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MODULARITY OF CERTAIN POTENTIALLY BARSOTTI-TATE
GALOIS REPRESENTATIONS

BRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLOR

Introduction

Conjectures of Langlands, Fontaine and Mazur [22] predict that certain Galois
representations

ρ : Gal(Q/Q)→ GL2(Q`)
(where ` denotes a fixed prime) should arise from modular forms. This applies in
particular to representations defined by the action of Gal(Q/Q) on the `-adic Tate
module of an elliptic curve defined over Q, and so implies the Shimura-Taniyama-
Weil conjecture.

Wiles’ breakthrough in [46], completed by [45] and extended in [12], provided
results of the form

ρ modular ⇒ ρ modular
where ρ is the reduction of ρ. These results were subject to hypotheses on the local
behavior of ρ at `, i.e., the restriction of ρ to a decomposition group at `, and to
irreducibility hypotheses on ρ. In this paper, we build on the methods of [46], [45]
and [12] and relax the hypotheses on local behavior. In particular, we treat certain
`-adic representations which are not semistable at `, but potentially semistable.

We do this using results of [6], generalizing a theorem of Ramakrishna [32] (see
Fontaine-Mazur [22, §13] for a slightly different point of view). The results in [6]
show that certain “potentially Barsotti-Tate” deformation problems are smooth, al-
lowing us to define certain universal deformations for ρ with the necessary Galois-
theoretic properties to apply Wiles’ method. To carry out the proof that these
deformations are indeed realized in the cohomology of modular curves (i.e., that
the universal deformation rings are Hecke algebras), we need to identify the corre-
sponding cohomology groups and prove they have the modular-theoretic properties
needed to apply Wiles’ method. As in [15] and [12], the identification is made
by matching local behavior of automorphic representations and Galois represen-
tations via the local Langlands correspondence (together with Fontaine’s theory
at the prime `). We work directly with cohomology of modular curves instead of
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using the Jacquet-Langlands correspondence, and we use the simplification of [46]
provided by [13] and Fujiwara [23] independently.

The main technical restriction in this paper is that we only treat representations
which arise from `-divisible groups over certain tamely ramified extensions of Q`.
We do obtain sufficiently strong results here to give the following application:
Theorem If E is an elliptic curve over Q with conductor not divisible by 27, then
E is modular.

Note that the hypothesis on the conductor of E is satisfied if and only if E
acquires semistable reduction over a tamely ramified extension of Q3.
Notation We fix an odd prime ` and algebraic closures Q, R = C, and Qp for
all p. Choose embeddings of Q into C and Qp for all p, so we realize the Galois
group Gp = Gal(Qp/Qp) as a decomposition group inside of GQ = Gal(Q/Q). Let
Ip denote the inertia subgroup, Frobp ∈ Gp/Ip the arithmetic Frobenius element,
and Wp the Weil subgroup of Gp (i.e., the preimage of the subgroup of Gp/Ip ' Ẑ
generated by Frobp). We define Fp to be the residue field of the valuation ring of
Qp, and regard this as ‘the’ algebraic closure of Fp. The order pn subfield of Fp is
denoted Fpn .

For any field F of characteristic distinct from ` and having a fixed choice of
separable closure Fs, with GF = Gal(Fs/F ) the resulting Galois group, define
ε : GF → Z×` to be the `-adic cyclotomic character. We let ω = ε mod ` and
let ω̃ : GF → Z×` denote its Teichmüller lift. For any Z`[GF ]-module V , define
V (n) = V ⊗Z` ε

n for all n ∈ Z. For a representation ρ of GF and L/F a subextension
of Fs/F , let ρ|L denote the restriction ρ|GL .

We will let ηp,n denote the character Ip → W (Fpn)× obtained from the inverse
of the reciprocity map F× → Gab

F of local class field theory, where F is the field
of fractions of W (Fpn). We write ηn for η`,n, εn for η−1

n , ωn : I` → F×`n for the
reduction mod ` of εn and ω̃n for the Teichmüller lift of ωn. Thus ε1 = ε, ω1 = ω,
and ω̃n satisfies

σ(`1/(`
n−1)) = ω̃n(σ)`1/(`

n−1),

where `1/(`
n−1) denotes any (`n − 1)th root of ` in Q` [36, §1.5, Prop 3].

1. Deformation Algebras

1.1. Potentially Barsotti-Tate representations. Fix a finite extension K of
Q` in Q` with valuation ring O and residue field k. Let E be a characteristic 0 field
complete with respect to a discrete valuation, with valuation ring OE and residue
field perfect of characteristic `. Consider a continuous representation

ρ : GE → GL(M),

where M is a vector space of finite dimension d over K. By a continuity and
compactness argument, there exists an O-lattice L in M which is stable under the
action of GE .

Since all choices of L are commensurable, an argument using the method of
scheme-theoretic closure (see [33, §2.2-2.3]) shows that if there exists an `-divisible
group Γ/OE with generic fiber representation L (as a Z`[GE ]-module), then for any
choice of L such a Γ exists. In this case, we say that ρ is Barsotti-Tate (over E).
It is straightfoward to check that for K ′/K a finite extension, ρ is Barsotti-Tate if
and only if ρ⊗K K ′ is Barsotti-Tate. We say that ρ is potentially Barsotti-Tate if
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there exists a finite extension E′/E such that ρ|GE′ is Barsotti-Tate, in which case
we say ρ becomes Barsotti-Tate over E′.

We remark that if E′ denotes the completion of the maximal unramified extension
Eun of E, so GE′ is identified with the inertia group of E (because the valuation ring
of Eun is a henselian discrete valuation ring with algebraically closed residue field),
then ρ is Barsotti-Tate if and only if ρ|IE = ρ|GE′ is Barsotti-Tate. To see this, fix
a lattice L stable under ρ and let ρ denote the representation of GE on L. Applying
[1, Ch 6, Prop. D4(b)] to each torsion level, if ρ|IE is Barsotti-Tate (over E′) then
there exists an `-divisible group Γ over the (perhaps non-complete) valuation ring
of Eun with generic fiber ρ|IE . Using [44, Thm 4] and étale descent at each torsion
level, this descends to an `-divisible group over OE with generic fiber ρ, so ρ is
Barsotti-Tate. The same theorem [44, Thm 4] shows that when ρ is Barsotti-Tate
and we fix a choice of GE-stable lattice L, the corresponding `-divisible group Γ/OE
is canonically unique and admits a unique action of O extending that on the generic
fiber.

Let ρ : GE → AutO(L) be a potentially Barsotti-Tate representation, with L a
finite free O-module of rank d (so ρ⊗OK is potentially Barsotti-Tate). Suppose that
the residue field of E is finite (i.e., E is a finite extension of Q`). In Appendix B, we
review (following ideas of Fontaine) how to attach to ρ a continuous representation

WD(ρ) : WE → GL(D),

where WE is the Weil group of E (i.e., the subgroup of GE which maps to an integral
power of Frobenius in the Galois group of the residue field) and D is a vector space
over Q` of dimension d. A discussion of various properties of this construction (e.g.,
behavior with respect to tensor products) is given in Appendix B. For example,
if ρ has cyclotomic determinant, then WD(ρ) has unramified determinant sending
FrobE to |kE |, the size of the residue field of E.

1.2. Types of local deformations. Fix a continuous two-dimensional represen-
tation

ρ : G` → GL(V )
over k such that Endk[G`] V = k. One then has a universal deformation ring RV,O
for ρ (see Appendix A).

An `-type is an equivalence class of two-dimensional representations

τ : I` → GL(D)

over Q` with open kernel. For each `-type τ , we shall define a certain quotient RDV,O
of the complete local Noetherian O-algebra RV,O. This quotient will be a ‘Zariski
closure of certain characteristic 0 points’.

A deformation ρ of V to the the ring of integers O′ of a finite extension of K in
Q`, is said to be of type τ if

(1) ρ is Barsotti-Tate over F for any finite extension F of Q` such that τ |IF is
trivial;

(2) the restriction of WD(ρ) to I` is equivalent to τ ;
(3) the character ε−1 det ρ is the Teichmüller lift of the prime-to-` order char-

acter ω−1 det ρ : G` → F
×
` .

We say that a prime ideal p of RV,O is of type τ if there exists a finite extension
K ′ of K (with valuation ring O′) and a (necessarily local) O-algebra homomorphism
RV,O → O′ with kernel p such that the corresponding deformation is of type τ . If p is
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of type τ , then so is the deformation corresponding to any O-algebra homomorphism
with kernel p and values in some O′ as above.

If there do not exist any prime ideals p of type τ , we define RDV,O = 0. Otherwise,
define RDV,O to be the quotient of RV,O by the intersection of all p of type τ . We say
that a deformation of ρ to R is weakly of type τ if the associated local O-algebra
map RV,O → R factors through the quotient RDV,O. We say that τ is acceptable for
ρ if RDV,O 6= 0 and if there is a surjective local O-algebra map O[[X]]� RDV,O. More
concretely, if mD denotes the maximal ideal of RDV,O, then the surjectivity condition
is equivalent to dimk mD/(λ, (mD)2) ≤ 1.

It is straightforward to check (cf. [9, Lemma 2.38]) that the above notions are
well-behaved with respect to extension of the field K. In particular, if K ′ is a
finite extension of K with valuation ring O′ and residue field k′, then O′ ⊗O RDV,O
is naturally isomorphic to RDV⊗kk′,O′ and τ is acceptable for ρ if and only if τ is
acceptable for ρ⊗k k′.

We make the following conjectures, although they are considerably stronger than
the results that will actually be important in the sequel. What is important for the
sequel is only the question of which `-types are acceptable for a given ρ|G` .

Conjecture 1.2.1. A deformation ρ : G` → GL(M) of ρ to O′ is weakly of type τ
if and only if it is of type τ .

Conjecture 1.2.2. Suppose that τ = ω̃i ⊕ ω̃j. Then RDV,O 6= (0) if and only if
ρ|I` ⊗k k is of one of the following three forms:

•
(
ω1+i ∗

0 ωj

)
and in the case j ≡ i mod ` − 1, ∗ is peu-ramifié (in the

sense of Serre [40]),

•
(
ω1+j ∗

0 ωi

)
and in the case j ≡ i mod `− 1, ∗ is peu-ramifié,

• ω1+{j−i}+(`+1)i
2 ⊕ ω`−{j−i}+(`+1)j

2 , where {a} denotes the unique integer in
the range from 0 to `− 2 congruent to a modulo `− 1.

In the first two of these three cases RDV,O ∼= O[[X]] and so τ is acceptable for ρ. In
the last case, if j ≡ i mod `− 1, then RDV,O

∼= O[[X]] and so τ is acceptable for ρ.

Conjecture 1.2.3. Suppose that τ = ω̃m2 ⊕ ω̃`m2 where m ∈ Z/(`2 − 1)Z and
m = i+ (`+ 1)j with i = 1, . . . , ` and j ∈ Z/(`− 1)Z. Then RDV,O 6= (0) if and only
if ρ|I` ⊗k k is of one of the following four forms:

•
(
ωi+j ∗

0 ω1+j

)
and in the case i = 2, ∗ is peu-ramifié,

•
(
ω1+j ∗

0 ωi+j

)
and in the case i = `− 1, ∗ is peu-ramifié,

• ω1+m
2 ⊕ ω`(1+m)

2 ,
• ω`+m2 ⊕ ω1+`m

2 ,

In all these cases RDV,O ∼= O[[X]] and so τ is acceptable for ρ.

It will be convenient to say that a type τ is strongly acceptable for ρ|G` if it is
acceptable and if one of the following is true:
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• ρ|I` ∼=
(
ωm ∗
0 ωn

)
for some m,n ∈ Z/(` − 1)Z (and in the case m ≡

n + 1 mod ` − 1, ∗ is peu-ramifié), and τ is equivalent to ω̃m−1 ⊕ ω̃n or
ω̃
{m−n}+1+(n−1)(`+1)
2 ⊕ ω̃`({m−n}+1)+(n−1)(`+1)

2 .
• ρ|I` ⊗k k ∼= ω1+m

2 ⊕ ω`(1+m)
2 for some m ∈ Z/(`2 − 1)Z, and τ ∼= ω̃m2 ⊕ ω̃`m2

Note that in particular we are conjecturing that we can suppress the assumption of
acceptability in the definition of strong acceptability. In section 2 we shall explain
what we know about these conjectures.

1.3. Global Galois representations. Fix a finite extension K of Q` in Q` with
valuation ring O, uniformizer λ and residue field k, and a continuous global two-
dimensional (over k) Galois representation

ρ : GQ → GL(V ).

We shall suppose ρ satisfies the following hypotheses.
• The determinant of ρ(c) is −1, where c denotes a complex conjugation.
• The restriction of ρ to Q(

√
(−1)(`−1)/2`) is absolutely irreducible.

• The conductor of ρ (see [40]) divides the conductor of all of its twists by
k
×

-valued characters.
• The centralizer of ρ(G`) consists only of scalar matrices.

We remark that the third condition is simply for convenience and will be removed
as an assumption from all our main theorems by an easy twisting argument. Let S
be a finite set of rational primes which does not contain `, and let τ : I` → GL(D)
be an `-type which is strongly acceptable for ρ|G` .

We will say that a deformation ρ : GQ → GL(M) of ρ to an object R of C∗O (see
Appendix A) is of type (S, τ) if the following hold:

• ρ|G` is weakly of type τ .
• If p 6∈ S ∪ {`} and the order of ρ(Ip) is not `, then ρ(Ip)

∼→ ρ(Ip).
• If p 6∈ S ∪ {`} and the order of ρ(Ip) is `, then M/M Ip is free of rank one

over R.
• ε−1 det ρ has finite order prime to `.

One checks that the subsets of deformations of type (S, τ) satisfy the representabil-
ity criterion in Appendix A. Note that when p 6∈ S ∪ {`}, ρ(Ip) has order `, and
the fourth condition above holds, then ρ|Ip is tame with det ρ|Ip trivial, so if g ∈ Itp
is a topological generator, then a lift ρ(g) of ρ(g) fixes a basis vector if and only if
trρ(g) = 1+det(ρ(g)) (which is equivalent to (ρ(g)−1)2 = 0 in the present setting).
We let RS,DV,O denote the universal type (S, τ) deformation ring. We write simply
RV,O and RDV,O for the deformation rings associated to ρ|G` . Then RV,O, RDV,O and
RS,DV,O are complete local Noetherian O-algebras with residue field k, well-behaved
with respect to finite extension of K.

1.4. Galois cohomology. We will let ad0 V denote the representation of GQ on
the trace zero endomorphisms of V . The trace pairing gives rise to a Galois equi-
variant perfect pairing

ad0 V ⊗k (ad0 V )(1)→ k(1).
If m denotes the maximal ideal of RDV,O, then there is a natural injective map from
the k-dual of m/(λ,m2) to H1(Q`, ad0 V ). Using the trace pairing and a k-linear
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analogue of local Poitou-Tate duality we get a surjective map H1(Q`, (ad0 V )(1))→
m/(λ,m2). We will denote the kernel of this map by H1

D(Q`, ad0 V (1)). We will
let H1

S,D(Q, (ad0 V )(1)) denote those classes in H1(Q, (ad0 V )(1)) which localize
trivially at all primes in S, to an element of H1

D(Q`, (ad0 V )(1)) at `, and to an
element of H1(Fp, ((ad0 V )(1))Ip) at all primes p 6∈ S ∪ {`}.

Observe that for p 6∈ S∪{`} with ρ(Ip) not of order `, the condition ρ(Ip)
∼→ ρ(Ip)

for a deformation ρ of ρ to k[ε] with det ρ = det ρ is equivalent to the splitting of
the extension as a k[Ip]-module. To see this, let ρ be such a deformation of ρ, so
ρ(g) = (1 + εc(g))ρ(g) for g ∈ Ip, with the cocycle c representing an element of
H1(Ip, ad0 ρ). We need to check that the cohomology class of c is zero. Suppose
that g, h ∈ Ip and ρ(h) = 1. By our hypothesis on ρ, we have c(h) = 0, and since
c(gh) = ρ(g)c(h)ρ(g)−1 + c(g), it follows that c(gh) = c(g). Thus, we can view c as
representing an element of H1(ρ(Ip), ad0 ρ), and we must show that this element
is zero. By restriction-inflation, H1(ρ(Ip), ad0 ρ) ∼= H1(G, (ad0 ρ)I

w
p ), where Iw

p is
wild inertia at p and G = ρ(Ip)/ρ(Iw

p ). Since G is a finite discrete quotient of the
tame inertia group at p, G is a cyclic group. Let G(`) denote the `-Sylow subgroup
and I

(`)
p the kernel of the map from Ip onto its maximal `-primary quotient. By

restriction-inflation we can identify c with an element of H1(G(`), (ad0 ρ)I
(`)
p ). Since

G(`) is a finite cyclic group, the size of this H1 cohomology group is the same as
the size of the analogous H0 group, which is H0(Ip, ad0 ρ).

Without loss of generality, we may assume H0(Ip, ad0 ρ) 6= 0 (so G(`) 6= 0 also).
After making a finite extension of scalars on k (which we may do), ρ|Ip is reducible
and is a non-trivial extension of χ by itself, where χ : Ip → k× is some continuous
character. If χ is non-trivial, then the conductor N(ρ) of ρ is divisible by p2. But
if we twist ρ by a global character GQ → k× whose restriction to Ip is χ−1 and
which is unramified at all other primes, then this twist of ρ has conductor which
has the same prime-to-p part as N(ρ) but has p-part equal to p. By our hypothesis
on the minimality of the conductor of ρ, this is a contradiction. Thus, the above
character χ must be trivial, so ρ is a non-trivial extension of 1 by 1. Since ` 6= p,
this forces ρ to be tame at p. The pro-cyclicity of tame inertia then forces ρ(Ip)
to have order `, contrary to hypothesis. Therefore, the original deformation ρ as
a k[Ip]-module extension class of ρ by ρ must be the trivial extension, as desired.
A similar argument (ending with the same analysis of H0(Ip, ad0 ρ)) proves the
analogue for (O/λn)[ε]-deformations of type (S, τ) of a fixed O/λn-deformation of ρ
of type (S, τ) (this is needed in the proof of Lemma 1.4.2 below). With this noted,
the usual calculations give rise to the following lemma (see for example section 2
of [9], especially Corollary 2.43).

