Lemma 4.10]
in case e = p − 1. It is only necessary to make minor notational changes in the e = 1 argument (CWk,A′

replacing CWk, etc.).
Next, we prove the analogue of the difficult Step 4. Choose an object (L,M) in SHf

A′ if e < p − 1. If
e = p − 1, choose an object (L,M) in SHf,u

A′ . We will construct an object G(L,M) in FFA′ (resp. in FFuA′)
which is the kernel of an isogeny of p-divisible groups over A′ (resp. of unipotent p-divisible groups over A′)
such that (L,M) ' LMA′(G(L,M)) in SHf

A′ (resp. (L,M) ' LMu
A′(G(L,M)) in SHf,u

A′ ) when e < p− 1 (resp.
when (L,M) lies in SHf,u

A′ ).
As in the e = 1 argument, we can construct an exact sequence of Dk-modules

0→M2
i−→M1

P−→M → 0

with the Mi free of finite rank over A, so Mi ' M(Γi) for Γi a p-divisible group over k. If V acts in a
nilpotent manner on M , we can choose the Γi to be unipotent p-divisible groups. Note that the sequence of
A′-modules

0→ (M2)A′
i′−→ (M1)A′

P′−→MA′ → 0

is not just right exact [7, Ch IV, §2, Prop 2.4], but actually exact. This is simply because by the remark in
[7, Ch IV, §2.3], we have a canonical isomorphism of A′-modules

A′ ⊗A N + p−1m⊗A FN ' NA′

whenever N is free of finite rank as an A-module (and the left side is viewed as a sum inside of K ′ ⊗A N).
For notational ease, we now adopt Fontaine’s notation XA′ [1] = p−1m ⊗A X(1) for a Dk-module X [7,
Ch IV, §2.4ff]. The natural map NA′ [1]→ NA′ of A′-modules is injective and via the above isomorphism is
identified with the submodule p−1m ⊗A FN , so we can safely write NA′/NA′ [1] in place of coker FN if we
prefer (for such N). Also, recall [7, Ch IV, §2.5, Cor 1] that there is even a canonical k-linear isomorphism

N/FN ' NA′/NA′ [1].

This is analogous to the isomorphism cokerF0 ' coker FM in Lemma 2.4.
What we will now do is construct A′-submodules Li ↪→ (Mi)A′ such that the natural k-linear maps

Li/mLi → (Mi)A′/(Mi)A′ [1] ' coker FMi

are isomorphisms, (M2)A′ ↪→ (M1)A′ takes L2 over into L1, and the image of L1 under (M1)A′ � MA′ is
precisely L. Once these A′-modules L1 and L2 are constructed, the rest of the argument is exactly like that
in Step 4 in the case e = 1, with minor changes in notation.

We construct L1 as in the case e = 1. That is, we can either use the isomorphism cokerF0 ' coker FM
in Lemma 2.4 and its analogue above for M1 and M2 in order to literally use the e = 1 construction
word-for-word, or alternatively (which amounts to the same thing) we choose

e1, . . . , er ∈ (M1)A′/(M1)A′ [1] ' coker FM1

giving a basis for the image of (M2)A′/(M2)A′ [1], with representatives ei ∈ (M2)A′ ⊆ (M1)A′ . Let
er+1, . . . , en extend this to a full k-basis of (M1)A′/(M1)A′ [1] = coker FM1 , so the images of er+1, . . . , en
in MA′/MA′ [1] give a k-basis of

coker FM
∼←− L/mL.

Therefore we may (and do) choose representatives er+1, . . . , en ∈ (M1)A′ so that their images in MA′ under
P′ lie in L and constitute a minimal A′-basis of L. Define L1 =

∑
A′ei.
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The natural map
L1/mL1 → coker FM1

is clearly an isomorphism and the composite map of A′-modules

L1 ↪→ (M1)A′ �MA′

has image precisely L.
In order to construct L2 as in the case e = 1, the only issue is to check that any x ∈ ((M1)A′ [1])∩ (M2)A′

can be represented in (M2)A′/(M2)A′ [1] by an element of L1 ∩ (M2)A′ . Then the construction of L2 will go
through as desired. At this point, we can (and will) assume e > 1.

We have the exact sequence of A′-modules

0→ A′ ⊗AM2 + p−1m⊗ FM2
i′→ A′ ⊗AM1 + p−1m⊗ FM1

P′→MA′ → 0

with i′ the ‘inclusion’ map and (using FM1 = F0M
(1)
1 )

P′ : λ⊗m+ µ⊗ F0m
′ 7→ (λ⊗ P(m), µ⊗ P(m′)).

Also, note that since e > 1, we have (in obvious notation) the A-module decomposition

(Mi)A′ = A′ ⊗AMi + p−1m⊗A FMi = (1⊗Mi)⊕ (p−1π ⊗ FMi)⊕ · · · ⊕ (p−1πe−1 ⊗ FMi).

We can suppose without loss of generality that x ∈ A′ ⊗AM2 and by hypothesis x (or rather, i′(x)) lies in
p−1m⊗A FM1, which says

i′(x) = 1⊗ F0m+
e−1∑
j=1

πj ⊗mj ,

with mj ∈M2 and m ∈M (1)
1 , F0m ∈M2. For 1 ≤ j ≤ e− 1, we have

πj ⊗mj = p−1πj ⊗ pmj ∈ (M2)A′ [1],

so by altering x, we can assume without loss of generality that m1 = · · · = me−1 = 0, which is to say

i′(x) = 1⊗ F0m,

where m ∈M (1)
1 and F0m ∈M2. Since P′(i′(x)) = 0, we see that the element 1⊗ P(m) ∈MA′ [1] maps to 0

in MA′ , which is to say that it lies in ker FM .
Consider the isomorphism

ψM = ψMπ : p−1m⊗AM (1) ' A′ ⊗AM (1)

given by ψM (a⊗ n) = πe−1a⊗ n. If we combine the isomorphisms

kerV0 ⊕ kerF0 'MA′ [m]

and
ker VM ⊕L[m] 'MA′ [m],

we compute that VM (L[m]) = VM (MA′ [m]) = ψM (ker FM ). Thus, there exists some x ∈ L[m] such that

πe−1 ⊗ P(m) = VM (x).

By the second part of Lemma 2.7, we can write x = (1⊗ v, p−1πe−1 ⊗ w) with v ∈ kerV0 and w ∈ kerF0.
Since VM (x) = πe−1 ⊗ w, it follows that w = P(m). Therefore we get a critical link between m and L,
namely the element

(1⊗ v, p−1πe−1 ⊗ P(m)) ∈MA′

actually lies in L[m], with v ∈ kerV0.
By construction, (M1)A′ �MA′ takes L1 onto L, so there exists an `1 ∈ L1 such that

P′(`1) = (1⊗ v, p−1πe−1 ⊗ P(m))
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in MA′ . Inside of (M1)A′ = A′ ⊗AM1 + p−1m⊗ FM1, we can write (using FM1 = F0M
(1)
1 )

`1 = 1⊗ y +
e−1∑
r=1

p−1πr ⊗ F0zr,

so

P′(`1) =

(
1⊗ P(y),

e−1∑
r=1

p−1πr ⊗ P(zr)

)
.

Comparing our two formulas for P′(`1), there exist u ∈ m⊗AM and w ∈ A′ ⊗AM (1) such that(
1⊗ (P(y)− v),

e−2∑
r=1

p−1πr ⊗ P(zr) + p−1πe−1 ⊗ P(ze−1 −m)

)
= (ϕM0 (u)− FM (w), ϕM1 (w)− VM (u)).

However, in MA′ [1] we have

π · (ϕM1 (w)− VM (u)) + VM (ξM (ϕM0 (u)− FM (w))) = πϕM1 (w)− VMξM (FM (w))
= 0,

and so in MA′ [1],

0 =
e−2∑
r=1

p−1πr+1 ⊗ P(zr) +
(
p−1πe ⊗ P(ze−1 −m) + p−1π ⊗ V0(P(y)− v)

)
=

e−2∑
r=1

p−1πr+1 ⊗ P(zr) + p−1πe ⊗ P(ze−1 −m) + p−1π ⊗ V0(P(y)),

since v ∈ kerV0.
Thus, the elements ε⊗m = p−1πe ⊗m and p−1π⊗ V0y+

∑e−1
r=1 p

−1πr+1 ⊗ zr in (M1)A′ [1] have the same
image in MA′ [1] under P′. Now the sequence of A′-modules

0→ (M2)A′ [1]→ (M1)A′ [1]→MA′ [1]→ 0

is the same as
0→ p−1m⊗AM (1)

2 → p−1m⊗AM (1)
1 → p−1m⊗AM (1) → 0,

which is exact since N  N (1) is exact from the category of A-modules to itself and p−1m is a flat A-module.
Therefore, the elements ε⊗m and p−1π ⊗ V0y +

∑e−1
r=1 p

−1πr+1 ⊗ zr in (M1)A′ [1] differ by an element of
(M2)A′ [1], so εi′(x) = ε⊗ F0m differs from

p−1π ⊗ F0V0y +
e−1∑
r=1

p−1πr+1 ⊗ Fzr = π ⊗ y +
e−1∑
r=1

p−1πr+1 ⊗ Fzr

= π`1

by an element of (M2)A′ [1]. In particular, π`1 lies in (M2)A′ inside of (M1)A′ . But π`1 ∈ L1, so ε−1π`1 ∈
L1 ∩ (M2)A′ is the desired element which represents x ∈ (M2)A′ in (M2)A′/(M2)A′ [1]. Note that since
L1/mL1 ' coker FM1 by construction of L1, the image of x in L1 must a priori lie in mL1 = πL1. Thus, the
presence of π in the above representative ε−1π`1 for x is not unexpected.

The argument for Step 5 goes through exactly as in the case e = 1.
When e = p − 1 and we consider connected objects, the modifications to the above argument exactly

parallel the changes needed for the connected case with p = 2 in the proof of Theorem 1.4. Note that in
order to handle the variant on wS which will arise, the inequality pn − ne ≥ 0 will arise for all n ≥ 1, and
this is satisfied for e ≤ p− 1.

�

Corollary 3.7. The additive functor FFA′ → FFk given by G  Gk is faithful when e < p − 1. The
analogous additive functors FFuA′ → FFuk and FFcA′ → FFck are faithful when e ≤ p− 1.
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Proof. A morphism of finite Honda systems (L1,M1)→ (L2,M2) vanishes if and only if the associated map
M1 →M2 vanishes. �

4. Classification of Group Schemes when e ≤ p− 1

We begin by recalling a result due to Raynaud, extending Corollary 1.5.
Lemma 4.1. (Raynaud) If e < p−1, the category FFA′ is stable under formation of scheme-theoretic kernels
and is an abelian category. A morphism is a kernel if and only if it is a closed immersion and is a cokernel
if and only if it is faithfully flat. The formation of the cokernel of a closed immersion is as usual. The same
assertions holds for FFuA′ and FFcA′ if e ≤ p− 1.

The functor G  GK′ which associates to every object of FFA′ its K ′-group scheme generic fiber is a
fully faithful exact functor when e < p− 1. The same is true on FFuA′ when e ≤ p− 1.

A sequence G′ → G → G′′ in FA′ for e < p− 1 (resp. in FFcA′ , FFuA′ for e = p− 1) is exact if and only
if the closed fiber sequence is exact if and only if the generic fiber sequence is exact.
Remark 4.2. The analogue of Theorem 1.9 also carries over to the e ≤ p− 1 setting by the same arguments
which we used in the e = 1 case.

Proof. The second part follows from the first part, just as in the way we deduced Corollary 1.6 from Corollary
1.5 earlier.

