The Rules. These are way too many problems to consider. Just pick a few problems you like and play around with them.

You are not allowed to try a problem that you already know how to solve. Otherwise, work on the problems you want to work on.

Problem of the Week: volume of n-dimensional spheres.

Let $S_n(R)$ be the “n-dimensional sphere of radius R”. For example, $S_3(R)$ is the sphere of radius R; $S_2(R)$ is the (interior of the) circle of radius R; $S_1(R)$ is a line segment of length $2R$ (why?).

1. Make a table of values of the “volume” $V_n(R)$ and “surface area” $A_n(R)$ of $S_n(R)$ for $n = 2, 3, 1$ and 0. (This is an example of “generalizing downward”, and will require some creative thinking.)

<table>
<thead>
<tr>
<th>n</th>
<th>$V_n(R)$ = “volume” of $S_n(R)$</th>
<th>$A_n(R)$ = “surface area” of $S_n(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Why is $S_n(R)$ a constant multiple of R^n? Why is $A_n(R)$ a constant multiple of R^{n-1}?

3. Why is $A_n(R) = \frac{d}{dR} S_n(R)$?

In fact,

\[
S_n(R) = \frac{\pi^{n/2}}{(n/2)!} R^n.
\]

4. “But wait!” you exclaim — “we don’t know the meaning of $(n/2)!$ when n is odd!” So using the table, define $(1/2)!$. Then define $n! = n(n - 1)!$ even when n is a half-integer.

Date: Tuesday, November 19, 2002.
Check your answer by verifying that the resulting formula for the volume of the 3-sphere still works.

5. Prove equation (1) by induction as follows. Prove it for \(n = 1 \) and 2. Then prove it for \(n \) assuming it holds for \(n - 2 \), by showing that

\[
\text{vol } S_n(R) = \iiint_{\vec{x} \in n\text{-sphere of radius } R} 1 = \iiint_{\vec{y} \in \text{circle of radius } R} \left(\iint_{\vec{z} \in (n-2)\text{-sphere of radius } \sqrt{R^2 - |\vec{y}|^2}} 1 \right)
\]

and computing the nested integrals on the right. (At some point, polar coordinates may help.)

6. (This is easier than many of the earlier ones.) There is a less ad hoc definition of \(n! \) when \(n \) isn’t an integer. If \(s \) is a non-negative real number, define \(g(s) = \int_0^\infty x^s e^{-x} dx \). Prove that (i) \(g(0) = 1 \), (ii) \(g(s) = sg(s - 1) \) if \(s \geq 1 \), assuming that \(g(s - 1) \) exists. Be careful with convergence! Hence \(g(s) = s! \) when \(s \) is an integer.

This function, shifted by one, is called the “gamma function”. There is a neat argument that \(g(1/2) \) is the value you found in problem 5; thus \(g(s) = s! \) even when \(s \) is a half-integer.

Putnam Problems.

1987A3. For all real \(x \), the real-valued function \(y = f(x) \) satisfies

\[
y'' - 2y' + y = 2e^x.
\]

(a) If \(f(x) > 0 \) for all real \(x \), must \(f'(x) > 0 \) for all real \(x \)? Explain.
(b) If \(f'(x) > 0 \) for all real \(x \), must \(f(x) > 0 \) for all real \(x \)? Explain.

1987B1. Evaluate

\[
\int_2^4 \frac{\sqrt{\ln(9 - x)}}{\sqrt{\ln(9 - x)} + \sqrt{\ln(9 + x)}} dx.
\]

1995A2. For what pairs \((a, b)\) of positive real numbers does the improper integral

\[
\int_b^\infty \left(\sqrt{\sqrt{x + a} - \sqrt{x}} - \sqrt{\sqrt{x} - \sqrt{x + b}} \right) dx
\]

converge?

1991B2. Suppose \(f \) and \(g \) are nonconstant, differentiable, real-valued functions on \(\mathbb{R} \). Furthermore, suppose that for each pair of real numbers \(x \) and \(y \),

\[
\begin{align*}
f(x + y) &= f(x)f(y) - g(x)g(y), \\
g(x + y) &= f(x)g(y) + g(x)f(y).
\end{align*}
\]

If \(f'(0) = 0 \), prove that \((f(x))^2 + (g(x))^2 = 1\) for all \(x \).
Let f be a twice-differentiable real-valued function satisfying
\[f(x) + f''(x) = -xg(x)f'(x), \]
where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded.

Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that
\[f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \geq 0. \]

Find the maximum value of
\[\int_0^y \sqrt{x^4 + (y - y^2)^2} \, dx \]
for $0 \leq y \leq 1$.

Show that
\[\int_{-100}^{-10} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 \, dx + \int_{10}^{101} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 \, dx + \int_{101}^{1000} \left(\frac{x^2 - x}{x^3 - 3x + 1} \right)^2 \, dx \]
is a rational number.

Find the set of all real numbers k with the following property: For any positive, differentiable function f that satisfies $f'(x) > f(x)$ for all x, there is some number N such that $f(x) > e^{kx}$ for all $x > N$.

Evaluate
\[\int_0^\infty \left(x - \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} - \frac{x^7}{2 \cdot 4 \cdot 6} + \cdots \right) \left(1 + \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} + \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \cdots \right) \, dx. \]

This handout can (soon) be found at
\[http://math.stanford.edu/~vakil/stanfordputnam/ \]

E-mail address: lng@math.stanford.edu, vakil@math.stanford.edu