§3.5 15: Let $H = \langle x \rangle$ and $K = \langle y \rangle$. Then $H = \{1, x, x^{-1}\}$, and since y is not 1, x, or x^{-1}, $y \notin H$. Therefore $H \cap K$ is a subgroup of K, not equal to K, and so $|H \cap K| = 1$, and then $|HK| = |H||K|/|H \cap K| = 9$. Since x, y are 3-cycles, they are both even. Therefore $\langle x, y \rangle$ is a subgroup of A_4 of order at least 9. But A_4 has order 12, and so $\langle x, y \rangle = A_4$.

§4.2 7:

(1) This is Cayley’s Theorem applied to Q_8.

(2) Suppose $n \leq 7$ and $\phi : Q_8 \to S_n$ is a homomorphism. This gives an action of Q_8 on $\{1, 2, \ldots, n\}$. For every a, since the orbit of a has at most n elements and $n < 8$, the stabilizer of a in Q_8 must be nontrivial. But every nontrivial subgroup of Q_8 contains -1, so -1 stabilizes a. Since this holds for every a, -1 stabilizes everything, so $\phi(-1) = 1$. Therefore ϕ cannot be injective, so Q_8 cannot be isomorphic to a subgroup of S_n with $n \leq 7$.

8: Consider the left cosets, G/H. G acts on these cosets by left multiplication, which gives us a homomorphism of G in S_n. By, theorem 3 (p. 121), the kernel K of this action is the largest normal subgroup of G contained in H. K is the subgroup we are looking for. Notice $G \setminus K \subseteq S_n$, hence $|G : K| \leq |S_n| = n!$ as desired.

11: Consider the action of $H = \langle x \rangle$ on G by left multiplication. Suppose $x \neq 1$. Note x does not fix any element of G; that is, $xa \neq a$ for any $a \in G$. Thus stabilizer subgroup H_a is $\{1\}$, so the orbit of a has $n - 1$ elements (namely $a, xa, x^2a, \ldots, x^{n-1}a$). Thus each orbit has size n. Thus $|G|$ is the number m of orbits times n. Such a permutation can be represented as the product of $(n-1)m$ transpositions, so it is odd if and only if $n - 1$ and m are both odd, i.e. if and only if $n = |x|$ is even and $m = |G|/|x|$ is odd.

§4.3 5: We are given $|G : Z(G)| = n$. Notice the centralizer of any element must contain $Z(G)$, hence $|Z(g)| \leq |C_G(g_i)|$. Let K_i be a conjugacy class. Now $|K_i| = |G : C_G(g_i)| \leq |G : Z(G)| = n$ as desired.

13: Suppose G has finite order n and has exactly two conjugacy classes. One of the conjugacy classes is $\{1\}$, so the other must be $G - \{1\}$. But the order of each conjugacy class divides $|G|$, so $n - 1$ divides
n and therefore $n = 2$. Every group of order 2 is cyclic, so G must be cyclic of order 2. Conversely, if G is cyclic of order 2 then G has exactly two conjugacy classes.

26: For $a \in A$, let G_a denote the stabilizer of a, i.e. the set of $g \in G$ such that $g \cdot a = a$. We want an element of G that does not stabilize any element of A. That is, we want a $g \in G$ that is not in any of the G_a’s. Now for each $a \in A$,

$$|A| = |\text{orbit}(a)| = |G|/|G_a|,$$

so $|G_a| = |G|/|A|$. Thus there are $|G|/|A| - 1$ nonidentity elements in G_a. Let G^*_a denote the set of nonidentity elements of G_a. Then

$$|\bigcup_{a \in A} G_a| \leq |A|(|G|/|A| - 1) = |G| - |A|.$$

Thus $\bigcup_{a \in A} G_a$ has at most $|G| - |A| + 1 < |G|$ elements. So there must be at least one $g \in G$ that is not in any of the G_a’s.

30: If G has odd order then every conjugacy class has odd order. Suppose C is a conjugacy class and $x, x^{-1} \in C$. Then for every $y \in C$, say $y = gxg^{-1}$, we have $y^{-1} = gx^{-1}g^{-1}$ so $y^{-1} \in C$ as well. Therefore the sets $\{y, y^{-1}\}$ for $y \in C$ give a partition of C. But C has odd order, so for at least one $y \in C$, we must have $|\{y, y^{-1}\}| = 1$, i.e., $y = y^{-1}$ and $y^2 = 1$. But G has odd order, so we conclude that $y = 1$, $C = \{1\}$, and so $x = 1$.

§4.4 6: Let H be a characteristic subgroup of a group G. Then H is fixed by every automorphism of G. Since conjugation is an automorphism of G, then we must have $gHg^{-1} = H$ for every element $g \in G$, proving H is normal. For the second part of the problem, consider the vector space \mathbb{R}^2. Every subgroup is normal since \mathbb{R}^2 is an abelian group under addition. Consider any one dimensional subspace, which is a subgroup. Rotation by 45 degrees is an automorphism of \mathbb{R}^2, but does not fix any one dimensional subspace.

8: (a) K is normal G means that conjugation by $g \in G$ fixes K. Recall that conjugation is an automorphism, hence since H is characteristic in K, conjugation also fixes H, proving that H is normal.

(b) K characteristic in G means that any automorphism of G fixes K. Since H is characteristic in K, this same automorphism also fixes H, proving H is characteristic in G.

(c) Note that in any such example, H has a conjugate $H' \neq H$, and H' must be in K (since K is characteristic and therefore normal in G). Thus we need a K that contains two isomorphic normal subgroups that are conjugate in a larger group G. If K is abelian, then its subgroups will automatically be normal.
With that in mind, here is an example. Let K be all translations of the plane. As our H we can take all horizontal translations, and as H' all vertical translations. We need G to contain an element g such that $g(a$ horizontal translation)g^{-1} must be a vertical translation. Rotation by 90 degrees (about any point) does that. Thus let G be the group whose elements are: all translations of the plane, together with all rotations through multiples of 90 degrees. (One has to check that this set is closed under the composition operation.) So: H is normal in K, but not normal in G. It only remains to show that K is characteristic in G. It is characteristic, because it is the set of all elements of infinite order, together with the identity element.

(If we think of the point (x, y) in the plane as the complex number $x + iy$, then the elements of G are maps of the form

$$f_{n,b}(z) = i^n z + b,$$

where n is an integer and b is a complex number. Rotation by 90 degrees about point p is given by $z \mapsto i(z - p) + p = iz + (1 - i)p = f_{1,1-i}(z)$. Then K is the set of $f_{n,b}$ with $n = 0$, H is the set of $f_{n,b}$ with $n = 0$ and b real. With this description, it is easy to check algebraically that G is closed under composition.)

Perhaps some of you thought up simpler examples...