
MATH 172: TEMPERED DISTRIBUTIONS AND THE FOURIER

TRANSFORM

ANDRAS VASY

We have seen that the Fourier transform is well-behaved in the framework of
Schwartz functions as well as L2, while L1 is much more awkward. Tempered
distributions, which include L1, provide a larger framework in which the Fourier
transform is well-behaved, and they provide the additional benefit that one can
differentiate them arbitrarily many times!

To see how this is built up, we start with a reasonable class of objects, such as
bounded continuous functions on Rn, and embed them into a bigger space by a
map ι. The bigger space is that of tempered distributions, which we soon define.
The idea is that ι is a one-to-one map, thus we may think of bounded continuous
functions as tempered distributions by identifying f ∈ C0

∞(Rn) with ι(f). (Below
we write ι(f) = ιf often, by analogy of the notation of a sequence, as a distribution
itself will be a map, or function, on functions, so we need to write expressions like
ιf (φ), which is nicer than (ι(f))(φ).) An analogy is that letters of the English
alphabet can be considered as numbers via their ASCII encoding; there are more
ASCII codes than letters, but to every letter corresponds a unique ASCII code.
One can just think of letters then as numbers, e.g. one thinks of the letter ‘A’ as
the decimal number 65, i.e. the letters are thought of as a subset of the integers 0
through 255.

So on to distributions. Suppose V is a vector space over F = R or F = C. The
algebraic dual of V is the vector space L(V,F) consisting of linear functionals from
V to F. That is elements of f ∈ L(V,F) are linear maps f : V → F satisfying

f(v + w) = f(v) + f(w), f(cv) = cf(v), v, w ∈ V, c ∈ F.

When V is infinite dimensional, we need additional information, namely continu-
ity. So if V is a topological space (which means that one has a notions of open sets,
which we do not emphasize, and thus of convergence, which we do), indeed in our
case a metric space, with the topology compatible with the vector space structure
(namely the vector space operations are continuous, which we have already shown
in the case of normed vector spaces), i.e. if V is a topological vector space, we define
the dual space V ∗ as the space of continuous linear maps f : V → F; in the cases
we are interested in, continuity is the same as sequential continuity. (This is always
the case in metric spaces!) The latter means that we consider maps f with the
property that if φj → φ in V then f(φj)→ f(φ) in F.

For us, V is the class of ‘very nice objects’, and V ∗ will be the class of ‘bad
objects’. Of course, normally there is no way of comparing elements of V with
those of V ∗, so we will also need an injection (i.e. a one-to-one map)

ι : V → V ∗

so that elements of V can be regarded as elements of V ∗ (by identifying v ∈ V with
ι(V )). As we want to differentiate functions, as much as we desire, V will consist
of infinitely differentiable functions. As we need to control behavior at infinity to
integrate, the elements of V must decay at infinity. Concretely, as we want good
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behavior relative to the Fourier transform, we take V to be the set of Schwartz
functions.

One may also call elements of V test functions since V ∗ is defined as continuous
linear maps from V to F, i.e. we are applying elements of V ∗ to elements of V , so
we are ‘testing’ elements of V ∗ on V . This is more common, however, when V is
taken to be the set of compactly supported C∞ functions, C∞c (Rn); in that case the
dual objects in V ∗ are called distributions.

In order to motivate the definition of S-convergence, recall that S = S(Rn) is the
set of functions φ ∈ C∞(Rn) with the property that for any multiindices α, β ∈ Nn,
xα∂βφ is bounded. Here we wrote xα = xα1

1 xα2
2 . . . xαnn , and ∂β = ∂β1

x1
. . . ∂βnxn ; with

∂xj = ∂
∂xj

.

With this in mind, convergence of a sequence φm ∈ S, m ∈ N, to some φ ∈ S, in
S is defined as follows. We say that φm converges to φ in S if for all multiindices
α, β, sup |xα∂β(φm − φ)| → 0 as m → ∞, i.e. if xα∂βφm converges to xα∂βφ
uniformly.

This notion in fact arises from a metric. Let

‖φ‖N = sup
|α|+|β|≤N

sup
Rn
|xα∂βφ|.

Then for all N , φN is a norm on S(Rn), with respect to which, however, S is not
complete. (E.g. each norm controls only finitely many derivatives.) Let dN be the
corresponding metric:

dN (φ, ψ) = ‖φ− ψ‖N , φ, ψ ∈ S(Rn).