Now we consider the first part. When e < p − 1, this is essentially [17, Cor 3.3.6(1)], together with the
fact that a closed subgroup scheme and a quotient of a unipotent object is again unipotent (as this can be
detected on the closed fiber, where it follows from Cartier duality and the canonical splitting of the closed
fiber connected-étale sequence).

When e = p− 1 and we consider only unipotent objects, the proof of [17, Cor 3.3.6(1)] still goes through,
since we may use [17, Prop 3.3.2(3)] to carry over [17, Thm 3.3.3] to the present setting. The connected case
then follows by the exactness of Cartier duality.

Since passage to the generic fiber is an exact functor and all of our categories are abelian, the final part
of the assertion comes down to the statement that a morphism f : G1 → G2 is an isomorphism (resp. 0)
if and only if this is true on the closed fiber if and only if this is true on the generic fiber. For the generic
fiber, use full faithfulness of G  GK′ . For the closed fiber, the vanishing part follows from faithfulness of
passage to the closed fibers, while the isomorphism part follows from Nakayama’s Lemma and flatness.

�

Now that we know LMA′ and LMu
A′ are fully faithful and essentially surjective, it follows from Lemma 4.1

that SHf
A′ is an abelian category when e < p−1 and SHf,u

A′ , SHf,c
A′ are abelian categories when e ≤ p−1. Of

course, SHf
A′ , SH

f,u
A′ , and SHf,c

A′ are full subcategories of the abelian category PSHf
A′ , so there are obvious

candidates for what kernels and cokernels should be. More precisely, it is reasonable to expect that the
composite functors FFA′ → PSHf

A′ and FFuA′ ,FFcA′ → PSHf
A′ (for e < p − 1 and e ≤ p − 1 respectively)

are exact. We now prove that this is indeed the case.

Theorem 4.3. When e < p − 1, the functor FFA′ → PSHf
A′ is exact. When e ≤ p − 1, the functors

FFcA′ ,FFuA′ → PSHf
A′ are exact. More precisely, if

ϕ : (L1,M1)→ (L2,M2)

is a morphism in SHf
A′ with e < p − 1 (resp. is a morphism in SHf,c

A′ , SHf,u
A′ with e ≤ p − 1), then

kerϕ = (L′,M ′) and cokerϕ = (L′′,M ′′) satisfy

M ′ = ker(M1 →M2), M ′′ = coker(M1 →M2)

and
L′ = (M ′)A′ ∩ L1, L

′′ = image(L2 ↪→ (M2)A′ � (M ′′)A′),

and the natural map coker(L1 → L2)� L′′ is an isomorphism.
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Proof. We give the argument in the case e < p−1. When e ≤ p−1 and we impose unipotence or connectedness
conditions, the argument is proceeds in exactly the same way.

Let Gi be an object in FFA′ such that LMA′(Gi) ' (Li,Mi), so ϕ = LMA′(f) for f : G2 → G1 a
morphism in the category FFA′ .

Define (L′,M ′) = LMA′(coker f) and (L′′,M ′′) = LMA′(ker f) to be the respective images under LMA′

of the cokernel and kernel of the corresponding morphism f in FFA′ . It is easy to see that M ′ and M ′′

are as claimed (on the group scheme side, one simply notes that passage to the closed fiber commutes with
formation of short exact sequences, and then one applies the exact contravariant Dieudonné-module functor
to everything). Let’s (temporarily) define L′ = (M ′)A′ ∩ L1 = ker(L1 → L2) and also

L′′ = image(L2 ↪→ (M2)A′ � (M ′′)A′),

so L′ ⊆ L′ and L′′ ⊆ L′′. We must prove that these inclusions of A′-modules are equalities and that L′′ is
the cokernel of L1 → L2.

For the assertion about kerϕ = (L′,M ′), clearly we can (and will) assume that f is a monomorphism. Since
monomorphisms in FFA′ are the same thing as closed immersions of group schemes, we see that the group
scheme G1/G2 makes sense in FFA′ and there is a natural PSHf

A′ -morphism ker(ϕ) = LMA′(G1/G2) →
(L′,M ′) which is an isomorphism on the Dieudonné module part. We wish to show that this map must
be an isomorphism in PSHf

A′ . If we let Ri denote the affine ring of Gi and let R denote the affine ring
of G1/G2, then the map of A′-algebras R → R1 is not only injective but is also faithfully flat. Therefore,
mR = R∩mR1 [13, Thm 7.5(ii)], so

RK′ /mR→ (R1)K′/mR1

is injective. Combining this with the injectivity of (M ′)A′ → (M1)A′ (see Lemma 2.1), it follows easily from
the commutative diagram

(M ′)A′ ↪→ (M1)A′y y
CWk,A′(Rk) −→ CWk,A′((R1)k)y y
RK′ /mR ↪→ (R1)K′/mR1

that L′ = LA′(G1/G2) is given by

L′ = M((G1/G2)k)A′ ∩ LA′(G1) = (M ′)A′ ∩ L1 = L′.

It remains to check that cokernels are what we think they are; that is, L′′ = L′′ and L1 → L2 � L′′

is exact at L2. Since the k-linear map L2/mL2 → coker FM2 is an isomorphism, we at least see that the
k-linear map

L′′/mL′′ → coker FM ′′

is surjective. However, this factors through the (abstract) k-linear map

L′′/mL′′ → coker FM ′′

which is an isomorphism, so the map
L′′/mL′′ → L′′/mL′′

induced by the inclusion L′′ ⊆ L′′ is surjective. By Nakayama’s Lemma, we conclude L′′ = L′′.
Finally, we check that L1 → L2 � L′′ is exact at L2. Since we have already proven that L′′ = L′′ always

holds, we may reduce to the case in which f : G2 → G1 is an epimorphism, so M1 → M2 is injective and
R1 → R2 is faithfully flat. Our assertion amounts to the claim that L2 ∩ (M1)A′ = L1, but this follows from
the same commutative diagram argument which we used above.

�

It is clear that if e < p − 1 and G is in FFA′ , then we can define G in the obvious manner as a functor
from p-adic A′-rings to Ab in a manner analogous to the earlier definition for e = 1 in Step 2 of the proof
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of Theorem 1.4. The natural transformation G → G of functors on p-adic A′-rings (not just finite flat A′-
algebras) is an isomorphism. The same statement holds if e = p− 1 and we require G to be unipotent. The
proofs in both cases are essentially the same as in the case e = 1, except that we use the general formulation
of Fontaine’s classification of p-divisible groups (i.e., when e ≤ p − 1) rather than the formulation in the
special case e = 1 ≤ p − 1. In particular, for e < p − 1 and G in FFA′ (resp. for e = p − 1 and G in
FFuA′), we can intrinsically recover from LMA′(G) (resp. from LMu

A′(G)) the group functor G ' G on finite
flat A′-algebras. In fact, with a choice of algebraic closure K of K we can functorially recover the group
scheme G; cf. Remark for Lemma 4.1. When e = p − 1 and we restrict attention to connected objects, we
have a similar result, though the definition of G needs to be modified in order to account for the different
formulation of Fontaine’s classification of connected p-divisible groups in this case (just like for p = 2 earlier).
In case e < p− 1 and we look at connected objects, there is a natural map between the two definitions of G,
compatible with the isomorphisms of each with G, so these functors are all naturally identified. Similarly,
if e = p− 1 and we consider G which are simultaneously unipotent and connected, the two definitions of G
are naturally isomorphic.

Note that by the second part of Lemma 4.1, we can view FFA′ as a (very mysterious) full abelian
subcategory of the abelian category of commutative finite K ′-group schemes of p-power order when e < p−1,
and similarly for FFuA′ , FFcA′ when e ≤ p − 1. If we are given some finite commutative K ′-group scheme
with p-power order and know that it is the generic fiber of some G in FFA′ with e < p− 1 (or in FFuA′ , FFcA′
with e = p−1), then G is unique up to canonical isomorphism and we can readily read off a small amount of
information about G in a special case (the argument is the same as the one needed to justify [9, Rem 3.4]):

Theorem 4.4. Assume that K ′ has residue field k = Fp (i.e., K ′ is a finite totally ramified extension of
Qp). Let ρ : Gal(K ′/K ′) → Aut(M) be the continuous representation associated to the generic fiber of an
object G in FFA′ , with G unipotent or connected if e = p − 1. Assume M = G(K

′
) has the structure of a

finite-length O-module, compatible with the Galois action, where O is a complete mixed characteristic discrete
valuation ring with a finite residue field F having characteristic p. Prolong the O-action on GK′ to one on
G (by Lemma 4.1). Then there is a non-canonical isomorphism of O-modules

M(Gk) 'M.

Proof. Since M(Gk) and M are both finite-length O-modules, in order to show that they are isomorphic it
suffices to show that they have the same invariant factors. The invariant factors of a finite-length O-module
N are determined by the invariant factors of πON , together with the values of `O(πON) and `O(N).

If we let πOG denote the ‘image’ of the morphism πO : G → G in the abelian category FFA′ when
e < p − 1 (resp. in the abelian categories FFuA′ or FFcA′ when e = p − 1), then πOM = (πOG)(K ′) and so
for q = |F|, the order of πOG is q`O(πOM), which is also equal to the order of (πOG)k. But since k = Fp,
this order is equal to the cardinality of M((πOG)k) (cf. [7, Ch III, Prop 3.4(i), Prop 4.5(i)]), which is equal
to q`O(M((πOG)k)). In a similar manner, we have `O(M) = `O(M(Gk)). Since M((πOG)k) ' πO M(Gk) by
standard exactness arguments, it remains to verify that the finite-length O-modules πO M(Gk) 'M((πOG)k)
and πOM ' (πOG)(K ′) have the same invariant factors. That is, we can work with πOG in place of G.
However, πOG is a proper closed subgroupscheme of G unless G is trivial, so we are reduced to the case
where G is trivial, which is itself a trivial case.

�

Some other constructions on FFA′ which we wish to translate into the language of finite Honda systems
are Cartier duality and base change. Let us first consider Cartier duality.

If M is a Dk-module with finite A-length, we define M∗ = HomA(M,K/A) as an A-module and F (ψ) :
m 7→ σ−1(ψ(V (m)), V (ψ) : m 7→ σ(ψ(F (m))). There is a natural Dk-module isomorphism M ' M∗∗ as
usual. For G in FFk with Cartier dual Ĝ, Fontaine constructs in [7, Ch III, §5.3, Cor 2] an isomorphism
M(Ĝ) 'M(G)∗, natural in G.

We have not been able to fully justify a formulation of Cartier duality in terms of finite Honda systems,
but there is a reasonable candidate which we now describe. Let M be a Dk-module with finite A-length.
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We will construct a symmetric pairing

MA′ ⊗A′ (M∗)A′ → K ′/p−1mA′,

so we begin with a pairing(
(A′ ⊗AM)⊕ (p−1m⊗AM (1))

)
⊗A′

(
(A′ ⊗AM∗)⊕ (p−1m⊗A (M∗)(1))

)
→ K ′/p−1mA′

defined by

(λ⊗ x, p−1µ⊗ y)⊗ (α⊗ ϕ, p−1β ⊗ ψ) 7→ α(λ · ϕ(x) + p−1µ · ϕ(F0(y))) + p−1β(µ · ψ(y) + λ · ψ(V0x))

(here we have implicitly used a canonical isomorphism (M∗)(1) ' (M (1))∗). It is straightfoward to check
that we can pass to quotients and get a well-defined symmetric pairing between MA′ and (M∗)A′ as desired.

