The William Lowell Putnam Mathematical Competition

takes place Saturday, December 7, 2002.
Last year, Stanford, placed fifth.

Sign-up and Introductory Meeting

We will also discuss times and dates of problem-solving preparatory sessions. If you can’t
make it and are even potentially interested, please e-mail vakil@math.stanford.edu.
For more information: http://math.stanford.edu/~vakil/stanfordputnam

Sample problems:
1. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are
in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given that the
product of any three (not necessarily distinct) elements of T is in T and that the product
of any three elements of U is in U, show that at least one of the two subsets T, U is closed
under multiplication.
2. Inscribe a rectangle of base b and height h and an isosceles triangle of base b in a circle of
radius one as shown. For what value of h do the rectangle and triangle have the same area?

3. Evaluate
\[\int_2^4 \frac{\sqrt{\ln(9 - x)}}{\sqrt{\ln(9 - x) + \ln(x + 3)}} \, dx. \]

4. Find all real-valued continuously differentiable functions f on the real line such that for
all x
\[(f(x))^2 = \int_0^x ((f(t))^2 + (f'(t))^2) \, dt + 1990. \]

5. Prove that, for any integers a, b, c, there exists a positive integer n such that $\sqrt{n^3 + an^2 + bn + c}$
is not an integer.