SOME SAMPLE EXAM PROBLEMS

1. Let A be an $n \times n$ self-adjoint matrix. (That is, assume $A^* = A$.) Prove that all the eigenvalues of A are real.

2. Suppose A is a self-adjoint $n \times n$ matrix. Suppose \mathbf{u} and \mathbf{v} are eigenvectors with different eigenvalues. Prove that \mathbf{u} and \mathbf{v} are perpendicular.

3. Prove (as in 2) that \mathbf{u} and \mathbf{v} are perpendicular, assuming A is normal (i.e., $AA^* = A^*A$) but not necessarily self-adjoint.

4. Let V be a finite-dimensional complex vector space and $T : V \rightarrow V$ be a linear operator. Suppose the only eigenvalue of T is 0. Prove that $T^k = 0$ for some k.

5. Let A be an $n \times n$ real matrix such that Ax is nonzero and perpendicular to x for every nonzero x. Prove that n is even.

6. Suppose for a certain matrix A that

$$A^2 - 3A + 2I = 0.$$

(a) Prove that if λ is an eigenvalue of A, then $\lambda = 1$ or $\lambda = 2$.
(b)* Prove that either 1 and 2 must be an eigenvalue of A. (Both may be.)

7. Suppose $T : V \rightarrow V$ is a linear operator on d-dimensional complex vector space V and that T has d distinct eigenvalues $\lambda_1, \ldots, \lambda_d$. Prove that

$$T^n \mathbf{v} \rightarrow 0 \quad \text{for all } \mathbf{v}$$

if and only if $|\lambda_i| < 1$ for every i.

8. Suppose V is a finite dimensional vector space and that W is a k-dimensional subspace. Prove that there is a basis for V whose first k elements are a basis for W.

9. Let M be a 3×3 real symmetric matrix with eigenvectors $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (-1, -1, 1)$. Find a third eigenvector (not just a scalar multiple of \mathbf{u} or \mathbf{v}.)

10. Let T be a 3×3 matrix all of whose entries are positive real numbers. Prove that T has an eigenvector whose components are all nonnegative real numbers. (In fact the components will all be positive.)

11. Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a bounded continuous map. (Bounded means there is an $M < \infty$ such that $|F(x)| \leq M$ for all x.) Prove there is an x such that $F(x) = x$.

Typeset by AMSTeX