In order to check that this is non-degenerate, we want to verify that the map

eM : MA′ → HomA′((M∗)A′ ,K ′/p−1mA′)

is an isomorphism. Applying ⊗AW (k), we may assume (with a little compatibility checking) that k is
algebraically closed. Also, by functoriality and exactness, we may assume that M is a simple object, so
M = k with either F = V = 0 or F = 0, V = σ−1 or V = 0, F = σ. By length comparsions, it is enough to
check that eM is injective. This is easy.

Given a finite Honda system (L,M) (connected and unipotent if e = p − 1), we should define the dual
Honda system (L∗,M∗), with L∗ ⊆ (M∗)A′ the annihilator of L ⊆ MA′ under the above pairing. If
(L,M) = LMA′(G), then Fontaine’s duality pairing between M(Gk) and M((Ĝ)k) = M(Ĝk) gives rise to
an isomorphism M(Ĝk)A′ ' (M(Gk)∗)A′ , and the essential claim is that this takes LA′(Ĝ) over to L∗. We
do not see how to prove this, though clearly it is enough (by a duality and length argument) to show that
LA′(Ĝ) lands inside of L∗.

Now let us consider base change, which can be useful for descent considerations (as we will see in the
proof of Theorem 5.2). In this case, we can prove things. We first consider the simpler case of what we
will call pseudo-étale base change. Let (A′, n) be a mixed characteristic complete discrete valuation ring
with residue field κ perfect of characteristic p. Define A = W (κ) and suppose we are given a map of rings
h : A′ → A′, necessarily local and faithfully flat, such that h(m)A′ = n. In particular, e(A′) = e(A′) = e.
We let h : k ↪→ κ denote the induced map on the residue fields. When the above hypotheses are met, we say
that h is pseudo-étale (note that we allow h to be a non-algebraic extension).

Fix such an h and choose G in FFA′ (unipotent or connected if e = p − 1), so G ×A′ A′ trivially lies in
FFA′ (and is unipotent or connected if e = p− 1). We wish to explicitly define a ‘base change’ functor

Bh : PSHf
A′ → PSHf

A′

which takes SHf
A′ over into SHf

A′ for e < p − 1 and likewise for unipotent and connected Honda systems
when e ≤ p− 1. When e < p− 1 we want to have

Bh ◦ LMA′ ' LMA′ ◦Bh,

where Bh : FFA′ → FFA′ is the usual base change functor. We also want a similar statement in the unipotent
and connected settings when e ≤ p− 1. Later, we will carry this out without a pseudo-étale hypothesis.

We begin with a few preliminary definitions.
Definition 4.5. For a Dk-module M and any perfect extension h : k → κ, define Mh = A ⊗A M as an
A-module (using W (h) : A→ A = W (κ)) and define

FMh
(λ⊗ x) = σ(λ)⊗ FM (x), VMh

(λ⊗ x) = σ−1(λ)⊗ VM (x),

so Mh is a Dκ-module. For (L,M, j) in PSHf
A′ and h : A′ → A′ a pseudo-étale extension as above, define

Lh = A′ ⊗A′ L.
It is obvious, by the way, that there are natural A-module isomorphisms (M (j))h ' (Mh)(j) compatible

with the F and V maps, so we may unambiguously write M (j)

h
.
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Theorem 4.6. For a pseudo-étale extension h : A′ → A′, there is a functorial isomorphism of A′-modules

A′ ⊗A′ (MA′) ' (Mh)
A′

and a natural A′-module map jh : Lh → (Mh)
A′

, with jh injective if and only if j is injective. When
e < p− 1, the object (Lh,Mh, jh) in PSHf

A′ lies in SHf
A′ if and only if (L,M, j) lies in SHf

A′ , and similarly
for unipotent and connected Honda systems when e ≤ p− 1. The additive covariant functor

Bh : PSHf
A′ → PSHf

A′

defined by (L,M, j)  (Lh,Mh, jh) is exact and satisfies Bh ◦ LMA′ ' LMA′ ◦ Bh when e < p − 1 and
satisfies Bh ◦ LMu

A′ ' LMu
A′ ◦Buh , Bh ◦ LM c

A′ ' LM c
A′ ◦Bch, when e ≤ p− 1 (with Buh , Bch the restrictions

of Bh to the categories of unipotent and connected objects respectively).

Proof. Trivially `A(Mh) = `A(M) < ∞. Also, since h is pseudo-étale, A′ ⊗A′ m → n is an isomorphism, so
there is an obvious A′-module isomorphism

A′ ⊗A′ ((A′ ⊗AM)⊕ (p−1m⊗AM (1))) ' (A′ ⊗A Mh)⊕ (p−1n⊗A M
(1)

h
).

Since A′ is A′-flat, we can pass to the quotient to get an A′-module map

A′ ⊗A′ (MA′)→ (Mh)
A′

which is certainly surjective. However, both sides have the same A′-length (namely, e`A(M)), so this is an
isomorphism, visibly functorial in M . The definition of jh and the claim about its injectivity are obvious.

The above isomorphism is compatible with the isomorphism A′⊗A′ (MA′ [1]) ' (Mh)
A′

[1] and this enables
us to identify FMh

with idA′ ⊗ FM . In this way, the κ-linear map

Lh/nLh → coker FMh

is the same as applying the base extension h to the k-linear map

L/mL→ coker FM .

Also, via the A′-linear isomorphism

A′ ⊗A′ (A′ ⊗AM (1)) ' A′ ⊗A M
(1)

h

we may identify VMh
◦jh with the base change by h of VM ◦j. Since h and h are faithfully flat, we have

proven that when e < p− 1, (Lh,Mh, jh) is an object in SHf
A′ if and only if (L,M, j) is an object in SHf

A′ ,
and likewise for unipotent and connected Honda systems when e ≤ p− 1.

We now must check that the functor (L,M)  (Lh,Mh) on Honda systems is compatible with pseudo-
étale base change on the group scheme side. We give the argument in the general case when e < p− 1. The
argument for e ≤ p− 1 with unipotence or connectedness hypotheses is essentially the same.

Let G in FFA′ have affine ring R and let G = G ×A′ A′ have affine ring S. There’s a natural map of
Dκ-modules

A⊗ACWk(Rk)→ CWκ(Sκ)
This map clearly gives rise to a map of Dκ-modules with finite A-length

A⊗A M(Gk)→M(Gκ)

and this is an isomorphism for κ/k finite, by [7, Ch III, §2.2, Prop 2.2(i)]. In fact, as Oda explains in [14,
Cor 3.16], this remains true without a finiteness assumption on [κ : k], and so permits us to identify Mh

with M(Gκ).
Since Oda’s definition of M is not quite the same as Fontaine’s, for the convenience of the reader we now

briefly explain how to directly deduce the fact that for H any object in FFk, A⊗A M(H)→M(H/κ) is an
isomorphism, granting this when κ/k is a finite extension. Without loss of generality, we may assume κ is
algebraically closed. We can always replace k by a suitable finite extension inside of κ (due to the result in
the case of finite extensions). Since we may also begin by assuming H is a simple object in FFk, passing to
a finite extension of k and using compatibility with respect to formation of products reduces us to the case
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in which H is either αp, µp, or Z/p. It then remains to check that the κ-linear map κ⊗k M(H)→M(H/κ)
between 1-dimensional spaces is non-zero. But M(H)→M(H/κ) is visibly injective.

Next, note that our above constructions show that there is always a natural (surjective) map of A′-modules

A′ ⊗A′ (NA′)→ (Nh)
A′

for any Dk-module N , regardless of whether or not `A(N) is finite. By [7, Ch IV, §2.6, Prop 2.5], this map
is an isomorphism when N = CWk(Rk). Since there is also a canonical isomorphism of A′-modules

A′ ⊗A′ (RK′ /mR) ' SK′/nS,

where K′ is the fraction field of A′, it follows that the isomorphism (Mh)
A′
' M(Gκ)A′ takes Lh over to

LA′(G).
In other words, we have constructed an isomorphism in PSHf

A′

(Lh,Mh) ' LMA′(G×A′ A′)
functorial in G. Since Bh is trivially additive, covariant, and exact, we’re done.

�

Now consider h : A′ → A′ which is a totally ramified finite extension and let n be the maximal ideal of A′.
Choose a uniformizer Π of A′ so that Πe(A′) = pε for some ε ∈ A×. We assume of course that e(A′) ≤ p− 1.

Fix G in FFA′ if e(A′) < p − 1 (resp. in FFuA′ or FFcA′) if e(A′) = p − 1) and let (L,M) = LMA′(G)
(resp. LMu

A′(G), LM c
A′(G)). Note that A′ and A′ have the same residue field and G = G ×A′ A′ has the

same closed fiber as G and G is unipotent if G is. Thus, we can write LMA′(G) = (L,M) if e(A′) < p − 1
(resp. LMu

A′(G) or LM c
A′(G) = (L,M) if e(A′) = p− 1), with L = LA′(G) ⊆MA′ . We wish to describe L in

terms of L and M , in a manner which is functorial in G.
There’s certainly a natural A′-module map J : MA′ →MA′ , so there is an A′-module map

JL : A′ ⊗A′ L→MA′ .

Lemma 4.7. The image of JL is L and the induced map of A′-modules

A′ ⊗A′ L→ L

is an isomorphism.

Proof. Let R and S be the affine rings of G and G respectively. Since A/m ' A′/n, the natural maps
R /m → S/n and RK′ /mR → SK′/nS are isomorphisms and so are injective. Thus, the image of JL lies in
L, thanks to the commutative diagram

MA′ −→ MA′y y
CWk,A′(Rk) −→ CWk,A′(Sk)y y
RK′ /mR ↪→ SK′/nS

We’ll show now that the map
αL : A′ ⊗A′ L→ L

is an isomorphism modulo n and so therefore is surjective.
As k-modules we have (A′ ⊗A′ L)/n ' L/m, so αL mod n is the top row in the commutative diagram of

k-vector spaces
L/m −→ L/n

'
y y '

coker FM,A′ −→ coker FM,A′

'
x x '

M/FM = M/FM
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and so αL mod n is an isomorphism.
Now we prove that A′ ⊗A′ L� L is injective. It suffices to prove injectivity on n-torsion. Note that the

map
p−1m⊗AM (1) → p−1n⊗AM (1)

induced by the inclusion p−1m ↪→ p−1n gives rise to a k-linear map

ker FM,A′ → ker FM,A′

which is an isomorphism, thanks to the explicit kernel formulas in the proof of Lemma 2.4.
Using Theorem 3.4 and isomorphisms ψMπ and ψMΠ introduced in the proof of full faithfulness in Theorem

3.6, we have the identifications of k-vector spaces

L[m] ' VM,A′(L[m]) = ψMπ (ker FM,A′)
∼← ker FM,A′

and
L[n] ' VM,A′(L[n]) = ψMΠ (ker FM,A′)

∼← ker FM,A′ .

Combining this with the k-vector space isomorphism

IL : L[m] ' (A′ ⊗A′ L)[n]

given by x 7→ (πε)(Πε)−1⊗ x, it looks like we should have the desired injection on the n-torsion. In order to
justify this, we need only check that the diagram of k-vector spaces

L[m] IL−→ (A′ ⊗A′ L)[n] −→ L[n]
'
y y '

VM,A′(L[m]) VM,A′(L[n])
'
x x '

ker FM,A′
∼−→ ker FM,A′

commutes. The careful reader will observe that although the map IL depends on the choices of π and Π,
the bottom maps in the left and right columns depend on the choices of π and Π respectively (via ψMπ and
ψMΠ ), so it is not a priori unreasonable to expect that the above diagram commutes.