For us it is now convenient to ‘cut dN down to size’, namely let

d̃N (φ, ψ) = min(1, dN (φ, ψ)).

Note that d̃N is still a metric, and it is equivalent to dN (has the same open sets,
or equivalently, the same convergent sequences). Finally let

d(φ, ψ) =

∞∑
N=0

2−N d̃N (φ, ψ).

Note that the sum converges since d̃N ≤ 1 for all N . Then it is straightforward to
check that d is a metric, using that d̃N is for each N , and further that convergence
with respect to d is the same as the convergence for every d̃N , i.e. for every dN .
Here the point is that:

• for any N and ε > 0 there is ε′ > 0 such that d(φ, ψ) < ε′ implies d̃N (φ, ψ) <
ε (indeed, take ε′ = 2−N ε), and

• conversely, for any ε′ > 0 there exists N and ε > 0 such that d̃N (φ, ψ) < ε

implies d(φ, ψ) < ε′ (this uses dm ≤ dN if m ≤ N , and similarly for d̃; one
then simply picks N so that the tail of the series, beyond N , is < ε′/2, and
then picks ε > 0 so that the first N terms being < ε2−N , respectively, sum
up to < ε′/2).

We can now define tempered distributions:

Definition 1. A tempered distribution u ∈ S ′(Rn) is a continuous linear functional
on S(Rn). That is, a tempered distribution u is a map u : S(Rn)→ F such that

(i) u is linear: u(φ + ψ) = u(φ) + u(ψ), u(cφ) = cu(φ) for φ, ψ ∈ S(Rn) and
c ∈ F,

(ii) and u is continuous, so if φj is any sequence such that φj → φ in S(Rn)
then u(φj)→ u(φ) in F.
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It is straightforward to check (by linearity) that continuity of u is equivalent to
the following: there exist N and C > 0 such that for all φ ∈ S(Rn),

(1) |u(φ)| ≤ C‖φ‖N = C
∑

|α|+|β|≤N

sup
Rn
|xα∂βφ|.

The simplest tempered distribution is the delta-distribution at some point a ∈
Rn; it is given by

δa(φ) = φ(a).

One can also generate many similar examples, e.g. the map u : S(Rn)→ C given by
u(φ) = (∂1φ)(a)− (∂22φ)(b), where a, b ∈ Rn, n ≥ 2, is also a tempered distribution.

A large class of distributions is obtained the following way. Suppose that f ∈
L1(Rn). Then f defines a distribution u = ιf as follows:

u(φ) = ιf (φ) =

∫
Rn
fφ dx.

Note that the integral converges since φ ∈ S(Rn), and is thus bounded. Certainly
ιf : S(Rn)→ C is linear; its continuity can be seen as follows. Suppose that φj → φ
in S(Rn), and thus in particular uniformly. Thus,∣∣∣ ∫

Rn
f(x)φj(x) dx−

∫
Rn
f(x)φ(x) dx

∣∣∣ =
∣∣∣ ∫

Rn
f(x)(φj(x)− φ(x)) dx

∣∣∣
≤
∫
Rn
|f(x)| |φj(x)− φ(x)| dx ≤ ‖f‖L1 sup |φj − φ|,

so the uniform convergence of φj to φ gives the desired conclusion. (The equivalent
characterization of continuity, in terms of (1) means that we could have simply
checked |

∫
fφ| ≤ C‖φ‖0, which holds with C = ‖f‖L1 .)

The important fact is that we do not lose any information by thinking of elements
of L1 as distributions, i.e. the map ι is one-to-one.

Lemma 0.1. The map ι : L1(Rn)→ S ′(Rn) is injective.

Because of this lemma, we can consider L1(Rn) as a subset of S ′(Rn), via the
identification ι.

Proof. Indeed, if ιf = 0 then
∫
fφ dx = 0 for all φ ∈ S(Rn), which is easily seen

to imply f = 0. One way to do this is to let φt,y(x) = Kt(y − x) be given by
the heat kernel Kt for t > 0. We have already seen that Kt ∗ f → f in L1. But
(Kt ∗ f)(y) = ιf (φt,y), so if ιf = 0, then Kt ∗ f = 0 for all t > 0, and thus taking
the limit, t → 0, f = 0. (We could of course use any other family of good kernels
whose elements are Schwartz.) �

