1. Suppose \(a < b \). We prove by induction on \(c \) that \(a + c < b + c \).

Note \(a + 0 = a < b = b + 0 \) so \(a + 0 < b + 0 \). Thus the assertion is true for \(c = 0 \).

Suppose it is true for \(c = n \):

\[
a + n < b + n.
\]

Then

(*) \[
(a + n) + 1 \leq b + n.
\]

Now \(x < x + 1 \) for all \(x \) (by definitions of successor and of \(<\)). In particular, \(b + n < (b + n) + 1 \). Combining this with (*) gives

\[
(a + n) + 1 < (b + n) + 1,
\]

or (equivalently) \(a + (n + 1) < b + (n + 1) \). So the assertion is true for \(y = n + 1 \).

This completes the proof by induction.

2. There are many ways to prove this. Here are two:

First solution (by contradiction): Suppose there is an \(x \geq n \) for which \(P(x) \) is false. Then the set

\[
S = \{ x \in \mathbb{N} : x \geq n \text{ and } P(x) \text{ does not hold} \}
\]

is nonempty. Thus it has a least element \(k \). Since \(k \in S \), \(k \geq n \). Since \(P(n) \) holds, \(k \neq n \), so \(k > n \). Thus \(k \neq 0 \), so \(k = j + 1 \) for some \(j \) (see problem 1 of hw 3). Since \(k > n, j \geq n \). Now \(P(j) \) must be true, since otherwise \(j \) would be in \(S \), which is impossible since \(j + 1 \) is the least element in \(S \). Since \(j \geq n \) and \(P(j) \) is true, \(P(j + 1) \) is true. But that is impossible since \(j + 1 (= k) \) is an element of \(S \).

Second solution: If \(n = 0 \), this is just ordinary induction. So we may assume that \(n > 0 \). Let \(Q(x) \) be the statement:

\[
x < n \text{ or } P(x).
\]

We prove by induction that \(Q(x) \) holds for every natural number \(x \).

Note \(Q(0) \) is true because \(0 < n \).

Now suppose \(Q(x) \) is true. Note \(x < n \) or \(x \geq n \). We handle these two cases separately.

Case (i): \(x < n \). Then \(x + 1 \leq n \). That is, \(x + 1 < n \) or \(x + 1 = n \). If \(x + 1 = n \), then \(P(x + 1) \) is true. Thus \(x + 1 < n \) or \(P(x + 1) \). That is, \(Q(x + 1) \) holds.

Case (ii): \(x \geq n \). Since \(Q(x) \) holds, this implies \(P(x) \) is true. Since \(x \geq n \) and \(P(x) \) is true, \(P(x + 1) \) is true. Thus \(Q(x + 1) \) is true.

So \(Q(0) \) is true, and \(Q(x) \) implies \(Q(x + 1) \) for every natural number \(x \). Thus by induction, \(Q(x) \) is true for all \(x \in \mathbb{N} \).
3. Note $x = x + 0$ (this is part of the definition of addition), so $x \leq x + 0$. Thus the assertion is true for $y = 0$. Thus we may suppose $0 \neq y$. Then $0 < y$. Hence $x + 0 < x + y$ by problem 1 (and commutativity of addition). Thus $x < x + y$ (since $x + 0 = x$).

We can also prove it by induction on y. The case $y = 0$ is handled exactly as the previous paragraph. Now suppose it is true for $y = n$;

(*)

$x \leq x + n$.

Now $x + n < (x + n) + 1$ (because every set is an element of its successor) and $(x + n) + 1 = x + (n + 1)$, so by (*)

$x < x + (n + 1)$.

This completes the proof by induction.

4. Fix a natural number m, and let $P(n)$ be the statement:

There is a $k \in \mathbb{N}$ such that $m + k = n$.

We prove by induction that $P(n)$ holds for all $n \geq m$. (See problem 2.)

Note $P(m)$ is true because $m + 0 = m$.

Suppose $P(n)$ is true, i.e., that

$m + k = n$

for some k. Adding 1 to both sides (and using associativity)

$m + (k + 1) = n + 1$

So $P(n + 1)$ is true. This completes the proof by induction.

5(1). Proof by induction on z.

The case $z = 0$: $x(y + 0) = xy = xy + 0 = xy + x0$, so it is true for $z = 0$.

Now suppose it’s true for z. Then

$x(y + (z + 1)) = x((y + z) + 1)$

$= x(y + z) + x$ (def of multiplication)

$= (xy + xz) + x$ (true for z)

$= xy + (xz + x)$

$= xy + x(z + 1)$ (def of mult.)

so it’s true for $z + 1$. This completes the proof by induction.

5(2).

$x \cdot 1 = x(0 + 1) = x \cdot 0 + x$ (def of mult.)

$= 0 + x$ (def of mult.)

$= x$ □

6. Let use F-set, F-element, etc to denote Fonebone’s understanding of set, element, etc. Thus the F-sets are the integers, x is an F-element of y if and only if $x + 1 = y$, etc. So we consider each axiom:

F-Existence: There is an F-set. True.
F-Extension: Two F-sets are equal if they have the same F-elements. True. (Suppose x and y are F-sets with the same F-elements. Then since $x - 1$ is an F-element of x, it’s also an F-element of y. Therefore $(x - 1) + 1 = y$, i.e. $x = y$.)

F-Selection: False. From F-existence and F-extension we can prove the existence of an F-set with no F-elements. But every F-set x has an F-element, namely $x - 1$.

F-Pairs. FALSE. Every F-set has exactly one F-element. Thus there is no F-set containing both 0 and 1 (for example) as F-elements.

F-union TRUE. In fact, the strong form of the axiom is true. We need to show, for each F-set a, that there is an F-set u such that

(*) $x \in_F u$ if and only if $x \in_F y$ and $y \in_F a$ for some F-set y.

There is one and only one F-element of a, namely $a - 1$, so (*) is equivalent to:

$x \in_F u$ if and only if $x \in_F a - 1$

Of course this is true for $u = a - 1$. Thus the F-union of a is $a - 1$.

(Warning: even though the axiom of union is true, $a \cup_F b$ does not exist (for Fonebone) unless $a = b$. This is not a contradiction. To prove existence of $a \cup b$, we used the axiom of union and the axiom of pairs. As we saw, only the former is true for Fonebone.)

F-Powerset axiom. This is TRUE (even in the strong form). Note that each F-set x has exactly one F-subset, namely x itself. Thus $x + 1$ is an F-set whose F-elements are precisely the F-subsets of x.

F-infinity. This doesn’t make much sense because there is no F-emptyset.

F-Foundation is true. Every F-set x has an F-element, namely $x - 1$, that is F-disjoint from x. (Of course a and b are F-disjoint means that there is no c that is an F-element of a and of b.)

6. There are many ways of doing this. Here is one. Remove apple (p, k) at stage $N = 2^p(2^k + 1) - 1$.

Equivalently, to determine which apple to discard at stage N, let 2^p be the largest power of 2 that divides $N + 1$. Then $(N + 1)/(2^p)$ will be on odd number $2k + 1$. Discard apple (p, k).

Clearly every apple gets discarded. We need to check, however, that the rule does not ask us to discard an apple we haven’t yet received! Note that

$2^p(2k + 1) - 1 \geq (2k + 1) - 1 = 2k \geq k$

as needed.

Here’s another way to do it. At stage 2^p3^k, discard apple (p, k) if it hasn’t already been discarded. Otherwise discard any remaining apple. At each other stage, choose any remaining apple to discard.