Let’s check the commutativity. By Lemma 2.7, we may write an element of ` ∈ L[m] in the form
` = (1⊗ u, p−1πe(A′)−1 ⊗ w), with u ∈M and w ∈M (1) satisfying V0u = 0 and F0w = 0. The map down to
VM,A′(L[m]) ⊆ A′ ⊗AM (1) sends ` to πe(A

′)−1 ⊗ w. Note that this is independent of u. If we go across the
top row and down to VM,A′(L[n]), we obtain the element Πe(A′)−1 ⊗ w ∈ A′ ⊗A M (1). Here we have used
the ‘independence of u’ remark and the easy identity

(πε)(Πε)−1πe(A
′)−1 = Πe(A′)−1.

Appending the natural isomorphisms kerF0 ' ker FM,A′ and kerF0 ' ker FM,A′ (from Lemma 2.4) to the
bottom of the diagram and considering the element w ∈ kerF0, the commutativity follows.

�

We are now in a position to define a base change functor without a pseudo-étale hypothesis. Let h : A′ →
A′ be a ring extension which induces an extension h : k → κ on (perfect!) residue fields. For an object
(L,M, j) in PSHf

A′ , we define the object (L,M, j)h = (Lh,Mh, jh) in PSHf
A′ by using the definition of

Mh as given earlier and jh maps Lh
def= A′ ⊗A′ L to

(
Mh

)
A′

as an A′-submodule in the following manner:
there is a natural A-linear map M → Mh = A ⊗A M (where A = W (κ)) which induces an A′-linear map
jM : MA′ →

(
Mh

)
A′

. There is a natural map jh : Lh → (Mh)A′ defined using j : L→ MA′ and jM . When
e(A′) < p − 1 and (L,M, j) is in SHf

A′ , then jh is injective and (L,M, j)h is in SHf
A′ by Lemma 4.7. If

e(A′) ≤ p − 1 and (L,M, j) is in SHf,u
A′ , then we get the same assertion using SHf,u

A′ , and likewise in the
connected case.

The construction of Bh in the pseudo-étale case is extended by the following theorem, whose proof is clear
in view of what we have already done.
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Theorem 4.8. Suppose e(A′) < p−1. For h as above, (L,M) in SHf
A′ , (L,M)h lies in SHf

A′ . The additive
covariant functor

Bh : SHf
A′ → SHf

A′

given by (L,M) (L,M)h is exact and satisfies Bh ◦ LMA′ ' LMA′ ◦Bh, where

Bh : FFA′ → FFA′

is the usual base change functor.
If h1 : A′1 → A′2 and h2 : A′2 → A′3 are two such base changes, then there are natural isomorphisms

αh1,h2 : Bh1 ◦Bh2 ' Bh1◦h2

which satisfy the ‘triple overlap’ compatibility; that is, the natural transformations

αh1,h2 ◦Bh3 ◦ αh1◦h2,h3 : B(h1◦h2)◦h3 → (Bh1 ◦Bh2) ◦Bh3

and
Bh1 ◦ αh2,h3 ◦ αh1,h2◦h3 : Bh1◦(h2◦h3) → Bh1 ◦ (Bh2 ◦Bh3)

are equal.
If we relax the ramification to merely not exceed p − 1, then the same assertions are true for the full

subcategories of unipotent group schemes and unipotent Honda systems, as well as for the full subcategories
of connected objects.

For any morphism ϕ : (L1,M1) → (L2,M2) in PSHf
A′ , we shall let ϕh denote the induced morphism

Bh(ϕ) : (L1,M1)h → (L2,M2)h in PSHf
A′ . This notation will be used throughout §5.

Now we prove some facts concerning finite Honda systems which are quite critical in applications of the
present work to the deformation theory of Galois representations.
Theorem 4.9. When e < p−1 and Xi = (Li,Mi) are two p-torsion objects in SHf

A′ for which the sequences

0→Mi/VMi
F→Mi/p = Mi →Mi/FMi → 0

are exact, any p-torsion object X in PSHf
A′ which is an extension of X2 by X1 in PSHf

A′ necessarily is an
object in SHf

A′ . If e ≤ p− 1, the same is true with SHf,u
A′ or SHf,c

A′ replacing SHf
A′ .

If e < p− 1, (L,M, j) is an object in PSHf
A′ , and M ' (A/pn)⊕r as an A-module, then (L,M, j) lies in

SHf
A′ if and only if the object (L[p],M [p], jp) in PSHf

A′ lives in SHf
A′ (with jp the map naturally induced

by j on p-torsion) and L/p→ MA′/p is injective. If e ≤ p− 1, then the same assertion is true with SHf,u
A′

or SHf,c
A′ replacing SHf

A′ .
Remark 4.10. Note that the injectivity of L/p→MA′/p holds if L is an A′-module direct summand of MA′ .
This is the case in the application of this result to studying the deformation theory of Galois representations.

Proof. Note that for any X = (LX ,MX , jX) as in the first part, jX is necessarily injective. Also, for (L,M, j)
as in the second part, j is clearly injective if and only if jp is injective. Thus, throughout we may assume
that all j-maps are injective and we therefore omit reference to them in what follows.

We now prove ‘if’ in the second part of the theorem (‘only if’ is clear). Since m-torsion lies inside of
p-torsion, certainly

L[m]⊕ ker VM →MA′ [m]
is an isomorphism. It remains (for the second part of the theorem) to check that L/m → coker FM is an
isomorphism.

The Dk-module isomorphism M/p ' M [p] induces an A′-linear isomorphism (MA′)/p = (M/p)A′ '
(M [p])A′ and by the injectivity hypothesis, we have an injection L/p ↪→ (M [p])A′ ' MA′ [p] with the
image landing inside of L[p]. An A′-length calculation shows that this is an isomorphism onto L[p]. Using
L/m ' (L/p)/m, we get a commutative diagram of k-vector spaces

L/m −→ coker FM
∼←− M/F

'↓ ↓ ↓'
(L[p])/m ∼−→ coker FM [p]

∼←− M [p]/F
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so the left arrow in the top row is an isomorphism.
Now consider the first part of the theorem. The commutative diagram of k-vector spaces

L1/m −→ LX/m −→ L2/m −→ 0
'↓ ↓ ↓'

coker FM1 −→ coker FMX
−→ coker FM2 −→ 0

'↑ '↑ ↑'
M1/F −→ MX/F −→ M2/F −→ 0

has an exact bottom row, so easily the middle row is also exact. Since the top row is exact as well, we can
conclude that the map

LX/m→ coker FMX

is surjective. If M1/F →MX/F is injective, then it is easy to see that the left maps in each row above are
injective, from which the injectivity of

LX/m→ coker FMX

would follow.
In order to prove that M1/F →MX/F is injective, we will make essential use of our p-torsion hypothesis.

More precisely, since Mi = Mi/p and MX = MX/p, we have the following commutative diagram with exact
rows and columns:

0 0y y
M1/V −→ MX/V −→ M2/V −→ 0
F
y F

y F
y

0 −→ M1 −→ MX −→ M2 −→ 0y y y
M1/F −→ MX/F −→ M2/F −→ 0y y y

0 0 0

(the main point is the injectivity of M1 = M1/p→MX/p = MX). From this diagram we see that the map
F : MX/V → MX/p = MX is injective, and also we see that the rows all form short exact sequences if we
fill in the missing 0’s on the left. In particular, M1/F →MX/F is injective.

Since it is obvious that VMX
◦jX is injective, we are done.

�

We also have the following result concerning objects killed by p; this can be useful when lifting certain
finite group schemes from characteristic p to characteristic 0 (cf. proof of Theorem 3.5).

Corollary 4.11. Let (L,M, j) be an object in PSHf
A′ which is killed by p and has the properties that j is

injective,
L/m→ coker FM

is an isomorphism, and

0→M/V
F→M/p = M →M/F → 0

is an exact sequence. If e = p − 1, then assume that V (resp. F ) acts in a nilpotent manner on M . Then
(L,M, j) lies in SHf

A′ if e < p− 1 and it lies in SHf,u
A′ (resp. SHf,c

A′ ) if e = p− 1.
More precisely, if e < p−1 then LMA′ induces an anti-equivalence of categories between the full subcategory

of p-torsion objects G in FFA′ for which the sequence

0→M(Gk)/V F→M(Gk)/p = M(Gk)→M(Gk)/F → 0
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is exact and the full subcategory of p-torsion objects (L,M, j) in PSHf
A′ for which L/m → coker FM is an

isomorphism, j is injective, and the sequence

0→M/V
F→M/p = M →M/F → 0

is exact. If e = p − 1, the same statement is true for the corresponding categories consisting of unipotent
objects killed by p, and likewise with the categories of connected objects.

Proof. If e = 1, then since FM ⊆ kerV , the hypotheses imply that L[p] ⊕ kerV = L ⊕ kerV surjects onto
M = M/p, with both sides having the same A-length. This settles the e = 1 case.

Now we suppose e ≥ 2. We begin by proving that the inclusion

VM (ξM (ι−1
M (L[m]))) ⊆ ker FM

is an equality. Since pM = 0 and the sequence

0→M/V
F→M →M/F → 0

is exact, we have
ker FM = {1⊗ V0x|x ∈M} ⊆ p−1m⊗A (M)(1).

Pick any x ∈M . The isomorphism L/m ' coker FM shows that we can write

ιM (1⊗ x) = `+ FM (u),

where ` ∈ L and u ∈ (M)A′ [1] = p−1m ⊗A (M)(1). Since p kills M , so p also kills (M)A′ , we see that
multiplication by πe−1 on (M)A′ has its image inside the m-torsion submodule (M)A′ [m], so

ιM (πe−1 ⊗ x) = πe−1`+ FM (πe−1u),

with πe−1` ∈ L ∩ ((M)A′ [m]) = L[m] and, for u =
∑e
j=1 p

−1πj ⊗ uj ,

πe−1u = 1⊗ εu1 +
e∑
j=2

p−1πj+e−1 ⊗ uj

= 1⊗ εu1 +
e∑
j=2

p−1επj−1 ⊗ puj

= 1⊗ εu1.

Thus,
ιM (πe−1 ⊗ x) = `′ − ε · FM (1⊗ z),

where `′ ∈ L[m] and z = −u1 ∈ (M)(1).
Since FM (1⊗ z) = FM (ϕM1 (1⊗ z)) = ιM ◦ FM (1⊗ z) = ιM (1⊗ F0z), we have that for all x ∈ M , there

exists z ∈ (M)(1) such that
ιM (1⊗ F0z + πe−1 ⊗ ε−1x) ∈ L[m].

Combining this with

VM (ξM (1⊗ F0z + πe−1 ⊗ ε−1x) = VM (π ⊗ F0z + p⊗ x)
= p−1π ⊗ V0F0z + 1⊗ V0x

= 1⊗ V0x

(V0F0 = p kills (M)(1)!), we have shown that ker FM ⊆ VM (ξM (ι−1
M (L[m]))), the reverse of the usual

inclusion.
We will now use the equality

ker FM = VM (ξM (ι−1
M (L[m])))

in order to directly prove that (L,M) arises from FFA′ (and from FFuA′ (resp. FFcA′) if V (resp. F ) is
nilpotent on M) and so (L,M) lies in SHf

A′ when e < p− 1 and in SHf,u
A′ when V is nilpotent on M and in

SHf,c
A′ when F is nilpotent on M . At this point, we will not require the p-torsion condition anymore. The

argument is simply a modification of the proof of essential surjectivity in Step 4 of the proof of Theorem 3.6 in
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the case e ≥ 2. More precisely, we construct M1, M2, and L1 in exactly the same way. As for the construction
of L2, that also reduces in the same manner to the consideration of whether x ∈ ((M1)A′ [1]) ∩ (M2)A′ can
be represented in (M2)A′/(M2)A′ [1] by an element of L1 ∩ (M2)A′ . It is at the stage where we invoke
VM (L[m]) ' ψMπ (ker FM ) in Step 4 that the argument needs to be slightly altered.