Note that restricted to C(Rn) with a polynomial bound the injectivity argument
does not involve anything remotely sophisticated: if f ∈ C(Rn), and f(x0) 6= 0 for
some x0 ∈ Rn, by the continuity of f , for ε > 0 sufficiently small, |f(x)− f(x0)| <
|f(x0)|/2 for |x − x0| < ε. Now let φ be as in Lemma 0.1 of the basic Fourier
transform notes, so |f(x)− f(x0)| < |f(x0)|/2 on suppφ. So∣∣∣ ∫ fφ dx− f(x0)

∫
φdx

∣∣∣ ≤ ∫ |f(x)− f(x0)|φ(x) dx ≤ |f(x0)|
2

∫
φdx,

so ∣∣∣ ∫ fφ dx
∣∣∣ ≥ ∣∣∣f(x0)

∫
φ(x) dx

∣∣∣− ∣∣∣ ∫ fφ dx− f(x0)

∫
φdx

∣∣∣ ≥ |f(x0)|
2

∫
φdx,

so
∫
fφ dx 6= 0 as

∫
φdx > 0.
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More generally, even functions f for which (1+ |x|2)−Nf ∈ L1(Rn) are tempered
distributions since for φ ∈ S(Rn), (1 + |x|2)Nφ is bounded, thus∫

Rn
fφ =

∫
Rn

((1 + |x|2)−Nf)((1 + |x|2)Nφ)

can be analyzed as above. In particular any continuous function f satisfying an
estimate |f(x)| ≤ C(1 + |x|)N for some N and C defines a tempered distribution
u = ιf via

u(ψ) = ιf (ψ) =

∫
Rn
f(x)ψ(x) dx, ψ ∈ S,

since ∣∣∣ ∫
Rn
f(x)ψ(x) dx

∣∣∣ ≤ CM ∫
Rn

(1 + |x|)N (1 + |x|)−N−n−1 dx <∞,

M = sup
(
(1 + |x|)N+n+1|ψ|

)
<∞.

This is the reason for the ‘tempered’ terminology: the growth of f is ‘tempered’ at
infinity.

A more extreme example, related to Poisson summation, is the following, on R
for simplicity: Let a > 0, and let

u =
∑
k∈Z

δak,

i.e. for φ ∈ S(R), let

u(φ) =
∑
k∈Z

φ(ak).

This sum converges, since |φ(x)| ≤ C(1+ |x|2)−1 as φ ∈ S, and
∑
k∈Z C(1+a2k2)−1

converges. It is also continuous since if φj → φ in S, then (1 + x2)φj → (1 + x2)φ
uniformly on R, hence

|u(φj)− u(φ)| ≤
∑
k∈Z

(1 + a2k2)|φj(ak)− φ(ax)|(1 + a2k2)−1

≤
∑
k∈Z

sup
x∈R

(
(1 + x2)|φj(x)− φ(x)|

)
(1 + a2k2)−1

≤ sup
x∈R

(
(1 + x2)|φj(x)− φ(x)|

)∑
k∈Z

(1 + a2k2)−1,

and the last sum converges, so |u(φj)− u(φ)| → 0 as j →∞.
One usually equips S ′(Rn) with the so-called weak-* topology:

Definition 2. One says that a sequence uj ∈ S ′(Rn) converges to u ∈ S ′(Rn) if
u(φ) = limj→∞ uj(φ) for all φ ∈ S(Rn).

A word of warning: this is not the topology arising from a metric space, although
there is a topology in which this is the notion of convergence.

As an example, fix ε = 1 and let φ be as in Lemma 0.1 of the basic Fourier
transform notes with x0 = 0. Let δj be a sequence of positive constants with
limj→∞ δj = 0. Let uj be the distribution given by δ−nj φ(./δj), i.e.

uj(ψ) =

∫
δ−nj φ(x/δj)ψ(x) dx.

Let c =
∫
φdx. Then limj→∞ uj = cδ0. Indeed, for c = 1 this follows from

φδ = δ−nφ(./δ) forming a family of good kernels in the sense we discussed earlier.
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To be more explicit, note that by the continuity of ψ, given ε′ > 0, there is δ′ > 0
such that |x| < δ′ implies |ψ(x)− ψ(x0)| < ε′. Then

|uj(ψ)− cδ0(ψ)| =
∣∣∣ ∫ δ−nj φ(x/δj)ψ(x) dx− ψ(0)

∫
φ(x) dx

∣∣∣
=
∣∣∣ ∫ δ−nj φ(x/δj)ψ(x) dx−

∫
δ−nj φ(x/δj)ψ(0) dx

∣∣∣
≤
∫
δ−nj φ(x/δj)|ψ(x)− ψ(x0)| dx.