Lemma 1.4.1. Suppose that τ is acceptable for ρ|G` . Then RS,DV,O can be topologi-
cally generated as an O-algebra by

dimkH
1
S,D(Q, (ad0 V )(1)) +

∑
p∈S

dimkH
0(Qp, (ad0 V )(1))

elements.
The proof of this lemma makes essential use of the assumption that τ is accept-

able for ρ|G` . More precisely, the acceptability hypothesis enables the local contri-
bution at ` to ‘exactly cancel’ the local contribution (of dimH0(R, ad0 ρ) = 1) at
∞.
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Now suppose that we are given a deformation ρ : GQ → GL(M) of ρ of type
(S, τ) to O. Let θS,D : RS,DV,O → O, θD : RDV,O → O and θ : RV,O → O denote the
corresponding homomorphisms. We let adM and ad0M denote the representations
of GQ on the endomorphisms and trace-zero endomorphisms of M respectively. Let
H1
D(Q`, ad0M ⊗O K/O) denote the image of

HomO(ker θD/(ker θD)2,K/O) −→ HomO(ker θ/(ker θ)2,K/O)
∼= H1(Q`, adM ⊗O K/O).

It is easy to see that the image is in fact contained in

H1(Q`, ad0M ⊗O K/O) ⊂ H1(Q`, adM ⊗O K/O).

We let H1
S,D(Q, ad0M⊗OK/O) denote the set of elements of H1(Q, ad0M⊗OK/O)

which localise at ` to an element of H1
D(Q`, ad0M ⊗O K/O) and at each prime

p 6∈ S∪{`} to an element ofH1(Fp, (ad0M⊗OK/O)Ip). Note that for any particular
x ∈ H1(Q, ad0M ⊗O K/O), the conditions at the p 6∈ S ∪ {`} are automatically
satisfied for all but finitely many p. Therefore, we can argue by passage to the
direct limit from the torsion cases, using the usual calculations to get the following
lemma (see for example section 2 of [9]).
Lemma 1.4.2. In the above situation we have an isomorphism of O-modules

HomO(ker θS,D/(ker θS,D)2,K/O) ∼= H1
S,D(Q, ad0M ⊗O K/O).

This isomorphism is compatible with change in S.
Corollary 1.4.3. Suppose that p 6∈ S ∪ {`}, let S′ = S ∪ {p} and let θS

′,D denote
the composite RS

′,D
V,O → RS,DV,O → O. Then

lengthO(ker θS
′,D)/(ker θS

′,D)2

≤ lengthO(ker θS,D)/(ker θS,D)2 + lengthO(ad0M)(1)Ip/(Frobp − 1)(ad0M)(1)Ip .

In this corollary, the lengths involved could a priori be infinite, so the inequality
is understood to imply that if the right side is finite, then so is the left side. In order
to see that the second term on the right (which might be infinite) has the same
cardinality as H1(Ip, ad0M ⊗O K/O)Gp (which is what arises in the calculation),
we just need to observe that ad0M(1) is (via the trace pairing) Cartier dual to
ad0M ⊗O K/O and for any finite discrete Gp-module X with prime-to-p-power
order n and Cartier dual X∗, the Gp/Ip-equivariant pairing (via cup product)

H1(Ip, X)×H0(Ip, X∗)→ H1(Ip, µn) = H1(Ip,Z/nZ) = (Z/nZ)(−1)

is a perfect pairing. This follows from [37, Ch I, §3.5, Prop 17, Rem 4] and the
proof of [37, Ch II, §5, Thm 1].

2. Local Calculations

In this section, we study local deformation problems. Consider a continuous
two-dimensional representation ρ : G` → GL(V ) over k. Choose a subfield F ⊆ Q`

with finite degree over Q` and with absolute ramification index e = e(F ) ≤ ` − 1.
We write A for the valuation ring of F , and IF for the inertia subgroup of GF .

A finite discrete G`-module ρ : G` → Aut(M) is called A-flat if there exists
a finite flat commutative group scheme G over A and a GF -module isomorphism
ρ|GF ' G(Q`). In this case, all subrepresentations and quotient representations are
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also A-flat. If instead ρ is an inverse limit of finite discrete G`-modules, we say that
ρ is A-flat if all finite discrete quotients of ρ are A-flat.

2.1. A-ordinary deformations. Assume that ρ is reducible and Endk[G`] V = k,
so ρ is isomorphic to a non-semisimple representation

ρ '
(
ψaω

m ∗
0 ψbω

n

)
for some a, b ∈ k×, m,n ∈ Z/(`− 1) with a 6= b or m 6= n (where ψx : G` → k× is
the unique continuous unramified character sending Frob` to x ∈ k×). If m 6= n+1
or a 6= b, then dimkH

1(G`, (ψbωn)−1ψaω
m) = 1, so the non-split condition implies

that ρ is determined up to k[G`]-module isomorphism by the specification (and
ordering) of its diagonal characters. See the discussion above [6, Thm 2.4.4] for more
details on this. In the case m = n+ 1, we assume ∗ is peu ramifié. This condition
is automatically satisfied if a 6= b, and it is satisfied for a unique isomorphism class
of representations in the case a = b.

In this section, we let F denote the unramified extension of Q`(µ`) of degree |k×|
(so both diagonal characters of ρ are trivial onGF ). We say that a deformationM of
ρ to an object R of C∗O is A-ordinary if its determinant is εη, with η the Teichmüller
lift of (det ρ)ω−1 : G` → k×, and there is an exact sequence of R[G`]-modules

0→M (−1) →M →M (0) → 0

with M (−1) and M (0) free of rank one over R, and IF acting via ε on M (−1)

and trivially on M (0). (Note that the G` actions on M (−1)/mR and M (0)/mR are
necessarily via ψaωm and ψbω

n respectively.) Using the criterion in Appendix A,
one checks that there is a universal A-ordinary deformation of ρ, where in the case
m = n+ 1 we also require that the twist of our deformations by ω̃−n is Z`-flat. We
let RA−ord

V,O denote the universal A-ordinary deformation ring, canonically a quotient
of RV,O.

We shall now define a subspace ofH1(G`, ad0 V ) denotedH1
A−ord(G`, ad0 V ). Let

W (0) denote the subspace of ad0 V consisting of those trace-zero endomorphisms
preserving the filtration

0→ V (−1) → V → V (0) → 0

(i.e., W (0) consists of matrices with lower left entry vanishing), and let W (−1) =
Homk(V (0), V (−1)) ⊂ W (0) (i.e., the matrices vanishing outside of the upper right
entry). There are thus canonical exact sequences

0 −→W (0) −→ ad0 V −→ Homk(V (−1), V (0)) −→ 0, and

0 −→W (−1) −→W (0) −→ Homk(V (−1), V (−1)) −→ 0.

We define a subspace C1 of H1(I`,W (−1)) as follows: If m 6= n + 1, we let C1 =
H1(I`,W (−1)). If m = n + 1, then W (−1) ∼= k(1) as k[I`]-modules and we define
C1 to be the kernel of the map

H1(I`,W (−1)) ∼= H1(I`, k(1)) ∼= (Qun
` )× ⊗ k → k,

where the second isomorphism is the Kummer map and the last homomorphism is
induced by the valuation on Qun

` . Let C2 denote the image of C1 in H1(I`,W (0)), let
C3 denote the preimage of C2 in H1(G`,W (0)), and finally, let H1

A−ord(G`, ad0 V )
be the image of C3 under the natural inclusion.
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Theorem 2.1.1. There is a surjective homomorphism of O-algebras

O[[T ]]→ RA−ord
V,O .

Proof. Letting m denote the maximal ideal RA−ord
V,O , it suffices to prove m/(λ,m2)

is at most one-dimensional over k. This is done by checking that the image of
Homk(m/(λ,m2), k) in H1(G`, adV ) is contained in H1

A−ord(G`, ad0 V ), and then
computing the dimension of this subspace. See the proof of [46, Prop 1.9(iii)] for
the case m 6= n+ 1 (recall that ρ(G`) has trivial centralizer) and see [9, 2.4] for the
case m = n+ 1 . �

Now suppose that ρ : G` → GL2(O′) is a deformation of ρ of type τ , with
τ = ω̃i ⊕ ω̃j for some i and j. In this case there is an `-divisible group Γ over A
with an action of O′ such that ρ|GF is isomorphic to the representation defined by
the action of O′[GF ] on the Tate module of Γ:

M = proj lim Γ[`n](Q`).

The canonical connected-étale sequence for Γ gives rise to an exact sequence

0→M0 →M →M ét → 0

of free O′-modules with an action of GF .
Lemma 2.1.2. The O′-modules M0 and M ét are each free of rank one, and IF
acts via ε on M0.

Proof. First observe that it suffices to prove that M ét 6= 0, for IF acts trivially on
M ét and det ρ|IF = ε.

Suppose now that M ét = 0, so Γ[`] is connected. Since V ∼= M/λM has a
nonzero element fixed by GF , the same is true of

(M/`M)[λ] ⊂ Γ[`](Q`).

Therefore there is a nontrivial map

µ`,F = (Z/`Z)/F → Γ[`]/F → Γ[`].

Since Γ[`] is connected and e = `−1, the schematic closure of the image is isomorphic
to µ`,A. It follows that the Cartier dual of Γ[`] is not connected.

Now let ΓD denote the dual `-divisible group, and MD its Tate module. As
O′[GF ]-modules, we have

MD ∼= HomZ`(M,Z`(1)) ∼= HomO′(M,O′(1))

(the first isomorphism is canonical, the second depends on a choice of generator for
the different of O′). We have just proved that ΓD[`] is not connected, so MD,ét 6= 0.
The lemma follows on observing that the first paragraph of the proof now applies
to MD, showing that IF acts via ε on MD,0 6= 0.

�

We can now deduce the following from Theorem 2.1.1.
Corollary 2.1.3. Suppose that ρ is reducible with Endk[G`] V = k. If ρ admits
a lifting of type τ : I` → GL(D) (i.e., if RDV,O 6= 0) with τ ∼= ω̃i ⊕ ω̃j, then τ is
acceptable for ρ.
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Proof. Let p be a prime ideal of RV,O of type τ , so p is the kernel of a homomorphism
RV,O → O′ such that the associated deformation to O′ is of type τ . The lemma
(along with [16, Prop 8.2] in case m = n+ 1) shows this deformation is A-ordinary,
so the map RV,O → O′ factors through RA−ord

V,O . Therefore the kernel of the map

RV,O → RA−ord
V,O

is contained in the intersection of all prime ideals p of type τ . It follows that RDV,O
is a quotient of RA−ord

V,O , hence a quotient of O[[T ]].
�

2.2. A-flat deformations. Now we return to the case of arbitrary F with e ≤ `−1.
We no longer assume that ρ is reducible. We assume that V is A-flat, with G

connected and having connected dual. Under these conditions, G is the unique finite
flat A-group scheme with generic fiber isomorphic (as a GF -module) to ρ|GF , with
G determined up to unique isomorphism (see [6, §2.1] for details; the connectedness
conditions ensure uniqueness when e = `− 1).

Let M denote the (contravariant) Dieudonné module of the closed fiber of G. We
assume that the canonical sequence of groups

0→M/VM
F→M = M/`M →M/FM → 0

is exact, where F and V denote the Frobenius and Verschiebung operators respec-
tively. This exactness condition is automatically satisfied when G ' Γ[`] for Γ/A an
`-divisible group, and so is an extremely natural condition; also, it is needed in the
results we will require from [6] below.

We now give the complete list of isomorphism classes of representations ρ sat-
isfying the above conditions. (See Corollary 2.2.3 and Theorem 2.4.4 of [6].) The
irreducible ρ which arise are absolutely irreducible and are exactly those continuous
ρ : G` → GL2(k) satisfying ρ|I` ⊗k k̄ ' ωm2 ⊕ ω`m2 , with em ≡ e mod `2 − 1. The
reducible ρ which arise can be written as non-semisimple representations

ρ '
(
ψaω

m ∗
0 ψbω

n

)
for a, b ∈ k×, m,n ∈ Z/(` − 1) . The precise possibilities are as follows. There
must exist an integer j satisfying 1 ≤ j ≤ e − 1, en ≡ j mod ` − 1, e|j(` + 1) and
m = n + 1 − j(` + 1)/e mod ` − 1. These conditions imply e6 |(` − 1), m 6= n, and
for ` ≡ −1 mod 4 they also imply m 6= n + 1. For ` ≡ −1 mod 4, the unique (up
to isomorphism) non-split extensions of ψbωn by ψaω

m for a, b ∈ k× and n and
m as above are exactly the ρ which arise. For ` ≡ 1 mod 4, we get the same list,
except that the cases with m = n + 1 (which occur precisely when e = (` + 1)/2,
n = (` − 1)/2) and a = b are given by the unramified k-twists the (unique up to
isomorphism) non-split F`-representation of the form

ω(`−1)/2 ⊗
(
ω ∗
0 1

)
for which ∗ is peu-ramifié.

The property of being A-flat is closed under taking submodules, quotients and
finite products, and since Endk[G`] V = k for the representations listed above, there
is an associated universal A-flat deformation ring RA−flat

V,O which is a quotient of
RV,O. Consider also the fixed determinant character χ : G` → O× of the form εη,
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with η the Teichmüller lift of (det ρ)ω−1 : G` → k×. There is a universal deforma-
tion of ρ which is A-flat with determinant χ, and the universal deformation ring is
naturally a quotient of RA−flat

V,O which we denote RA−flat,χ
V,O . The main deformation-

theoretic result we need in the local theory is provided by Theorems 4.1.1 and 4.1.2
of [6].

Theorem 2.2.1. There are O-algebra isomorphisms

RA−flat
V,O ' O[[T1, T2]] and RA−flat,χ

V,O ' O[[T ]].

Corollary 2.2.2. If ρ admits a lifting of type τ : I` → GL(D) (i.e., if RDV,O 6= 0)
and τ is trivial on the inertia group of F , then τ is acceptable for ρ.

Proof. Let p be a prime ideal of RV,O of type τ , so p is the kernel of a homomorphism
RV,O → O′ such that the associated deformation to O′ is of type τ . Replacing O by
O′ without loss of generality, the determinant χ of this deformation is O×-valued,
so our map RV,O → O factors through RA−flat,χ

V,O . Therefore the kernel of the map

RV,O → RA−flat,χ
V,O

is contained in the intersection of all prime ideals p of type τ . It follows that RDV,O
is a quotient of RA−flat,χ

V,O , which, by the preceding theorem, is isomorphic to O[[T ]].
�

2.3. Twisted A-flat deformations. We now consider a variant of the A-flat de-
formation problem. We still fix a finite extension F/Q` with e(F ) ≤ `−1 and study
certain deformations of a given ρ : G` → GL2(k). However, instead of requiring
ρ|GF to arise as the generic fiber of a finite flat A-group scheme, we fix a (ramified)
quadratic character ψ on GF and require that ρ|GF ⊗ ψ is the generic fiber of a fi-
nite flat A-group scheme. Moreover, we impose the same connectedness/unipotence
conditions and the same exactness hypothesis on Dieudonné modules as above, and
we study those deformations of ρ whose ψ-twist is A-flat (in the same sense as
above). In contrast to the (untwisted) A-flat setting, the case e|(` − 1) can now
occur, and we shall actually restrict our attention to this case. In §4.2 of [6], it is
explained how the methods of [6] carry over to this setting. In particular, under the
above hypotheses, Endk[G`] V = k, so there is a universal deformation ring RV,O for
ρ. The property of the ψ-twist being A-flat is preserved under taking submodules,
quotients and finite products, so there is an associated quotient of RV,O, which we
denote RA−ψ⊗flat

V,O . We can also consider the quotient RA−ψ⊗flat,χ
V,O representing such

deformations with fixed determinant χ = εη. Theorem 4.2.1 of [6] then gives:

Theorem 2.3.1. Under the above hypotheses, there are O-algebra isomorphisms

RA−ψ⊗flat
V,O ' O[[T1, T2]] and RA−ψ⊗flat,χ

V,O ' O[[T ]].

Corollary 2.3.2. Suppose that e(F )|(`− 1), ψ is a quadratic character of GF and
τ⊗ψ is trivial on the inertia group of F . If ρ admits a lifting of type τ : I` → GL(D)
(i.e., if RDV,O(ρ) 6= 0) and ρ ⊗ ψ is A-flat and satisfies the above connectedness,
unipotence and Dieudonné module hypotheses, then τ is acceptable for ρ.
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3. Some Representations of Finite Groups

3.1. Representations of GL2(Fp). Let us recall the classification of irreducible
finite-dimensional representations of GL2(Fp) over an algebraically closed field F of
characteristic zero. Any such representation is isomorphic to one of the following,
where we have fixed an embedding i : Fp2 → M2(Fp) corresponding to a choice of
Fp-basis of Fp2 .

• For any character χ : F×p → F×, the representation χ ◦ det.
• For any character χ : F×p → F×, the representation spχ = sp ⊗ (χ ◦

det), where sp is the representation of GL2(Fp) on the space of functions
P1(Fp)→ F with average value zero (with g ∈ GL2(Fp) acting on a func-
tion through the usual action of g−1 on P1(Fp)).

• For any pair of characters χ1 6= χ2 : F×p → F×, the representation I(χ1, χ2)
on the space of functions f : GL2(Fp)→ F which satisfy

f

((
a1 b
0 a2

)
g

)
= χ1(a1)χ2(a2)f(g),

where g ∈ GL2(Fp) acts on f through right multiplication of g on GL2(Fp).
This representation is isomorphic to the representation induced from the fol-
lowing character on the subgroup of upper-triangular matrices in GL2(Fp):(

a1 b
0 a2

)
7→ χ1(a1)χ2(a2).

• For any character χ : F×p2 → F× with χ 6= χp, a representation Θ(χ) of
dimension p− 1 which is characterized by

Θ(χ)⊗ sp ' IndGL2(Fp)

F×
p2

χ.