Using the same notation as in the proof of Theorem 3.6, we use the expression above for ker FM in order
to write

1⊗ P(m) =
e∑
j=1

p−1πj ⊗ V0nj

in (M)A′ [1], where the element
e−1∑
j=0

πj ⊗ nj+1 ∈ A′ ⊗AM

has image in (M)A′ that lies in L. Recalling the general formula for ker ιN for any Dk-module N (see Lemma
2.7), a simple calculation shows that we may suppose without loss of generality that ni = 0 for 1 < i < e.
Clearly V0n1 = 0 and V0ne = ε−1 P(m).

By construction, (M1)A′ � (M)A′ takes L1 onto L, so there exists an `1 ∈ L1 such that

P′(`1) = (1⊗ n1 + πe−1 ⊗ ne, 0)

in MA′ . Now inside of (M1)A′ = A′ ⊗AM1 + p−1m⊗ FM1, we can write

`1 = 1⊗ y −
e−1∑
r=1

p−1πr ⊗ Fzr,

so

P′(`1) =

(
1⊗ P(y),

e−1∑
r=1

p−1πr ⊗ P(zr)

)
.

Consequently, there exist u ∈ m⊗AM and w ∈ A′ ⊗A (M)(1) such that(
1⊗ P(y)− 1⊗ n1 − πe−1 ⊗ ne,

e−1∑
r=1

p−1πr ⊗ P(zr)

)
= (ϕM0 (u)− FM (w), ϕM1 (w)− VM (u)).

However, in (M)A′ [1] we have

π · (ϕM1 (w)− VM (u)) + VM (ξM (ϕM0 (u)− FM (w))) = πϕM1 (w)− VMξM (FM (w))
= 0,

and so in (M)A′ [1],

0 =
e−1∑
r=1

p−1πr+1 ⊗ P(zr) + VM (π ⊗ P(y)− π ⊗ n1 − πe ⊗ ne)

=
e−1∑
r=1

p−1πr+1 ⊗ P(zr) + p−1π ⊗ V0 P(y)− p−1π ⊗ V0n1 − ε⊗ V0ne.

Recall that V0ne = ε−1 P(m) and V0n1 = 0, so the elements 1⊗m and p−1π ⊗ V0y +
∑e−1
r=1 p

−1πr+1 ⊗ zr
in (M1)A′ [1] have the same image in (M)A′ [1] under P′. Now the sequence of A′-modules

0→ (M2)A′ [1]→ (M1)A′ [1]→ (M)A′ [1]→ 0

is the same as
0→ p−1m⊗AM (1)

2 → p−1m⊗AM (1)
1 → p−1m⊗A (M)(1) → 0,

which is exact since N  N (1) is exact from the category of A-modules to itself and p−1m is a flat A-module.
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Therefore, the elements 1⊗m and p−1π ⊗ V0y −
∑e−1
r=1 p

−1πr+1 ⊗ zr in (M1)A′ [1] differ by an element of
(M2)A′ [1], so i′(x) = 1⊗ F0m differs from

p−1π ⊗ F0V0y −
e−1∑
r=1

p−1πr+1 ⊗ F0zr = π ⊗ y −
e−1∑
r=1

p−1πr+1 ⊗ F0zr

= π`1

by an element of (M2)A′ [1]. In particular, π`1 lies in (M2)A′ inside of (M1)A′ . But π`1 ∈ L1, so this is
exactly what we wanted to prove.

�

The above two results show that when analyzing certain p-torsion group schemes over A′, we have the
technical freedom to work within PSHf

A′ without straying outside of the essential image of LMA′ . It is
precisely this sort of technical freedom which one needs in [4], since checking explicitly whether an object
constructed in PSHf

A′ actually lies in SHf
A′ or SHf,u

A′ or SHf,c
A′ can be very cumbersome.

For later use, it will be convenient to state a key lemma which we did not bother to state explicitly in the
e = 1 case, but which was essentially proven in the course of the arguments in §1.

Lemma 4.12. Assume e < p−1. Let Γ1 → Γ2 be an isogeny of d-dimensional p-divisible groups over A′ with
kernel G, so G is in FFA′ . Let (Li,Mi) = LMA′(Γi) in Hd

A′ . Define the Dk-module M = coker(M2 ↪→M1)
and define the A′-module

L = image(L1 → (M1)A′ �MA′).

Under the natural isomorphism of Dk-modules M 'M(Gk), the induced map of A′-modules MA′ 'M(Gk)A′
takes L isomorphically over to LA′(G), so (L,M) in PSHf

A′ actually lies in SHf
A′ . The isomorphism

(L,M) ' LMA′(G) depends functorially (in an obvious manner) on the given isogeny of p-divisible groups
Γ1 → Γ2 and is compatible with base change (preserving the ‘e < p− 1’ condition).

In particular, if Γ is a p-divisible group over A′ with (L,M) = LMA′(Γ), then L is an A′-module direct
summand of MA′ and there are natural injections of A′-modules L/pn ↪→ (M/pn)A′ and isomorphisms in
PSHf

A′ (even in SHf
A′)

LMA′(Γ[pn]) ' (L/pn,M/pn)

which are compatible with change in n, as well as base change, and are functorial in Γ.
If we impose unipotence conditions on all group objects, the same statements are true with e ≤ p− 1, and

likewise with connectedness conditions.

Proof. First assume e < p− 1. As we explained near the end of the proof of Theorem 3.4, MA′ 'M(Gk)A′
takes L over into LA′(G) and moreover L ' LA′(G). The functoriality properties of (L,M) ' LMA′(G) are
clear from the construction. The special case of p-power torsion of a p-divisible group is clear; the only point
of interest is that L/pn → (M/pn)A′ ' MA′/p

n is injective because L is an A′-module direct summand of
MA′ . This direct summand property holds because the composite map

L/m→MA′/m→ coker FM

is a k-linear isomorphism [7, Ch IV, §4, Prop 4.2(i)], so the inclusion L ↪→MA′ is injective modulo m. Since
MA′ is a finite free A′-module [7, Ch IV, §2.3 Remark], this implies that L is an A′-module direct summand
of MA′ .

If e ≤ p − 1, using LMu
A′ or LM c

A′ in place of LMA′ permits the same arguments to go through with
unipotence or connectedness conditions.

�
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5. Descent Formalism and Abelian Varieties

As an application of our study of base change for finite Honda systems, we will prove an interesting
theorem on good reduction of certain abelian varieties.

To start off, let’s quickly review the formalism of Galois descent in our situation (see [1, §6.2] for further
details). Let K′ be a finite Galois extension of the fraction field K ′ of A′ with e(K′) ≤ p− 1, and let (A′, n)
denote the valuation ring of K′, as usual. The descent data on a K′-group scheme G which encodes the
fact that it arises as the base extension of a specified group scheme over K ′ is a collection of commutative
diagrams of schemes

G
γG−→ Gy y

Spec K′
γ∗−→ Spec K′

for all γ ∈ Gal(K′ /K ′), with γG ◦ γ̃G = (γ̃ ◦ γ)G, (idK′)G = idG, and each γG must be compatible (over
the action of γ on the base) with the group scheme structure morphisms for G over K′. Of course, in a
situation as affine as this one, Galois descent data is always effective. Also, note that using γ = γ̃ = idK′

yields (idK′)G = idG as a consequence of the other conditions if we axiomatize the fact that each γG is an
isomorphism of schemes.

A more convenient way to say all of this is that if we let Gγ denote the base-extended K′-group scheme

Gγ = G×Spec K′ Spec K′,

using γ∗ : Spec K′ ' Spec K′, then we require the existence of isomorphisms of K′-group schemes γG : G→ Gγ
such that for all γ, γ̃ ∈ Gal(K′ /K ′),

(γG)γ̃ ◦ γ̃G = (γ̃ ◦ γ)G.

Here, for any morphism of K′-schemes f : X → Y we denote by fγ the morphism Xγ → Yγ induced via base
extension by γ∗; note that in the above we have implicitly used the natural isomorphism (Xγ)γ̃ ' Xγ̃◦γ .

Now make the further assumption that G is the generic fiber of an object G0 in FFA′ , with G0 unipotent or
connected if e(K′) = p−1. By the final part of Lemma 4.1, the above data on G is equivalent to corresponding
data on G0. Here, we use the usual action of Gal(K′ /K ′) on A′ and we replace ‘K′-group scheme’ by ‘A′-
group scheme’ (note that in Lemma 4.1 we only have full faithfulness with respect to morphisms of group
schemes, not just of schemes, over the base). Of course, in the category of A′-schemes this generally does
not constitute descent data down to A′, since the cover Spec A′ → SpecA′ is typically far from Galois.

Since an automorphism γ : A′ → A′ is trivially pseudo-étale, Theorem 4.6 enables us to reformulate
all of this intrinsically in the category PSHf

A′ . We state this more formally as a definition. Note that
the contravariance of LMA′ , LM c

A′ , and LMu
A′ will cancel out the contravariance of Spec implicit in the

descriptions of the action of Gal(K′ /K ′) above, leaving us with a more psychologically pleasing left action
of Gal(K′ /K ′) rather than a right action.

Definition 5.1. For an object (L,M, j) in PSHf
A′ , descent data D on (L,M, j) (relative to A′ → A′) is a

collection of PSHf
A′ -isomorphisms

[γ]D : (L,M, j)γ
∼→ (L,M, j),

for all γ ∈ Gal(K′ /K ′), such that [γ1]D ◦ ([γ2]D)γ1
= [γ1 ◦ γ2]D.

If one were interested in generalizing the considerations of Ramakrishna [16] to study a local deformation
problem analogous to the one in [10] (suitably modified to force the p-divisible group to arise over an extension
with e ≤ p − 1), a natural thing to study would be the abelian category DPSHf

A′ whose objects consist
of pairs ((L,M, j),D) with (L,M, j) an object in PSHf

A′ and D a descent data on (L,M, j) (relative to
A′ → A′, even though we omit mention of A′ in the notation); we define a morphism

((L1,M1, j1),D1)→ ((L2,M2, j2),D2)
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to be a morphism ϕ : (L1,M1, j1)→ (L2,M2, j2) compatible with the descent data (i.e., ϕ◦[γ]D1 = [γ]D2 ◦ϕγ
for all γ ∈ Gal(K′ /K ′)). Full abelian subcategories DSHf

A′ (when e(K′) < p − 1) and DSHf,u
A′ , DSHf,u

A′

can be defined in the obvious manner, but we don’t have any need for them, essentially because of Theorem
4.9. When considering the computation of Ext1’s along the lines of argument as in [16], one is also led to

consider the full abelian subcategory D̃PSH
f

A′ consisting of p-torsion objects. It is trivial to check that the

forgetful functors D̃PSH
f

A′ → DPSHf
A′ and DPSHf

A′ → PSHf
A′ are exact. This is used in [4].

We’ll now use the descent formalism in order to prove a ‘good reduction’ theorem for certain abelian
varieties. First, let’s formulate a theorem about p-divisible groups which will be the means by which we
study good reduction of abelian varieties.
Theorem 5.2. Let K′ be a finite (not necessarily Galois!) extension of K ′, with valuation ring A′ and
e(K′) ≤ p − 1. Let ΓK′ be a p-divisible group over K ′ and assume that there exists a p-divisible group Γ′

over A′ such that
ΓK′ ×K′ K′ ' Γ′ ×A′ K

′

as p-divisible groups over K′. Suppose that ΓK′ [p] ' G ×A′ K ′ as K ′-group schemes for some G in FFA′ .
If e(K′) = p− 1, then also assume G and Γ′ are both unipotent or both connected (the latter condition being
equivalent to the unipotence/connectedness of Γ′[p]). Then there exists a p-divisible group Γ over A′ such
that ΓK′ ' Γ×A′ K ′, with Γ unipotent/connected if Γ′ and G are unipotent/connected.