For j sufficiently large, δj < δ′, and φ(x/δj) = 0 if |x|/δj ≥ 1, i.e. if x ≥ δj , so
certainly if x ≥ δ′. Correspondingly, in the integral, one can restrict the integration
to |x| ≤ δj , where |ψ(x)− ψ(x0)| < ε′ to deduce that

|uj(ψ)− cδ0(ψ)| ≤ ε′
∫
δ−nj φ(x/δj) dx = cε′

for j sufficiently large. This proves our claim.
This is a rather typical example, and it is not hard to show that one can ap-

proximate any u ∈ S ′(Rn) in the weak-* topology by uj which are given by S(Rn)
functions, i.e. S(Rn) is sequentially dense in S ′(Rn) (this is actually a much stronger
statement than being dense since S ′ is not a metric space).

We can now consider differentiation. The idea is that we already know what the
derivative of a C1 function is, so we should express it as a distribution in such a
way that it obviously extends to the class of all distributions. Now, for f ∈ C1(Rn)
with |f(x)|, |(∂jf)(x)| ≤ C(1 + |x|)N for some N , the distribution associated to the
function ∂jf satisfies

ι∂jf (φ) =

∫
∂jf φ dx = −

∫
f ∂jφdx = −ιf (∂jφ)

for all φ ∈ S(Rn). Motivated by this, we make the definition:

Definition 3. The partial derivatives of u ∈ S ′(Rn) are defined by

∂ju(φ) = −u(∂jφ).

Note that for φ ∈ S(Rn), ∂jφ ∈ S(Rn), so this definition makes sense.
It is straightforward to check that ∂ju is a distribution, in particular is continuous

as a map S(Rn) → C. Note also that this is the only reasonable notion of a
derivative as the map u 7→ ∂ju is continuous, i.e. uk → u implies ∂juk → ∂ju, and
S(Rn), on which we already know ∂j , is dense in S ′(Rn).

Some examples: on R,

δ′a(φ) = −δa(φ′) = −φ′(a), φ ∈ S(R).

Also, if H is the Heaviside step function, so H(x) = 1 for x ≥ 0, H(x) = 0 for
x < 0, then

H ′(φ) = (ιH)′(φ) = −ιH(φ′) = −
∫ ∞
0

φ′(x) dx = φ(0)

for all φ ∈ S(R), where we used the fundamental theorem of calculus. Therefore
H ′ = δ0.

Note also that tempered distributions u may be multiplied by C∞ functions g
all of whose derivatives are polynomially bounded. Indeed, we proceed again by
analogy with ιf where f ∈ C(Rn). In that case

ιfg(φ) =

∫
(fg)φdx =

∫
f(gφ) dx = ιf (gφ),
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so for arbitrary u ∈ S ′(Rn) we define gu ∈ S ′(Rn) by

gu(φ) = u(gφ).

Note that for φ ∈ S(Rn), gφ ∈ S(Rn) since g ∈ C∞(Rn) with polynomial bounds,
so the definition makes sense.

This actually can be used to provide the first step in the proof of the sequential
density of S(Rn) in S ′(Rn). Indeed, if u ∈ S ′(Rn), and ρ ∈ C∞c (Rn) is such that
ρ(x) = 1 for |x| < 1, ρ(x) = 0 for |x| > 2 then vj = ρ(x/j)u → u in S ′(Rn) since
this means simply vj(φ) = u(φj)→ u(φ), φj(x) = ρ(x/j)φ(x), which in turn follows
since φj → φ in S by a simple calculation, and since u : S → F is continuous. The
gain here is that vj is compactly supported, namely if χj ∈ C∞c (Rn) is such that
χj(x) = 1 where ρ(x/j) 6= 0, then χjvj = vj , since this reduces to the statement
(1 − χj(x))ρ(x/j) = 0 for all x. It then remains to show that such vj can be
approximated in S ′ by elements of C∞c (Rn). There are different ways of completing
the argument; one could even use a Fourier series argument taking advantage of
that one could regard a fixed ball as being a compact subset of the interior of a
large cube, on which one can use Fourier series. The most straightforward way is,
however, convolutions, which we discuss later.