The only isomorphisms between these representations are I(χ1, χ2) ∼= I(χ2, χ1) and
Θ(χ) ∼= Θ(χp). For convenience, we include the character table of GL2(Fp):

Representation
Conjugacy

class of: χ ◦ det spχ I(χ1, χ2) Θ(χ)(
a 0
0 a

)
χ(a)2 pχ(a)2 (p+ 1)χ1(a)χ2(a) (p− 1)χ(a)(

a 1
0 a

)
χ(a)2 0 χ1(a)χ2(a) −χ(a)(

a 0
0 b

)
6∈ F×p χ(ab) χ(ab) χ1(a)χ2(b) + χ1(b)χ2(a) 0

i(c) 6∈ F×p χ(cp+1) −χ(cp+1) 0 −χ(c)− χ(cp)

We recall also the classification of absolutely irreducible finite-dimensional rep-
resentations of GL2(F`) in characteristic `. We will let σn denote the natural
representation of GL2(F`) on Symmn(F2

`) for each n ∈ Z≥0. The semsimplicity of
σn follows from that of σ1, and for n ≤ `−1 the representation σn is absolutely irre-
ducible (cf. [8, Example 17.17]). For m ∈ Z/(`− 1)Z and 0 ≤ n ≤ `− 1, we will let
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σn,m denote σn ⊗ detm. These representations σn,m are mutually non-isomorphic
and exhaust the isomorphism classes of absolutely irreducible finite-dimensional
representations of GL2(F`) in characteristic `. The Brauer character of σn,m is
given by: (

a 0
0 a

)
7→ (n+ 1)ã2m+n,

(
a 0
0 b

)
6∈ F×` 7→ ãmb̃m(ãn+1 − b̃n+1)/(ã− b̃),

i(c) 6∈ F×` 7→ c̃m(`+1)(c̃(n+1)` − c̃n+1)/(c̃` − c̃),

where ˜ indicates Teichmüller lift. In fact, since the σn,m are defined over F`, any
irreducible finite-dimensional representation of GL2(F`) over a field k of charac-
teristic ` is isomorphic to some σn,m ⊗F` k and so is absolutely irreducible. Using
Brauer characters, one finds:
Lemma 3.1.1. Let L be a finite free O-module with an action of GL2(F`) such
that V = L⊗O Q` is irreducible.

(1) If V ∼= χ ◦ det with χ(a) = ãm, then L⊗O k ∼= σ0,m.
(2) If V ∼= spχ with χ(a) = ãm, then L⊗O k ∼= σ`−1,m.
(3) If V ∼= I(χ1, χ2) with χi(a) = ãmi (for distinct mi ∈ Z/(` − 1)Z), then

L⊗Ok has two Jordan-Hölder subquotients: σ{m1−m2},m2 and σ{m2−m1},m1 ;
where 0 < {m} < `− 1 and {m} ≡ m mod `− 1.

(4) If V ∼= Θ(χ) with χ(c) = c̃i+(`+1)j where 1 ≤ i ≤ ` and j ∈ Z/(`−1)Z, then
L⊗Ok has one or two Jordan-Hölder subquotients: σi−2,1+j and σ`−1−i,i+j.
Both occur unless i = 1 (when only the second one occurs) or i = ` (when
only the first occurs), and in either of these exceptional cases L ⊗O k ∼=
σ`−2,,1+j.

3.2. Representations of GL2(Z/pnZ). We shall also need to consider certain
representations of GL2(Z/pnZ) for n > 1 which generalize the representations Θ(χ)
for n = 1. Let σ denote Frobp on A = W (Fp2), choose an isomorphism

M2(Zp) ∼= EndZp A = A⊕Aσ,

and let $n denote the projection GL(A)→ G = GL2(Z/pnZ). Let m = [n/2] ≥ 1
and define subgroups N ⊂ H of G as follows:

N = $n

(
{x+ yσ |x ∈ 1 + pnA, y ∈ pn−mA }

)
H = $n

(
{x+ yσ |x ∈ A×, y ∈ pmA }

)
.

Thus [N : 1] = p2m and [G : H] = φ(p2m). Note that N is normal in H and H
contains the center of G.

Again let F denote an algebraically closed field of characteristic 0. Suppose that
χ : A× → F× is a character of conductor pn. We assume also that χ/(χ ◦ σ) has
conductor pn (or equivalently, no twist of χ by a character factoring through the
norm A× → Z×p has conductor less than pn; see [24, §3.2]). Since the quotient
group Fp2/Fp is of order p, this latter condition implies that for any x ∈ A× with
x 6≡ xσ mod pA, (χ/χ ◦ σ)(1 + pn−1x) 6= 1. If n is even, we define a character βχ of
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H/N by βχ(x+ yσ) = χ(x). If n is odd, we let βχ denote the unique p-dimensional
representation of H/N whose character satisfies

trβχ(x+ yσ) =

 pχ(x), if y ≡ 0 mod pm+1A = pn−mA and x ≡ xσ mod pA;
−χ(x), if y ≡ 0 mod pm+1A = pn−mA and x 6≡ xσ mod pA;
0, if x+ yσ is not conjugate to an element as above.

Note that since the above class function satisfies 〈trβχ, trβχ〉H/N = 1, the existence
of such a representation can be proved using Brauer’s criterion [38, §11.1], and it
is absolutely irreducible. Regarding βχ as a representation of H, let Θ(χ) denote
the φ(pn)-dimensional representation IndGH βχ. The isomorphism class of Θ(χ) is
independent of the choice of isomorphism M2(Zp) ∼= EndZp A, since any two such
isomorphisms differ by conjugation by an element of GL2(Zp). So far, the only
conductor hypothesis we have used is that χ has conductor dividing pn.
Lemma 3.2.1. Suppose that n ≥ 1 and χ1 and χ2 are a pair of characters of
A× → Q

×
` as above. Suppose that Li for i = 1, 2, is a free O-module with an action

of G = GL2(Z/pnZ) such that Li ⊗O Q` is isomorphic to Θ(χi). Let B denote
the subgroup of G consisting of matrices which mod p are upper triangular, and let
C = A× ∩B = {x ∈ A×|x ≡ xσ mod p}.

(1) The restrictions Θ(χi)|B are irreducible,
(2) Θ(χ1) ' Θ(χ2)⇔ χ2 ∈ {χ1, χ1 ◦ σ },
(3) Θ(χ1)|B ' Θ(χ2)|B ⇔ χ2|C ∈ {χ1|C , χ1 ◦ σ|C },
(4) if p(p− 1) is not divisible by `, then Li ⊗O k is absolutely irreducible,
(5) if χ1 ≡ χ2 mod λ, then L1 ⊗O k and L2 ⊗O k have isomorphic semisimpli-

fications.

Proof. The second assertion is proved by computing 〈Θ(χ1),Θ(χ2)〉G and showing
that this equals 1 if χ2 = χ1 or if χ2 = χ1 ◦σ, and equals 0 otherwise. This uses the
hypotheses on conductors, as we now explain. Using Frobenius reciprocity twice
and [38, §7.3], we get

〈Θ(χ1),Θ(χ2)〉G =
∑
g∈X
〈βgχ1

, βχ2〉Hg ,

where X is a set of double coset representatives for H\G/H, Hg = H ∩ gHg−1,
and βgχ1

(z) = βχ1(g−1zg). Note that 1 and σ represent two distinct double cosets,
and Hσ = σH, so Hσ = H. By computing conjugacy classes in H/N and treating
separately the cases where n is even or odd, we compute that

〈βχ1 , βχ2〉H = 〈βχ1 , βχ2〉H/N = 〈χ1, χ2〉A× .
Since βσχ = βχ◦σ and χ 6= χ ◦ σ for our characters χ = χi, the sum of the terms for
g = 1 and g = σ is 1 if χ2 ∈ {χ1, χ1 ◦ σ}, and is 0 otherwise.

For g ∈ X not equivalent to 1 or σ, we claim that 〈βχ1 , βχ2〉Hg = 0. It suffices
to construct h ∈ H ∩ gNg−1 of the form h = 1 + pn−1(t− tσ) + pn−msσ for t ∈ A×
with t 6≡ tσ mod pA and s ∈ A, because then on the subgroup of Hg generated by
h, βgχ1

is a direct sum of copies of the trivial representation (since g−1hg ∈ N) and
βχ2 is a direct sum of copies of a non-trivial character (the number of copies being
1 when n is even and p when n is odd). This non-triviality follows from the fact
that on the subgroup in H/N generated by h, βχ2 is a direct sum of copies of the
1-dimensional representation which sends h to

χ2(1 + pn−1(t− tσ)) = (χ2/χ2 ◦ σ)(1 + pn−1t) 6= 1.
14



Since σ and H normalize N , we may multiply g on the right by σ or an element of
H without changing gNg−1, and hence without loss of generality.

To construct h, we write g = x+ yσ and first multiply by σ if necessary so that
x is not divisible by p and then multiply by x−1 ∈ H to get a representative of
the form g = 1 + pruσ, with u 6≡ 0 mod pA and r < m. Note that for r = 0, the
invertibility of 1+uσ forces uuσ 6≡ 1 mod pZp, because det(x+yσ) = Nx−Ny for all
x, y ∈ A, where N : A→ Zp is the norm map. Now define h = g(1+pn−r−1vσ)g−1,
where v ∈ A× is chosen so that uvσ 6≡ vuσ mod pA (in which case we can take
t = uvσ when r 6= 0 and t = uvσ/(1 − uuσ) if r = 0). For the first and third
assertions, after changing the isomorphism M2(Zp) ∼= EndZp(A) we can suppose
that σ ∈ B. Thus, for g ∈ B, g ∈ H ∩ B if and only if g ∈ H and g ∈ (H ∩ B)σ if
and only if g ∈ Hσ. In particular, if g 6∈ (H ∩B)∪ (H ∩B)σ then we can construct
the h as above and this also lies in B since h ≡ 1 mod p. Since G = BH,

Θ(χ)|B ∼= IndBH∩B(βχ|H∩B).

We can now run through the exact same calculation as before with B and H ∩ B
replacing G and H respectively. This settles the first and third assertions (note
that χ1|C 6= χ1 ◦ σ|C because χ1/χ1 ◦ σ has conductor pn and n ≥ 2).

If ` doesn’t divide p(p − 1), so #B is not divisible by `, then the reductions
Li ⊗O k are also absolutely irreducible by [38, §15.5]. The last assertion follows
since the two representations have the same Brauer character.

�

3.3. Duality. Let K, O, λ and k be as above, and let O′ denote the valuation ring
of K ′ = K(λ′), where λ′2 = λ. Suppose that V is a K-vector space with an action
of GL2(Z/pnZ) such that V ⊗K Q` is one of the representations considered above,
i.e., that n = 1 and V is absolutely irreducible, or that n > 1 and V ⊗K Q` is
isomorphic to Θ(χ) for some character χ : A× → Q

×
` with conductor pn such that

χ/χ ◦ σ also has conductor pn. In each case, there is a nondegenerate pairing ( , )
on V such that

(gu, gv) = ψ(det g)(u, v),
where ψ : (Z/pnZ)× → K× is the central character of the representation (note that
ψ necessarily takes values in K since V is absolutely irreducible). Equivalently,
we have an isomorphism of representation spaces V ' V ∗ ⊗ (ψ ◦ det) in all cases.
For n = 1, this is clear from the character table, and for Θ(χ) with n > 1, this
follows from the analogous assertion for βχ. More precisely, using the fact that
det(x + yσ) = xxσ ∈ Z×p for x + yσ ∈ H with y ≡ 0 mod pm+1A for odd n, one
checks that βχ ∼= β∗χ◦σ ⊗ (ψ ◦ det)|H, where ψ = χ|(Z/pnZ)× (and then induct up to
G, using that Θ(χ) = Θ(χ ◦ σ)).

We will need the following lemma.
Lemma 3.3.1. Suppose G is a finite group which acts absolutely irreducibly on a
finite dimensional K-vector space V . Let ( , ) be a non-degenerate pairing on V such
that (gu, gv) = ψ(g)(u, v) for some character ψ : G→ K×. Let V ′ = V ⊗KK(λ1/2).
Then there is a G-invariant O′-lattice L′ ⊂ V ′ which is self-dual for ( , ).

Proof. First note that by Schur’s lemma, the pairing is symmetric or alternating.
Choose a G-invariant lattice L1 in V which contains its dual lattice L⊥1 . Then ( , )
induces a perfect pairing L1/L

⊥
1 × L1/L

⊥
1 → K/O. Let X be a maximal isotropic

G-submodule of L1/L
⊥
1 and replace L1 by L2, the preimage of X⊥. Using the
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maximality of X, one sees that L2 ⊃ L⊥2 ⊃ λL2. It is then easy to check that
L′ = L⊥2 ⊕ λ1/2L2 will suffice. �

4. Galois representations for modular forms.

4.1. `-adic representations associated to modular forms. Now let us recall
some facts about the `-adic representations attached to certain automorphic repre-
sentations of GL2(A), where A denotes the adele ring of Q. Recall that we have
fixed embeddings of Q into C and into Qp for all p. Suppose that π ∼= ⊗′vπv is a
cuspidal automorphic representation of GL2(A) such that π∞ is a lowest discrete
series representation of GL2(C) with trivial central character. Recall that the set
of such representations π is in one-to-one correspondence with the set of weight two
newforms. The theory of Eichler and Shimura associates a continuous irreducible
two-dimensional representation

ρπ : GQ → GL(Vπ)

over Q` to π which is characterized as follows: For any prime p 6= ` such that πp is
unramified, ρπ is unramified at p and ρπ(Frobp) has characteristic polynomial

X2 − tpX + psp,

where tp denotes the eigenvalue of the Hecke operator

Tp =
[
GL2(Zp)

(
p 0
0 1

)
GL2(Zp)

]
on π

GL2(Zp)
p , and sp denotes that of

Sp =
[
GL2(Zp)

(
p 0
0 p

)
GL2(Zp)

]
.

Let S(π) denote the set of primes p such that πp is ramified, and let S be any
finite set of primes. Then the set of tp for p 6∈ S ∪ S(π) generate a number field
over which π is defined, and ρπ is defined over the closure of this field inside of
Q` (some finite extension of Q`). If π and π′ are such that the corresponding
eigenvalues tp and t′p coincide for all p 6∈ S ∪ S(π) ∪ S(π′), then in fact π = π′.
For any automorphism σ in G`, there is an automorphic representation denoted πσ

such that ρσπ ' ρπσ .
For any prime p, the local Langlands correspondence associates to πp a certain

continuous semi-simple two-dimensional representation WD(πp) : Wp → GL(Dπp)
over Q with discrete topology. Our convention here is that WD(πp) is the restric-
tion to Wp of σ(πp) ⊗ | |−1, where σ(πp) is as in [3] and we have identified Q×p
with W ab

p by the Artin map (which, with our conventions, sends p to a preimage
of Frobp ∈ Wp/Ip). Thus Π 7→ WD(Π) establishes a bijection between (a) iso-
morphism classes of irreducible admissible infinite-dimensional representations of
GL2(Qp) defined over Q, and (b) isomorphism classes of continuous semi-simple
representations Wp → GL2(Q). The bijection has the following properties:

• If χ is a continuous character Q×p → Q
×

, then WD(Π⊗χ◦det) ∼= WD(Π)⊗
χ.
• The determinant of WD(Π) is εχΠ, where χΠ is the central character of Π.
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A theorem of Carayol ([3, Thm. A], generalizing results of Langlands and Deligne)
shows that

Q` ⊗Q WD(πp) ∼= (ρπ|Wp
)ss

for p 6= `. If π` is not special, then ρπ|G` is Barsotti-Tate over any finite extension
F of Q` such that WD(π`)|IF is trivial and

Q` ⊗Q WD(π`) ∼= WD(ρπ|G`).

For a proof of this last isomorphism, see Appendix B (note also that the isomor-
phism of representations follows from the main theorem of [34]).

4.2. The local Langlands correspondence. We shall need to recall some prop-
erties of the correspondence Π ↔ WD(Π). Before doing so, we define, for each
n ≥ 0, open subgroups

U0(pn) ⊃ U`(pn) ⊃ U1(pn) ⊃ U(pn)

of GL2(Zp) as follows. We set

• U0(pn) = $−1
n

{(
∗ ∗
0 ∗

)}
;

• U`(pn) = $−1
n

{(
∗ ∗
0 a

)
| a ∈ (Z/pnZ)× has `-power order

}
;

• U1(pn) = $−1
n

{(
∗ ∗
0 1

)}
;

• U(pn) = ker$n;
where $n denote the natural projection GL2(Zp)→ GL2(Z/pnZ). For V = U0(pn),

U`(pn) or U1(pn) with n ≥ 1, we let Up denote the Hecke operator V
(
p 0
0 1

)
V

on ΠV . If V and V ′ are two such subgroups with V ′ ⊂ V , then the operators
denoted Up are compatible with the natural inclusion ΠV → ΠV ′ .
Lemma 4.2.1. There is an integer c = c(Π) ≥ 0 such that

dim ΠU1(pm) = max{0,m− c+ 1}
for all m ≥ 0.

(1) If c = 0 and n > 0, then the characteristic polynomial of Up on ΠU0(pn) =
ΠU1(pn) is Xn−1(X2 − tpX + psp), where tp (respectively, sp) is the eigen-
value of Tp (respectively, Sp) on π

GL2(Zp)
p .

(2) If c > 0 and n > 0, then the characteristic polynomial of Up on ΠU1(pc+n)

is Xn(X − up), where up is the eigenvalue of Up on ΠU1(pc).
With the above notation, we have the following well-known properties of the

correspondence Π↔WD(Π).
Lemma 4.2.2. (1) Suppose that c = 0. Then WD(Π) is unramified and the

characteristic polynomial of Frobp on WD(Π) is X2 − tpX + psp.
(2) Suppose that c = 1. Let χ denote the character of Z×p defined by the action

of F×p ∼= U0(p)/U1(p) on ΠU1(p). Then WD(Π)|Ip ∼= 1 ⊕ χ ◦ ηp,1. If χ is
trivial, then WD(Π) ∼= ξ⊕ ξ| |−1 where ξ is unramified and ξ(Frobp) = up.
If χ is not trivial, then Frobp acts via up on WD(Π)Ip .

