Math 120: Solutions to Sample Midterm Problems

1. (a) Let Z be the kernel. If $x, y \in Z$, then $f(x) = f(y) = 1$, so $f(xy) = f(x)f(y) = (1)(1) = 1$, so $xy \in Z$. Also, if $x \in Z$, then $f(x) = 1$, so $f(x^{-1}) = f(x)^{-1} = 1^{-1} = 1$, so $x^{-1} \in Z$. Finally, $f(1) = 1$, so $1 \in Z$. (b) Suppose $x \in Z$ and $g \in G$. Then

$$f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g)1f(g^{-1}) = f(gg^{-1}) = f(1) = 1$$

so $gxg^{-1} \in Z$. Since this holds for every $x \in Z$ and $g \in G$, Z is a normal subgroup of G.

2. This is a perfect shuffle of a 6 card deck, so $F = (1\ 2\ 4)(3\ 6\ 5)$ (as in a hw 3 problem). The order is the least common multiple of 3 and 3, namely 3.

3. This was in a recent hw assignment.

4. By Lagrange’s theorem, the only subgroups other than $\{1\}$ and S_6 itself each have order 2 or 3 and are therefore cyclic (generated by a single element). Of course 1 generates $\{1\}$, r and r^2 both generated $\langle r \rangle = \{1, r, r^2\}$, and finally s, rs, and r^2s generate cyclic groups of order 2. Thus the subgroups are $\langle 1 \rangle, \langle r \rangle, \langle s \rangle, \langle rs \rangle, \langle r^2s \rangle$, and S_6 itself.

5. By Lagrange’s theorem, the non-identity elements each have order p or p^2. If any element x has order p^2, then $\langle x \rangle = G$, so G is cyclic. If not, then all non-identity elements have order p.

6. First $1s = s1$ for all $s \in S$, so $1 \in H$. If x and y are in H, then (for every $s \in S$)

$$(xy)s = xys = xsy = sxy = s(xy),$$

so $xy \in H$. Also, for every $s \in S$, $xs = sx$ so, multiplying on the left and on the right by x^{-1}, we see that $sx^{-1} = -x^{-1}s$. Thus $x^{-1} \in H$.

7. The intersection $A \cap B$ is a subgroup, so by Lagrange its order divides both $|A| = 15$ and $|B| = 21$. Thus $|A \cap B|$ is either 1 or 3. On the other hand

$$|AB| = \frac{|A||B|}{|A \cap B|} = \frac{15 \cdot 21}{|A \cap B|} = \frac{3 \cdot 105}{|A \cap B|}.$$

This is 315 if $|A \cap B| = 1$ and 105 if $|A \cap B| = 3$. The former is impossible since AB can’t have more elements than G. (It’s a subset of G.) Thus $|A \cap B| = 3$, and $|AB| = 105$. Thus AB “fills up” all of G (i.e., $G = AB$), which means every element of G can be written as an element of A times an element of B.

8. By Lagrange, $|A \cap B|$ must divide $3 (=|A| = |B|)$, so $|A \cap B|$ is 1 or 3. It can’t be 3, since then $A \cap B$ would fill up all of A and of B so that $A = A \cap B = B$, a contradiction. Thus $|A \cap B| = 1$. Then

$$|AB| = \frac{|A||B|}{|A \cap B|} = \frac{3 \cdot 3}{1} = 9.$$

Since 9 does not divide $|G| = 30$, AB cannot be a subgroup of G. Thus $AB \neq BA$ (see proposition 14, page 95.)