As an example of calculation with distributions, consider the following:

Lemma 0.2. Suppose that u ∈ S ′(R) and xu = 0. Then there is a constant c ∈ F
such that u = cδ0.

Proof. First note that if u = cδ0, then xu = 0 indeed:

xu(φ) = u(xφ) = cδ0(xφ) = c(xφ)(0) = 0

for all φ ∈ S(R) since x(0) = 0, so (xφ)(0) = 0.
Suppose now that xu = 0, i.e. u(xφ) = 0 for all φ ∈ S(R). If ψ is a test function

such that ψ(0) = 0 then Taylor’s theorem allows one to write ψ = xφ with φ ∈ S(R)
(namely φ = x−1ψ for x 6= 0 extends to be C∞ at 0), so u(ψ) = u(xφ) = 0.

So now suppose that ψ ∈ S(R). Let φ0 ∈ S(R) be such that φ0(0) 6= 0. We

choose α ∈ F such that ψ − αφ0 vanishes at 0, i.e. let α = ψ(0)
φ0(0)

. Then by the

argument of the previous paragraph, u(ψ − αφ0) = 0. Thus,

u(ψ) = u((ψ − αφ0) + αφ0) = u(ψ − αφ0) + αu(φ0)

= αu(φ0) =
u(φ0)

φ0(0)
ψ(0) = cδ0(ψ), c =

u(φ0)

φ0(0)
.

This finishes the proof. �

We defined the Fourier transform on S as

(Fφ)(ξ) = φ̂(ξ) =

∫
Rn
e−ix·ξ φ(x) dx,

and the inverse Fourier transform as

(F−1ψ)(x) = (2π)−n
∫
Rn
eix·ξ ψ(ξ) dξ.

We have shown that the Fourier transform satisfies the relation∫
φ̂(ξ)ψ(ξ) dξ =

∫
φ(x)ψ̂(x) dx, φ, ψ ∈ S.

In the language of distributional pairing this just says that the tempered distribtions

ιφ, resp. ιφ̂, defined by φ, resp. φ̂, satisfy

ιφ̂(ψ) = ιφ(ψ̂), ψ ∈ S.
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Motivated by this, we define the Fourier transform of an arbitrary tempered distri-
bution u ∈ S ′ by

(Fu)(ψ) = u(ψ̂), ψ ∈ S.
It is easy to check that û = Fu is indeed a tempered distribution, and as observed
above, this definition is consistent with the original one if u is a tempered distribu-
tion given by a Schwartz function φ (or one with enough decay at infinity). It is also
easy to see that the Fourier transform, when thus extended to a map F : S ′ → S ′,
still has the standard properties, e.g. F(Dxju) = ξjFu, Dxj = 1

i ∂xj . Indeed, by
definition, for all ψ ∈ S,

(F(Dxju))(ψ) = (Dxju)(Fψ) = −u(DxjFψ)

= u(F(ξjψ)) = (Fu)(ξjψ) = (ξjFu)(ψ),

finishing the proof.
The inverse Fourier transform of a tempered distribution is defined analogously,

F−1u(ψ) = u(F−1ψ),

and it satisfies
F−1F = Id = FF−1

on tempered distributions as well. Again, this is an immediate consequence of the
corresponding properties for S, for

(F−1Fu)(ψ) = Fu(F−1ψ) = u(FF−1ψ) = u(ψ).

As an example, we find the Fourier transform of the distribution u = ι1 given
by the constant function 1. Namely, for all ψ ∈ S,

û(ψ) = u(ψ̂) =

∫
Rn
ψ̂(x) dx = (2π)nF−1(ψ̂)(0) = (2π)nψ(0) = (2π)nδ0(ψ).

Here the first equality is from the definition of the Fourier transform of a tempered
distribution, the second from the definition of u, the third by realizing that the

integral of any function φ (in this case φ = ψ̂) is just (2π)n times its inverse
Fourier transform evaluated at the origin (directly from the definition of F−1 as
an integral), the fourth from F−1F = Id on Schwartz functions, and the last from
the definition of the delta distribution. Thus, Fu = (2π)nδ0, which is often written
as F1 = (2π)nδ0. Similarly, the Fourier transform of the tempered distribution u
given by the function f(x) = eix·a, where a ∈ Rn is a fixed constant, is given by
(2π)nδa since

û(ψ) = u(ψ̂) =

∫
Rn
eix·aψ̂(x) dx = (2π)nF−1(ψ̂)(a) = (2π)nψ(a) = (2π)nδa(ψ),

while its inverse Fourier transform is given by δ−a since

F−1u(ψ) = u(F−1ψ) =

∫
Rn
eix·aF−1ψ(x) dx = F(F−1ψ)(−a) = ψ(−a) = δ−a(ψ).