(3) Suppose that c > 1. Then c is the conductor of WD(Π). Moreover up 6= 0
if and only if WD(Π)Ip 6= 0, in which case Frobp acts via up on WD(Π)Ip .
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Note that the only case where c(Π) is not the conductor of WD(Π) is when
c(Π) = 1 and the central character of Π is unramified. We refer to such Π as un-
ramified special representations. We let e(Π) = 1 if WD(Π) is unramified special,
and e(Π) = dimWD(Π)Ip otherwise. In general, if π is an automorphic represen-
tation as above and p 6= `, then dim ρ

Ip
π = e(πp).

Corollary 4.2.3. The characteristic polynomial of Up on π
U1(pc(πp)+e(πp))
p is of the

form xf(x) where f(x) has degree e(π) and roots which are `-adic units.
We also have the following relationship between WD(Π) and the action of

GL2(Z/pnZ) ∼= GL2(Zp)/U(pn) on ΠU(pn).

Lemma 4.2.4. (1) Suppose that χ : F×p → Q
×

. If 〈spχ⊕χ◦det,ΠU(p)〉GL2(Fp) 6=
0, then WD(Π)|Ip ∼= χ ◦ ηp,1 ⊕ χ ◦ ηp,1. Conversely if WD(Π)|Ip ∼=
χ ◦ ηp,1 ⊕ χ ◦ ηp,1, then either ΠU(p) ∼= spχ ⊕ χ ◦ det and Π is the twist
of an unramified representation, or ΠU(p) ∼= spχ and Π is special.

(2) Suppose that χ1 6= χ2 : F×p → Q
×

. If 〈I(χ1, χ2),ΠU(p)〉GL2(Fp) 6= 0, then
WD(Π)|Ip ∼= (χ1 ◦ ηp,1) ⊕ (χ2 ◦ ηp,1). Conversely if WD(Π)|Ip ∼= (χ1 ◦
ηp,1)⊕ (χ2 ◦ ηp,1), then ΠU(p) ∼= I(χ1, χ2).

(3) Suppose that χ : A× = W (Fp2)× → Q
×

is as in §3.2 with conductor pnA. If
〈Θ(χ),ΠU(pn)〉GL2(Z/pnZ) 6= 0, then WD(Π)|Ip ∼= (χ◦ηp,2)⊕(χ◦Frobp◦ηp,2).
Conversely if WD(Π)|Ip ∼= (χ◦ηp,2)⊕(χ◦Frobp◦ηp,2), then ΠU(pn) ∼= Θ(χ).

These assertions follow from explicit descriptions of the local Langlands corre-
spondence. The first two parts can already be deduced from the properties listed
above, together with the classification of representations of GL2(Fp). For the third
part, see [24, §3].

5. Hecke Algebras and Modules

5.1. Definition of Hecke algebras. We use the notation of §1.3. In particular,

ρ : GQ → GL(V )

is absolutely irreducible, τ is an `-type strongly acceptable for ρ|G` and S is a finite
set of primes not containing `. We suppose from now on that ρ is modular, meaning
there exist an automorphic representation as in §4 and a finite extension K ′ of K
such that ρπ ∼= Q` ⊗O′ ρ for some deformation ρ of ρ to O′. We let NS denote the
set of π such that this holds for some ρ of type (S, τ). We shall write RS for the
universal deformation ring of type (S, τ), and ρS for the universal deformation.

Let S(ρ) denote the set of primes p such that p = ` or ρ is ramified at p. Let
T (ρ) denote the set of primes p such that p ≡ −1 mod `, ρ|Gp is irreducible and
ρ|Ip is reducible. We let T̃S denote the polynomial algebra over O generated by
the variables Tp and Sp for p 6∈ S ∪ S(ρ). We define the Hecke algebra TS as the
image of the O-algebra homomorphism

T̃S →
∏
π∈NS

Q`,

sending Tp 7→ tp and Sp 7→ sp in each component. We let IS denote the kernel of
T̃S → TS . We also let T̃

′
S denote the polynomial algebra over T̃S generated by

the variables Up for p ∈ S, and let I ′S denote the ideal generated by IS and the set
of Up for p ∈ S.
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For each prime p we will define open subgroups VS,p, normal in US,p ⊂ GL2(Zp),
an element wS,p ∈ GL2(Qp) and a finite-dimensional irreducible representation
σS,p of US,p/VS,p over Q. For p 6= `, let cp denote the conductor of ρ|Gp and
ep = dimk ρ

Ip . If p ∈ T (ρ), then cp is even and we can choose a character χp :
W (Fp2)× → Q

×
of order prime to ` whose reduction χp satisfies

ρ|Ip ⊗k F` ∼= χp ◦ ηp,2 ⊕ χp ◦ Frobp ◦ ηp,2.

• If p 6∈ S ∪T (ρ)∪{`} then US,p = VS,p = U`(pcp), wS,p =
(

0 −1
pcp 0

)
and

σS,p = 1.

• If p ∈ S − T (ρ) then US,p = VS,p = U`(pcp+ep), wS,p =
(

0 −1
pcp+ep 0

)
and σS,p = 1.
• If p ∈ T (ρ) − S then US,p = GL2(Zp), VS,p = U(pcp/2), wS,p = 1 and
σS,p = Θ(χp).
• If p ∈ T (ρ) ∩ S then US,p = U0(p), VS,p = U(pcp/2), wS,p = 1 and σS,p =

Θ(χp)|US,p/VS,p .
• If p = `, then US,p = GL2(Z`), VS,p = U(`), wS,p = 1 and σS,p is

χ ◦ det, if τ ∼= χ ◦ ω1 ⊕ χ ◦ ω1 for some χ : F×` → Q
×

;
I(χ1, χ2), if τ ∼= χ1 ◦ ω1 ⊕ χ2 ◦ ω1 with χ1 6= χ2 : F×` → Q

×
;

Θ(χ), if τ ∼= χ ◦ ω2 ⊕ χ` ◦ ω2 with χ 6= χ` : F×`2 → Q
×

.

We will set US =
∏
p US,p, and VS =

∏
p VS,p, wS =

∏
p wS,p and σS = ⊗pσS,p.

We have defined wS for later use. The point of the definitions of US and σS is the
following lemma.

Lemma 5.1.1. Suppose that ρπ ∼= Q` ⊗O′ ρ for some deformation ρ of ρ to the
ring of integers O′ of a finite extension K ′ of K. Then π ∈ NS if and only if

HomUS (σS , π∞) 6= (0).

In that case, the eigenvalues of Up on HomUS (σS , π∞) for each p ∈ S are either 0
or `-adic units, and the subspace on which Up = 0 for all p ∈ S is 1-dimensional.

Proof. This follows from the results recalled in the preceding section together with
the analysis of possible lifts of ρ|Gp for p 6= ` (see [4] and [15]). In particular that
analysis shows that c(πp) + e(πp) = cp + ep. Moreover if p 6∈ T (ρ), cp = c(πp)
and det ρ|Ip has order prime to `, then ρ|Ip satisfies the local condition at p in the

definition of type (S, τ). On the other hand, if p ∈ T (ρ), then πU(pcp/2)
p as a module

for GL2(Zp) is isomorphic to Θ(χpψp) for some character ψp of `-power order. Note
that in that case Θ(χpψp)|U0(p)

∼= Θ(χp)|U0(p).
�

Corollary 5.1.2. The set NS is finite, TS is finitely generated as an O-module
and the natural map

TS ⊗O Q` →
∏
π∈NS

Q`

is an isomorphism.
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Proof. By the lemma, NS is finite, from which it follows that TS is finitely generated
over O. For π ∈ NS and p 6∈ S ∪ S(π), let tp(π) denote the eigenvalue of Tp on
π

GL2(Zp)
p . Choose any π ∈ NS . For each π′ ∈ NS distinct from π, choose a prime
p(π′) 6∈ S ∪ S(π) ∪ S(π′) with tp(π′)(π) 6= tp(π′)(π′). The element∏

π′ 6=π

(Tp(π′) ⊗ 1− 1⊗ tp(π′)(π′)) ∈ TS ⊗O Q`

maps to 0 in all components except for the πth one, where it has non-zero image.
This proves surjectivity. It now suffices to show dimK TS ⊗O K ≤ |NS |. Let
Kπ ⊆ Q` denote the subfield of finite degree over Q` which is generated by the
tp(π)’s for p 6∈ S ∪ S(π). Under the natural action of GK ⊆ G` on the coefficient
field Q`, NS is stable. For σ ∈ GK , ρπσ = ρσπ ' ρπ if and only if σ fixes Kπ, so the
orbit of π under the action of GK has size equal to [Kπ : K]. Thus, if we sum over
a set X of representatives for the GK-orbits in NS ,

|NS | =
∑
π∈X

[Kπ : K].

But the image of TS⊗OK in the πth factor Q` is Kπ, and using the GK-action we
see that any element of TS⊗OK is determined by its image in the Kπ’s for π ∈ X.
Thus, dimK TS ⊗O K ≤ |NS |.

�

5.2. The universal modular deformation. For each π in NS , the universal
property of the deformation ring RS provides an O-algebra homomorphism RS →
Q` so that ρπ is the extension of scalars of the universal deformation. The map

RS →
∏
π∈NS

Q`

has image TS since RS is topologically generated by traces. We let φS denote the
resulting surjective O-algebra homomorphism

RS → TS .

Note that whenever S ⊂ S′, we have a natural commutative diagram of O-algebra
homomorphisms

T̃S′ → TS′ ← RS′
↓ ↓ ↓

T̃S → TS ← RS ,

with all maps surjective except T̃S′ → T̃S which is injective.

5.3. Definition of Hecke modules. It is convenient to fix an auxiliary prime
r 6∈ S(ρ) such that no lift of ρ can be ramified at r (see Lemma 2 of [15]). Thus
we have NS = NS∪{r}, so TS∪{r} ∼= TS . We also assume the field K is sufficiently
large that it contains all quadratic extensions of some field K0 such that

• ρ is defined over k0;
• σ∅,p ⊗Q Q` is defined over K0 for each p ∈ T (ρ) ∪ {`}.

For each p ∈ T (ρ)∪{`}, we fix a lattice Mp as in Lemma 3.3.1 for σ∅,p and a pairing
( , )p inducing an isomorphism

Mp → HomO(Mp,O(χp))
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of OU∅,p-modules, where χp = ψp ◦ det, ψp being the central character of σ∅,p.
Letting MS denote the model ⊗p6∈SMp over O for σS , we have a pairing ( , )S on
MS which induces an isomorphism

MS → HomO(MS ,O(χS))

of OUS-modules, where χS = ψS ◦ det, where ψS = ⊗p∈Sψp.
If U is an open compact subgroup of GL2(A∞) then we will let YU denote the

modular curve

GL2(Q)\((GL2(A∞)/U)× (C−R)) ∼= GL2(Q)\GL2(A)/UU∞,

where U∞ = O2(R)R×. We let XU denote its compactification obtained by adjoin-
ing cusps. Recall that XU is not necessarily connected (its connected components
are in bijection with Ẑ×/detU), and that XU has a model over Q. Our convention
for the definition of this model is that YU (Q) is in canonical bijection with the
set of equivalence classes of pairs (E,α), where E is an elliptic curve over Q and
α : A ×A ∼−→ (proj limnE[n]) ⊗Ẑ A. We consider (E1, α1) ∼ (E2, α2) if there is
an isogeny φ : E1 → E2 such that φ ◦ α1 = α2 ◦ u for some u ∈ U . The point
GL2(Q) · (xU, τ) corresponds to the elliptic curve C/Λτ where Λτ = Zτ ⊕ Z and
α is defined by composing x with the isomorphism obtained using (τ, 1) as a basis
over Ẑ for proj limnE[n].

We obtain an admissible GL2(A∞)-module

H = inj lim
U

H1(XU ,Q)

where the limit is with respect to the natural maps on cohomology induced by
XV → XU whenever V ⊂ U . Then H decomposes as ⊕π(B+

π ⊕ B−π ) where each
B±π is a model for π. We recover each H1(XU ,Q) from H as the subspace HU of
U -invariants.

We let XS = XVS and consider H1(XS ,O). We have natural compatible actions
on it of T̃

′
S , and GS = US/VS . If r is in S, then we define LS to be the TS-module

HomO[GS ](MS ,H
1(XS ,O))[I ′S ].

(If I is an ideal in a ring R and M is an R-module, we write M [I] for the largest
submodule of M whose annihilator contains I.) If r is not in S, then we set
LS = LS∪{r}.
Lemma 5.3.1. The (TS ⊗O K)-module LS ⊗O K is free of rank two.

Proof. We may assume r is in S and replace K by Q`. Writing H1(XS ,Q`) as
(H⊗Q Q`)VS and decomposing H, we obtain an isomorphism of TS⊗O Q`-modules

LS ⊗O Q`
∼=
⊕

(B′π ⊗Q Q`)[IS ]

where B′π is the subspace of HomUS (σS , B+
π ⊕ B−π ) killed by Up for all p in S.

By Lemma 5.1.1, this space is two-dimensional whenever π is in NS . The lemma
follows, since for p not in S ∪ S(ρ), the operators Tp and Sp act on B′π as tp and
sp, respectively.

�

There is also a natural action of GQ on LS compatible with that of TS . This can
be defined, for example, via the isomorphism of HomZ`(H

1(XS ,Z`),Z`) with the `-
adic Tate module of the Jacobian ofXS . Each π ∈ NS gives rise to a homomorphism
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θπ,S : TS → Q` sending Tp 7→ tp and Sp 7→ sp. The resulting representation of GQ

on LS ⊗TS Q`(1) is isomorphic to ρπ, and we therefore have the following lemma:
Lemma 5.3.2. There is an isomorphism

LS ⊗O Q`(1) ∼=
⊕
π∈NS

Vπ

of representations of GQ over TS ⊗O Q`
∼=
⊕

π∈NS
Q`.

5.4. The main results. Recall that we are assuming ρ is as in §1.3 and that it is
modular. We defined NS and TS in §5.1, φS in §5.2 and LS in §5.3. We have not
yet shown that these objects are non-trivial. We shall deduce the following lemma
from related results in the literature in section 6.
Proposition 5.4.1. With the above notation and hypotheses, NS 6= ∅.

Our main result is the following theorem; we give the proof in the rest of this
section, subject to some propositions which are proved in §6.
Theorem 5.4.2. With the above hypotheses and notation, the following hold:

(1) φS is an isomorphism;
(2) TS is a complete intersection;
(3) LS is free over TS.

5.5. Reduction to the case S = ∅. Following Wiles [46], we shall deduce the
result for arbitrary S from the result for S = ∅.

For each p 6∈ S ∪ {`}, we define an element µp ∈ TS as follows:
• If ep = 2, then µp = (p− 1)(T 2

p − Sp(1 + p)2).
• If ep = 1 and det ρ is unramified at p, then µp = p2 − 1.
• If ep = 1 and det ρ is ramified at p, then µp = p− 1.
• If ep = 0 and p ∈ T (ρ) then µp = p+ 1.
• If ep = 0 and p 6∈ T (ρ) then µp = 1.

If Σ is a finite set of primes disjoint from S ∪ {`}, we let µΣ =
∏
p∈Σ µp.

The key proposition we prove in §6 for the induction step is the following:
Proposition 5.5.1. (1) There exists a pairing 〈 , 〉S on LS which induces an

isomorphism
LS → HomO(LS ,O)

of TS-modules.
(2) If S ⊂ S′ and ` 6∈ S′, then there exists a TS′-module homomorphism

iS
′

S : LS → LS′

such that iS,S′ ⊗O k is injective and

jSS′i
S′

S LS = µS′−SLS

where jSS′ is the adjoint of of iS
′

S with respect to the pairings 〈 , 〉S and
〈 , 〉S′ .

Fix for the moment an element π of N∅. Note that if part 1 or 2 of Theorem 5.4.2
holds for some K such that TS is defined, then it holds for all such K, and similarly
for part 3 provided LS is defined. We may therefore assume that K contains the
eigenvalues tp and sp for all p 6∈ S(ρ). Let pS denote the kernel of θπ,S and JS the
annihilator of pS in TS . Define

CS,θ = LS/(LS [pS ] + LS [JS ]).
22



This is isomorphic to the cokernel of the map

L[pS ]→ HomO(L[pS ],O)

defined by the restriction of 〈 , 〉S . Thus CS,θ has finite length over O, and by
Proposition 5.5.1 we have

lengthO CS∪{p},θ = lengthO CS,θ + 2 · lengthO(O/θπ,S(µp)).

Since θπ,S(µp) is a unit times the determinant of Frobp − 1 on ad0 Vπ(1)Ip , we
can combine this with Theorem 2.4 of [13] and Corollary 1.4.3 to conclude that
Theorem 5.4.2 for all S follows from the special case S = ∅.

5.6. The case of S = ∅. We now turn to the proof of Theorem 5.4.2 in the case
S = ∅. We will use the improvement on the method of Taylor and Wiles ([45])
found by Diamond ([13]) and Fujiwara ([23]). We keep the above hypotheses and
notation, but only consider finite sets S of primes with the following properties. If
p ∈ S then

• p 6∈ S(ρ),
• p ≡ 1 mod `,
• ρ(Frobp) has distinct eigenvalues α1,p and α2,p.

One checks as in Lemma 2.44 of [9], that for each p ∈ S, the restriction to Gp of
the universal deformation ρS is equivalent to χS1,p ⊕ χS2,p for some characters

χSi,p : Gp → R×S ,

where the reduction of χSi,p mod the maximal ideal of RS is unramified and sends
Frobp to αi,p for i = 1, 2. The restrictions χSi,p|Ip are of the form ξSi,p ◦ ωp,1 where
ωp,1 denotes the mod p cyclotomic character Ip → (Z/pZ)×. We let ∆S =

∏
p∈S ∆p

where ∆p denotes the `-Sylow subgroup of (Z/pZ)×. We regard RS as an O[∆S ]-
algebra by mapping

ξS1,p : ∆p → R×S

for each p ∈ S. This makes LS an O[∆S ]-module. We let aS denote the augmen-
tation ideal of O[∆S ]. The last key result whose proof we postpone until §6 is the
following proposition:

Proposition 5.6.1. The O[∆S ]-module LS is free. The map π∅,S : LS → L∅
induces an isomorphism

LS/aSLS
∼−→ L∅.

