DESCENT FOR COHERENT SHEAVES ON RIGID-ANALYTIC SPACES

BRIAN CONRAD

Let k be a field complete with respect to a non-trivial non-archimedean valuation. Throughout, we work
with rigid-analytic spaces over k. The purpose of these notes is to prove:

Theorem. Let f : S" — S be a faithfully flat quasi-compact map of rigid spaces. The functor from
coherent sheaves on S to coherent sheaves on S’ equipped with descent data is an equivalence of categories.

If one assumes k to have a discrete valuation, then descent theory for coherent sheaves is an old result of
Gabber. Gabber’s method was extended to the general case by Bosch and Gértz [BG]. Our method is rather
different from theirs (though both approaches do use Raynaud’s theory of formal models [BL1], [BL2], we
use less of this theory). We think that our approach may be of independent interest, because in contrast with
all other known examples of descent (at least to this author) the method of proof is to show non-vanishing of
the “descent module” before one proves effectivity of descent, and to invoke noetherian induction to obtain
the effectivity. Further geometric examples of fpge descent in the rigid-analytic context are discussed in [C].

Proof. We refer to the lucid exposition in [BLR1, §6.1] for the algebraic version of descent theory, which will
play a crucial role in what we do. Faithfulness is obvious (without even requiring quasi-compactness of f),
and so for the rest we may work locally on S. Thus, we can assume S is affinoid. Arguing exactly as in the
algebraic case, since faithfulness doesn’t require quasi-compactness of f we can reduce to the case where S’
is affinoid too. In particular, f is now (quasi-)separated and quasi-compact. Thus, using Raynaud’s theory
of formal models [BL1], [BL2] we can run through the localization argument again to reduce to the case
in which S" — S is the “generic fiber” of a map of formal affines Spf(%?’) — Spf(&/) where & — &’ is a
faithfully flat map of topologically finitely presented and flat R-algebras (R being the valuation ring of k).
Let A — A’ denote the corresponding faithfully flat map of k-affinoids.

For the full faithfulness, the theory of formal models for coherent sheaves permits us (after running through
the affine localization argument a second time on the level of formal models) to use the scheme-theoretic
argument, once we establish the analogue of [BLR1, 6.1/2]: if .# is a coherent o/-module, then the standard
complex of &7-modules

(0.0.1) 0= M — MByd — ME .y By

is exact. But this sequence is the inverse limit of the corresponding sequences of ordinary tensor products
modulo 3" for all n > 1 (with J an ideal of definition of R), so by left exactness of inverse limits we reduce to
the standard algebraic exactness for the faithfully flat ring extension &/ /3"« — &/’ /J"«/’ and the module
M |T™ M. The effectivity of descent in the coherent sheaf case is much more interesting.

The point of difficulty is that the descent data isomorphism

(////(gg/%/) Qrk ~ (%/(@M///) Rr k

need not respect the “integral structure”, so we cannot trivially reduce to the standard effectivity proof for
modules by working modulo powers of an ideal of definition. Instead, we will use a rather curious indirect
method to push through the usual commutative algebra argument with completed tensor products on the
k-affinoid level.
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Let M' = .#' @ gk be the finite A’-module corresponding to .#’, so we have two continuous A-linear maps
p2.popr: M = A'©sM,
with ps the canonical map, p; the canonical map to M'®4A’, and
©: M'@A ~ AR M
the “mysterious” A’®4A’-linear descent data isomorphism (here and below, we give finite modules over

affinoids their unique Banach module topologies). For convenience we will define M” to be the A’'® 4 A’-
module A’®@ 4 M’ and we define the continuous A-linear map

(0.0.2) d=ps—pop : M — M"
to be the difference of the two A-linear maps just indicated. Finally, define the closed Banach A-submodule
M C M’ by the left exact sequence
0—-M-—-M — M

We wish to prove that M is a finitely generated A-module and that the resulting A’-linear map

A @AM~ A@sM — M
(that automatically respects the descent data) is an isomorphism. A priori, M could be 0 or could fail
to be A-finite. In any case, the appearance of completed tensor products prevents a trivial application of
Grothendieck’s proof from the algebraic case. Surprisingly, we will have to prove M # 0 whenever M’ # 0
somewhat prior to being able to prove that M is A-finite and a descent of M’.