We can also perform analogous calculations on δb, b ∈ Rn:

Fδb(ψ) = δb(Fψ) = (Fψ)(b) =

∫
e−ix·bψ(x) dx,

i.e. the Fourier transform of δb is the tempered distribution given by the function
f(x) = e−ix·b. With b = −a, the previous calculations confirm what we knew
anyway namely that FF−1f = f (for this particular f).

If L is a linear partial differential operator, so L is of the form

L =
∑
|α|≤m

aα∂
α,
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and aα are in C∞(Rn) with polynomial bounds for all derivatives, then for all
u ∈ S ′(Rn), Lu makes sense as an element of S ′(Rn). In particular, we make the
following definition:

Definition 4. Suppose f ∈ S ′(Rn), u ∈ S ′(Rn), L is linear with C∞(Rn) coef-
ficients, with polynomial bounds. We say that u is a weak solution of Lu = f if
Lu = f in the sense of tempered distributions.

Notice that explicitly, with L as above, if both u and f are of the form (1 +
|x|2)NL1(Rn) for some N , this simply means that for all φ ∈ S(Rn),∑

|α|≤m

∫
Rn
u(x)(−1)|α|∂α(aα(x)φ(x)) dx =

∫
Rn
f(x)φ(x) dx,

i.e. that

(2)

∫
u(x)L†φ(x) dx =

∫
Rn
f(x)φ(x) dx,

where L† is the transpose of L:

(L†φ)(x) =
∑
|α|≤m

(−1)|α|∂α(aα(x)φ(x)),

or simply

L† =
∑
|α|≤m

(−1)|α|∂αaα,

where aα are understood as multiplication operators. (So Maα would be better
notation, where (Maαφ)(x) = aα(x)φ(x), but one usually just abuses the notation
and writes aα for the multiplication operator.)

We can now use tempered distributions to solve the wave equation on Rn. Thus,
consider the PDE

(∂2t − c2∆)u = 0, u(0, x) = φ(x), ut(0, x) = ψ(x).

Take the partial Fourier transform û of u in x to get

(∂2t + c2|ξ|2)û = 0, û(0, ξ) = Fφ(ξ), ût(0, ξ) = Fψ(ξ).

For each ξ ∈ Rn this is an ODE that is easy to solve, with the result that

û(t, ξ) = cos(c|ξ|t)Fφ(ξ) +
sin(c|ξ|t)
c|ξ|

Fψ(ξ).

Thus,

u = F−1ξ

(
cos(c|ξ|t)Fφ(ξ) +

sin(c|ξ|t)
c|ξ|

Fψ(ξ)

)
.

This can be rewritten in terms of convolutions, namely

u(t, x) = F−1ξ (cos(c|ξ|t)) ∗x φ+ F−1ξ

(
sin(c|ξ|t)
c|ξ|

)
∗x ψ(ξ),

so it remains to evaluate the inverse Fourier transforms of these explicit functions.
We only do this in R (i.e. n = 1).

Here we need to be a little careful as we might be taking the convolution of two
distributions in principle! However, any tempered distribution can be convolved
with elements of S(Rn). Indeed, if f ∈ C(Rn) polynomially bounded, φ ∈ S(Rn)
then

f ∗ φ(x) =

∫
f(y)φ(x− y) dy = ιf (φx),
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where we write φx(y) = φ(x−y). Note that f∗φ ∈ C∞(Rn) in fact, as differentiation
under the integral sign shows (the derivatives fall on φ!). We make the consistent
definition for u ∈ S(Rn) that

(u ∗ φ)(x) = u(φx),

so u ∗ φ ∈ C∞(Rn) since

∂xj (u ∗ φ) = u(∂xjφx),

in analogy with differentiation under the integral sign, as can be checked by taking
difference quotients, and using the fundamental theorem of calculus for h−1(φx+h−
φx). As an example,

δa ∗ φ(x) = δa(φx) = φ(x− a).