We also need the following lemma, which is proved exactly as Theorem 2.49 of
[9] using Lemma 1.4.1.

Lemma 5.6.2. There exists an integer r ≥ 0 such that for any integer n > 0, there
exists a finite set of primes Sn disjoint from S(ρ) such that

(1) if p ∈ Sn then p ≡ 1 mod `n;
(2) if p ∈ Sn then ρ(Frobp) has distinct eigenvalues;
(3) #Sn = r;
(4) RSn can be topologically generated by r elements as an O-algebra.

We can then apply Theorem 2.1 of [13] to complete the proof of Theorem 5.4.2
in the case S = ∅. (See the proof of Theorem 3.1 of [13].)
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6. Cohomology of modular curves

In this section we will give the proofs of Propositions 5.4.1, 5.5.1 and 5.6.1.
We maintain the notation of the preceding section. In particular, we consider a
representation ρ : GQ → GL2(k) which is irreducible and modular. Recall that T̃S

is the polynomial algebra generated by the operators Tp and Sp for p not in S∪S(ρ).
We define mS to be the kernel of the map T̃S → k defined by Tp 7→ tr(ρ(Frobp)),
Sp 7→ p−1 det(ρ(Frobp)). We consider also the polynomial algebra T̃

′
S over T̃S

generated by the operators Up for p ∈ S, and the maximal ideal m′S generated by
mS and the operators Up for p ∈ S. Recall that since ρ is irreducible, the maximal
ideals mS and m′S are not Eisenstein. (We say a maximal ideal m of T̃S or T̃

′
S is

Eisenstein if there exists an integer N > 0 such that Tp− 2 ∈ m and Sp− 1 ∈ m for
all p ∈ S ∪ S(ρ) with p ≡ 1 mod N ; see [14, Proposition 2], for example.)

For n ≥ 0, we let Ln denote the SL2(Z)-module Symmn Z2. Recall that if
Γ1(N) ⊂ Γ ⊂ Γ0(N) for some N ≥ 1 and S∪S(ρ) contains the set of prime divisors
of N , then there is a natural action of T̃S on H1(Γ, Ln⊗M) for any O-module M .
(See for example, [43, Chapter 8].)

6.1. Preliminary Lemmas. The following is a consequence of the results of Ribet
and others (see [11, Corollary 1.2]).

Theorem 6.1.1. Suppose that 0 ≤ n ≤ `− 1 and ρ|I` is of the form

•
(
ωn+1 ∗

0 1

)
with ∗ peu ramifié if n = 0, or

•
(
ωn+1

2 0
0 ω

(n+1)`
2

)
.

Let N be any integer divisible by the conductor of ρ, let Γ denote the group of

matrices
(
a b
c d

)
∈ Γ0(N) such that d mod N has `-power order and let S be a

set of primes such that S ∪ S(ρ) contains the set of prime divisors of N . Then mS

contains the annihilator of H1(Γ, Ln⊗K), hence is in the support of H1(Γ, Ln⊗O)
and H1(Γ, Ln ⊗ k).

Suppose that V is an open compact subgroup of GL2(A∞). We assume that
V is of the form

∏
p Vp with Vp ⊂ GL2(Zp) and that Vr ⊂ U1(r2) for some fixed

prime r as in §5.3. Suppose that Σ is a finite set of primes, and that for each p in
Σ we are given a finitely generated O-module Mp with a left action of Vp which is
continuous for the discrete topology on Vp. We can then associate to the V -module
M = ⊗pMp a locally constant sheaf

FM = GL2(Q)\(GL2(A)×Mop)/V U∞

on YV . If r is in S, then we let YS = YUS and FS = FM̌S
, where M̌S denotes the

US-module HomO(MS ,O). (See §5.1 and §5.3 for the definitions of US and MS .) If
r is not in S, then we let YS = YS∪{r} and FS = FS∪{r}.

If for all p 6∈ S ∪ S(ρ) we have Vp = GL2(Zp) and Vp acts trivially on M , then
there is a natural action of T̃S on the cohomology groups

H1
c (YV ,FM ) and H1(YV ,FM ).

Standard arguments yield the following useful technical result.
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Lemma 6.1.2. Suppose V , M and S are as above and let m be a non-Eisenstein
maximal ideal of T̃S with finite residue field.

(1) The map H1
c (YV ,FM )m → H1(YV ,FM )m is an isomorphism.

(2) If M is free over O, then the natural map

H1(YV ,FM )m ⊗O k → H1(YV ,FM⊗Ok)m

is an isomorphism.
(3) If 0 → M ′ → M → M ′′ → 0 is an exact sequence of O[V ]-modules, then

the sequence

0→ H1(YV ,FM ′)m → H1(YV ,FM )m → H1(YV ,FM ′′)m → 0

is exact.
(4) If V ′ ⊂ V and satisfies the hypotheses above for S, then

H1(YV ,FM )m → H1(YV ′ ,FM )Vm

is an isomorphism.
(5) If V acts trivially on M , then

H1(XV ,O)m ⊗O M → H1(YV ,FM )m

is an isomorphism.

If in addition we have U1(pn) ⊂ Vp ⊂ U0(pn) for some n > 0 and Vp acts
trivially on M for all p ∈ S, then this action extends naturally to an action of T̃

′
S .

Furthermore, the lemma holds for m = m′S . In particular, T̃
′
S∪{r} acts on

H1
c (YS ,FS) and H1(YS ,FS)

and the lemma yields natural isomorphisms

H1
c (YS ,FS)m → H1(YS ,FS)m → HomGS (MS ,H

1(XS ,O))m

where m = m′S∪{r}. One can also check that the natural map

LS = HomGS (MS ,H
1(XS ,O))[I ′S∪{r}]→ HomGS (MS ,H

1(XS ,O))m

is an isomorphism, so we conclude:

Lemma 6.1.3. There are natural isomorphisms of T̃
′
S∪{r}-modules

H1
c (YS ,FS)m

∼= H1(YS ,FS)m
∼= LS

identifying TS = TS∪{r} with the localization at m of the image of T̃
′
S∪{r} in

EndOH
1(YS ,FS) (or EndOH

1
c (YS ,FS) ).

6.2. Proof of Proposition 5.4.1. Suppose for the moment that 0 ≤ n ≤ ` − 1
and ρ|I` is of the form

•
(
ωn+1 ∗

0 1

)
with ∗ peu ramifié if n = 0, or

•
(
ωn+1

2 0
0 ω

(n+1)`
2

)
.
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Setting S = T (ρ) ∪ {r}, we find that the group Γ = SL2(Z) ∩ US satisfies the
hypotheses of Theorem 6.1.1. Furthermore

H1(YS ,FM ) ∼= H1(Γ, Ln ⊗ k)

as a T̃
′
S-module where M is the module for US,` = GL2(Z`) defined by the action

of GL2(F`) on Hom(Ln, k). Therefore mS is in the support of H1(YS ,FM ). On
examining the list of possible τ which can be considered strongly acceptable for ρ
(see the definition after Conjecture 1.2.3), we see from Lemma 3.1.1 that M is a
constituent of HomO(MS , k). It follows from Lemma 6.1.2 that mS is in the support
of H1(YS ,FS), so LS is non-zero and NS is non-empty. Moreover by twisting by a
power of the Teichmüller character, we see that this holds without the assumption
on ρ|I` imposed in Theorem 6.1.1.

Now choose an automorphic representation π in NS . Then for each p ∈ T (ρ),
ρπ|Ip is necessarily of the form

χ′p ◦ ηp,2 ⊕ χ′p ◦ Frobp ◦ηp,2
for some character χ′p of W (Fp2) such that χ′p = χp. Suppose now that O is
sufficiently large that each representation Θ(χ′p) has a model M ′p over O, and set

M ′{r} = M` ⊗O

⊗
p∈T (ρ)

M ′p.

It follows from Lemma 6.1.2 and the last part of Lemma 4.2.4 that

HomO[G{r}](M
′
{r},H

1(X{r},O))mS
∼= H1(Y∅,FM ′{r})mS 6= 0.

Finally, since M ′{r} ⊗O k ∼= M{r} ⊗ k by Lemma 3.2.1, we conclude from Lemma
6.1.2 that mS is in the support of

H1(Y{r},F{r}) = H1(Y∅,F∅),

hence N∅ is not empty.

6.3. Proof of Proposition 5.5.1. We first define the pairings 〈 , 〉S on LS induc-
ing isomorphisms

LS → HomO(LS ,O)

of TS-modules. We may assume r ∈ S. We let WS denote the involution of YS
defined by g 7→ (det g)−1gwS , where wS was defined in §5.1. There is a natural
isomorphism of sheaves

W ∗SFS → FS(χS) = FS ⊗O FχS◦det,

where χS = σS |A×∩US . (Recall that FS is associated to M̌S = HomO(MS ,O).) The
US-equivariant perfect pairing chosen in §5.3 gives rise to one on M̌S which defines
an isomorphism of sheaves FS(χS)→ FMS

. We thus obtain an isomorphism

H1
c (YS ,FS) ∼−→ H1

c (YS ,W ∗SFS) ∼−→ H1
c (YS ,FMS

).

The cup product gives rise to a pairing

H1
c (YS ,FMS

)×H1(YS ,FS)→ H2
c (XS ,O) ∼= O,

which defines an isomorphism

H1
c (YS ,FMS

)→ HomO(H1(YS ,FS),O).
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We thus obtain an isomorphism

H1
c (YS ,FS)→ HomO(H1(YS ,FS),O),

which one can check is T̃
′
S-linear. Localizing at m and applying Lemma 6.1.3, we

obtain the desired isomorphism

LS → HomO(LS ,O)

of T̃S-modules, arising from an alternating pairing 〈 , 〉S on LS .
Now we suppose p is a prime not in S ∪ {`} and we define a homomorphism

iS
′

S : LS → LS′

of TS′ -modules where S′ = S ∪ {p}. We use the identity map if p = r, and then

we can can assume r ∈ S. We let βpn =
(
p−n 0

0 1

)
p

. Let T̃
(p)

S denote the

polynomial algebra over O generated by the variables Tq and Sq for q 6∈ S′ ∪ S(ρ)

and Uq for q ∈ S. We regard T̃
(p)

S as a subalgebra of both T̃
′
S and T̃

′
S′ , and let

m
(p)
S = m′S ∩ T̃

(p)

S = m′S′ ∩ T̃
(p)

S .
If 0 ≤ n ≤ ep, then g 7→ gβpn defines a map YS′ → YS and β∗pnFS is canonically

isomorphic to FS′ . We also use βpn to denote the induced T̃
(p)

S -linear map on
cohomology

H1(YS ,FS)→ H1(YS′ ,FS′).

Now consider the map

iS
′

S : H1(YS ,FS)
m

(p)
S

→ H1(YS′ ,FS′)m
(p)
S

defined by

• x 7→ pβ1x− βpTpx+ βp2Spx, if ep = 2;
• x 7→ pβ1x− βpUpx, if ep = 1;
• x 7→ β1x, if ep = 0.

Using Lemma 6.1.2 we can identify H1(YS ,FS)
m

(p)
S

with the TS′ -module LS . One

then checks that the image of iS
′

S is in H1(YS′ ,FS′)m
(p)
S

[Up], which can be identified

with the TS′ -module LS′ . We thus obtain the desired map iS
′

S : LS → LS′ .
These are compatible for varying p in the sense that iS

′

S∪{p} ◦ i
S∪{p}
S = iS

′

S∪{q} ◦
i
S∪{q}
S if S′ = S ∪ {p, q} for distinct primes p, q 6∈ S ∪ {`}. We can therefore

inductively define iS
′

S : LS → LS′ if S ⊂ S′ and ` 6∈ S′.
To complete the proof of the proposition, we can assume S′ = S ∪ {p}. First

consider the calculation of jSS′i
S′

S . The assertion holds for p = r since µr is a unit
in TS . We can then assume r ∈ S.

In the case ep = 2, one finds that the adjoint of βpn is the trace map

H1
c (YS′ ,FS′)→ H1

c (YS ,FS)

with respect to βp2−n , which we denote βtp2−n . After localizing at m
(p)
S , we can

compute the composites βtpmβpn onH1(XS ,O), for example. Finally, we are reduced
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to the calculation of

d(p,−Tp, Sp)

 T 2
p − (p+ 1)Sp pTp p(p+ 1)

pTp p(p+ 1) pS−1
p Tp

p(p+ 1) pS−1
p Tp S−2

p (T 2
p − (p+ 1)Sp)

 p
−Tp
Sp


where d is the prime-to-` part of φ(p2). The result is −dµp.

The case of ep = 1 is similar, except that one gets −pUp(p2 − U∗pUp) where

U∗p = VS,p

(
1 0
0 p

)
p

VS,p. One then uses that

U∗pUp =
{

1, if πp is unramified special,
p, if πp is principal series with ep = 1.

Note that this also shows that Up is an automorphism of LS .
In the case ep = 0, one gets jSS′i

S′

S = p+ 1 if p ∈ T (ρ) and jSS′i
S′

S = 1 if p /∈ T (ρ).
We now turn to the proof that LS ⊗O k → LS′ ⊗O k is injective. Again we may

assume r ∈ S and S′ = S ∪ {p} for some p 6∈ S ∪ {`}.
First we treat the case ep = 0. There is nothing to prove if p 6∈ T (ρ), and if p is

in T (ρ) then the assertion is immediate from Lemma 6.1.2.
The remaining cases of Proposition 5.5.1 follow from Lemma 6.1.2 and the lemma

below, the first part of which is essentially due to Ihara [27] and the second to
Wiles [46]. For the following lemma, we let V1(N) =

∏
q U1(qvq(N)), V0(N) =∏

q U0(qvq(N)) and V (N) =
∏
q U(qvq(N)). We also let V1,0(N,N ′) denote V1(N) ∩

V0(N ′) and V1(N,N ′) denote V1(N) ∩ V (N ′). We also use βp to denote the map
H1(XV ,FM )→ H1(XV ′ ,FM ) induced on cohomology (by the matrix βp) whenever
βpV

′β−1
p ⊂ V and Vp acts trivially on M .

Lemma 6.3.1. Suppose that D and N are relatively prime positive integers with
N > 3 and p not dividing ND`. Let m = mΣ where Σ is a finite set of primes con-
taining those dividing NDp`. Suppose that M is a k[GL2(Z/DZ)]-module, finite-
dimensional over k.

(1) The map

H1(XV1(N),FM )2
m

1⊕βp−→ H1(XV1(Np),FM )m

is injective.
(2) If s ≥ 1 then

0→ H1(XV1(Nps−1),FM )m
(−βp,1)−→ H1(XV1(Nps),FM )2

m

1⊕βp−→ H1(XV1(Nps+1),FM )m

is exact.

Proof. We first explain the proof of the second part. Let V = β−1
p V1(Nps)βp and

L = H1(XV1(N,ps),FM )m. Then using Lemma 6.1.2, we see that we are required to
check the exactness of

(0) −→ LV1(Nps−1) −→ LV ⊕ LV1(Nps) −→ LV ∩V1(Nps),

where the nontrivial maps are given by x 7→ (−x, x) and (x, y) 7→ x + y. Thus
it suffices to check that V1(Nps−1) is generated by V1(Nps) and V , which is a
straightforward calculation.
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We now turn to the proof of the first part of the lemma. By Lemma 6.1.2, it
suffices to show that if (x, y) is in the kernel of

H1(XV1(N),FM )2 1⊕βp−→ H1(XV1,0(N,p),FM )

then x restricts to zero in H1(XV ,FM ) for some open subgroup V ⊂ V1(N). How-
ever we can rewrite this map as

H1(Γ1(N),M)2 −→ H1(Γ1(N) ∩ Γ0(p),M)

with the map induced by 1 ⊕ µ where µ =
(
p 0
0 1

)
∈ GL2(Z[1/p]). Thus it

suffices to show that if (x, y) is in the kernel, then there is a congruence subgroup
Γ ⊂ Γ1(N) with Resx = 0 in H1(Γ,M). Let ∆ ⊂ SL2(Z[1/p]) denote the subgroup

of elements congruent to
(

1 ∗
0 1

)
modulo N . Then ∆ is the amalgam of Γ1(N)

and µ−1Γ1(N)µ over Γ1(N)∩ Γ0(p) (see Serre [39, II.1.4]). Thus we have an exact
sequence

H1(∆,M)→ H1(Γ1(N),M)⊕H1(µ−1Γ1(N)µ,M)→ H1(Γ1(N) ∩ Γ0(p),M).

(See [39, II.2.8].) Thus it suffices to show that if x ∈ H1(∆, σ) there is a congruence
subgroup ∆′ ⊂ ∆ with 0 = Resx ∈ H1(∆′,M). We may choose a subgroup ∆′ of
finite index in ∆ such that Resx = 0, and since ∆ has the congruence subgroup
property [35], ∆′ will be a congruence subgroup.

�

6.4. Proof of Proposition 5.6.1. For the rest of the section, S will denote a fixed
set of primes as in §5.6. We let s denote the cardinality of S. Recall that r is a
fixed prime such that no lift of ρ can be ramified at r. It is convenient to choose
another such prime r′ and a character ψ : (Z/r′Z)× → O× of order greater than 2.
For each prime p, we define open subgroups V1,p ⊂ V0,p ⊂ GL2(Zp) as follows:

• V1,p = V0,p = U{r},p if p 6∈ S ∪ {r′}, where U{r,r′},p was defined in §5.1;
• V1,p = U1(p) and V0,p = U`(p) if p ∈ S;
• V1,p = V0,p = U0(r′2) if p = r′.

We then set V1 =
∏
p V1,p and V0 =

∏
p V0,p, so V1 ⊂ V0 ⊂ U{∅}. We identify

U ′S/U
′
0,S with ∆S =

∏
p∈S ∆p, where ∆p denotes the `-Sylow subgroup of (Z/pZ)×.