For ease of notation in what follows, we let A denote the n-fold completed tensor product of A’ over A
(with A = A) and we let M (™) denote the A -module A"~V® 4M’. We wish to study that the standard
Cech-descent complex

MO - M@ B

where the A-linear map d};. : M () — M™+D is given by the usual (n + 1)-fold “alternating difference”
formula involving the descent data:

n+1

e (18 .. Ba,@m’) =) (1) (a1&. .. @(a}@m))® ... Bal)

i=1
(with the understanding that in the ith term, we move the “M’-part” back out to the far right). We will
write M(®) as shorthand for this complex. The complex M(*) admits the evident “inclusion” augmentation
from M in degree 0. We will present the proof as a series of 8 steps.

Step 1: If the descent is effective, then M must be the finite A-module descent and the A-module Cech
complex M(®) is a resolution of M wvia the augmentation.

Since we have already established full faithfulness for descent of coherent sheaves (using the crutch of
formal models in (0.0.1)), we just have to show that for any finite A-module N, the augmented Cech-descent
complex attached to this N is exact. By choosing a coherent R-flat &/-module .4 that is a formal model
for N, our complex of interest is the result of applying the localization functor k ®g (-) to the analogous
complex of &7-modules

(0.0.3) 0— N — N

It suffices to show that (0.0.3) is exact. Modulo any 7", (0.0.3) is the Cech-descent complex for the o /7.7 -
module A /7™ A relative to the ordinary faithfully flat covering Spec(&/’/n"</") — Spec(</ /n™27). Thus,
(0.0.3) modulo 7™ is exact for all m by usual descent theory. Since the transition maps in these inverse
systems are surjective and all .4 (")'s are R-flat and m-adically separated and complete, the usual Mittag-
Leffler argument gives exactness in the limit. This completes Step 1.

Step 2: If0 —» M| — M’ — M} — 0 is an exact sequence of finite A’-modules with descent data and if
descent is effective for M| and M}, then the sequence of A-module kernels

0—-M - M — My —0
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is exact (so M is a finite A-module) and descent is effective for M'.

Consider the commutative diagram of complexes of A-modules

(0.0.4) 0 0 0
0 M, M;| MY
0 M M M
0 M, M}, MY

0 0 0

The effectivity hypothesis, coupled with Step 1, implies that the top and bottom rows are exact. By
hypothesis, the second column is a short exact sequence of finite A’-modules. Each successive column in
(0.0.4) is obtained from this by applications of A& 4. (+) for n = 1,2, .... Since this functor takes short
exact sequences of finite A(™-modules to short exact sequences of finite A"+1-modules, we get the short
exactness of all columns after the first. Now the snake lemma ensures that the first column of kernels in
(0.0.4) is short exact. In particular, M is a finite A-module.

It now makes sense to consider the commutative diagram of finite A’-modules

0—>A/®AM1—>A/®AM—>A/®AM2—>O

| | |

0 M M’ M 0

Both rows are short exact and the left and right vertical maps are isomorphisms by hypothesis, so the middle
vertical map is an isomorphism, visibly compatible with the descent data (due to how M was defined). This
completes Step 2.

Now comes a strengthening of Step 1 in which we make no finiteness hypotheses on M or effectivity
hypotheses on the descent.

Step 3: The Cech-descent complex M(®) is exact.

Before we verify the exactness, we need to review some basic formulas. Consider a faithfully map B — B’
of k-affinoids. The examples to keep in mind are A™ — AM@4 A" (via z + 2®1) for n > 1. Recall that
the Cech-descent complex

B'— B&pB — ...

has continuous B-linear differential d™ : B(™ — B(®+1) for n > 1 determined by

n+1

0B ... 8by) =Y (~1)T'0®...B1D...Bb,

i=1
(where the ith term has a 1 in the ith slot). When we are given a B-linear section s : B’ — B, this complex
is exact because we can use s to make an explicit homotopy between 0 and the identity. The standard choice
for defining the homotopy maps k" : Bt — B() g

E"(01®...0by11) = s(b1)ba® ... by i1
for n > 1, but for our purposes it is more convenient to use s” : Bt — B defined by s = s and
(0.0.5) S 01D ... ®bpy1) = (=1)"s(bpi1)b1® ... Dby,
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for n > 1 (the identity d"~! o 8"~ ! + s" 0 d™ = id is easily checked for all n > 0). The point is that when
n > 1, the homotopy map s™ has no “interaction” with the first factor b, of the tensor product (in contrast
to the more standard k£™). This will ensure a certain compatibility later on.