Before proving Theorem 5.2, let’s explain how it is used to prove the following result:
Theorem 5.3. With K ′ and K′ as in Theorem 5.2, let X/K′ be an abelian variety such that X acquires good
reduction over K′. Also, suppose that X[p] ' G×A′ K ′ for some G in FFA′ . If e(K′) = p− 1, then assume
that either G is unipotent and the Néron model of X ×K′ K′ over A′ has unipotent p-torsion, or that these
finite flat group schemes are connected. Then X has good reduction over K ′.

Proof. Define ΓK′ to be the p-divisible group associated to X/K′ , so ΓK′ ×K′ K′ ' Γ′ ×A′ K
′, where Γ′ is

the p-divisible group of the Néron model of X ×K′ K′ over A′. If e(K′) = p− 1, our p-torsion hypothesis on
the Néron model implies that Γ′ is unipotent or connected. Theorem 5.2 ensures that ΓK′ ' Γ ×A′ K ′ for
some p-divisible group Γ over A′. By a theorem of Grothendieck [11, Cor 5.10], this implies that X/K′ has
good reduction.

We should stress that [11, Cor 5.10] is much stronger than what we actually need. All we need is the
fact that if R is a henselian discrete valuation ring with a characteristic 0 fraction field K and with residue
characteristic p, and X is an abelian variety over K which acquires good reduction over a finite extension of
K, then X has good reduction over K if and only if the p-divisible group of X has good reduction over K.
The proof of this fact can be extracted from the end of the proof of [11, Cor 5.10], requiring just the usual
Néron-Ogg-Shafarevich criterion and none of the theory of semi-stable reduction for abelian schemes.

For the convenience of the reader, we explain in more detail the relevant part of Grothendieck’s argument
(phrased in a self-contained manner which bypasses semi-stability considerations). Let K ′/K be a finite
extension over which X ′ = X ×K K ′ acquires good reduction and let Γ/R be a p-divisible group equipped
with an isomorphism Γ/K ' Tp(X) of p-divisible groups over K. We want to show that X/K has good
reduction. Since the Néron model is of formation compatible with passage to the strict henselization of the
base (either by [1, 7.2/2] or the actual construction), we can assume that R is strictly henselian, and then
that K ′/K is Galois with Galois group G. Let R′ denote the valuation ring of K ′, and let k′/k denote the
(finite, purely inseparable) extension of residue fields. Let X′/R′ denote the (proper) Néron model of X ′/K′ .

Pick a prime ` 6= p. Since the `-adic Tate module T`(X ′) is a constant `-divisible group (as it is the generic
fiber of an `-divisible group T`(X′) over the strictly henselian R′), there is a natural action of G on T`(X)
via the ‘geometric points’ (which all arise over K ′). We need to prove this action is trivial. Equivalently, for
each n we have an action of G on X ′[`n](K ′) defined by

g(x) = (1× g−1)∗ ◦ x ◦ g∗,
where g∗ : Spec(K ′)→ Spec(K ′) and (1× g−1)∗ : X ′ = X ×K K ′ → X ′ are the natural maps, and we want
to prove this action is trivial.



50 BRIAN CONRAD

Letting (·)g denote base change by the automorphism g∗ (on either Spec(K ′) or Spec(R′)), the isomor-
phisms X ′ ' X ′g−1 over g∗ extend to isomorphisms [g] : X′ ' X′g−1 . Since k′/k is a purely inseparable
extension, so Aut(k′/k) is trivial, passing to the closed fiber gives k′-automorphisms [g] : X′ ' X′. The
Néron property of X′ and the strict henselianity of R′ give identifications

X ′[`n](K ′) = X′[`n](R′) = X′[`n](k′)

under which the action of G on the left side translates into the induced action by the [g]’s on the right side.
Thus, it is enough to prove that for each g ∈ G, the automorphism [g] of the abelian variety X′/k′ is the
identity. This assertion does not have anything to do with ` and can be checked by looking at the action on
the p-divisible group of X′/k′ . Thus, it is enough to prove that the p-divisible group maps

Tp([g]) : Tp(X′)→ Tp(X′g−1) ' Tp(X′)g−1

(over g∗ : Spec(R′) ' Spec(R′)) induce the identity on the closed fiber.
Now Γ ×R K ' Tp(X) enters the picture. Base changing to K ′, we get an isomorphism of p-divisible

groups over K ′

(Γ×R R′)×R′ K ′ ' Tp(X′)×R′ K ′

compatibly with the isomorphisms on each side with G-twists (with the ones on the right coming from the
Tp([g])’s), so by Tate’s theorem [19, Thm 4] we obtain an isomorphism of p-divisible groups i : Γ ×R R′ '
Tp(X′) over R′ such that the diagrams

Γ×R R′
i→ Tp(X′)

↓ ↓ [g]

(Γ×R R′)g−1
(g−1)∗(i)→ Tp(X′)g−1

commute. Passing to the closed fiber and noting that the left side reduces to the identity and the two rows
reduce to the same map, it follows that the right side always reduces to the identity, as desired.

�

The unipotence/connectedness condition on the p-torsion of the Néron model is satisfied when X/K′ is
an elliptic curve with potentially supersingular reduction. This was the source of the original motivation for
proving Theorem 5.2. More precisely, the theory of finite Honda systems can be used to study the defor-
mation theory of Galois representations, and in particular the problem of classifying Galois representations
of Gal(Qp/Qp) which ‘come from finite flat group schemes’ over K ′ (or K′). In [4] this is carried out, and
one gets universal deformation rings RK′ and RK′ , together with a natural map RK′ → RK′ . This map
turns out (by computational observation) to be an isomorphism. An ‘explanation’ for this isomorphism is
provided by Theorem 5.2.

With the application to abelian varieties settled, we now carry out the computations:

Proof. (of Theorem 5.2) Note that Galois descent for schemes carries over to p-divisible groups because of
the way in which they are built up out of genuine (i.e., non-formal) group schemes. This will be implicit in
our use of descent below.

We can certainly replace K ′ by the maximal unramified extension of it within K′, by Galois descent of
(group) schemes, so we may (and will) assume that K′ /K ′ is a totally ramified finite extension. In particular,
the residue field A′/n can be identified with k. Also, note that as K′-group schemes,

Γ′[p]×A′ K
′ ' ΓK′ [p]×K′ K′ ' G×A′ K′ ' (G×A′ A′)×A′ K

′,

so by Lemma 4.1 it follows that Γ′[p] ' G×A′ A′. This will be used below. We also emphasize that we fix a
choice of isomorphism ΓK′ [p] ' G ×A′ K ′ for the purposes of our constructions below. In what follows, we
will consider only the case e(K′) < p − 1. When e(K′) = p − 1 and there are unipotence or connectedness
conditions, the arguments go through with only minor notational changes (e.g., LMu

A′ in place of LMA′ ,
etc.).
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Let LMA′(Γ′) = (L′,M ′) in Hd
A′ . As was noted in the second half of Lemma 4.12, we have

LMA′(Γ′[pn]) ' (L′/pn,M ′/pn),

with this isomorphism functorial in Γ′ and compatible with change in n and base change as in §4. We will
need to use these isomorphisms below in the case when the base is the valuation ring A′′ of the Galois closure
K′′ of K′ over K ′. Note that since K′ /K ′ is a totally ramified extension of degree e def= e(K′ /K ′) prime to
p, we have K′′ = K′(ζe) and so e(K′′) = e(K′). This is the main reason it was important to reduce to the
case in which K′ /K ′ is totally ramified.

Since Γ′[p] ' G ×A′ A′, we see that Γ′[p]k ' Gk (recall k ' A′/n). Thus, M(Gk) ' M(Γ′[p]k) ' M ′/p.
There is an A′-submodule L ⊆ (M ′/p)A′ such that

LMA′(G) ' (L,M ′/p)

and the results in §4 enable us to relate L and L′/p. In fact, since A′ → A′ is a totally ramified finite extension,
Lemma 4.5 and the isomorphism G ×A′ A′ ' Γ′[p] imply that the natural map A′ ⊗A′ (M ′A′) → M ′A′ of
A′-modules induces an A′-linear isomorphism

A′ ⊗A′ L ' L′/p.

Now choose an A′-module direct summand L ⊆M ′A′ such that L/p ↪→M ′A′/p ' (M ′/p)A′ has image L.
We make the crucial claim that we can choose L ⊆M ′A′ ⊆M ′A′ to lie inside of L′ (recall that M ′A′ →M ′A′

is injective, as it is compatible with

K ′ ⊗A′ (M ′A′) ' K ′ ⊗AM ′ ↪→ K′⊗AM ′ ' K′⊗A′(M ′A′),

by [7, Ch IV, §2.3, Prop 2.1]).
The construction of such an L will require a long argument. First of all, consider the commutative diagram

(M ′/p)A′ → (M ′/p)A′y y
CWk,A′(Rk) −→ CWk,A′(Sk)

w′R

y yw′S
RK′ /mR −→ SK′/nS

with S = A′⊗A′ R the affine ring of G×A′ A′. The bottom row is an injection, as we noted at the beginning
of the proof of Lemma 4.5. Recalling that LMA′(Γ′[p]) ' (L′/p,M ′/p), this diagram enables us to conclude
that kernel L ⊆ (M ′/p)A′ of the left column contains (L′ ∩ (M ′A′)) /p ↪→ M ′A′/p ' (M ′/p)A′ . Here, the
intersection uses the fact mentioned earlier that the natural map M ′A′ → M ′A′ is an A′-linear injection,
as it is compatible with the injection K ′ ⊗A M ′ → K′⊗AM ′. Also, the map (L′ ∩ (M ′)A′)/p → M ′A′/p
is injective because L′ ∩ (M ′A′) is an A′-module direct summand of M ′A′ . In order to justify this direct
summand property, it is enough to show that L′ is an A′-module direct summand of M ′A′ ⊇ M ′A′ . Since
M ′A′ is a finite free A′-module, it suffices to check that L′/n→M ′A′/n is injective. But this is clear, since
we have an isomorphism via L′/n 'M ′A′/M ′A′ [1], with the latter a quotient of M ′A′/n.

We will show that the inclusion
(L′ ∩ (M ′A′)) /p ⊆ L

of A′-submodules of (M ′/p)A′ is an equality. This will finish the proof, by taking L def= L′∩ (M ′A′). Note that
at this point it is not even clear that L′ ∩ (M ′A′) would ever be non-zero (for e(K′) > 1). Proving that the
above inclusion is an equality is something that can be checked after making a faithfully flat base extension,
so we will show that

A′ ⊗A′ ((L′ ∩ (M ′A′) /p)) ↪→ A′ ⊗A′ L
is an isomorphism. Recall from our discussion of totally ramified base change in §4 that the natural A′-linear
map from A′⊗A′L to (M ′/p)A′ is injective with image L′/p (since G×A′A′ ' Γ′[p]!), so what we wish to prove
is equivalent to showing that (L′ ∩ (M ′A′))/p and L have images in (M ′/p)A′ (via (M ′/p)A′ → (M ′/p)A′)
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with the same A′-linear span. Since the A′-linear span of the image of L is precisely L′/p, it is sufficient to
prove that the A′-linear map

A′ ⊗A′ (L′ ∩ (M ′A′)) ↪→ L′

is an isomorphism.
The first thing we will show is that the above injection remains injective modulo n, so A′⊗A′ (L′∩(M ′A′))

is at least an A′-module direct summand of L′. Well, modulo n the map is (L′ ∩ (M ′A′))/m→ L′/n and this
fits into the commutative (!) diagram

(L′ ∩ (M ′A′))/m −→ L′/n
∼−→ M ′A′/M

′
A′ [1]y x '

L/m
∼−→ coker FM ′/p,A′

∼←− M ′/FM ′

so if the left column is injective, then the map (L′ ∩ (M ′A′))/m → L′/n is injective also, as desired. The
injectivity of the left column says exactly that (L′ ∩ (M ′A′))/p ⊆ L is an A′-module direct summand; in
order to prove this latter condition, it suffices to prove that that (L′∩ (M ′A′))/p ⊆ (M ′/p)A′ 'M ′A′/p is an
A′-module direct summand. But as we noted above, L′ ∩ (M ′A′) is an A′-module direct summand of M ′A′ ,
so just reduce modulo p.