Recall that we defined a representation σ∅ of U∅ in §5.1. Now we let σ = σ∅ ⊗ ψ−2
r′

where ψr′ is the character of U0(r′2) → (Z/r′Z)× gotten by composing with ψ. If
χ is a Dirichlet character and π is an automorphic representation, we write simply
π · χ for π ⊗ (χA ◦ det) where χA is the character of A×/Q×R× corresponding to
χ.

The analogue of Lemma 5.1.1 for V1 and V0 is the following:
Lemma 6.4.1. Suppose that ρπ·ψ ∼= Q` ⊗O′ ρ for some deformation ρ of ρ to the
ring of integers O′ of a finite extension K ′ of K.

(1) The space HomV0(σ, π∞) is non-zero if and only if π ·ψ ∈ N∅. In that case
the dimension is 3 · 2s.

(2) The space HomV1(σ, π∞) is non-zero if and only if the following hold:
• π · ψχ is in NS for some character χ unramified outside S;
• c(πp) ≤ 1 for all p ∈ S.
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In that case the character χ is unique, and the space has dimension 3 ·2s−d
where d is the number of primes dividing the conductor of χ.

Proof. For part 1, we note that if p ∈ S, c(πp) ≤ 1 and πp has unramified central
character, then ρπ·ψ−1 is unramified at p (using the above description of the uni-
versal deformation, or the analysis of local lifts in [15]). So if HomV0(σ, π∞) is not
zero, then c(πp) = 0 for each p ∈ S and it follows that HomU{r,r′}(σ{r,r′}, (π · ψ)∞)
is not zero. Therefore π ·ψ ∈ N{r,r′} = N∅. To compute the dimension if π ·ψ ∈ N∅,
one uses the lemmas in §4 to check that

dim HomV0,p(σp, πp) =

 3, if p = r
2, if p ∈ S
1, otherwise.

For part 2, we note that if p ∈ S, then the central character χπp of πp has `-power
order. We may therefore choose a finite order character χ of A× so that χ2

p = χ−1
πp .

If HomV1(σ, π∞) is not zero, then neither is HomUS∪{r,r′}(σS∪{r,r′}, (π · ψχ)∞), so
π · ψχ is in NS∪{r,r′} = NS . The uniqueness of χ is clear and the dimension
calculation is similar to the one above.

�

Choose a model M for σ over O. For i = 0, 1, we let Li = H1(YVi ,FM̌ )m where
M̌ = HomO(M,O) and m is the kernel of the map

T̃S∪{r,r′} → k
Tp 7→ ψ(p)−1 tr(ρ(Frobp))
Sp 7→ ψ(p)−2p−1 det(ρ(Frobp)).

Lemma 6.1.2 lets us identify Li with HomO[Vi](M,H1(XV ,O))m for V ⊂ V1∩kerσ.
Lemma 6.4.2. The O-rank of L0 is 3 · 2s#N∅. The O-rank of L1 is 3 · 2s#NS.

Proof. The first assertion follows from Lemma 6.4.1 and the argument of 5.3.1.
Simliarly one finds

rankO L1 =
∑
π′∈N′S

dim(HomV1(σ, π′∞)),

where N′S is the set of automorphic representations as in part 2 of Lemma 6.4.1.
Note that if π ∈ NS , then for each p in S, ρπ|Ip is equivalent to a representation of
the form ξp ⊕ ξ−1

p where ξ has `-power order. It follows that there are 2d twists of
π in N′S , where d is the number of primes in S such that ξp is ramified.

�

There is also a natural action ∆S on L1 compatible with that of TS∪{r,r′}; in
fact, the action ∆p factors through the homomorphism∏

p∈S
(Z/pZ)× → T×S∪{r,r′}

sending q−1 to the image of Sq for each prime q 6∈ S such that q ≡ 1 mod N(ρ)r2`.
The key lemma for the proof of Proposition 5.6.1 is the following:
Lemma 6.4.3. The O[∆S ]-module L1 is free of rank equal to the O-rank of L0.
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Proof. Since L0 is isomorphic to L∆S
1 , it suffices to prove L1 is free over O[∆S ].

Since L1 is an O[∆S ]-module summand of H1(YV1 ,FM̌ ), it suffices to prove that
H1(YV1 ,FM̌ ) is free. Letting Γi = GL2(Q) ∩ Vi, we have

H1(YV1 ,FM̌ ) ∼= H1(Γ1, M̌)

as a module for ∆S
∼= Γ0/Γ1. Since Γ1 and Γ2 are fundamental groups of connected

non-compact Riemann surfaces, they are free groups, so Hi(Γ1, A) = Hi(Γ1, A) = 0
for i > 1 and any Γ0-module A. Note also that this holds for i = 0 and A = M̌⊗Ok

since ψ
2

is non-trivial. Therefore H1(Γ1, M̌) is torsion-free over O, and it suffices
to prove that Hi(∆S ,H

1(Γ1, M̌)) = 0 for i > 0 (see [2, VI.8.10], for example), and
this is immediate from the Hochschild-Serre spectral sequence.

�

We now complete the proof of Proposition 5.6.1. First note that the image of aS
in R∅,DV,O is trivial, so we have a surjective map TS/aSTS → T∅. By Corollary 5.1.2,
this map is an isomorphism after tensoring over O with Q`, hence after tensoring
with K. It follows that the rank of TS [aS ] is the same as that of T∅. Setting
bS = AnnO[∆S ] aS , we also see that the rank of TS [bS ] is the same as that of the
kernel of TS → T∅. Since

iS∅ (L∅) ⊂ LS [aS ]

and iS∅ is injective with torsion-free cokernel (by Lemma 5.5.1), we conclude that
equality holds. Similarly we find that LS [bS ] = ker j∅S . Furthermore, using the
surjectivity of jS∅ and the formula for j∅Si

S
∅ , we conclude that

LS/(LS [bS ] + LS [aS ]) ∼−→ L∅/#∆S(L∅).

The first assertion of Proposition 5.6.1 now follows from Theorem 3 of [13], and the
second follows from surjectivity and comparison of ranks.

7. Applications

7.1. Basic Results. Combining Theorem 5.4.2 with [12, Thm 5.3], we obtain the
following result.
Theorem 7.1.1. Let K denote a finite extension of Q` and k its residue field.
Suppose that ρ : GQ → GL2(K) is a continuous odd representation ramified at only
finitely many primes. Assume its reduction, ρ : GQ → GL2(k) is irreducible and
modular. Suppose also that ` 6= 2, that ρ|

Q(
√

(−1)(`−1)/2`)
is absolutely irreducible,

and that at least one of the following holds:
• the centralizer of ρ(G`) consists only of scalars, ρ is potentially Barsotti-

Tate and the type of WD(ρ) is strongly acceptable for ρ|G` ,
• there are characters χ1 and χ2 of G` such that χ1|I` and χ2|I` have finite

order, χ1ε 6= χ2 and

ρ|G` '
(
χ1ε ∗
0 χ2

)
.

Then ρ is modular.
Using the theorem, we will obtain the following strengthening of [12, Thm 5.4]:

Theorem 7.1.2. Let E/Q be an elliptic curve whose conductor is not divisible by
27. Then E is modular.
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Let us first recall some basic facts about an elliptic curve E over a finite extension
F of Q`. If j(E) 6∈ OF , then E acquires multiplicative reduction over a quadratic
extension of F . If j(E) ∈ OF , then E acquires good reduction over a finite Galois
extension F ′/F with ramification degree dividing 6 if ` ≥ 5, dividing 12 if ` = 3,
and dividing 24 if ` = 2. In the case of potentially good reduction, the j-invariant
of the reduction of the Néron model of E over OF ′ is the reduction of j(E). In
particular, the notions of potentially good ordinary and potentially supersingular
reduction are well-defined and can be detected from j(E) ∈ F .

Let ρE,` denote the representation of GF on the Tate module of E, and assume
that E acquires good reduction over the finite extension F ′/F . Then ρE,` ⊗Z` Q`

is potentially Barsotti-Tate; in fact, this representation becomes Barsotti-Tate over
F ′ and the representations WD(ρE,`) and ρE,`′ |WF

for `′ 6= ` are defined over
Q (viewed as a subfield of Q`, Q`′) and are semisimple and isomorphic over this
common subfield of definition (for a proof, see Proposition B.4.2).

We need the following lemma:
Lemma 7.1.3. Let ` be a prime and E an elliptic curve over Q`. Let ρ = ρE,`⊗Z`

Q`.
(1) If E has potentially multiplicative reduction, then

ρ ∼
(
εχ ∗
0 χ

)
for some quadratic character χ.

(2) If E has potentially good ordinary reduction, then

ρ '
(
εω̃jχ ∗

0 ω̃−jχ−1

)
for some character χ such that χ|I` is trivial if ` ≥ 3, and quadratic if
` = 2.

(3) If E has potentially supersingular reduction, then ρ is irreducible.

Proof. First, we consider the case in which E is potentially ordinary. Let F be a
Galois extension of Q` over which E acquires good ordinary reduction. The `-power
torsion geometric points of the closed fiber of the Néron model of E/F give rise to
an unramified quotient of ρ|F , so ρ|IF is of the form(

ε ∗
0 1

)
.

Let v generate the line on which IF acts via ε. Since IF is normal in G`, we see that
IF acts via ε on ρ(g)v for any g ∈ G`, so ρ is reducible. Moreover the representation
has the form (

χ1ε ∗
0 χ2

)
with χ1|IF = χ2|IF trivial. Since χ1|I` and χ2|I` have order dividing the number of
roots of unity in Z×` , they are of the required form.

The case of potentially multiplicative reduction is similar; split multiplicative
reduction is attained over a quadratic extension and the Tate model yields an
trivial quotient in the split case.

There remains the case in which E is potentially supersingular. We will prove
that if E has potentially good reduction and ρ is reducible, then E is potentially
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ordinary. Let F be a finite extension of Q` such that E/F has good reduction.
Since ρ is reducible, we must have

ρE,`|GF ∼
(
χ1 ∗
0 χ2

)
.

The representation ρE,` arises from the Tate module of an `-divisible group Γ over
OF , so the same is true of χ1 and χ2 by [33, Prop 2.3.1]. Clearly, the `-divisible
group over OF corresponding to each χi has dimension 0 or 1, so it follows from [33,
Thm 4.2.1] that each χi|IF is either trivial or ε|IF . Since χ1χ2 = ε, it follows that
one of the characters is unramified. By Tate’s full faithfulness theorem [44, Thm 4],
Γ has non-trivial connected and étale parts, so E/F has ordinary reduction.

�

7.2. Modularity Results. We now prove the following weaker version of Theorem
7.1.2:
Theorem 7.2.1. Let E/Q be an elliptic curve such that ρE,3|Q(

√
−3) is absolutely

irreducible. If the conductor of E is not divisible by 27, then E is modular.

Proof. Recall that the modularity of ρ = ρE,3 follows from results of Langlands and
Tunnell. If E has a quadratic twist with semistable reduction over Q3, then E is
modular by Theorem 5.4 of [12], so suppose this is not the case. Since we assume
the conductor of E is not divisible by 27 (so the ‘wild’ part of the conductor at 3
is trivial), Lemma 7.1.3 shows that E acquires good supersingular reduction over
any extension L of Q3 with e(L) = 4, but not over any extension with e(L) = 2. It
follows from §B.2 and Proposition B.4.2 that τ = WD(ρ)|I3 has the form ω̃2

2 ⊕ ω̃6
2 ,

where ρ = ρE,3.
We now claim that the centralizer of ρ|G3 consists only of scalars and that

WD(ρ)|I3 is strongly acceptable for ρ. Let F be a ramified quadratic extension
of Q3 and consider the twist E′ of E/F by any ramified quadratic character ψ of
GF . Considering ρE′,`′ for any `′ 6= 3, we see that E′ has good reduction, which is
supersingular since jE′ = jE . Therefore ρ|GF ⊗ψ arises from a local-local finite flat
group scheme over OF and so satisfies the hypotheses in §2.3. The claim concerning
the centralizer follows, and τ is acceptable by Theorem 2.3.2. To conclude strong
acceptability, we need to know that if ρ|G3 ' E[3](Q3) is reducible, then the split-
ting field is peu ramifié. One can compute this splitting field to be Q3(

√
−3,∆1/3),

which is peu ramifié because 3|v3(∆), or one can see the peu ramifié property by
using [6, Thm 4.2.2].

�

We shall use Wiles’ argument switching to ` = 5, where we have:
Theorem 7.2.2. Let E/Q be an elliptic curve such that ρE,5|Q(

√
5) is absolutely

irreducible. If ρE,5 is modular, then E is modular.

Proof. Theorem 5.3 of [12] applies if E has a twist with semistable reduction or,
in view of Lemma 7.1.3, potentially ordinary reduction at 5. We will show that
Theorem 7.1.1 applies even if E has potentially supersingular reduction (but has
no twist with good reduction). Making a quadratic twist if necessary, we can assume
E acquires good reduction over a field F with e(F ) = 3. Note then (by §B.2 and
Proposition B.4.2) that τ = WD(ρ) must be of the form ω̃8

2 ⊕ ω̃16
2 , where ρ = ρE,5.

Applying the results of §2.2, we conclude that the centralizer of ρ consists only of
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scalars and τ is acceptable for ρ. Moreover, the list of possibilities in §2.2 shows
that ρ|I5 is isomorphic (over the algebraic closure of F5 in the first case below) to
one of the following:

• ωm2 ⊕ ω5m
2 for some m ≡ 1 mod 8;

•
(
ω1−m ∗

0 ωm

)
for some m ∈ {2, 3}, with ∗ peu ramifié if m = 2.

Appealing to Theorem 5.3 of [5], we can rule out the possibility that (over the
algebraic closure of F5) ρ|I5 ∼= ω2 ⊕ ω5

2 , and conclude that τ is strongly acceptable
for ρ.

�

To remove the irreducibility hypothesis in Theorem 7.2.1, we need the following
lemma. We are grateful to Elkies for providing part of the proof (for details of
Elkies’ calculation, see the appendix of [17]).
Lemma 7.2.3. Suppose that E/Q is an elliptic curve such that neither ρE,5|Q(

√
5)

nor ρE,3|Q(
√
−3) is absolutely irreducible. Then jE ∈ {0, (11/2)3, 5(29)3/25}, and

E is modular.

Proof. We divide the proof into four cases, according to whether the representations
ρE,3 and ρE,5 are reducible.

Suppose first that both ρE,3 and ρE,5 are reducible. Then E gives rise to rational
points on X0(15), and as noted in [46], such points are accounted for by elliptic
curves with conductor 50 (and j = 5(29)3/25), known to be modular.

Now suppose that one of the representations, say ρE,p, is irreducible, but its
restriction to GF is not absolutely irreducible, where F is the appropriate qua-
dratic extension of Q. In the case of p = 3, we see (taking into account complex
conjugation) that the projective image of ρE,3 in PGL2(F3) ∼= S4 is isomorphic to
Z/2Z × Z/2Z. It follows that the image of ρE,3 has order 8 and that ρE,3|K is in
fact reducible for some quadratic extension K of Q. In the case of p = 5, we see
(again using complex conjugation) that ρE,5|Q(

√
5) is reducible and the image of

ρE,5 has order 16.
Consider the case in which the other of the two representations ρE,q is reducible.

The case of p = 3, q = 5 is discussed in the final remark of [46], and the details
are given in [12, Lemma 5.5]. In that case one finds that E is isomorphic (over
Q) to a modular elliptic curve of conductor 338, with j = (11/2)3. We need to
analyze the situation with the roles of 3 and 5 interchanged. For clarity, we repeat
the argument of [12, Lemma 5.5] with two arbitrary distinct odd primes p and q,
and then specialize to the cases (p, q) = (3, 5), (5, 3).

Thus, our elliptic curve E/Q satisfies the properties that there is subgroup of
order q defined over Q and E[p](Q) contains two lines which are interchanged
by the action of GQ. We will now exhibit all such E/Q as Q-rational points on a
suitable curve and will thereby check directly that all such E/Q are modular. Define
the curve Y/Q to be the quotient of the smooth connected affine curve Y (pq)/Q (in
the sense of [28, §3.1]) by the subgroup of elements

g =
(
a b
c d

)
∈ GL2(Z/pqZ)

for which c ≡ 0 mod p, and a ≡ d ≡ 0 mod q or b ≡ c ≡ 0 mod q. This is the coarse
moduli scheme attached to the functor “isomorphism classes of elliptic curves E
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over S with a cyclic order q subgroup C and an unordered pair of cyclic order p
subgroups {L1, L2} such that the natural map of S-group schemes L1×SL2 → E[p]
is an isomorphism,” for variable Q-schemes S.

The complex manifold associated to the base change Y/C is a smooth connected
open Riemann surface which is naturally identified with the quotient of the upper
half plane in C by the action of the group of elements g ∈ SL2(Z) whose image
in GL2(Z/pqZ) satisfies the above congruences. The elements of Y (Q) correspond
to Q-isomorphism classes of triples (E,C, {L1, L2}) with E/Q an elliptic curve, C
a GQ-stable subgroup of E[q](Q) with order q, and {L1, L2} a non-ordered set of
distinct lines in E[p](Q) such that the set {L1, L2} is stable under the action of
Gal(Q/Q) on lines in E[p](Q).

In order to determine the Q-rational points on Y , we first identify it with another
curve. Let Y0(N)/Q denote the smooth geometrically connected curve which is the
coarse moduli scheme for the functor “isomorphism classes of elliptic curves E over
S with a cyclic subgroup C of order N” for variable Q-schemes S. If d|N and
(d,N/d) = 1, then there is a natural involution Wd : Y0(N) → Y0(N) which on
geometric points is given by sending (E,C) to (E/C[d], (E[d] + C)/C[d]). This
is compatible with the involution Wd : Y0(d) → Y0(d) via the natural projection
Y0(N) → Y0(d) (we should really write Wd,N for accuracy). We also note that if
e|(N/d) and (e,N/de) = 1, then the operatorsWd andWe commute, with composite
Wde.