With some work one can even make sense of convolving distributions, as long as
one of them has compact support, but we do not pursue this here, as we shall see
directly that our formula makes sense for distributions even. We also note that for
f(x) = H(a− |x|), a > 0, where H is the Heaviside step function (so H(s) = 1 for
s ≥ 0, H(s) = 0 for s < 0),

f ∗ φ(x) =

∫
H(a− |y|)φ(x− y) dx =

∫ a

−a
φ(x− y) dy =

∫ x+a

x−a
φ(s) ds,

where we wrote s = x− y.
Returning to the actual transforms, (using that cos is even, sin is odd)

F−1ξ (cos(cξt)) =
1

2
(F−1ξ eictξ + F−1ξ e−ictξ) =

1

2
(δ−ct + δct),

while (note that ξ−1 sin(ξct) is continuous, indeed C∞, at ξ = 0!) from the home-
work

FxH(ct− |x|) =
2

ξ
sin(ctξ),

so

F−1ξ (c−1ξ−1 sin(cξt)) =
1

2c
H(ct− |x|).

In summary,

u(t, x) =
1

2
(δ−ct + δct)) ∗x φ+

1

2c
H(ct− |x|) ∗x ψ

=
1

2
(φ(x− ct) + φ(x+ ct)) +

1

2c

∫ x+ct

x−ct
ψ(y) dy,

so we recover d’Alembert’s formula.
Finally we comment on the larger picture for distributions. In general, linear

PDE theory constructs solutions of PDE by duality arguments. To get a bit of feel
for this, consider the following analogue. In finite dimensional vector spaces V,W ,
if one has a map P : V →W and P ∗ : W ∗ → V ∗ is the adjoint, defined by

(P ∗`)(v) = `(Pv), ` ∈W ∗, v ∈ V,

then P is onto if and only if P ∗ is one-to-one, and P is one-to-one if and only if
P ∗ is onto. (This reduces to a statement about matrices by introducing bases; the
adjoint is the transpose, or the conjugate transpose, depending on the definition
used.) Thus, if we try to solve P ∗` = f , where f ∈ V ∗ is given, we just need to
show that P is one-to-one. In infinite dimensions there are serious complications;
for one thing instead of just the one-to-one nature, we want an estimate of the form

‖v‖V ≤ C‖Pv‖W ,
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i.e. there is C > 0 such that for all v ∈ V this estimate holds. Notice that this
implies the statement that P is injective. The space S(Rn) is not normed, which
causes some complications; one typically works with a somewhat bigger space in-
stead. In any case, this gives distributional solutions to a PDE in the presence of
some estimates for the adjoint operator; in the case of P ∗ = L above, this amounts
to estimates for P which is essentially (up to possibly some complex conjugates in
the complex valued setting) L†. (Also, one would typically want to impose extra
conditions, such as initial conditions or boundary conditions, so there are further
subtleties.)

We also mention that weak solutions give rise to a numerical way of solving PDE.
Namely, consider (2). Let’s take a finite dimensional space XN of trial functions
which we take piecewise continuous, with say a basis ψ1, . . . , ψN , and a finite di-
mensional space YN of test functions which we take Cm, with a basis φ1, . . . , φN .
Let’s assume that u can be approximated by a linear combination of the ψj , i.e. by∑N
j=1 cjψj . If this combination actually solved the PDE, we would have∫

Rn

( N∑
j=1

cjψj(x)
)
(L†φ)(x) dx =

∫
Rn
f(x)φ(x) dx,

for all φ ∈ C∞c (Rn). Since we have only finitely many constants cj to vary, it is
unlikely that we can solve the equation so that it is satisfied for all φ. However, let
us demand that the equation is only satisfied for φ ∈ YN , in which case it suffices
to check it for the basis consisting of the φk, i.e. let us demand∫

Rn

( N∑
j=1

cjψj(x)
)
(L†φk)(x) dx =

∫
Rn
f(x)φk(x) dx, k = 1, . . . , N.

This is N equations (k = 1, . . . , N) for N unknowns (the cj), so typically (when
the corresponding matrix is invertible) we would expect that we can solve these
equations, which are just linear equations: they are of the form

N∑
j=1

Akjcj = gk,

where Akj =
∫
Rn ψj(x)(L†φk)(x) dx and gk =

∫
Rn f(x)φk(x) dx. Again, there are

issues about additional conditions (which would influence the choice of XN and
YN ), and one may want to write the equations in a different form. For instance for
a second order equation have one derivative each on φk and ψj , requiring them to
be piecewise C1. Such a rewriting, with an appropriate choice of φk and ψj is the
basis of the very important method of finite elements for numerically solving PDE.