Since the inclusion A′ ⊗A′ (L′ ∩ (M ′A′)) ↪→ L′ has been proven to be an isomorphism onto an A′-module
direct summand, in order to prove that this submodule actually fills up all of L′, it is enough to check that
we have an isomorphism after passing to the generic fiber, which is to say that we want to show

K′⊗A′(L′ ∩ (M ′A′))
?= K′⊗A′L

′

inside of K′⊗A′(M ′A′) = K′⊗A′(M ′A′). If K′⊗A′L
′ ⊆ K′⊗A′(M ′A′) ' K′⊗K′(K ′ ⊗A′ (M ′A′)) is a K ′-

rational subspace (i.e., of the form K′⊗K′V for some K ′-subspace V of K ′ ⊗A′ (M ′A′) ' K ′ ⊗AM ′), then

K′⊗A′L
′ = K′⊗K′

(
(K′⊗A′L

′) ∩ (K ′ ⊗A′ (M ′A′))
)

= K′⊗K′(K ′ ⊗A′ (L′ ∩ (M ′A′)))
= K′⊗A′(L′ ∩ (M ′A′)),

as desired. Clearly it even suffices to prove that the K′′-subspace

K′′⊗A′L
′ ⊆ K′′⊗A′(M ′A′)

is a K ′-rational subspace, with K′′ the Galois closure of K′ over K ′. Note that K′′ = K′(ζe0), where
e0

def= e(K′ /K ′), so the inclusion of valuation rings A′ → A′′ is a finite étale extension and A′′ has A[ζe0 ]
as its maximal unramified subring (i.e, this is the Witt ring of the perfect residue field k(ζe0) of A′′ and
A = W (k) as usual). This will permit us to apply our previous base change formalism (after passing to an
inverse limit).

The idea behind the proof that K′′⊗A′L
′ ⊆ K′′⊗A′M ′A′ = K′′⊗K′(K ′ ⊗A′ (M ′A′)) is K ′-rational is

that (L′,M ′) = LMA′(Γ′) where Γ′ ×A′ K′ ' ΓK′ ×K′ K′. This latter isomorphism base extends to the
isomorphism Γ′ ×A′ K

′′ ' ΓK′ ×K′ K′′ and we now ought to be able to transfer Galois descent formalism of
Gal(K′′ /K ′) from the right side to the left side.

More precisely, we note that for L′′ = A′′ ⊗A′ L
′ and M ′′ = A[ζe0 ]⊗AM ′,

LMA′′(Γ′ ×A′ A
′′) ' (L′′,M ′′).

To see this, simply consider the analogous assertion for the pn-torsion via Theorem 4.6 and pass to the
inverse limit, using the fact that the natural A′′-module map

M ′′A′′ → lim←− ((M ′′/pn)A′′)

is an isomorphism, thanks to (M ′′A′′) /pn ' (M ′′/pn)A′′ . Since Γ′′ def= Γ′×A′A
′′ has generic fiber isomorphic

to ΓK′ ×K′ K′′, for each γ ∈ Gal(K′′ /K ′) we have a morphism of p-divisible groups over K′′

[γ] : Γ′′ ×A′′ K
′′ → (Γ′′ ×A′′ K

′′)γ ' Γ′′γ ×A′′ K
′′

satisfying [idK′′ ] = idΓ′′×A′′K
′′ and [γ]γ̃ ◦ [γ̃] = [γ̃ ◦ γ] for all γ, γ̃ ∈ Gal(K′′ /K ′).
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By Tate’s full faithfulness theorem for p-divisible groups [19, Thm 4], or even just by repeated applications
of Lemma 4.1 (since e(K′′) = e(K′)), we get the same formalism canonically over A′′. We will use this
formalism to show that for each γ ∈ Gal(K′′ /K ′), the K′′-semilinear map

γ ⊗ 1 : K′′⊗A′(M ′A′)→ K′′⊗A′(M ′A′)
takes the subspace K′′⊗A′L

′ to itself. The classical formulation of Galois descent (i.e., the normal basis
theorem) then would yield that K′′⊗A′L

′ is K ′-rational, as desired.
To start off, define L′′γ and M ′′γ to be the base extensions of L′′ and M ′′ by the respective base changes

γ : A′′ → A′′ and γ : A[ζe0 ] → A[ζe0 ]. Passing to the inverse limit on our discussion in §4 gives rise to the
natural A′′-module isomorphism

jγ : A′′ ⊗A′′ (M ′′A′′) ' (M ′′γ)A′′ ,

where on the left side we use γ : A′′ → A′′. A simple ‘passage to the inverse limit’ argument based on
Theorem 4.6 also shows that

LMA′′(Γ′′γ) ' (L′′γ ,M ′′γ),
where we use jγ to embed L′′γ as an A′′-submodule of (M ′′γ)A′′ .

The ‘Galois descent’ formalism over A′′ translates into Dk(ζe0 )-module maps

[γ] : M ′′γ →M ′′

for all γ ∈ Gal(K′′ /K ′), such that [γ]A′′ takes L′′γ over into L′′ (!) and

[γ1] ◦ [γ2]γ1 = [γ1 ◦ γ2].

Consider the γ-semilinear map of A′′-modules

M ′′A′′ → A′′ ⊗A′′ (M ′′A′′)
[γ]A′′◦jγ−→ M ′′A′′

given by m 7→ [γ]A′′ ◦ jγ(1 ⊗ m) (of course, the base change A′′ → A′′ implicit in the tensor product is
the one induced by γ). Since the map M ′′A′′ → A′′ ⊗A′′ (M ′′A′′) used above takes L′′ over to j−1

γ (L′′γ)
(by definition!), we see that the composite γ-semilinear map takes L′′ over to itself. Therefore, as long as
this map fixes every element of the natural copy of M ′A′ sitting inside of M ′′A′′ , it follows that the induced
semilinear map on K′′⊗A′′ (M ′′A′′) = K′′⊗A′(M ′A′) is exactly γ⊗1. In other words, γ⊗1 takes K′′⊗A′′L

′′

over into itself, which is exactly what we had promised to show.
It remains (for the construction of L inside of L′) to check that M ′A′ is fixed in the manner just described.

Since we have an inclusion of subsets of M ′′A′′ given by

M ′ ⊆M ′′ ⊆M ′′A′′

in the obvious way, it is in fact enough to consider the A[ζe0 ]-linear map

[γ] : M ′′γ →M ′′

and to show that this takes 1⊗m to m for every m ∈M ′ ↪→M ′′. We can rewrite this as a γ-semilinear map
of A[ζe0 ]-modules

A[ζe0 ]⊗AM ′ → A[ζe0 ]⊗AM ′

and we want to show that for all m ∈ M ′, the element 1 ⊗m is fixed by this map. That is, the (abstract)
semilinear action of Gal(K ′(ζe0)/K ′) ' Gal(K(ζe0)/K) ' Gal(k(ζe0)/k) on A[ζe0 ] ⊗A M ′ arising from the
above generic fiber descent formalism should fix M ′ and so should be the obvious action.

By [7, Ch II, §2.2], this ‘obvious’ action is precisely what we get if we use the functor M to translate the
canonical Galois descent data for (Γ′k) ×k k(ζe0) down to Γ′k into the language of of Dieudonné modules
(much like in the discussion at the beginning of this section). The prolonged ‘Galois descent data’ formalism
of Gal(K′′ /K ′) on Γ′ ×A′ A′′ induces (abstract) ‘Galois descent data’ formalism of Gal(K ′(ζe0)/K ′) '
Gal(k(ζe0)/k) on the closed fiber; we must verify that this is exactly the usual Galois descent data on this
closed fiber. The key point will be that the projection Gal(K′′ /K ′) � Gal(K ′(ζe0)/K ′) has a section,
namely the inverse to the natural isomorphism Gal(K′′ /K′) ' Gal(K ′(ζe0)/K ′) which arises from the linear
disjointness of K′ and K ′(ζe0) over K ′.
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Since Γ′ ×A′ K
′ ' ΓK′ ×K′ K′ as p-divisible groups over K′, we are reduced to showing that if we begin

with the canonical Galois descent data for
(
Γ′ ×A′ K

′)×K′ K
′′ down to Γ′ ×A′ K

′ and ‘formally’ prolong it
to the entire p-divisible group Γ′×A′A

′′ (by Tate’s theorem or Lemma 4.1), then the induced formalism over
the closed fiber is exactly the canonical Galois descent data for (Γ′ ×A′ k)×k k(ζe0) down to Γ′×A′ k = Γ′k.
However, this assertion is a direct consequence of the way in which Galois descent of fields is realized as
faithfully flat descent and the fact that A′ → A′′ is a Galois extension of discrete valuation rings (see [1,
§6.2, Example B] for more details). This completes the construction of the desired L ⊆M ′A′ ⊆M ′A′ lying
inside of L′.

Let us see how such an L enables us to construct Γ of the desired sort. The commutative diagram

L/m −→ M ′A′/M
′
A′ [1] ∼←− M ′/FM ′y y '

L/m
∼−→ coker FM ′/p,A′

∼←− (M ′/p)/F (M ′/p)

shows that (L,M ′) lies in Hd
A′ , so (L,M ′) ' LMA′(Γ) for a p-divisible group Γ over A′. Certainly the

A′-submodule
LA′(Γ×A′ A′) ↪→M ′A′ ⊆ K′⊗AM ′

contains L = LA′(Γ). Thus, A′ ⊗A′ L lies inside of LA′(Γ ×A′ A′). Modulo n, however, this inclusion is
precisely the top row in the commutative diagram

L/m −→ LA′(Γ×A′ A′)/n
'
y y '

M ′A′/M
′
A′ [1] M ′A′/M

′
A′ [1]

'
x x '

M ′/FM ′ = M ′/FM ′

so A′ ⊗A′ L = LA′(Γ ×A′ A′) inside of K′⊗AM ′. Since we are assuming that L lies inside of L′, so
A′ ⊗A′ L ⊆ L′, the commutative diagram

(A′ ⊗A′ L)/n −→ L′/n

'
y y '

M ′A′/M
′
A′ [1] = M ′A′/M

′
A′ [1]

forces A′ ⊗A′ L = L′. Therefore, LMA′(Γ′) = (L′,M ′) = (A′ ⊗A′ L,M ′) is isomorphic to LMA′(Γ×A′ A′),
from which we get an isomorphism of formal A′-group schemes Γ×A′ A′ ' Γ′.

Passing to the generic fiber, we get an isomorphism of p-divisible groups over K′

(Γ×A′ K ′)×K′ K′ ' Γ′ ×A′ K
′ ' ΓK′ ×K′ K′ .

Recall that by hypothesis, ΓK′ [p] ' G×A′ K ′ for some G in FFA′ and Γ is defined so that

LMA′(Γ[p]) ' (L/p,M ′/p) = (L,M ′/p) ' LMA′(G),

so G ' Γ[p]. On the generic fiber this gives ΓK′ [p] ' Γ[p]×A′K ′. Hence, Γ×A′K ′ and ΓK′ are two p-divisible
groups over K ′ which become isomorphic over K′ and have p-torsion subgroups which are isomorphic over
K ′.