There is a natural map Y0(p2q)→ Y arising from the map

(E,C)→ (E/C[p], C[pq]/C[p], {C[p2]/C[p], E[p]/C[p]})

on ‘points’. This is visibly Wp2-invariant, so we get a natural map of smooth
geometrically connected curves Y0(p2q)/Wp2 → Y . One can check that the map is
an isomorphism by noting that the resulting map on complex points is a bijection.

We will study Q-rational points on Y0(p2q)/Wp2 , and even its ‘compactification’
X0(p2q)/Wp2 , with Wp2 acting on the smooth connected proper curve X0(p2q)/Q in
the unique way extending the above action on Y0(p2q). For p = 3, q = 5, one finds
that X0(45)/W9 is an elliptic curve of conductor 15, and has at most four rational
points, all accounted for by modular elliptic curves with j = (11/2)3. For p = 5,
q = 3, the resulting curve X = X0(75)/W25 is a curve of genus 3 whose rational
points were determined by Elkies as follows. The quotient E0 = X/W3 has genus
one and exactly one rational cusp. Elkies found an explicit Weierstrass equation
for E0 and concluded it is isomorphic to the elliptic curve of conductor 15 denoted
15-A3(B) [1, 1, 1,−5, 2] in the tables of Cremona [7]. This curve has rank 0 and
a torsion subgroup of order 8. One need only look in the fibers of X → E0 over
the 7 non-cuspidal points in E0(Q) in order to find the rational points on Y . By
writing the function field Q(X) as Q(E0)[T ]/(T 2 − f) for an explicit f ∈ Q(E0),
Elkies computed that the value of f at 6 of the points in E0(Q) is a non-square
in Q, and also that there is a single point in the geometric fiber on X over the
remaining point. From this it follows that there is a unique non-cuspidal point in
X(Q); since it is fixed by W3, it must arise from an elliptic curve over Q with
complex multiplication. One can also check that j = 0 for such a curve.

Finally we rule out the possibility that both ρE,3 and ρE,5 are irreducible. First
suppose that E has potentially multiplicative or potentially good ordinary reduction
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at 5. In that case Lemma 7.1.3 shows that ρE,5|G5 is reducible, so its semisimpli-
fication is isomorphic to ωχ⊕ χ−1 for some character χ. On the other hand, since
ρE,5 is induced from GQ(

√
5), the ratio of the above characters on G5 must be the

quadratic character trivial on GQ5(
√

5). This gives ωχ2 = ω2, contradicting the fact
that ω is not a square. We can therefore assume that E has potentially supersin-
gular reduction at 5. If E has a quadratic twist with good supersingular reduction,
then the order of ρE,5(I5) is divisible by 24, contradicting that ρE,5(GQ) has order
16. Otherwise, the order of ρE,3(I5) (which a priori divides 6) is divisible by 3,
contradicting that ρE,3(GQ) has order 8.

�

We now complete the proof of Theorem 7.1.2. According to Theorem 7.2.1, we
may suppose that ρE,3|Q(

√
−3) is not absolutely irreducible. By Lemma 7.2.3, we

may assume ρE,5|Q(
√

5) is absolutely irreducible. Wiles’ argument using the Hilbert
Irreducibility Theorem shows that there is an elliptic curve E′ over Q such that

• ρE′,5 ∼ ρE,5;
• ρE′,3|Q(

√
−3) is absolutely irreducible.

Since ρE′,5 ∼ ρE,5, the conductor of E′ is not divisible by 27. Therefore E′ is
modular by Theorem 7.2.1, so ρE,5 ∼ ρE′,5 is modular. Therefore E is modular by
Theorem 7.2.2.

Finally, we record the following strengthening of Theorem 7.2.2, immediate from
Theorem 7.1.2:
Theorem 7.2.4. Let E/Q be an elliptic curve. If ρE,5 is modular or ρE,5|Q(

√
5) is

not absolutely irreducible, then E is modular.

Appendix A. Deformation theory

We recall some general facts from the deformation theory of representations of
profinite groups. The basic results are due to Mazur [30], with improvements by
Ramakrishna [32], Faltings, deSmit and Lenstra [10].

Let G be a profinite group, and let O be a local Noetherian ring with residue field
k. We give k the discrete topology. Suppose that V is a finite-dimensional discrete
k-vector space with a continuous action of G. We assume that Endk[G] V = k, and
we consider deformations of the representation

G −→ Endk V

to certain O-algebras.
We let C∗O denote the category of local topological O-algebras A such that the

natural map
A→ proj lim

a∈UA

A/a

is a topological isomorphism, where UA is the set of open ideals a 6= A such that
A/a is Artinian. The basic theory of such rings is developed in [26, Exp. VIIB ]
(where they are called pseudocompact). For example, C∗O is stable under formation
of inverse limits and quotients by closed ideals. Also, if A is an object of C∗O, then
UA above is simply the set of open ideals. We let mA denote the maximal ideal
of A and kA the residue field. Note that we do not assume that kA = k. (In the
applications, O will be a complete discrete valuation ring, and A will be a complete
local Noetherian O-algebra.)
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Definition A deformation of V to A (an object of C∗O) is an isomorphism class
of A[G]-modules D such that D is free of finite rank over A, kA⊗AD is isomorphic
to kA ⊗k V as a kA[G]-module, and G→ EndA(D) is continuous.

We let FV (A) denote the set of deformations of V to A. If A→ B is a morphism
in C∗O, then extension of scalars defines a map FV (A) → FV (B), allowing us to
regard FV as a functor from C∗O to the category of sets. According to Theorem
7.1 of [10], FV is representable on the full subcategory of C∗O whose objects have
residue field k. The proof actually shows that FV is representable on C∗O by an
object RV,O with residue field k. We call RV,O the universal O-deformation ring of
V , and the canonical element of FV (RV,O) is called the universal O-deformation of
V .

If RV,O is Noetherian, then it represents FV on the category CO of complete
local Noetherian O-algebras, because CO is a full subcategory of C∗O (as shown by
the proof of Proposition 2.4 of [10]). This holds, for instance, if G is topologically
finitely generated.

A.1. Change of rings. Suppose we are given another local Noetherian ring O′ with
maximal ideal m′ and residue field k′, and a local map O→ O′. Let V ′ = V ⊗k k′
and note that Endk[G] V = k if and only if Endk′[G] V

′ = k′. For an object B in
C∗O′ , we can identify FV (B) with FV ′(B), so we have a canonical bijection

HomC∗O
(RV,O, B)→ HomC∗

O′
(RV ′,O′ , B).

For an object A of C∗O with residue field k, consider

O′⊗̂OA = proj lim
n>0,a∈UA

(O′/(m′)n)⊗O (A/a).

Each ring (O′/(m′)n)⊗O (A/a) is a local Artinian ring with residue field k′ because
A has residue field k. Thus by Exp. VIIB , 0.2 of [26], O′⊗̂OA is an object of C∗O′ .
The natural map A→ O′⊗̂OA is continuous, and for any object B of C∗O, it induces
a bijection

HomC∗
O′

(O′⊗̂OA,B) −→ HomC∗O
(A,B).

It follows that O′⊗̂ORV,O is the universal O′-deformation ring of V ′. Furthermore,
the universal deformation is obtained by extending scalars from RV,O. Analogous
statements are also true for the construction in the next section.

A.2. Restricted deformations. Suppose that for each A in C∗O, we are given
a subset SV (A) of FV (A). We then have the following necessary and sufficient
condition for SV to be a functor represented by RV,O/I for some closed ideal I of
RV,O: for all A ∈ C∗O and D ∈ FV (A), we have:

(1) D ∈ SV (A) if and only if D/a ∈ SV (A/a) for all a ∈ UA;
(2) if a, b ∈ UA, D/a ∈ SV (A/a) and D/b ∈ SV (A/b), then

D/(a ∩ b) ∈ SV (A/(a ∩ b));

(3) if A → A′ is an inclusion of Artinian rings in C∗O, then D ∈ SV (A) if and
only if D ⊗A A′ ∈ SV (A′).

The necessity of (1), (2) and (3) is easily verified. The sufficiency is proved exactly
as in Proposition 6.1 of [10].

Suppose we are given a local Noetherian O-algebra O′ as in §A.1. Suppose that
SV is a restriction on deformations represented by RO,V /I for some closed ideal I,
and that SV ′(B) = SV (B) for B ∈ C∗O′ . Then SV ′ is represented by O′⊗̂ORO,V /I,

37



which is naturally isomorphic to the quotient of RO′,V ′ by the closure of the ideal
generated by the image of I.
Example A.2.1. This example is based on an observation of Ramakrishna [32].
Suppose that k has positive characteristic and P is a property of finite discrete G-
modules which is preserved under taking submodules, quotients and finite products.
Suppose there is a finite subfield k0 of k such that V = k ⊗k0 V0 for some k0[G]-
module V0. For D ∈ FV (A) = FV0(A), we let AD,0 denote the the image of
RV0,W (k0) → A. We let D0 denote the corresponding element of FV0(AD,0). (Given
the quotient topology, AD,0 is an object of C∗W (k0) with residue field k0. Since the
map AD,0 → A is continuous, both spaces are Hausdorff and AD,0 is compact, the
topology is the same as the subspace topology. This means that the set of a∩AD,0
for a ∈ UA is a base of open ideals in AD,0.)

Define SPV (A) as the set of D such that D0/a has property P for all a in UAD,0 .
One checks that SPV is independent of the choice of k0 and satisfies (1), (2) and (3).
If A itself is finite, then SPV (A) is simply the set of D having property P . Note also
that given O→ O′ as in §A.1, we have SPV (B) = SPV ′(B) for B in C∗O′ .

Appendix B. Potentially Barsotti-Tate representations

B.1. Definition of WD(ρ). Let K and E be finite extensions of Q` inside of Q`,
and let ρ : GE → GL(M) be a continuous representation on a d-dimensional vector
space M over K. We denote the valuation rings of K and E by O and OE respec-
tively. Under certain hypotheses on ρ, we will define a continuous representation
of the Weil group

WD(ρ) : WE → GL(D)

on a d-dimensional Q`-vector space D and will investigate several properties. Also,
in case ρ is potentially Barsotti-Tate, we will give a more explicit description of this
construction. This explicit description will be used to prove several ‘independence
of `’ properties in the context of elliptic curves and Jacobians of modular curves.
Throughout this appendix, the oddness of ` is never needed.

In [20], the notions of semistable, crystalline, potentially semistable, and poten-
tially crystalline are defined for continuous representations of the Galois group of a
characteristic 0 local field with perfect residue field of characteristic ` (on a finite-
dimensional Q`-vector space). There are a number of rings (Bst, Bcris, . . . ) that
are used there as well. We use these concepts below, and refer to [20] and the
references therein for complete proofs of the basic facts we need. Although our pri-
mary interest is in the case of potentially Barsotti-Tate representations, the greater
generality of potentially semistable representations is convenient for making the
initial definition of the WD functor and establishing some properties (e.g., behav-
ior with respect to tensor product constructions, which can destroy the potentially
Barsotti-Tate property).

Consider ρ as above. Assume ρ is potentially semistable [20, 5.6.1, 5.6.8], which
is to say that for some finite extension F/E, ρ|GF is semistable (this depends
only on the underlying Q`[GE ]-module of ρ). For example, since Barsotti-Tate
representations are crystalline [21, Thm 6.2], hence semistable, we can take any ρ
which is potentially Barsotti-Tate. This includes any finite order representation.
By the very definition of semistability, the Q`-vector space

Dst,F (M) = (Bst ⊗Q`
M)GF
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is a vector space over the maximal unramified subextension F0 of F (via action on
Bst) of dimension equal to the Q`-dimension of M . By functoriality, Dst,F (M) is a
module over F0⊗Q`

K, and in fact is free of rank d. To see this, it suffices to check
that after applying the faithfully flat extension of scalars Bst⊗F0 we get a free rank
d module over Bst ⊗Q`

K. But this follows from [20, 5.6.7(iii), 5.6.8(ii)] (and the
semistability of ρ over F ).

From the definitions, Dst,F (M) is equipped with a bijective endomorphism φ
which is semilinear with respect to the arithmetic Frobenius automorphism of F0

and linear with respect to K. Also, if F/E is Galois then there is a canonical
action of Gal(F/E) which is semilinear with respect to F0 and linear with respect
to K and which commutes with φ. There are additional structures (filtration on
F ⊗F0 Dst,F (M) and a monodromy operator) which we ignore. If F ′/F is a finite
extension, then ρ|GF ′ is semistable and there is a natural isomorphism

F ′0 ⊗F0 Dst,F (M)→ Dst,F ′(M)

of F ′0⊗Q`
K-modules which respects the action of Gal(F ′/E) if F ′ and F are Galois

over E.
Suppose F/E is Galois, so Dst,F (M) is an (F0⊗Q`

K)[Gal(F/E)]-module with an
automorphism φ which acts semilinearly with respect to the F0-action and linearly
with respect to the K[Gal(F/E)]-action. We define an F0 ⊗Q`

K-linear action of
WE as follows. For any g ∈ WE , we let g act on Dst,F (M) as the product of the
commuting operators given by the action of the image of g in Gal(F/E) and φ−n,
where the image of g in Gal(F`/F`) is the nth power of absolute Frobenius (not the
nth power of the Frobenius relative to the residue field of E). Note that the action
of IF ⊆WE is trivial, so WE acts continuously on Dst,F (M). Thus, Dst,F (M) is a
free module of rank d over F0 ⊗Q`

K equipped with a continuous linear action of
WE that commutes with φ. Define

WDK(ρ) = Dst,F (M)⊗F0⊗Q`
K Q`.

Clearly WDK(ρ) is of dimension d over Q` and the action of K on ρ induces
the action of K ⊆ Q` on WDK(ρ). When there is no risk of confusion, we write
WD(ρ) in place of WDK(ρ).

B.2. Properties of WD(ρ). If E′/E is a finite extension, then WD(ρ|GE′ ) '
WD(ρ)|WE′ It follows trivially from the definitions (and properties of the functor
Dst,F ) that the representation WD(ρ) admits as a field of definition any common
finite extension of F0 and K inside of Q` and that it is (up to isomorphism) inde-
pendent of the choice of F . Moreover, if K ′/K is a finite extension (so ρ ⊗K K ′

is potentially semistable if and only if ρ is), then for potentially semistable ρ we
have a canonical isomorphism WDK′(ρ ⊗K K ′) ' WDK(ρ) as Q`[WE ]-modules.
Consider continuous representations of GE on finite-dimensional Q`-vector spaces
(it is automatic that there is a field of definition of finite degree over Q`). There is
an obvious notion of potential semistability for these representations, and we have
a well-defined functor WD on the category of such potentially semistable represen-
tations on Q`-vector spaces.

By using [20, 1.5, 5.1.2], the functor WDK on potentially semistable K[GE ]-
modules is exact and is naturally of formation compatible with tensor products
(and hence exterior products). The tensor product compatibility means that for
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ρ1, ρ2 two semistable representations of GE on finite-dimensional K-vector spaces,
there is a canonical map

WD(ρ1)⊗Q`
WD(ρ2)→WD(ρ1 ⊗K ρ2)

of Q`[WE ]-modules which is an isomorphism. Strictly speaking, [20] only considers
cases with K = Q`, but since the Q`[GE ]-module ρ0 underlying ρ gives rise to a
natural isomorphism

WDQ`
(ρ0)⊗K⊗Q`

Q`
Q`
∼= WDK(ρ),

we readily get the tensor product compatibility for WD = WDK . In the same
manner, we get compatibility with the Hom functor (and WD is even a functor
between tensor categories).

We mention two explicit examples. First, WD(ε) is a 1-dimensional unramified
representation of WE over Q`, given by the character that sends arithmetic Frobe-
nius to |kE |, where kE is the residue field of E. For a proof, one is reduced to
the case E = K = Q`, where (by [20, 5.5.1, 5.6.3]) it comes down to the assertion
that Dcris(ε) is 1-dimensional over Q` with φ acting as multiplication by 1/`. But
BG`cris = Q` and there exists a non-zero t ∈ Bcris on which G` acts as the cyclotomic
character and φ(t) = `t, so Dcris(ε) = Q` · 1/t has φ acting as desired.

The second example is when ρ has finite order (e.g., a finite order character with
values in K×). In this case, we claim that WD(ρ) ' ρ|WE

⊗K Q`. This is an
immediate consequence of the definitions, as we now explain. Take F/E to be the
splitting field of ρ, so ρ|GF is trivial (and hence crystalline). Since BGFcris = F0 (the
maximal unramified subextension of F ), on which the action of φ corresponds to
the lifting of absolute Frobenius, we see that Dst,F (ρ) = F0 ⊗Q`

ρ with g ∈ WE

acting as 1⊗ ρ(g). Thus, WDK(ρ) is naturally isomorphic to ρ|WE
⊗K Q`.

B.3. The Potentially Barsotti-Tate Case. We give an alternate definition of
WD in the potentially Barsotti-Tate case. This formulation, to be given in terms
of Dieudonné modules, will be the means by which we establish the desired results
for representations coming from elliptic curves and modular forms.

Let ρ as above be potentially Barsotti-Tate, fix a finite Galois extension F/E
(with residue field kF ) over which ρ becomes Barsotti-Tate, and fix a stable O-
lattice L for ρ. This gives us an `-divisible group Γ/OF and by [44, Thm 4] there is
a unique action of O on Γ compatible with the O-action on the generic fiber. The
generic fiber descent data for ρ|GF down to ρ gives rise (via contravariance of Spec
and Tate’s full faithfulness theorem [44, Thm 4]) to a right action of Gal(F/E) on
Γ over the right action on Spec(OF ). This commutes with the O-action on Γ. We
get induced actions on the closed fiber Γ/kF .

Let φE denote the kE-Frobenius endomorphism of the closed fiber, so this com-
mutes with the other actions we just defined. Now suppose that g is in WE ,
g 7→ σ ∈ Gal(F/Q`) and g 7→ FrobnE in WE/IE . Working in the category of `-
divisible groups ‘up to isogeny’, we can define the action of g on Γ/kF to be σφ−nE ,
and thereby give Γ/kF the structure of a ‘right-module’ over K[WE ].