Whenever we are given a Cech-descent complex N(*) for Sp(B’) — Sp(B) attached to descent data on a
finite B’-module N’ such that the descent is effective, with N/ descending to a finite B-module IV, we get a
B’-linear isomorphism B’@)BN ~ N’ that induces a canonical B-linear identification of N(®) with B(')®BN
as augmented complexes, the latter being exact by Step 1. If we are given the specification of a section s
as above, then descent for coherent sheaves is effective (with the same proof as in the algebraic case, via
pullback along the section), so in such cases if we let N denote the descended module then the B-linear
5*®idy, with s* as defined in (0.0.5), induces an explicit B-linear homotopy between 0 and the identity on
N(®)_ This latter formula is hard to “see” in terms of N(*) alone, as it rests on the effectivity of the descent.

Returning to our original situation, consider the first quadrant commutative diagram of Banach A-modules

(0.0.6)

o 1818dye L

e AQAARAM ) —= AR AR MY
pP2—Pp1 pP2—pP1

. 1&d} e .
~-4>A/®AM(") 4>A/®AM(N+1) - - ...

- 9 M(n) n M(n+1) - @@ S
Me

0 0

with n > 1 and maps defined as follows. The bottom (or Oth) row is the A-linear Cech-descent complex M (*)
whose exactness we wish to prove. For ¢ > 1, the A(9-linear gth row is the completed tensor product extension
of scalars by A4=1 — A'@,4 A0~ = A on the A~V linear (¢ — 1)th row. Finally, the nth column is the
result of applying (-)®4M ™ to the standard augmented A-linear Cech complex A — A(®) (associated to
the fpqc covering Sp(A’) — Sp(A)). The commutativity of (0.0.6) follows from A-linear functoriality. Using
the isomorphism

ADB MM ~ ADRYAMS 4y M ~ (AR 4 AMEI (o M)

(in which the g-fold tensor product in the right term is taken over A(™), the nth column in (0.0.6) is
transformed into the augmented Cech-descent complex for the finite A™-module M) relative to the fpge
covering

Sp(AMH)) = Sp(A'® 4 A™) — Sp(A™).
Thus, by Step 1, each column in (0.0.6) is exact.

For ¢ > 0, base change compatibility of descent theory implies that the gth row in (0.0.6) is exactly the
A@Jinear Cech-descent complex for the finite At -module A& 4 M’ with respect to the fpgc covering
Sp(Al@t)) = Sp(A D& 4 A’") — Sp(A@). Consider the section s, that corresponds to the k-affinoid algebra
map

(0.0.7) 5(01® ... Bagr1) = a1® ... Baga441

(geometrically, this is (x1,...,24) — (21,...,%4,24)). Following the homotopy convention (0.0.5), we get a
homotopy s between 0 and the identity for the gth row of (0.0.6). More specifically, if = € ADG MM is
killed by the horizontal d" for some n > 2, then z = d"~1 o s?~!(z), with s7~!(z) € AD®,M™=Y. This
explicates the ezactness of the gth row of (0.0.6).
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By a standard spectral sequence argument, the exactness of the bottom row of (0.0.6) is equivalent to
the exactness of the induced sequence of horizontal kernels along the left side in rows above the bottom
row. If we let K7 denote the kernel at the far left of the gth row, then K? is a finite A(Y-module and
AR K® ~ A, M’ is an exact sequence (it is just the first column of (0.0.6), in rows > 1). If we could
deduce the exactness of K® from this, then we’d be done. However, since the completed tensor products
in A/®4K*® cannot be replaced with ordinary tensor products (as K is rarely A-finite), we cannot use
algebraic faithful flatness to descend exactness to K*®. Thus, we use the following slightly indirect procedure
that carefully analyzes the above explication of the exactness of some rows in (0.0.6) via the homotopies s,.

Doing a simple diagram chase through the bottom three rows of (0.0.6) with the help of these homotopies
and the exactness of the columns, it follows that M(®) is exact in degree n (with n > 2) as long as the
diagram

n—1
(0.0.8) A'@UA @AM <— A'Q YA 4 M)

p2—p1 T Tm —Pp1

A/®AM(TL71) % AI@AM(n)
B
commutes, where we recall that the horizontal maps are defined in terms of our homotopy conventions
(depending on the sections s; and s3) and the effectivity of fpgc descent in the presence of a section.
Unwinding the effectivity of descent, the descended modules drop out (via functoriality) and we are left
with checking the commutativity of the diagram

1

(A)BAHD) —Zm (415, 18 4 A1) P an ) S (W Ay )P NBan ™ < (A1)BAH)

P2P1T Tmm
snt ~ ~

(A/)®An = o (A/®AA/)®A/(n—1) - (A/®AA/)®AIR - (A/)®A(n+1)

Recalling (0.0.5) and (0.0.7), checking the commutativity of this diagram is a simple computation that we
illustrate as follows:
(—1)"’1(1@)511 - a1®1)®a2® o Qanlpe < (l@)al - a1<§>1)<§>a2<§> o Rang

T T

(_1)n_1a1®a2® “e @anan-‘rl a1<§>a2<§> . @an+1

The point is that since n 4+ 1 > 3, the products a,a,+1 do not interfere with a;.
Step 4: If M’ # 0 then M # 0.

