Definition. A non-empty subset V of \mathbb{R}^n is called a **linear subspace** if and only if it is closed under addition and under scalar multiplication, i.e., if and only if

$$
A, B \in V \implies A + B \in V \\
A \in V \text{ and } c \in \mathbb{R} \implies cA \in V
$$

Remark. If V is a subspace, then any linear combination of vectors in V must also be in V. For suppose A_1, \ldots, A_k are vectors in V and c_1, \ldots, c_k are scalars. Then c_iA_i is in V (closure under scalar multiplication) for each i. Therefore $\sum c_iA_i$ is also in V (by closure under addition).

A Convention

Recall that if S is a set of vectors in \mathbb{R}^n, then $L(S)$ is the set of all linear combinations of vectors in S. What if S is the empty set \emptyset? One might well think that $L(\emptyset)$ should be the empty set, but it turns out to be much better to define $L(\emptyset)$ to be the set $\{0\}$ containing just the origin.

As someone observed in class, this convention is very natural if we think of $L(S)$ as all the points we can reach by starting at the origin and moving backwards and forwards in the directions given by the vectors in S.

Theorem 1. If $S = \{A_1, \ldots, A_k\}$ is a set of vectors in \mathbb{R}^n, then $L(S)$ is a subspace of \mathbb{R}^n.

Proof. First note that $L(S)$ is not empty since it must contain the origin.

Now suppose X and Y are in $L(S)$. Then $X = \sum c_iA_i$ and $Y = \sum d_iA_i$ for suitable scalars c_i and d_i. Thus

$$
X + Y = \sum c_iA_i + \sum d_iA_i = \sum (c_i + d_i)A_i
$$

so $X + Y \in L(S)$. This proves closure under addition. Likewise if r is a scalar, then

$$
rX = r\sum c_iA_i = \sum (rc_i)A_i
$$

so rX is in $L(S)$. This proves closure under scalar multiplication. □

Lemma. Let S be a list of vectors in \mathbb{R}^n. If one of the vectors, say X, in S is a linear combination of the others. Then removing it from S gives a new set S' with the same linear span:

$$L(S) = L(S')$$

Proof. Let A_1, \ldots, A_k, X be the vectors in S, so $S' = \{A_1, \ldots, A_k\}$. Since X is a linear combination of the A_i's,

$$X = \sum c_iA_i$$
for suitable scalars c_i.
Now suppose $Y \in L(S)$. Then

$$Y = \sum d_i A_i + rX$$

for suitable scalars d_i and r. Thus

$$Y = \sum d_i A_i + r(\sum c_i A_i) = \sum (d_i + rc_i) A_i$$

so $Y \in L(S')$. This shows that every vector in $L(S)$ is also in $L(S')$.

However, it is clear (why?) that every vector in $L(S')$ is also in $L(S)$. Thus $L(S')$ and $L(S)$ are the same. □

Theorem 2. Suppose B_1, B_2, \ldots, B_ℓ are linearly independent vectors in $L(A_1, \ldots, A_k)$. Then $\ell \leq k$.

Proof. Since B_1 is in $L(A_1, \ldots, A_k)$, the vectors

$$B_1, A_1, \ldots, A_k$$

are dependent. Thus one of them is a linear combination of the preceding ones. Note that one cannot be B_1. (Otherwise B_1 would be 0, which is impossible since the B’s are independent.) Thus it must be one of the A’s. By relabelling the A’s, if necessary, we may assume it’s A_k.

Now by the lemma,

$$L(A_1, \ldots, A_k) = L(B_1, A_1, \ldots, A_k) = L(B_1, A_1, \ldots, A_{k-1})$$

Thus

$$B_2, \ldots, B_{\ell-1} \in L(B_1, A_1, \ldots, A_{k-1})$$

By the same argument, the vectors

$$B_2, B_1, A_1, \ldots, A_{k-1}$$

are dependent, so one is a linear combination of the preceding ones, that one cannot be one of the B’s, so it must be an A_i. By relabelling, we may assume it is A_{k-1}. Then by the lemma,

$$L(B_1, A_1, \ldots, A_{k-1}) = L(B_2, B_1, A_1, \ldots, A_{k-2}) = L(B_2, B_1, A_1, \ldots, A_{k-2})$$

Consequently,

$$B_3, \ldots, B_\ell \in L(B_2, B_1, A_1, \ldots, A_{k-2})$$

Now repeat the process. If k were less than ℓ, then after k steps we would have

$$B_{k+1}, \ldots, B_\ell \in L(B_k, B_{k-1}, \ldots, B_1)$$

which is impossible (since the B’s are independent).

Thus $k \geq \ell$. □

Corollary 3. If B_1, \ldots, B_ℓ are linearly independent vectors in \mathbb{R}^n, then $\ell \leq n$.

Proof. Since B_1, \ldots, B_ℓ are in $L(E_1, \ldots, E_n)$, $\ell \leq n$ by theorem 3. □
Basis of a Subspace

Definition. A *basis* for a subspace V is a linearly independent set S of vectors whose span is V:

$$L(S) = V$$

Theorem 3. Suppose V is a subspace of \mathbb{R}^n. Then

1. There is a basis for V.
2. Any two bases for V have the same number of elements.

Proof of (1). If $V = \{0\}$, we let S be the empty set.

Now suppose V has nonzero elements. We define a sequence A_1, A_2, \ldots of vectors in V as follows.

Let A_1 be any nonzero vector in V.

Given A_1, \ldots, A_k, if $L(A_1, \ldots, A_k) = V$, we stop. If not, then there is a vector that belongs to V but not to $L(A_1, \ldots, A_k)$. Let A_{k+1} be such a vector.

Note that the set of vectors we get is linearly independent, since no one them is a linear combination of the preceding ones. The procedure must stop after at most n steps (since any set of more than n vectors in \mathbb{R}^n must be dependent by corollary 3.)

Proof of (2). Let B_1, \ldots, B_ℓ be one basis for V and A_1, \ldots, A_k be another basis for V. Then

$$B_1, \ldots, B_\ell \in L(A_1, \ldots, A_k)$$

so by theorem 2, $\ell \leq k$. Likewise $k \leq \ell$. □

Definition. Suppose V is a subspace of \mathbb{R}^n. The *dimension* of V, written $\dim V$, is the number of vectors in a basis for V.

According to theorem 3, every subspace has one and only one dimension.

Examples

The empty set \emptyset is a basis for $\{0\}$, so $\dim \{0\} = 0$.

The vectors E_1, \ldots, E_n form a basis for \mathbb{R}^n, so $\dim \mathbb{R}^n = n$.