Let D(Γ) denote the (contravariant) Dieudonné module of Γ/kF , as defined in
[18, III, 1.2]. Since the Dieudonné functor is contravariant, it converts right actions
into left actions. Thus, D(Γ) is a free W (kF )-module of rank d · [K : Q`] such that
D(Γ)⊗OK is a left module over K[WE ]. Define D′(Γ) = HomW (kF )(D(Γ),W (kF )),
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and define the Frob`-semilinear endomorphism φ′ of D′(Γ)[1/`] to be the ‘semilin-
ear transpose’ of φ−1 (i.e., φ′(f) = σ ◦ f ◦ φ−1, with σ the absolute Frobenius
endomorphism of W (kF )). Define a left semilinear action of Gal(F/E) on D′(Γ)
by g(f) = g ◦ f ◦ g−1, where g denotes the automorphism of W (kF ) induced by g
and where we have used the previously defined semilinear left action of Gal(F/E)
on D(Γ). This commutes with φ′ on D′(Γ)[1/`]. We define a W (kF )-linear action
of WE in the usual manner (using powers of φ′ to ‘cancel’ the semilinearity of the
action of Gal(F/E)). Also, we let O act through its action on D(Γ). We define

WD′(ρ) = D′(Γ)⊗W (kF )⊗Z`
O Q`

as a Q`[WE ]-module.
This is our desired ‘concrete’ definition of WD(ρ) in the potentially Barsotti-Tate

case (as the following Proposition will justify). Note that the Dieudonné module of
the dual `-divisible group of Γ has underlying W (kF )-module D′(Γ) and Frobenius
endomorphism `φ′.

Due to the compatibility of the Dieudonné module functor with respect to base
change (e.g., Frobenius automorphisms of the base field), we can recover the Frobe-
nius morphism of D(Γ) from the semilinear absolute Frobenius morphism of Γ and
we can likewise define a semilinear left action of Gal(F/E) on D(Γ) by using the
‘generic fiber descent data’. Putting these together gives an alternate formulation
of the linear WE-action on D in terms of suitable composites of semilinear actions
(of φ and Gal(F/E)).

Proposition B.3.1. For potentially Barsotti-Tate ρ as above, WD′(ρ) ' WD(ρ)
as Q`[WE ]-modules.

Proof. Let ρ′ = HomQ`
(ρ,Q`). Via ρ, this is a K[GE ]-module. In [21, 6.6], there

is defined a natural isomorphism

ηΓ : D(Γ)[1/`]→ Dcris(ρ′|GF ) = Dst,F (ρ′)

as ‘filtered modules’. In particular, this map respects the W (kF ) ⊗Z` O-module
structures, as well as the absolute Frobenius maps on each side. Because the functor
Dst,F commutes with formation of duals, we are reduced to checking that this
identification ηΓ respects the left WE-actions. Looking back at how the linear WE-
actions have been defined in terms of the absolute Frobenius maps and semilinear
Galois actions on each side, it remains to show that the semilinear left actions of
Gal(F/E) on D(Γ) and Dcris(ρ′|GF ) are compatible via ηΓ.

Choose any g ∈ Gal(F/E). We have an OF -linear isomorphism Γ ' Γg to the
base change by g, satisfying the usual cocycle condition as we vary g. The induced
isomorphism on the closed fiber, when combined with the base change compatibility
of the Dieudonné module functor, gives rise to the semilinear action of g on D(Γ).
Now using the functoriality of the map ηΓ with respect to a variable `-divisible group
over a fixed base OF , all we have to do is prove that this map is also functorial with
respect to base change of a fixed `-divisible group Γ.

More precisely, consider an extension of scalars by a local extension OF ′ of OF
(e.g., an automorphism σ of OF ) and choose an embedding of algebraic closures
F → F

′
over F → F ′ (e.g., an element of GE over σ ∈ Gal(F/E)). This gives rise

to a continuous group map GF ′ → GF and a natural map Bcris(F )→ Bcris(F ′) [19,
4.2.5(d)]. There is a ‘base change diagram’ which we need to commute. Namely,
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if Γ′ = Γ ×OF OF ′ (so V`(Γ) = V`(Γ′) compatibly with GF ′ → GF ), then we have
natural maps D(Γ)→ D(Γ′) and

HomQ`[GF ](V`(Γ), Bcris(F ))→ HomQ`[GF ′ ]
(V`(Γ′), Bcris(F ′)).

We want these to be compatible with the maps ηΓ and ηΓ′ .
In view of the definition of the η maps, this finally reduces to the claim that the

isomorphism [21, 6.4] is of formation compatible with such a base change OF → OF ′ .
But this is a consequence of the definitions (cf. [18, III, 6.2] in the case of `-divisible
groups, and note that the ‘base change’ compatibility of this is a consequence of
how the Dieudonné module functor is defined).

�

B.4. Independence of λ. Let A be an abelian variety over a field k. Suppose that
(in contrast to previous notation) K ⊂ Q is a number field with ring of integers O

and we are given an embedding

K → End0
k A = Endk(A)⊗Z Q

(we use here endomorphisms in the ‘invert isogenies’ category). If λ′ is a prime of O

lying over a prime `′ in Z distinct from the characteristic of k, we let ρA,λ′ denote
the representation of Gk over Kλ′ defined by the Galois action on the λ′-adic Tate
module Vλ′(A) of A, which is

(lim←−A(ks)[λ′
n])⊗Q

if the full integer ring acts on A and more generally is defined as the factor of the
`′-adic Tate module corresponding to the factor ring Kλ′ of the ring K ⊗Q Q`′

(which acts on the usual `′-adic Tate module V`′(A)). The dimension of ρA,λ′ over
Kλ′ is independent of λ′ (equivalently, V`′(A) is free as a K ⊗Q Q`′ -module), and
so this dimension is equal to 2 dimA/[K : Q]. Moreover, for any f ∈ End0

k(A)
which commutes with the action of K, the Kλ′ -linear action of f on Vλ′(A) has
characteristic polynomial in K[T ] which is independent of the choice of prime λ′

of O. For proofs of these facts, see [42, Prop 11.9]. The proof of [31, §19, Thm 4]
for Tate modules (and characteristic polynomials over Q`′) carries over verbatim
to the case of Dieudonné modules when k is perfect of positive characteristic (with
characteristic polynomials computed over the fraction field of W (k)).

Thus, in case k has positive characteristic ` and is perfect, the same arguments
(with some minor modifications, due to the replacement of Q`′ by the fraction field
of W (k) with k not necessarily equal to F`) carry over to give analogous results
for the ‘up to isogeny’ Dieudonné module D(A) = D(A[`∞])[1/`]. More precisely,
if F0 denotes the fraction field of W (k), then D(A) is a free module over K ⊗Q F0

and for any f ∈ End0
k(A) which commutes with the action of K, the K ⊗Q F0-

linear endomorphism of D(A) induced by f has characteristic polynomial in K[T ].
Also, this polynomial is equal to the characteristic polynomial computed above on
the `′-adic Tate modules of A for `′ 6= `. Of course, the same conclusions apply
to the ‘dual’ Dieudonné module, since dualizing a linear map does not affect its
characteristic polynomial.

Now suppose that k = E is a finite extension of Q` and that A has potentially
good reduction. Let F be a finite Galois extension of E over which A has good
reduction, and let A denote the Néron model of A over OF . We obtain commuting
actions (in the ‘invert isogenies’ category) of K and Gal(F/E) exactly as in the case
of `-divisible groups (using the Néron mapping property instead of Tate’s theorem),
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with Gal(F/E) acting on the right. Now change this Galois action, by letting
g ∈ Gal(F/E) instead act as g−1 under the right action. This gives a left action
of K[Gal(F/E)] on A/kF over the natural action of Gal(F/E) on kF , composed
with inversion in the Galois group. Again using powers of the absolute Frobenius
morphism to ‘cancel’ out the semilinearity, we obtain a map of Q-algebras

θ : K[WE ]→ End0
kF A/kF = (EndkF A/kF )⊗Z Q.

Note that θ|WF
is unramified and sends FrobF to the kF -Frobenius endomorphism

of A/kF .
For `′ 6= `, V`′(A/kF ) is a module over (K ⊗Q Q`′)[WE ] using θ. Also, we use

θ to make D′(A/kF [`∞])[1/`] a module over (W (kF ) ⊗Z` K)[WE ]. We recall the
following well-known result. Since we do not know a reference, we give a proof.
Lemma B.4.1. For `′ 6= `, there is an isomorphism of (K ⊗Q Q`′)[WE ]-modules
V`′(A) ∼= V`′(A/kF ). Likewise, there is an isomorphism of (K⊗Q Q`)[WE ]-modules
WDQ`

(V`(A)) ∼= D′(A/kF [`∞])[1/`]⊗W (kF ) Q`.

Proof. The `-adic case is exactly our ‘concrete’ formulation of the definition of WD
in the potentially Barsotti-Tate case (as a little checking will show). Now consider
`′ 6= `. There is an obvious isomorphism of the underlying groups of `′-power
torsion geometric points on A and A/kF . Consider more specifically the ‘reduction’
morphism

r : A(Q`) = A(Z`)→ A(F`)
(an isomorphism on `′-power torsion). From the generic fiber descent data for
A/F down to A/E , we get (via the Néron property) a semilinear right action of
g ∈ Gal(F/E) on A/OF , denoted by [g]. We also have the canonical absolute
Frobenius morphism φ on A×OF kF .

For any g ∈ WE and any point y ∈ A(F`), [g−1] ◦ φm ◦ y is another such point,
where g induces the mth power of absolute Frobenius on F`. What we need to
check is that for such g and m,

[g−1] ◦ φm ◦ r(x) = r(x ◦ g)

for all x ∈ A(Q`). The point is that under the identification

A(Q`) = HomSpec(E)(Spec(Q`), A) = HomSpec(OF )(Spec(Z`),A) = A(Z`),

the translation of the usual action of GE on A(Q`) into an action on A(Z`) requires
use of the generic fiber descent data isomorphisms (extended to A via the Néron
property). It is easy to check that for y ∈ A(Z`) and g ∈ GE , [g−1] ◦ y ◦ g ∈ A(Z`)
is the image of y under the action of GE on A(Q`).

For any such y, with g ∈ WE inducing the mth power of absolute Frobenius on
F`, we need to show that

[g−1] ◦ φm ◦ r(y) = r([g−1] ◦ y ◦ g),

where we regard r as a function on A(Z`). This clearly reduces us to showing that
for any map of OF -schemes y : Spec(Z`)→ A with reduction y : Spec(F`)→ A/kF

over kF , and any OE-automorphism g of Z` inducing the mth power of absolute
Frobenius on F`, φm ◦ y is equal to the reduction of the semilinear map y ◦ g. But
the reduction of y ◦ g is y ◦ Frobm` , so by the ‘universal commutativity’ of absolute
Frobenius on F`-schemes, we’re done.

�
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Proposition B.4.2. Let A/E be an abelian variety with potentially good reduction,
K ⊆ Q of finite degree over Q, and θ : K → End0

E(A) a Q-algebra map. For `′ 6= `,
the representations WDQ`

(ρA,`) and ρA,`′ |WE
⊗K Q`′ are semisimple and arise as

the base changes of a common semisimple (K⊗Q Q)[WE ]-module (necessarily finite
and free over K⊗Q Q). Also, for any λ in K dividing `, ρA,λ is Barsotti-Tate over
any finite extension F/E such that WDKλ(ρA,λ) is unramified over F .

Proof. Let F/E be a finite Galois extension over which A acquires good reduction.
By Lemma B.4.1, we need to compare the (K ⊗Q Q`)[WE ]-module

D′(A/kF [`∞])[1/`]⊗W (kF ) Q`

and the (K ⊗Q Q`′)[WE ]-module V`′(A/kF )⊗Q`′ Q`′ . By our earlier observations,
these are free modules over K ⊗Q Q` and K ⊗Q Q`′ respectively, and for each g ∈
WE , the characteristic polynomial of g (over K ⊗Q Q` and K ⊗Q Q`′ respectively)
under all of these representations is the same common polynomial Pg ∈ K[T ]
(vastly more general comparison theorems for characteristic polynomials in étale
and crystalline cohomology, at least for K = Q, follow from [29, Thm 2(2)]).

To see the semisimplicity in all cases, we first claim that it suffices to check
semisimplicity as WF -representations. Indeed, if L is any field of characteristic 0
and G is any group with H a finite index subgroup, an L[G]-module with finite
L-dimension which is semisimple as an L[H]-module is necessarily semisimple as
an L[G]-module. To prove this, we just need to show that for L[G]-modules V and
W with finite L-dimension, the natural map Ext1

L[G](V,W ) → Ext1
L[H](V,W ) is

injective. But if we replace H by a finite index subgroup which is normal in G, this
is indentified with the restriction map

H1(G,V ∗ ⊗LW )→ H1(H,V ∗ ⊗LW ),

which is injective because H1(G/H, V ∗⊗LW ) is an L-vector space killed by [G : H].
Viewing our WE-representation spaces as WF -representation spaces, all are un-

ramified and we just need to check that the action of θ(FrobF ) on A/kF is annihi-
lated (in the ‘up to isogeny’ category) by a separable polynomial over K, or even
over Q. Since θ(FrobF ) is the action of the kF -Frobenius morphism on the abelian
variety A/kF , the ‘semisimplicity’ here is due to Weil. Here is the proof, for which
we may assume K = Q. Let

∏
P eii ∈ Q[T ] be the characteristic polynomial PFrobF ,

with Pi irreducible. For `′ 6= `,
∏
P eii (θ(FrobF )) kills V`′(A/kF ), so it is the zero

endomorphism of A/kF . Each simple abelian subvariety of A/kF is preserved under
the kF -Frobenius morphism θ(FrobF ), so

∏
Pi(θ(FrobF )) kills each such subvariety

(by simplicity and the fact that K = Q). Since A/kF is isogenous to a product of
such subvarieties,

∏
Pi(θ(FrobF )) = 0 in End0

kF (A/kF ).
Now we check that our semisimple WE-representation spaces are base changes

of semisimple (K ⊗Q Q)[WE ]-modules, necessarily finite and free over K ⊗Q Q.
The resulting (K⊗Q Q)[WE ]-modules are all isomorphic, as one sees by comparing
characteristic polynomials of all g ∈ WE (which lie in K[T ]). This readily yields
the last part of the Proposition as well, since when WDKλ(ρA,λ) is unramified over
some finite extension F/E, then the same clearly holds for all primes of K over
` (by a consideration of semisimplicity and characteristic polynomials), so for any
`′ 6= `, V`′(A) is unramified over F ; by the Néron-Ogg-Shafarevich criterion, A/F
then has good reduction.
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Consider an extension L/K of characteristic 0 fields with K algebraically closed
(e.g., K = Q, L = Q` or Q`′), G a finitely generated group (such as WE/IF ), and
V a semisimple L[G]-module with finite L-dimension. Assume that all g ∈ G act
with characteristic polynomial in K[T ]. The above setup is just a ‘finite product’
of this setting, replacing K and L by Kn and Ln for some n ≥ 1 and replacing V
by V ⊗K Kn where we use n field automorphisms K ∼= K to define K → Kn. We
claim that there exists a (necessarily unique up to isomorphism) semisimple K[G]-
module V0 with finite K-dimension such that all g ∈ G have the same characteristic
polynomials on V0 as on V (which implies that V0 ⊗K L ∼= V as L[G]-modules and
so finishes the proof). Since G is finitely generated, if we pick a basis of V over L
then there exists a finitely generated extension field K ′/K inside of L and a K ′[G]-
module V ′ with finite K ′-dimension such that V ′ ⊗K′ L ∼= V as L[G]-modules. In
fact, we can even find a finite type K-subalgebra R′ ⊆ K ′ and an R′[G]-module M ′

which is finite and free as an R′-module such that M ′ ⊗R′ L ∼= V . Each g ∈ G has
characteristic polynomial on M ′ equal to the characteristic polynomial of g on V ,
which lies in K[T ]. By the Nullstellensatz there exists a K-algebra map R′ → K,
so if we define V0 = (M ′ ⊗R′ K)ss, we’re done.

�

Note that by a theorem of Grothendieck [25, Exp. IX, Cor 5.10], ρA,` becomes
Barsotti-Tate over F if and only if A acquires good reduction over F (for a simpler
exposition of the proof of Grothendieck’s theorem if one assumes potentially good
reduction, see the proof of [5, Thm 5.3]).
Corollary B.4.3. Suppose that f is a weight two newform with coefficients in a
number field K. Let π ∼= ⊗′vπv denote the corresponding automorphic representa-
tion. For each prime λ of K, let

ρπ,λ : GQ → GL2(Kλ)

denote the associated Galois representation. If λ|` and π` is not special, then ρπ,λ|G`
is Barsotti-Tate over any extension of Q` such that WD(π`)|IF is trivial (such an
F exists). Also, for any embedding Q → Q` inducing the place λ on K ⊆ Q
(and so inducing an embedding Kλ → Q` as K-algebras), there is a Q`[W`]-module
isomorphism

Q` ⊗Q WD(π`) ∼= WD(ρπ,λ|G`).

Proof. If K0 ⊆ K denotes the subfield generated by the q-expansion coefficients
of f and λ lies over λ0 in K0, then ρπ,λ ' Kλ ⊗K0λ0

ρπ,λ0 , so we may suppose
K = K0. In this case, the Eichler-Shimura construction provides an abelian variety
Af = A/Q with an action of an order in O so that ρA,λ ∼= ρπ,λ for all primes λ and
dimA = [K : Q]. Choose any `′ 6= ` and pick a K-algebra map Q → K ⊗Q Q.
Define σ` = (K ⊗Q Q)⊗Q WD(π`). By [3, Thm A],

ρA,`′ |W`
⊗Q`′ Q`′

∼= σ` ⊗Q Q`′

as (K ⊗Q Q`′)[W`]-modules. We want to construct a (K ⊗Q Q`)[W`]-module iso-
morphism

WDQ`
(ρA,`|G`) ∼= σ` ⊗Q Q`.

But this is immediate from Proposition B.4.2.
�
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