In other words, if 6 in (0.0.2) is injective then we claim M’ = 0. Beware that it is not obvious that 1®4 is
necessarily injective. We will eventually deduce this with the help of Step 3. It seems rather hard to directly
prove Step 4. We shall instead prove the contrapositive using formal models and the Banach Open Mapping
Theorem.

As we noted already, the A-linear § in (0.0.2) might not take the R-flat .#’ C M’ into the R-flat
A" C M". However, if we choose an ideal of definition J = (7) for R and let A = 7§ for suitably large n,
then A is injective and takes .#" into .#". Consider the exact sequence of R-modules

0= 25 0" — N =0
Thus, by R-flatness of .#" we have exact sequences

0 — Torp(R/I™, N ) — M |3™ M — M |3 M
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for all m. Moreover, since torsion-free R-modules are flat, we have an isomorphism

Torls (-, N tors) = Tor's (-, A)
for all ¢ > 0, where .4 ;s denotes the torsion R-submodule of .4". Thus, we have an exact sequence
(0.0.9) 0 — Torp(R/I™, N tors) — A" JI" M — A" |3 A"

The advantage of using A s to compute higher Tor’s is that we can actually produce a single power of 7
that annihilates it! In order to establish this, we note that by Step 3, the map ¢ : M) — M@ has closed
image (namely, the kernel of a suitable continuous map M @ - M (3)).

Since § is a continuous injection between k-Banach spaces, the closedness of its image implies (by the
Banach open mapping theorem) that § must be a closed embedding. But the source and target of § are
countable type k-Banach spaces (i.e., have dense subspaces of countable dimension), so it follows from [BGR,
2.7.1/4] that ¢ admits a continuous k-linear splitting. Multiplying this by a suitable power of 7, we conclude
that there is an R-module map .#" — .#’ such that the composite

o' A} Ay

is multiplication by some 7". Since these R-modules are all flat, it follows that the torsion submodule of the
cokernel .4 of A is annihilated by J3". Thus, the first term in (0.0.9) is annhilated by 3" for all m. If we
apply the faithfully flat base change &7 /3™of — &' /3™ /' to (0.0.9) and pass to the inverse limit on m, we
arrive at an exact sequence

0= H = A" Qg M — A M
in which J¢ is killed by 3" (as it is an inverse limit of R-modules killed by J”). Hence, upon applying the
localization functor k ®g (), we get an injection that is exactly the map

1@5(5 : A/®AM/ — A/®AM/,

The map 1&0 is exactly the analogue of § after we apply the base change Sp(A’) — Sp(A) throughout
our original descent data situation. But as we noted in the proof of Step 3, since after such a base change
the structure map through which we want to do descent acquires a section, descent for coherent sheaves in
such a situation is always effective (with the descended module exactly the kernel of the first map in the
Cech-descent complex, by Step 1). We conclude from the vanishing of the kernel of 1®6 that the A/@4A'-
module A’®4 M’ is the base change (via second projection) of the A’-module 0. That is, A’®&, M’ = 0. But
we have an isomorphism

A/@)AM, ~ (A/®AA/)®A/M/ ~ (AI®AAI) R A M’
since M’ is a finite A’-module. Since A’®4 A’ is a faithfully flat A’-algebra, it follows that M’ = 0, as desired.
In other words, we have proven that when M’ # 0 then M # 0.

Step 5: Reduction to the case where M spans M’ as an A’-module.

We may suppose M’ # 0, so by Step 4 we have M # 0. Let M; # 0 be the A’-span of M inside of
the finite A’-module M’. Due to the very definition of M, it follows that Mj inherits descent data from
M’ in an evident sense (since M has the same A-linear map to M” under either pullback from M’, due to
invariance under the descent data action, and M}’ is simply the (A’® 4A’)-span of M inside of M"). Defining
M} = M'/M], Step 2 reduces us to the analysis of M| and M}j. Note that M; is an A-submodule of M|
which is nothing other than M, so My is the A’-span of M;. If M) = 0 then M’ = M] is the A’-span of
M, so we’d be done. If M} # 0 then My # 0 by Step 4, so we can repeat the process to get a non-zero
A’-submodule M4 of M} (that corresponds to an A’-submodule of M’ strictly containing M{) and the game
continues.