Since ΓK′ and Γ ×A′ K ′ have the same height h (as this can be computed after base extension to K′),
upon fixing a choice of algebraic closure K ′ of K ′ and a K ′-embedding K′ ↪→ K ′, we may view ΓK′ and
Γ×A′ K ′ as continuous Galois representations

ρi : Gal(K ′/K ′)→ GLh(Zp)

(i = 1, 2) such that ρ1|Gal(K′/K′) ' ρ2|Gal(K′/K′) and for ρi
def= ρi mod p, there is an isomorphism ρ1 ' ρ2. In

fact, we claim that the same matrix µ ∈ GLh(Zp) can be used to conjugate ρ1|Gal(K′/K′) into ρ2|Gal(K′/K′)

and ρ1 into ρ2. Such a conjugation by µ gives a ‘compatible’ choice of bases and so would allow us to
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assume that ρ1|Gal(K′/K′) and ρ2|Gal(K′/K′) are literally equal, as are ρ1 and ρ2. Lemma 5.4 then would
yield ρ1 ' ρ2, so

ΓK′ ' Γ×A′ K ′,
which is what we wanted to prove.

The rigorous justification of the existence of µ is based on giving a more canonical description of the
meaning of the existence of µ. Consider the isomorphism

(Γ×A′ K ′)×K′ K′ ' ΓK′ ×K′ K′

from above. This induces an isomorphism of K′-group schemes

ϕ1 : (Γ[p]×A′ K ′)×K′ K′ ' ΓK′ [p]×K′ K′ ' (G×A′ K ′)×K′ K′,
the latter isomorphism being induced by the base extension K ′ → K′. However, by using the isomorphism
G ' Γ[p] obtained at the end of the above lengthy construction of L, the base extension A′ → K′ gives rise
to an isomorphism

ϕ2 : (Γ[p]×A′ K ′)×K′ K′ ' (G×A′ K ′)×K′ K′ .
The existence of µ is precisely the assertion that ϕ1 = ϕ2.

These maps ϕ1, ϕ2 lift to isomorphisms of the corresponding A′-group schemes, so by the faithfulness of
passage to the closed fiber (Corollary 3.7) it suffices to check that the induced maps on the closed fibers
coincide. Since A′ → A′ induces an isomorphism on the residue fields, we have two (abstract) isomorphisms

M(Gk) 'M(Γ[p]k)

which we must prove are the same. From Γ′[p] ' G ×A′ A′ we get M(Gk) ' M(Γ′[p]k) ' M ′/p; an
isomorphism M ′ ' M(Γk) is furnished by the definition of Γ, so we have also an isomorphism M ′/p '
M(Γ[p]k). The composite isomorphism M(Gk) ' M(Γ[p]k) is precisely the map induced from ϕ1. Now
consider the isomorphism Γ[p] ' G constructed above via Honda systems (actually, it is the inverse that we
constructed). On the level of closed fibers, it is obvious that we have exactly the same map on the Dieudonné
modules as was just described. Hence, ϕ1 and ϕ2 do indeed coincide.

�

We now prove the lemma which was critical in the above proof.
Lemma 5.4. Let G be a profinite group and H an open normal subgroup of index prime to p, with p a
prime. Let ρi : G→ GLn(Zp) be two continuous representations for which ρ1|H = ρ2|H and ρ1 = ρ2, where
ρi is the residual representation ρi mod p. Then ρ1 ' ρ2.

Proof. Let ρ denote the common restriction of ρ1 and ρ2 to H. Define f(g) = ρ1(g)ρ2(g)−1. It is easy to
check that this is a function from the group G/H to the group

Kn = ker(GLn(Zp)→ GLn(Fp)).

Moreover, given that ρ2 is a representation, the condition that ρ1 is a representation is equivalent to the
condition

f(g1g2) = f(g1) · ρ2(g1)f(g2)ρ2(g1)−1.

In particular, if we take g1 = h to be any element of H and g2 = g to be any element of G, then

f(g) = f(hg) = ρ(h)f(g)ρ(h)−1,

so f takes its values in the subgroup KH
n of invariants under ρ = ρ2|H . Note that this is a closed subgroup

of Kn and so is a pro-p group with a G/H-stable solvability series (using the conjugation action of ρ2).
Since the abelian higher cohomology of G/H on abelian p-groups always vanishes, the standard short

exact sequence arguments and compactness of KH
n show that H1(G/H,KH

n ) is the trivial pointed set (here,
we are using continuous non-abelian cohomology). Hence, there exists x ∈ KH

n such that

f(g) = x−1ρ2(g)xρ2(g)−1.

In other words, x ∈ GLn(Zp) conjugates ρ2 into ρ1, so we have the desired isomorphism.
�
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We conclude by mentioning a question raised by Nicholas Katz. Fix a prime p. Choose a local field K
with characteristic 0 and having a valuation ring with a perfect characteristic p residue field. Let K ′/K be a
finite extension. Consider an abelian variety A/K such that A/K′ has good reduction. For a positive integer
n, say that A[pn] has good reduction over K if there is a finite flat OK-group scheme G and a K-group scheme
isomorphism A[pn] ' G×OK K. Does there exist an explicit strictly increasing sequence of positive integers
e(1, p) < e(2, p) < · · · < e(n, p) < . . . so that if (for some n) e(K ′) < e(n, p) and A[pn] has good reduction
over K, then A has good reduction over K? Intuitively, if K ′/K is fixed, there should be a p-power torsion
level depending only on e(K ′) so that detecting good reduction for an abelian variety over K is equivalent
to good reduction over K ′ and good reduction for a suitable torsion level over K. We showed above that
one should take e(1, p) = p − 1. The existence of a sequence {e(n, p)} would be a nice complement to [11,
Cor 5.10].

Appendix A

In this appendix, we would like to clarify an important point in the proof of Fontaine’s classification of
smooth p-formal group schemes over A′, where e(A′) < p − 1 (or e(A′) ≤ p − 1 if we restrict attention
to connected or unipotent objects). The point of interest arises on [7, p. 180], where one has a system of
equations

c+Ax+Bxp = 0,

where x is an unknown vector with n entries in an Fp-algebra S, c is a given vector in Sn, A is an invertible
n by n matrix over S, B is a nilpotent n by n matrix over S, and xp denotes the vector obtained from x by
raising the entries to the pth power. It is asserted that such a system of equations admits a unique solution.
In this level of generality, the claim is not quite true, because the matrix A−1B might not be nilpotent. We
would like to explain why this does not cause problems. More precisely, we will show that in the particular
setting considered in [7], the matrix A−1B is actually nilpotent and that this suffices to get existence and
uniqueness of solutions. Since this is just a technicality that is only of interest to someone reading [7], we
take the liberty here of using the notation in [7] without comment (it would be too much of a digression to
recall here all of the notation we need).

For a ‘bad’ example, consider the hypothetical possibility that αc1 = X1 + X2 + (1/p)Xp
2 , αc2 = X1,

x0
2 ≡ 0 mod p, and x0

1 is allowed to be anything. We then get the simultaneous equations

y1 + y2 + yp2 + γ1 = 0, y1 + γ2 = 0.

If γ1 = γ2 = 0, then (0, 1) and (0, 0) are both solutions. If γ1 = 1, γ2 = 0, then we need to solve the equation
T p− T + 1, which has no solution if our characteristic p ring is Fp. We need to make fuller use of our group
scheme setting in order to rule out examples of this type. The key fact is:
Theorem A.1. There is a matrix identity(

∂αci
∂X`

)−1
(
∂pαci
∂Xp

j

)
≡ −

((
∂V (X`)
∂Xj

)p)
mod m̂,

where the right side is the negative of the matrix obtained by taking the (semi-linear) matrix of V with respect
to the k-basis {Xi} of the k[V ]-module m/m2 'M/FM = M c/FM c and raising the entries to the pth power.

Granting this, we can choose coordinates Xi so that the matrix of the nilpotent V on m/m2 with respect
to the basis {Xi} has all entries 0, except for some lower diagonal (i, i+ 1) entries which might equal 1. It
would then remain to prove:
Lemma A.2. Let S be an Fp-algebra, c ∈ Sn, N = (νij) an n by n matrix with νij nilpotent for j 6= i+ 1.
Then the vector equation

x = c+Nxp

has a unique solution x ∈ Sn (here, as above, xp ∈ Sn denotes the vector obtained by raising the entries in
x to the pth power).
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Proof. By standard limit arguments, we may assume S is a localization of a finite type Fp-algebra. Unique-
ness can then be checked over the completion, and once we have uniqueness in general, existence can be
obtained by descent from the completion. Thus, we may assume that S is a complete local noetherian
Fp-algebra with a finite residue field k, in which case it is enough to work over the artinian quotients of S.
That is, we may assume S is a finite local Fp-algebra. We want to show that the map of sets

ϕ : Sn → Sn

given by x 7→ x−Nxp is a bijection. Since S is a finite set, it suffices to check injectivity. Since ϕ is additive,
it is enough to check that x = Nxp implies x = 0. If x ≡ 0 mod mS , we can iterate, so it is enough to pass
to S/mS . That is, we may assume S is a field and N = (νij) is a lower diagonal matrix. Any product of
n+ 1 such matrices is 0, so x = Nxp = N · · · · ·N (pn)xp

n+1
= 0, where N (pr) = (νp

r

ij ).
�

Now we prove Theorem A.1

Proof. The key input from the theory of formal group schemes is [7, Ch III, Prop 3.1], which gives ac−1,i =
V (ac0,i). Since Rc = k[[X1, . . . , Xn]], we have a σ−1-linear ring map V : k[[X1, . . . , Xn]] → k[[X1, . . . , Xn]]
(where σ denotes absolute Frobenius on k) and by the Chain Rule we compute that for f ∈ k[[X1, . . . , Xn]],

∂

∂Xj
(V (f)) =

∑
`

σ−1

(
∂f

∂X`

∣∣
(σ(V (X1)),...,σ(V (Xn)))

)
· ∂V (X`)

∂Xj
.

Thus,

∂ac−1,i

∂Xj
=
∑
`

σ−1

(
∂ac0,i
∂X`

∣∣
(σ(V (X1)),...,σ(V (Xn)))

)
· ∂V (X`)

∂Xj
.

This yields

∂pαci
∂Xp

j

≡ (p− 1)!
(
∂ac−1,i

∂Xj

)p
mod m̂

≡ −
∑
`

σ−1

(
∂a0,i

∂X`
|0
)p(

∂V (X`)
∂Xj

|0
)p

mod m̂

≡ −
∑
`

∂αci
∂X`

|0 ·
(
∂V (X`)
∂Xj

|0
)p

mod m̂.

Therefore, we get the matrix identity asserted in the statement of the theorem.
�

We conclude by noting that the existence and uniqueness assertion for the system of equations on [7,
p. 183] is a special case of the general claim that for any Fp-algebra S, any n by n matrix A with entries in
S, and γ ∈ Sn any vector with nilpotent entries, the vector equation

γ + x+Axp = 0

has a unique solution in Sn with nilpotent entries. The proof proceeds exactly like the proof in the Lemma
A.2, via reduction to the case in which S is a finite local Fp-algebra, and we then want to show that the
additive map Sn → Sn given by x 7→ x+Axp induces a bijection on vectors with nilpotent entries. The map
certainly sends ‘nilpotent’ vectors to ‘nilpotent’ vectors, so by a counting argument it is enough to check
that if x+Axp = 0 and x has nilpotent entries, then x = 0. But this is clear.
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