(Note: this way is harder!) In the invariant factor decomposition, \(n_1 \) must be divisible by each of the prime factors of \(|G|\) (see page 161). Thus \(n_1 \) is divisible by \(p \) and by \(q \), and therefore by \(pq \). Since \(|G|\) is divisible by \(n_1 \), this means \(n_1 = p^2q \) or \(n_1 = pq \). But \(n_1 < |G| \) since we are told that \(G \) is not cyclic. Thus \(n_1 = pq \), and therefore \(n_2 = p \). So \(G \cong \mathbb{Z}_{pq} \times \mathbb{Z}_p \).

Let us write \(\mathbb{Z}_{pq} \) and \(\mathbb{Z}_p \) additively. Now the order of \((a, b) \in G\) is

\[
\text{lcm}(|a|, |b|).
\]

The order of an element \(\bar{a} \in \mathbb{Z}_{pq} \) is \(pq/(a, pq) \). We may take \(0 \leq a < pq \). If \(a \) is a multiple of \(p \) but not \(q \), then \((a, pq) = p \), so \(|\bar{a}| = q \). There are \(q-1 \) such \(a \)'s, namely \(p, 2p, 3p, \ldots, (q-1)p \). Likewise if \(a \) is a multiple of \(q \) but not \(p \), then \(|\bar{a}| = p \). There are \(p-1 \) such \(a \)'s, namely \(q, 2q, \ldots, (p-1)q \). If \(a \) is a multiple of \(p \) and \(q \), then \(a = 0 \) and \(|\bar{a}| = 1 \). The other \(pq - (p-1) - (q-1) - 1 = pq - p - q + 1 = (p-1)(q-1) \) elements have order \(pq \).

Now \(\mathbb{Z}_p \) has one element (the identity) of order 1 and \(p-1 \) elements of order \(p \). Thus we have the following table:

<table>
<thead>
<tr>
<th></th>
<th>1 : 1</th>
<th>(p : q-1)</th>
<th>(q : p-1)</th>
<th>(pq : (p-1)(q-1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1</td>
<td>1 : 1</td>
<td>(p : q-1)</td>
<td>(q : p-1)</td>
<td>(pq : (p-1)(q-1))</td>
</tr>
<tr>
<td>(p : p-1)</td>
<td>(p : p-1)</td>
<td>(p : (p-1)(q-1))</td>
<td>(pq : (p-1)^2)</td>
<td>(pq : (p-1)^2(q-1))</td>
</tr>
</tbody>
</table>

Order of element: number of elements with that order

The numbers across the top refer to elements \(\bar{a} \) of \(\mathbb{Z}_{pq} \). The numbers down the left side refer to elements \(\bar{b} \) of \(\mathbb{Z}_p \). The numbers in the table refer to the corresponding elements \((\bar{a}, \bar{b})\) of \(G \cong \mathbb{Z}_{pq} \times \mathbb{Z}_p \).

For example, looking at row 2 and column 3 of the table, we see that there are \(p-1 \) elements \(\bar{a} \) of order \(q \) in \(\mathbb{Z}_{pq} \), \(p-1 \) elements \(\bar{b} \) of order \(p \) in \(\mathbb{Z}_p \), and from these we get \((p-1)^2\) elements \((\bar{a}, \bar{b})\) of order \(pq \) in \(G \).

Altogether, \(G \) has:

- 1 element of order 1;
- \(p-1 \) elements of order \(q \);
- \((p-1)+(q-1)+(p-1)(q-1)=pq-1\) elements of order \(p \); and
- \((p-1)(q-1)+(p-1)^2(q-1)+(p-1)^2=p^2q-pq-p+1\) elements of order \(pq \).

In particular, the largest order is \(pq \).