As we keep encountering non-zero A’-modules, we build up a strictly increasing chain of A’-submodules
of M’ beginning with M]. Since M’ is a finite A’-module and A’ is noetherian, this process must eventually
stop, at which point we have achieved a descent-data-stable filtration of M’ by A’-modules whose successive
quotients satisfy the condition in our reduction step. Thanks to Step 2, this completes Step 5.

Step 6: Reduction to the case where a single element of M spans M’ as an A’-module.
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(Beware that we still have not yet shown that M is even a finite A-module.)

Since M’ is spanned by M as an A’-module by Step 5, we can let n > 1 denote the minimal positive
number of elements of M that suffice to span M’ over A’. Let my,...m, € M be A’-module generators of
M’. Defining M] = A'm; and M) = M’/M], it is obvious that M/, M} are compatible with the descent
data and that the images of the (n — 1) elements mag, ..., m, in My span M} as an A’-module. By induction
on n and Step 2, we're done with Step 6.

Now that a single element of M spans M’ as an A’-module, we have M' ~ A’/I’ as an abstract A’-module,
where I’ = ann 4/ (M').

Step 7: The ideal I' of A’ descends uniquely to an ideal I of A.

The uniqueness is clear, so we are only concerned with existence. Since the formation of the annihilator
ideal of a coherent sheaf commutes with flat base change, the descent data on M’ induces compatible descent
data on I’. More specifically, we have the literal equality

(0.0.10) I'@A = AT
inside of A’@4A’. Let .#" = ker(&/’ — A'/I'), so &/'/.#" is R-flat. By [BL1, 1.2(c)], .#' is automatically
a coherent ideal in the coherent ring &’, so &'/.#" is an R-flat formal model of A’/I’. In particular, the

injection ¢’ — &/’ remains injective modulo all powers of 7.
We conclude that the two closed immersion

(0.0.11) Spf (') I"N@ '), Spt (' @y (' | I")) — Spt(' @)

are Spf(R)-flat closed formal subschemes that are formal models for the closed rigid analytic subspaces
Sp((A'/I")@aA"), Sp(A'@A(A'/T')) > Sp(A'B4A")

But (0.0.10) implies that these latter closed subspaces literally coincide, whence by R-flatness we conclude

that the formal closed subschemes (0.0.11) literally coincide. In other words, the defining ideals

I'Qqgd, A Ry I — ARy
are exactly the same. Note that the injectivity of these two maps into @7'® <7’ follows from the fact that

A I — ' [T’ s flat for all m and ¢’ — o/ has R-flat cokernel (and hence remains injective modulo
every power of J). Passing to quotients by 3™, it follows that we have an equality
(I3 I") @y jymay (I ) = (' [T L) @y y3mey (S [T IT)

inside of (&'/3™") @y jgm o (' /I™2/") for all m. But by usual faithfully flat descent for o7/3"a/ —
o' /T’ it follows that there exists a unique finitely generated ideal %, C o/ /3™</ that induces the
finitely generated ideal .#'/J™.¢" C &/’ /™o’ under base change. Also, the cokernel of & /IJ™</ by %,
is R/J™-flat (as this can be checked after faithfully flat base change to «/’/3"&/’), so S, /3" 1.7, —
o/ /3™~ Lo/ is injective. The uniqueness of descent then implies that this must be the ideal .7, .

To summarize, we have finitely generated ideals .#,, C &7 /3™ compatible with change in m, so passage
to the limit (and a reworking of [EGA, 0, §7] without noetherian hypotheses, as in [Gu, Appendix]) yields
a coherent ideal

I lim 7, C o
whose mod J™ reduction is .%,, for all m > 1. Since the J-adic topology on .« induces that on .# by [BL1,
1.2(a)], the topologically faithfully flat base change &/ — &7’ consequently induces an identification

A @y =
inside of &’. Now passing to the affinoid world by localization, the ideal I = k ® p .# C A induces I’ under
base change to A’. This finishes Step 7.

Step 8: Completion of the proof.

It is clear that we can now replace A with A/l so as to reduce to the case I’ = 0. That is, we have
M’ ~ A" as A’-modules where 1 € A’ corresponds to an element of M, which is to say it is an element
of M’ that is invariant under the descent data. It is then automatic that carrying the descent data across
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the isomorphism M’ ~ A’ must induce on A’®@4 A’ ~ M" exactly the usual trivially effective descent data
structure for the finite A-module A relative to the faithfully flat covering Sp(A’) — Sp(A). Translating back
to M’, the original descent is effective. |
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