1. Define a map

\[F : \mathcal{P}(\mathbb{R}) \rightarrow C \]

by

\[F(S) = \bigcup \left\{ \overline{B}(x, 1) : x \in S \right\}. \]

(Here \(\overline{B}(x, y) \) denotes the closed ball of radius \(r \) centered at \((x, y) \).

By definition of \(C \), the map \(F \) is surjective.

Also, note that \((x, 1) \in F(S) \) if and only if \(x \in S \). Thus

\[S = \{ x \in \mathbb{R} : (x, 1) \in F(S) \}. \]

This implies that \(F \) is injective.

Hence \(F \) is a bijection, so \(|C| = |\mathcal{P}(\mathbb{R})| = |2^\mathbb{R}|. \)

2. Suppose \((L, <)\) is a linearly ordered set and \(x, y \in L \). Let us say that \(x \) is the predecessor of \(y \) if (i) \(x < y \) and (ii) there is no \(z \) with \(x < z < y \).

In \(\mathbb{N} \times \{0, 1\}, (0, 0) \) is the only element without a predecessor: the predecessor of \((n, 1)\) is \((n, 0)\), and (if \(n \neq 0 \)) the predecessor of \((n, 0)\) is \((n - 1, 0)\).

However, in \(\{0, 1\} \times \mathbb{N} \), there are two elements without predecessors, namely \((0, 0)\) and \((1, 0)\). To see that \((1, 0)\) has no predecessor, note that if \((a, b) < (1, 0)\), then \(a = 0 \), so \((a, b) = (0, b) < (0, b + 1) < (1, 0)\).

Thus the two linearly ordered sets are not isomorphic.

3. Let \(S \) be a nonempty subset of \(B \). Let \(I_S \) be the set of all \(i \in I \) such that \((i, a) \in S \) for some \(a \). Note that \(I_S \) is nonempty since \(S \) is nonempty. Thus (since \(I \) is well-ordered), \(I_S \) has a least element \(i \).

Now consider the set \(V = \{ a \in A_i : (i, a) \in S \} \). Since \(i \in I_S \), the set \(V \) is nonempty. Thus \(V \) has a least element \(v \).

Now it is easy to show that \((i, v)\) is the least element of \(S \).

(Proof: Let \((j, w) \in S \). We must show that \((i, v) \leq (j, w) \). Since \((j, w) \in S \), \(j \in I_S \), so \(i \leq j \) (since \(i \) is the least element of \(I_S \)). If \(i < j \), then \((i, v) < (j, w) \), so we are done. Thus suppose \(i = j \). Since \((j, w) = (i, w) \in S \), \(w \in V \) (by definition of \(V \)). Thus \(v \leq w \) since \(v \) is the least element of \(V \). Thus \((i, v) \leq (i, w) = (j, w) \). \(\square \)